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Abstract

Automatic Post-Editing (APE) systems are
prone to over-correction of the Machine Trans-
lation (MT) outputs. While a Word-level Qual-
ity Estimation (QE) system can provide a way
to curtail the over-correction, a significant per-
formance gain has not been observed thus far
by utilizing existing APE and QE combination
strategies. This paper proposes joint training
of a model over QE (sentence- and word-level)
and APE tasks to improve the APE. Our pro-
posed approach utilizes a multi-task learning
(MTL) methodology, which shows significant
improvement while treating the tasks as a ‘bar-
gaining game’ during training. Moreover, we
investigate various existing combination strate-
gies and show that our approach achieves state-
of-the-art performance for a ‘distant’ language
pair, viz., English-Marathi. We observe an im-
provement of 1.09 TER and 1.37 BLEU points
over a baseline QE-Unassisted APE system
for English-Marathi while also observing 0.46
TER and 0.62 BLEU points improvement for
English-German. Further, we discuss the re-
sults qualitatively and show how our approach
helps reduce over-correction, thereby improv-
ing the APE performance. We also observe that
the degree of integration between QE and APE
directly correlates with the APE performance
gain. We release our code publicly1.

1 Introduction

Significant progress in Machine Translation (MT)
and adopting MT systems in the translation indus-
try has led to motivated research on auxiliary tasks.
One auxiliary task in the MT field is Automatic
Post-editing (APE), which is aimed toward the au-
tomatic identification and correction of translation
errors. The APE task is motivated by the need to
improve MT output in black-box conditions, where
translation models are not accessible for modifica-
tion or retraining (Chatterjee et al., 2020), which

1https://github.com/cfiltnlp/APE_MTL

can be costly in terms of time and effort. Quality
Estimation (QE) is another auxiliary task that as-
sesses the quality of MT output in the absence of
reference translations (Specia et al., 2020). QE is
performed at a word, sentence, and document level.
A word-level QE system predicts an OK or BAD
tag for each token on both source and target seg-
ments, while a sentence-level QE assigns a rating
(0-100), referred to as a Direct Assessment (DA)
score, to the translation denoting its overall quality.

Both QE and APE have been explored signifi-
cantly as standalone tasks. Over the years, predict-
ing MT quality has been formulated differently (e.g.
ranking, scoring, qualitative metrics) and has been
dealt with at diverse levels of granularity. Consis-
tent advancements in both these tasks make QE
and APE more appealing technologies. Despite
the growing interest in the two tasks and their in-
tuitive relatedness, previous research in both areas
has mostly followed separate paths. Current QE
integration strategies in the MT-APE pipeline have
only been applied over statistical phrase-based MT
system translations (Chatterjee et al., 2018).

Our motivation for the current work is: the
potential usefulness of leveraging the two tech-
nologies to develop a better APE system has been
scarcely explored. Also, there is no systematic
analysis of APE performance when different QE
and APE combination strategies are used to post-
edit translations obtained from a Neural Machine
Translation (NMT) system. We hypothesize that QE
can help APE in the following manner: A sentence-
level QE output can provide an overall idea of how
much editing is required to correct a translation,
whereas a word-level QE output can help APE by
identifying translation tokens that need editing.

Our goal is to reduce over-correction in APE by
using QE. Hence, our contributions are:

1. Joint training over QE (sentence- and word-
level) and APE tasks, which helps APE learn
to identify and correct erroneous translation

https://github.com/cfiltnlp/APE_MTL


segments, leading to significant (based on the
significance test with p value of 0.05) perfor-
mance gains for English-Marathi (1.09 TER)
and English-German (0.46 TER) over the QE-
unassisted APE baseline. (Refer Table 4)

2. A novel approach to multi-task learning (Nash-
MTL) applied to QE and APE, which treats
learning both tasks as a bargaining game. The
improvements obtained over the baseline are
given in the first point.

3. A comprehensive study investigating known
QE and APE combination strategies while
showing that a tighter coupling of both tasks
is increasingly beneficial in improving APE
performance. For this study, we consider three
existing QE and APE combination strategies
(QE as APE Activator, QE as MT/APE Se-
lector, QE as APE Guide) and the proposed
method (Joint Training over QE and APE).
(Refer Table 5 or Figure 4)

2 Related Work

During the past decade, there has been tremendous
progress in the field of QE and APE, primarily
due to the shared tasks organized annually by the
Conference on Machine Translation (WMT), since
2012 and 2015, respectively (Zerva et al., 2022;
Bhattacharyya et al., 2022).

