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Abstract

Parameter-efficient fine-tuning (PEFT) is a flexible and efficient method for adapting large
language models (LLMs) to downstream tasks. Among these methods, weight-decomposed
low-rank adaptation (DoRA) is a promising approach that decomposes weight matrices
into magnitude and direction components to better mimic full fine-tuning (FT). However,
DoRA’s simultaneous optimization of these components makes it over-expressive, increases
the risk of overfitting, and creates a coupled updating pattern that limits its learning ca-
pacity. To address these issues, we propose BiDoRA, a novel PEFT method based on
a bi-level optimization framework. BiDoRA fundamentally differs from DoRA by opti-
mizing the magnitude and direction in two separate, asynchronous loops using distinct
training and validation data splits. This decoupled optimization process effectively mit-
igates overfitting and allows for more flexible updates that align even more closely with
FT. For instance, weight decomposition analysis shows BiDoRA achieves a magnitude-
direction update correlation of −8.042, significantly closer to the FT ideal compared to
−1.784 for DoRA. Evaluation of BiDoRA on diverse tasks spanning natural language un-
derstanding, generation, token classification, and extremely small biomedical datasets re-
veals that it consistently outperforms DoRA and other leading PEFT methods. This
improvement is statistically significant, as demonstrated on the GLUE benchmark where
BiDoRA surpasses DoRA with a p-value of 2.4 × 10−4. The code for BiDoRA is available
at https://anonymous.4open.science/r/BiDoRA-5D31.

1 Introduction

Large language models (LLMs) (Radford et al., 2019; Brown, 2020) have achieved state-of-the-art results
across a broad range of NLP tasks, from natural language understanding (NLU) (Wang et al., 2019) to
natural language generation (NLG) (Novikova et al., 2017). Parameter-efficient fine-tuning (PEFT) methods
(Houlsby et al., 2019; Hu et al., 2021) have been introduced as a promising solution for adapting LLMs
for downstream data. PEFT approaches update only a subset of the pre-trained parameters, achieving
performance comparable to full-finetuning (FT) while requiring significantly fewer computational resources.

One popular type of PEFT is low-rank adaptation (LoRA, Hu et al. (2021)), which attaches low-rank
matrices to the pre-trained weights and updates only these matrices during fine-tuning. Liu et al. (2024a)
shows that when decomposing the weights into magnitude and direction, their correlation (as defined in a
weight decomposition analysis in Liu et al. (2024a)) tends to be positive in LoRA, whereas it is negative
in FT. To bridge the training pattern distinction, they introduce an explicit reparameterization of the pre-
trained weights matrix. The method, named DoRA, decomposes the weights into the column-wise product of
magnitude and direction, which determines the direction and magnitude of the weight update, respectively.
This approach enables DoRA to share similar learning patterns with FT, thereby outperforming LoRA
in multiple tasks. Nonetheless, DoRA introduces additional parameters and over-expressive architecture
compared to LoRA, which can exacerbate overfitting issues when adapting to small downstream datasets
(See Fig. 2). Furthermore, in DoRA, the magnitude and direction components are optimized concurrently,
leading to a constrained updating pattern due to shared optimization setup (e.g., learning rate, optimizer,
batch size.)
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Figure 1: An overview of BiDoRA. BiDoRA performs PEFT using a bi-level optimization framework.
At the lower level, BiDoRA learns the direction component ∆V of the update matrices using the training
split of the downstream dataset. At the upper level, BiDoRA optimizes the magnitude component m with
optimized ∆V from the lower level, using the validation split of the dataset. After determining the optimal
magnitude, the direction component undergoes further fine-tuning on a combined set of both training and
validation splits to maximize overall performance.

To address the challenges above, we propose BiDoRA, a bi-level optimization-based weight-decomposed
low-rank adaptation method for parameter-efficient fine-tuning of LLMs. BiDoRA facilitates an even more
flexible updating pattern and mitigates overfitting by separately optimizing the two components on different
data splits with distinct optimization levels. BiDoRA is based on a bi-level optimization framework: At
the lower level, the low-rank direction component is updated using the training split, while the magnitude
component remains fixed. At the upper level, the magnitude component is updated by minimizing the loss
on the validation split via hypergradient descent. Subsequently, the direction component is further fine-
tuned with the optimal magnitude frozen to maximize the performance. These two optimization steps are
performed iteratively until convergence. Fig. 1 provides an overview of BiDoRA.