Läubli et al. (2013) and Pal et al. (2016) have
shown that the APE systems have the potential
to reduce human effort by correcting systematic
and repetitive translation errors. Recent APE ap-
proaches utilize transfer learning by adapting pre-
trained language or translation models to perform
post-editing (Lopes et al., 2019; Wei et al., 2020;
Sharma et al., 2021). Also, the recent approaches
use multilingual or cross-lingual models to get la-
tent representations of the source and target sen-
tences (Lee et al., 2020). Oh et al. (2021) have
shown that gradually adapting pre-trained models
to APE by using the Curriculum Training Strat-
egy (CTS) improves performance. Deoghare and
Bhattacharyya (2022) have demonstrated that aug-
menting the APE data by phrase-level APE triplets
improves feature diversity and used the CTS to
train the APE system on high-quality data.

Recently, in the field of QE, neural-based sys-
tems such as deepQuest (Ive et al., 2018) and
OpenKiwi (Kepler et al., 2019) have consistently
outperformed other approaches in WMT Quality

Estimation shared tasks (Kepler et al., 2019). These
systems utilize an encoder-decoder Recurrent Neu-
ral Network (RNN) architecture, commonly called
the ‘predictor,’ combined with a bidirectional RNN
known as the ‘estimator,’ which generates quality
estimates. However, one drawback of these ar-
chitectures is that they require extensive predictor
pre-training, relying on large parallel data and de-
manding computational resources (Ive et al., 2018).
To address this limitation, TransQuest (Ranasinghe
et al., 2020b) emerged as a solution, winning the
WMT20 sentence-level QE (DA prediction) shared
task Specia et al. (2020). TransQuest eliminates
the need for a predictor by leveraging cross-lingual
embeddings. The authors fine-tuned an XLM-
Roberta model for the sentence-level QE, demon-
strating that a simple architecture can achieve state-
of-the-art results. Subsequently, the TransQuest
framework has been extended to the word-level QE
task (Ranasinghe et al., 2021). Recently, Deoghare
and Bhattacharyya (2022) showed that combining
sentence-level and word-level QE systems can help
alleviate the problem of inconsistent predictions.

Martins et al. (2017) used APE outputs to im-
prove QE systems. Hokamp (2017) used an en-
semble of factored NMT models for word-level
QE and APE tasks. Chatterjee et al. (2018) com-
pared three combination approaches and showed
the potential of QE systems in improving APE on
output obtained from a phrase-based MT system.
We use these three approaches for comparison in
the current work. The winning submission of the
WMT22 APE shared task shows the usefulness of a
sentence-level QE system in deciding whether APE
has improved a translation or not (Bhattacharyya
et al., 2022).

3 Standalone APE and QE Systems

This section discusses the approaches used to de-
velop standalone APE and QE systems. We fol-
low the state-of-the-art approaches for training the
systems as it allows us to investigate whether the
findings of Chatterjee et al. (2018) hold when neu-
ral APE and QE systems are used to post-edit and
assess the quality of NMT-generated translations.

3.1 Automatic Post-Editing

The subsection describes a standalone neural APE
system that we use as a baseline as well and refer
to it as APE w/o QE.



Figure 1: Dual-encoder single-decoder architecture with
task-specific heads used for joint training over QE and
APE tasks for the English-Marathi pair. Without com-
ponents shown within the dashed rectangle, the diagram
depicts the architecture of a standalone APE system.
Dashed arrows represent tied parameters and common
embedding matrices for the encoders and the decoder.

Architecture We develop the APE system us-
ing transformer-based encoder-decoder architec-
ture. We use two separate encoders for the English-
Marathi APE system to encode a source sentence
and its translation, as these languages do not share
script or vocabulary. Outputs of both encoders
are passed to two consecutive cross-attention lay-
ers in the decoder. An architecture shown in Fig-
ure 1 without the Sentence-QE and Word-QE heads
represents the English-Marathi APE architecture.
While for the English-German APE system, we
use a single-encoder single-decoder architecture as
there is a script and vocabulary overlap between
these two languages. Therefore, a single encoder
encodes the concatenation of source and translation
generated by adding a ‘<SEP>’ tag between them,
and the encoder output is passed to a single cross-
attention layer in the decoder. For both the pairs,
the encoders are initialized using IndicBERT (Kak-
wani et al., 2020) weights.

Dataset We use datasets released through
the WMT21 (Akhbardeh et al., 2021) and
WMT22 (Bhattacharyya et al., 2022) English-
German and English-Marathi APE shared tasks,
respectively, to conduct the experiments. The

APE data consists of real (human-generated post-
edits) and synthetic (artificial post-edits) (Junczys-
Dowmunt and Grundkiewicz, 2016). The English-
Marathi APE dataset contains 18K real APE triplets
from General, News, and Healthcare domains in
the train set, and the synthetic APE data contains
around 2.5M triplets from multiple domains. The
train set for the English-German pair contains 7K
real APE triplets from the general domain, and the
synthetic APE data, eSCAPE (Negri et al., 2018),
contains around 4M shuffled triplets from multiple
domains. We use the corresponding development
sets containing 1K APE triplets to evaluate the APE
systems.

We also use the parallel corpora during the APE
training phase. For the English-Marathi pair, we
use Anuvaad2, Samanantar (Ramesh et al., 2022),
and ILCI (Bansal et al., 2013) datasets containing
around 6M sentence pairs. While for the English-
German pair, we use the News-Commentary-v16
WMT22 MT task dataset (Kocmi et al., 2022) of
around 10M sentence pairs.

Data Augmentation and Pre-processing We
augment the synthetic APE data with automati-
cally generated phrase-level APE triplets. First, we
train source-to-translation and source-to-post-edit
phrase-based statistical MT systems by employ-
ing Moses (Koehn et al., 2007). The phrase pairs
from both MT systems are extracted in the next
step. Then, we form the APE triplet by matching
the source side of both phrase pairs. We control
the quality of synthetic APE triplets (including the
phrase-level APE triplets) by performing LaBSE-
based filtering (Feng et al., 2022) and filter the
low-quality triplets from the synthetic APE data. It
is done by computing cosine similarity between the
normalized embeddings of a source sentence and
its corresponding post-edited translation. We re-
tain the triplet if the cosine similarity is more than
0.91. We get around 50K and 60K phrase-level
triplets for English-Marathi and English-German
pairs, respectively.

Model Training We follow the Curriculum
Training Strategy (CTS) similar to Oh et al. (2021)
for training our APE systems. It involves gradually
adapting a model to more and more complex tasks.
The steps of the CTS are described below.

In the first step, we train a single-encoder single-
decoder model for performing source-to-target lan-

2Anuvaad Parallel Corpus
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guage translation using the parallel corpus. In the
next step, we add another encoder to the encoder-
decoder model for English-Marathi APE while we
use the same architecture for the English-German
APE. We train the resulting model for the APE
task using the synthetic APE data in the two phases
for English-Marathi and in one phase for English-
German. In the first phase, we train the model for
the APE task using the out-of-domain APE triplets
(i.e. any domains except the General, News, and
Healthcare for English-Marathi). In the second
phase, we train the model using the in-domain syn-
thetic APE triplets. As the English-German APE
data is of general (news or wiki) domain, we train
the English-German APE model in a single phase
using all synthetic data. Finally, we fine-tune the
APE model using in-domain real APE data. Equa-
tion 1 shows the cross-entropy loss function used
to train the APE model.

LAPE = −
|S|∑
w=1

|V |∑
e=1

yw,e log (ŷw,e) (1)

Where |S| and |V | denote the number of tokens
in the sentence and the number of tokens in the vo-
cabulary, respectively. The APE output is denoted
by the ŷw,e, while yw,e represents the ground truth.

3.2 Quality Estimation

This section describes the standalone sentence-
(Sent-QE) and word-level (Word-QE) QE systems.

Architecture We use a transformer encoder to
develop the QE models. To obtain representa-
tions of the input (concatenated source sentence
and its translation), we employ XLM-R (Conneau
et al., 2020). This model is trained on a massive
multilingual dataset of 2.5TB, which includes 104
different languages, and the training is conducted
using the masked language modeling (MLM) ob-
jective, similar to RoBERTa (Liu et al., 2019).
The WMT20 sentence- and word-level QE shared
task winning systems have utilized XLM-R-based
QE models (Ranasinghe et al., 2020a; Lee, 2020).
Therefore, we adopt a similar strategy for both QE
tasks. We add a feedforward layer on the top of
XLM-R to perform regression (sentence-level QE)
and token-level classification (word-level QE).

Dataset For the QE tasks as well, we use datasets
released through the WMT21 (Specia et al., 2021)
and WMT22 (Zerva et al., 2022) QE shared tasks.

The WMT21 QE shared task data for English-
German sentence- and word-level QE includes 7K
and 1K instances in the train and development sets,
respectively. For English-Marathi, the WMT22
dataset contains 26K and 1K instances in the train
and development sets. For evaluating the QE sys-
tems, we use the corresponding development sets.

Each sample in the word-level English-German
QE data consists of a source sentence, its transla-
tion, and a sequence of tags for tokens and gaps.
The WMT22 dataset does not contain tags for gaps
between translation tokens for the English-Marathi
pair. So, we used the QE-corpus-builder3 to obtain
annotations for translations using their post-edits.