A similar strategy of combating overfitting based on bi-level optimization has been utilized in the well-
established practice of differentiable neural architecture search (DARTS, Liu et al. (2018)), where architecture
and sub-networks are learned using different dataset splits. Optimizing the selection variables and sub-
networks in a single loop can result in an over-expressive network since the selection variables tend to
select all sub-networks to achieve the best expressiveness, which, however, incurs severe overfitting. In
contrast, training the sub-networks with the selection module fixed on the training split while validating the
effectiveness of the selection module on the unseen validation split effectively eliminates the risk of overfitting.
Similarly, we treat the magnitude component as the architecture and the direction component as the sub-
networks and train these components on separate datasets. As shown in Fig. 2, BiDoRA demonstrates better
resistance to overfitting compared to DoRA, given the smaller performance gap between the training set and
test set. Furthermore, the asynchronous gradient update steps at the two optimization levels in BiDoRA
facilitate better decoupling of the two components, leading to a more flexible update pattern that closely
resembles FT. As illustrated in Fig. 3, the updates across different layers using BiDoRA have a correlation
value that is closest to that of FT, highlighting its superior learning capability compared to both DoRA and
LoRA.

Our work makes the following key contributions:
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Figure 2: Training and test accuracy versus global training steps on the ModHayes split of the Reuters21578
dataset (Padmanabhan et al., 2016) when fine-tuning a RoBERTa-base model using DoRA and BiDoRA.
The training and test curves for DoRA show a larger gap compared to BiDoRA, highlighting the effectiveness
of our method in reducing overfitting.

• We propose BiDoRA, a novel PEFT method based on bi-level optimization. In contrast to DoRA,
which trains the magnitude and direction components on a single dataset, BiDoRA optimizes these
components at different optimization levels.

• Our strategy effectively mitigates the risk of overfitting and results in a parameter update pattern
that more closely resembles full fine-tuning.

• Extensive experiments on various downstream tasks highlight the superior performance of BiDoRA.
BiDoRA consistently surpasses several baseline methods, including LoRA and DoRA.

2 Related Work

2.1 Parameter Efficient Fine-Tuning Methods

Parameter-efficient fine-tuning (PEFT) methods aim to reduce the high costs associated with full fine-tuning
large-scale models by updating only a relatively small subset of pre-trained parameters, rather than the entire
model, to adapt to downstream tasks. Existing PEFT methods can be mainly categorized into three types.
The first category, known as adapter-based methods, injects additional trainable modules into the original
frozen backbone. For instance, Houlsby et al. (2019) suggests adding linear modules in sequence to existing
layers, while He et al. (2021) proposes integrating these modules in parallel with the original layers to enhance
performance. Recent advances include SAN (Xu et al., 2023), FADA (Bi et al., 2024), and SET (Yi et al.,
2024). SAN presents a side adapter network attached to a frozen CLIP model, which features two branches
for predicting mask proposals and attention biases. FADA introduces a frequency-adapted learning scheme
that uses the Haar wavelet transform to decompose frozen features into low- and high-frequency components,
which are processed separately to enhance domain generalization. SET proposes a spectral-decomposed token
learning framework that leverages the Fast Fourier Transform to separate frozen features into amplitude and
phase components, enhancing them with spectral tokens and attention optimization. The second category
is prompt tuning methods, which add extra soft tokens (prompts) to the initial input. During the fine-
tuning stage, only these trainable soft tokens are updated, as demonstrated in works such as Lester et al.
(2021) and Razdaibiedina et al. (2023). Unfortunately, the first two categories lead to increased inference
latency compared to fully fine-tuned models. The third category is low-rank adaptation methods, pioneered
by the foundational work LoRA (Hu et al., 2021). These methods attach low-rank matrices to pre-trained
weights and use only these matrices for weight updates during fine-tuning. Since low-rank updates can be
merged with pre-trained weights before inference, low-rank adaptation-based PEFT methods do not increase
inference time. Following LoRA, Zhang et al. (2023) applies SVD decomposition to low-rank matrices and
prunes less significant singular values for more efficient updates. Zhang et al. (2024b) uses meta-learning
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to search for the optimal rank of LoRA matrices, further improving its performance on downstream tasks.
Most recently,Liu et al. (2024a) uses weight decomposition analysis to reveal that LoRA exhibits a distinct
weight updating pattern compared to FT, which may constrain its learning capacity. Therefore, DoRA (Liu
et al., 2024a) was then proposed to bridge the gap between LoRA and FT. DoRA decomposes the pre-trained
weights into two components—magnitude and direction—and fine-tunes both, which results in a more closely
aligned updating pattern compared to FT.