Training Approach We train XLM-R-based
Sent-QE and Word-QE models for each language
pair using the respective sentence- and word-level
QE task datasets. During training, the weights of
all layers of the model are updated.

Sentence-level Quality Estimation Head This
task is modeled as a regression task. We use the
hidden representation of the classification token
(CLS) of the transformer model to predict normal-
ized DA scores (Zerva et al., 2022) through the
application of a linear transformation:

ŷda = W T
[CLS] · h[CLS] + b[CLS] (2)

where · denotes matrix multiplication, W[CLS] ∈
RD×1, b[CLS] ∈ R1×1, and D is the dimension of
input layer h (top-most layer of the transformer).
Equation 3 shows the Mean Squared Error (MSE)
loss used for this task.

Lsent = MSE
(
yda, ŷda

)
(3)

Word-level Quality Estimation Head We treat
this task as a token-level classification task. We pre-
dict the word-level labels (OK/BAD) by applying
a linear transformation (also followed by the soft-
max) over every input token from the last hidden
layer of the XLM-R model:

ŷword = σ(W T
word · ht + bword) (4)

where t marks which token the model is to
label within a T -length window/token sequence,
Wword ∈ RD×2, and bword ∈ R1×2. The cross-
entropy loss utilized for training the model is de-
picted in Equation 5, which bears similarity to

3https://github.com/deep-spin/
qe-corpus-builder

https://github.com/deep-spin/qe-corpus-builder
https://github.com/deep-spin/qe-corpus-builder


the architecture of MicroTransQuest as described
in Ranasinghe et al. (2021).

Lword = −
2∑

i=1

(
yword ⊙ log(ŷword)

)
[i] (5)

Refer Appendix A for the details about the hyper-
parameters and the hardware used to conduct all
the experiments.

4 Progressively Integrating QE with APE

This section discusses three existing strategies for
combining QE with APE. Starting with lighter com-
bination approaches, we move towards strongly
coupled ones that help APE learn from the QE
subtasks (sentence- and word-level QE).

4.1 QE as APE Activator

In this strategy, we use a QE system to decide
whether a translation requires post-editing. We pass
the source sentence and its translation to a sentence-
level QE system to get a DA score prediction. If
the DA score is below a decided threshold4, only
then do we use the APE system to generate the
post-edited version of the translation.

4.2 QE as MT/APE Selector

Contrary to the QE as APE Activator approach, we
use a QE system to decide whether an APE output
is an improved version of a translation or not. This
is done using a sentence-level QE system to get DA
score predictions for the original translation and
corresponding APE output. We consider the APE
output as the final output only if it receives a higher
DA score than the original translation.

4.3 QE as APE Guide

In the earlier two approaches, QE information is
not passed to APE, but a sentence-level QE sys-
tem is utilized merely to decide whether to APE
or consider the APE output. Through the current
approach, we explore a tighter combination of QE
and APE by passing the sentence-level and word-
level information obtained from the QE systems as
additional inputs to APE. We use sentence-level QE
systems to predict either DA scores or TER (Snover
et al., 2006) scores. If we pass just the predicted DA
or TER score to APE, we prepend it. If both scores
are to be passed, then we modify the input format:

4decided empirically (Chatterjee et al., 2018).

<DA_Score > <TER_Score > <Source_sentence >
<Target_sentence >. Similarly, to pass the word-
level QE information, we add a <BAD > token
before every source and translation token for which
a BAD tag is predicted.

5 Joint Training over QE and APE

This approach investigates the tightest coupling
between the QE tasks (sentence- and word-level
QE) and APE. We follow exactly the same steps in
the CTS (explained in Section 3.1), except the last
one, and train the model for the APE task. During
the last (fine-tuning) stage of the CTS, we jointly
train the model on the APE and QE tasks using
the real APE training data and the QE training
data. To do so, we add the task-specific heads
(refer Section 3.2) on top of a shared representation
layer that receives inputs from the final encoder
layers (Refer Figure 1). The representation layer
has 2x neurons for En-Mr than for En-De. For En-
De, its size is equal to the size of the final encoder
layer. The following two multi-task learning (MTL)
approaches are used to perform the experiments.

Linear Scalarization (LS-MTL) We use a
straightforward MTL approach, LS-MTL, to com-
bine the task-specific losses.

LLS−MTL = Lsent + Lword + LAPE (6)

All loss functions are weighed equally and
are added together to get the combined loss
(LLS−MTL) as shown in Equation 6.

Nash-MTL To further explore the use of so-
phisticated MTL methods for training the APE
model, we choose the Nash-MTL approach pro-
posed by Navon et al. (2022), as the authors have
shown that their proposed approach outperforms
several other MTL methods through experiments
on two different sets of tasks.

The utilization of MTL to jointly train a single
model has been recognized as a means to reduce
computation costs. However, conflicts arising from
gradients of different tasks often lead to inferior
performance of the jointly trained model compared
to individual single-task models. To address this
challenge, a widely used technique involves com-
bining per-task gradients into a unified update di-
rection using a heuristic. In this approach, the tasks
negotiate for a joint direction of parameter update.



Algorithm 1 Nash-MTL

Input: θ0 - initial parameter vector, {li}Ki=1 -
differentiable loss functions, η - learning rate
Output: θT
for t = 1,..., T do

Compute task gradients gti = ∇θ(t−1)li

Set G(t) the matrix with columns g(t)i

Solve for α : (Gt)T (Gt)α = 1/α to obtain
α(t)

Update the parameters θ(t) = θ(t) − ηG(t)α(t)

end for
return θT

The Nash-MTL approach considers a spherical
region centered at the origin with a radius of ϵ,
for the MTL problem having parameters θ. The
update vectors are constrained within this sphere.
The problem is formulated as a bargaining problem,
where the center of the sphere represents the point
of disagreement and the region serves as an agree-
ment set. Each player’s utility function is the dot
product between the gradient vector gi of task i’s
loss li at θ and the update vector. Navon et al.
(2022) showed that a Nash bargaining solution
is a solution to (Gt)T (Gt)α = 1/α. Algorithm
1 shows the process followed in the Nash-MTL
method to update the parameters.

En-Mr En-De
Approach TER BLEU TER BLEU

Do-Nothing 22.93 64.51 19.06 68.79
APE w/o QE 19.39 68.35 18.91 68.91
QE –>APE 21.04 64.66 20.20 67.53

Table 1: Results on the English-Marathi (En-Mr)
WMT22 and English-German (En-De) WMT21 devel-
opment sets when QE is used as an APE activator.

6 Results and Analysis

This section discusses an evaluation of the QE and
APE combination strategies. The performance of
the APE systems is reported on the WMT devel-
opment sets in terms of TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002) scores. We per-
form a statistical significance test considering pri-
mary metric (TER) using William’s significance
test (Graham, 2015).

For comparison, we use two APE baselines as
follows: (i) a Do-Nothing baseline that does not
modify original translations, as obtained from the

En-Mr En-De
Approach TER BLEU TER BLEU

Do-Nothing 22.93 64.51 19.06 68.79
APE w/o QE 19.39 68.35 18.91 68.91
APE –>QE 19.01 68.74 18.84 69.00

Table 2: Results on the English-Marathi WMT22 and
English-German WMT21 development sets when QE
is used as MT/APE Selector.

En-Mr En-De
Approach TER BLEU TER BLEU

Do-Nothing 22.93 64.51 19.06 68.79
APE w/o QE 19.39 68.35 18.91 68.91
+ DA 19.32 68.41 19.00 69.02
+ HTER 19.40 68.38 19.03 69.05
+ DA + HTER 19.35 68.47 19.01 69.01
+ BAD_TAGS 18.81 69.12 18.86 68.98
+DA + BAD_TAGS 18.86 69.05 18.84 69.02

Table 3: Results on the English-Marathi WMT22 and
English-German WMT21 development sets when QE
model outputs are passed as additional inputs to
APE. +DA, +HTER: sentence-level QE (DA) model
predictions and sentence-level QE (HTER) predic-
tions passed as additional inputs to APE, respectively;
+BAD_TAGS: APE input tokens annotated using the
word-level QE predictions.

MT system. (ii) A standalone APE system that is
unassisted by a QE system (APE w/o QE).

Experiments for the first two combination strate-
gies (QE as APE activator and QE as MT/APE
selector) are performed using the standalone APE
and QE systems. For the QE as APE Activator ex-
periments, we experiment with different thresholds
of the DA scores and report the best results. The
QE as APE Guide experiments use the same stan-
dalone sentence-level and word-level QE systems,
but we modify the APE inputs from the second step
of the CTS onwards, for each experiment, and train
different APE models following the same training
approach described in Section 3.

In the MTL-based experiments, first, we use the
LS-MTL approach to perform various experiments
using a combination of tasks to see the improve-
ments brought by a simple MTL approach. Further,
we try to optimize the performance on the best com-
bination of tasks through the Nash-MTL approach.

QE as APE Activator We experimented with
various threshold DA scores for each language pair
and tried to find the optimal threshold value over a
held-out subset taken from the train set. Thresholds
of 0.32 and 0.35 DA scores give the best results



for English-Marathi and English-German language
pairs, respectively.

The TER and BLEU scores obtained using this
approach for both language pairs are reported in
Table 1. We see a drop in performance compared to
the APE w/o QE baseline system for both language
pairs. For English-German, we observe that the
performance is even poorer than the Do-Nothing
baseline, which suggests the possibility that the
APE can correct minor errors even in the transla-
tions that receive a very high DA score. A possible
reason for not seeing improvements over the stan-
dalone APE system could be that the sentence-level
QE information is too coarse for APE to figure out
whether a translation requires editing.

QE as MT/APE Selector Table 2 shows the help-
fulness of this combination strategy. We see 0.38
and 0.07 TER point improvements over the APE
w/o QE baseline system for English-Marathi and
English-German pairs, respectively. The results
highlight the problem of over-correction that the
neural APE systems face. We conjecture that the
sentence-level QE information may be too coarse
to decide whether a translation needs post-editing.
Still, it can be used to compare the translations.

QE as APE Guide Table 3 reports the results of
experiments when different combinations of the QE
information are embedded into the APE inputs. It
shows that passing sentence-level QE information
to APE is not much effective. A possible reason
could be the coarse nature of the sentence-level QE
as discussed earlier. In particular, we see better
performance when predicted DA scores are passed
than the predicted HTER scores, which do not con-
sider the semantic meaning.

We observe the best results when the source and
translation tokens, tagged as BAD by the word-
level QE, are annotated and passed to the APE for
the English-Marathi pair. For the English-German
pair, we get the best results when both the predicted
DA scores and the word-level QE predicted infor-
mation is passed as additional inputs to APE. With
these combinations, we get the 0.58 and 0.07 TER
point improvements for the English-Marathi and
English-German pairs, respectively. It suggests
that granular word-level QE information helps APE
identify poorly translated segments, thereby help-
ing it focus on their correction.

Joint Training over QE and APE Through
these experiments, we explore the most robust cou-

pling of QE and APE. Table 4 compiles MTL-based
results. We jointly train a model using LS-MTL
in each experiment on a different combination of
the APE and QE tasks. We observe better improve-
ments by training on the word-level QE task and
APE than when combining the sentence-level QE
(DA prediction) task and APE. Further addition of
the sentence-level QE (HTER prediction) does not
significantly improve the performance. Unlike the
findings from the QE as APE Guide experimental
results, we get better improvements when sentence-
level QE (DA prediction) and word-level QE tasks
are used along with APE.

As jointly training a model using LS-MTL on
the APE, Sent-QE (DA), and Word-QE tasks yields
high improvements, we try to improve it using
an advanced MTL method. Using the Nash-MTL
method, we get further APE performance enhance-
ments of 0.24 and 0.15 TER points for English-
Marathi and English-German pairs, respectively.
Similarly, gains over the APE w/o QE baseline
system are 1.09 and 0.46 TER points.

Additional analysis, like the efficiency of these
combination strategies, the number of translations
improved or deteriorated by the jointly trained sys-
tems, and types of editing performed by the models,
is presented in Appendix B and Appendix C.

Key Observation Our quantitative analysis from
the comparison between the improvements (Table
5, Figure 4) brought by each combination strategy
over the APE w/o QE baseline shows that as the
QE and APE coupling gets stronger, we see better
enhancements in the APE performance.

Qualitative Analysis We compared the English-
Marathi QE-assisted APE outputs (of the Nash-
MTL-based method) with the corresponding APE
w/o QE outputs. Our finding that QE helps APE
mitigate the over-correction issue is supported by
multiple examples from the sample of the data we
analyzed. We show two examples in Figure 2.

The first example shows a fluent and highly
adequate translation. Unlike the QE-unassisted
APE system that modifies the translation and re-
places three words, compromising adequacy, the
QE-assisted APE leaves all translation words un-
touched, except the ‘ghaaloon’, which is tagged as
BAD by the Word-QE, is changed to ‘ghaatalelee’
which improves the fluency. In the second exam-
ple, the APE w/o QE system has compromised the
fluency by dropping the pronoun ‘he’ in the trans-



En-Mr En-De
Approach TER BLEU TER BLEU

Do-Nothing 22.93 64.51 19.06 68.79
APE w/o QE 19.39 68.35 18.91 68.91
LS-MTL [APE, Word-QE] 18.78 69.18 18.62 69.28
LS-MTL [APE, Sent-QE (DA)] 19.52 68.92 18.89 68.90
LS-MTL [APE, Sent-QE (HTER)] 19.69 67.66 18.95 68.94
LS-MTL [APE, Word-QE, Sent-QE (DA)] 18.54 69.45 18.56 69.37
LS-MTL [APE, Word-QE, Sent-QE (DA), Sent-QE (HTER)] 18.54 69.44 18.60 69.31
Nash-MTL [APE, Word-QE, Sent-QE (DA)] 18.30 69.72 18.45 69.53

Table 4: Results on the English-Marathi WMT22 and English-German WMT21 development sets when a model is
jointly trained on the APE and QE tasks.

Figure 2: Post-edits from English-Marathi APE w/o QE and Joint training approach-based APE (APE with
QE) systems (Refer Figure 3 for gloss and English transliterations of the Marathi sentences). Underlined words
show differences between the MT Output and the APE reference. Incorrectly translated words are colored in
red. Words/space highlighted with green and red represents the predicted OK and BAD tags, respectively. The
Sent-QE row shows the predicted normalized DA scores. The Sent-QE and Word-QE predictions are from the
Nash-MTL-based jointly trained model.

En-Mr En-De
Approach TER BLEU TER BLEU

Do-Nothing 22.93 64.51 19.06 68.79
APE w/o QE 19.39 68.35 18.91 68.91
QE as APE Activator 21.04 64.66 20.20 67.53
APE as MT/APE Selector 19.01 68.74 18.84* 69.00
QE as APE Guide 18.81 69.12 18.84* 69.02
Joint Training 18.30 69.72 18.45 69.53

Table 5: Overall results on the English-Marathi
WMT22 and English-German WMT21 dev sets using
different QE and APE integration strategies. [* indi-
cates the improvement is not significant.]

lation and by translating the English phrase ‘make
the rhythmic sound’ literally. For this translation,
the Sent-QE prediction suggests a need for some
editing. The Word-QE correctly tags the word

‘pasaralelyaa’ as ‘BAD.’ It wrongly tags the word
‘yantra’ as ‘OK’ and the gap before the last word
(suggesting missing words before it) as ‘BAD.’ We

see the QE-assisted APE corrects the translation
of the BAD-tagged word but is unaffected by the
wrongly tagged gap.

7 Conclusion and Future Work

In this paper, we have investigated four strategies
to integrate QE systems into the MT-APE pipeline,
intending to improve APE performance when trans-
lations to be post-edited are obtained from an NMT
system. Experimental results highlight the comple-
mentary nature of APE and QE tasks, which can be
best utilized through our proposed approach: joint
training of a model that learns both tasks simultane-
ously. The quantitative results and our qualitative
analysis suggest that the QE helps APE to address
the over-correction problem.

Among the existing combination strategies, the
QE as MT/APE Selector improves performance
over QE-unassisted APE by discarding low-quality



APE outputs. APE Guide is a more beneficial ap-
proach as we observe even better improvements
using the tighter combination strategy. It provides
APE with explicit information about the overall
translation quality and erroneous segments. More-
over, a comparison of these combination strategies
shows that tighter coupling between QE and APE
is increasingly beneficial for improving APE.

We plan to conduct a thorough qualitative anal-
ysis of QE-assisted APE systems to gain a deeper
understanding of the contribution of QE. We also
aim to strengthen the coupling between APE and
QE to enhance APE performance further. Addition-
ally, we intend to conduct a study to evaluate the
potential of APE in improving QE systems.

8 Limitations

In the current work, we focus on using QE to im-
prove APE, and we see that the joint training on
the QE tasks and APE helps improve APE perfor-
mance. This joint training may also benefit QE.
However, we have not investigated it in the current
work. We observe more minor performance im-
provements in the case of the English-German pair,
having a strict Do-Nothing baseline, compared to
the English-Marathi. It suggests that the law of
diminishing returns affects the QE and APE com-
bination strategies. Improvements obtained by the
QE and APE coupling tend to get lower as the qual-
ity of original translations keeps improving. The
current work has compared four QE and APE com-
bination strategies using only two language pairs
due to the unavailability of an adequate amount
of good-quality APE and QE datasets for other
language pairs. Current findings may be domain-
specific, and future research could evaluate the pro-
posed combination strategies on diverse domains
to assess their generalizability and robustness.

9 Ethics Statement

Our APE and QE models are trained on publicly
available datasets referenced in this paper. These
datasets have been previously collected and anno-
tated; no new data collection has been carried out as
part of this work. Furthermore, these are standard
benchmarks released in recent WMT shared tasks.
No user information was present in the datasets,
protecting the privacy and identity of users. We
understand that every dataset is subject to intrinsic
bias and that computational models will inevitably
learn biased information from any dataset.
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Figure 3: Post-edits from English-Marathi APE w/o QE and Joint training approach-based APE (APE with QE)
systems. The third column contains the gloss (shown in the brackets) and transliterations of Marathi sentences.
Underlined words show differences between the MT Output and the APE reference. Incorrectly translated words are
colored in red. Words/space highlighted with green and red represents the predicted OK and BAD tags, respectively.
The Sent-QE row shows the predicted normalized DA scores. The Sent-QE and Word-QE predictions are from the
Nash-MTL-based jointly trained model.

along with β1 set to 0.9, and β2 set to 0.997. Addi-
tionally, we utilized 25,000 warmup steps. On the
decoder side, beam search was applied with a beam
size of 5. For the QE experiments, we use a batch
size of 16. We start with a learning rate of 2e− 5
and use 5% of training data for warm-up. We use
early stopping and patience over 20 steps. In the
QE experiments and all MTL-based experiments,
we used WandB for hyperparameter search. All the
experiments are performed using NVIDIA A100
GPUS. The APE model contains around 40M pa-
rameters and training the model using CTS takes
about 48 hours. The QE model has about 125M pa-
rameters and training one QE model takes around

2.25 hours. For pre-processing the English and
German data, we used the NLTK library5, and the
IndicNLP library6 is used for processing Marathi
text. We used Pytorch7 for Model training and in-
ference. For computing the TER scores, we use
the official WMT APE and QE evaluation script8,
and for computing the BLEU scores, we use the
SacreBLEU9 library.

5https://www.nltk.org/
6https://github.com/anoopkunchukuttan/

indic_nlp_library
7https://pytorch.org/
8https://github.com/sheffieldnlp/

qe-eval-scripts
9https://github.com/mjpost/sacrebleu

https://www.nltk.org/
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://pytorch.org/
https://github.com/sheffieldnlp/qe-eval-scripts
https://github.com/sheffieldnlp/qe-eval-scripts
https://github.com/mjpost/sacrebleu


Approach Time (in Seconds)
APE w/o QE 55.70
QE as APE Activator 66.18
QE as MT/APE Selector 109.07
Joint Training 73.96

Table 6: Inference time on 1K English-Marathi samples
of the WMT22 dev set.

En-Mr (%) En-De (%)
Modified 43.8 46.2
Improved 65.5 45.6
Deteriorated 26.8 38.9
Precision 71.1 54.0

Table 7: Percentage (%) of translations in the WMT22
English-Marathi and WMT21 English-German dev sets
modified, improved, and deteriorated by the APE-QE
jointly trained model. The last row reports the preci-
sion, computed as a ratio of the number of translations
improved to the total number of translations modified.

B Efficiency of APE Systems

Table 6 shows the inference time of the four APE-
QE coupling strategies for 1K Marathi translations
on the same single GPU. The first two QE-APE
combination strategies are notably faster than the
latter two. The ‘QE as APE Guide’ strategy shows
the highest latency, likely due to word-level tag
generation from QE and then longer inputs passed
to APE. Even though it is pipeline-free, the fourth
strategy exhibits somewhat higher latency than the
second strategy; the likely reason could be that it
involves word-level tag generation. To summarize,
strategy choice has a high impact on efficiency. De-
spite having slightly higher latency than the ‘QE as
APE Selector’ strategy, the ‘QE-APE MTL-based
approach’ remains the optimal choice due to its
superior overall performance.

C Additional Quantitative Analysis

We analyzed the number of translations improved
and deteriorated by the jointly trained APE models
on the QE and APE tasks. The results are reported
in Table 7. Also, the number of edit operations
performed by these jointly trained models are com-
piled in Table 8

D Example Post-Edits with English
Transliteration

Figure 3 contains English transliterations of the
Marathi sentences shown in Figure 2.

Edit Operation En-Mr (%) En-De (%)
Insertion 33.8 18.5
Deletion 52.3 63.0
Substitution 7.1 8.25
Shifting 6.9 10.2

Table 8: Statistics showing the percentage of insertion,
deletion, substitution, and shifting operations performed
by the APE-QE jointly trained models on WMT22
English-Marathi and WMT21 English-German dev sets.

Figure 4: TER (top) and BLEU (bottom) scores for both
language pairs where a progression can be seen as we start
coupling QE and APE tightly. B1, B2: Do-Nothing and
QE-Unassisted APE baselines; M1: QE as APE Activator;
M2: QE as MT/APE Selector; M3: QE as APE Guide; M4:
Joint Training.