2.2 Bi-level Optimization

Bi-level optimization (BLO) has been widely applied in various machine learning tasks, including meta-
learning (Finn et al., 2017; Rajeswaran et al., 2019), neural architecture search (Liu et al., 2018; Zhang et al.,
2021), and hyperparameter optimization (Lorraine et al., 2020; Franceschi et al., 2017). Despite its wide
usage, solving BLO problems can be challenging due to the inherent nature of nested optimization problems.
Several algorithms have been proposed to address this challenge, including zeroth-order methods such as
Bayesian optimization (Cui & Bai, 2019) and first-order algorithms based on hypergradients (Pearlmutter &
Siskind, 2008; Lorraine et al., 2020). Among these approaches, gradient-based BLO has received significant
attention because it can scale to high-dimensional problems with a large number of trainable parameters.

Inspired by NAS, where a bi-level approach is used to learn an architecture and its sub-network weights on
separate data splits to prevent overfitting, we adapt the BLO framework to parameter-efficient fine-tuning
(PEFT), specifically for the weight-decomposed adaptation introduced by DoRA. Unlike in NAS where BLO
searches for a network architecture, BiDoRA repurposes it to decouple the optimization of a weight matrix’s
two components: magnitude and direction. This approach marks a significant departure from previous
PEFT methods like LoRA and DoRA, which optimize all trainable parameters simultaneously on a single
dataset. In this work, we extend the application of gradient-based BLO to develop a robust and effective
PEFT method for pre-trained models. By assigning the magnitude and direction components to different
optimization levels with distinct data splits, BiDoRA creates a decoupled, flexible updating pattern that
better mitigates overfitting and more closely resembles the learning behavior of full fine-tuning.

3 Preliminary

LoRA (Hu et al., 2021) involves attaching the product of two low-rank matrices to the pre-trained weights and
fine-tuning these low-rank matrices on downstream datasets with the pre-trained weights frozen. It is based
on the assumption that parameter updates made during fine-tuning exhibit a low intrinsic rank. Formally,
given a pre-trained weight matrix W0 ∈ Rd×k, LoRA attaches a low-rank update matrix ∆W ∈ Rd×k to the
pre-trained weight. This update matrix can be decomposed as ∆W = BA, where B ∈ Rd×r and A ∈ Rr×k

are two low-rank matrices, with r ≪ min(d, k). Consequently, the weight matrix W′ is represented as follows:

W′ = W0 + ∆W = W0 + BA (1)

In this setup, only the LoRA matrix ∆W is updated. (Liu et al., 2024a) found that LoRA and full fine-tuning
exhibit different learning patterns by performing weight decomposition on fine-tuned weight matrices (See
Appendix D). To bridge this discrepancy, weight-decomposed low-rank adaptation (DoRA, Liu et al. (2024a))
further reparameterizes the weight matrices by explicitly decomposing them into learnable magnitude and
direction components. Formally, DoRA performs adaptation as follows:

W′ = m V + ∆V
∥V + ∆V∥c

= m W0 + BA
∥W0 + BA∥c

(2)

where ∆V is a product of two learnable low-rank matrices, B and A, while the magnitude component
m ∈ R1×k is a learnable vector. Here, ∥ · ∥c represents the vector-wise norm of a matrix computed across
each column, using the L2 norm . In DoRA, both components are optimized concurrently on a single
downstream dataset. In this work, we aim to improve DoRA by further decoupling the training of the two
components.

4



Under review as submission to TMLR

(a) Full FT(k = −65.816) (b) LoRA(k = 0.836) (c) DoRA(k = −1.784) (d) BiDoRA(k = −8.042)

Figure 3: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of the
query matrices across different layers and intermediate steps after fine-tuning the GPT2 model on the E2E
dataset (Novikova et al., 2017), where k denotes the correlation value. Different markers represent matrices
from different training steps, with each color corresponding to a specific layer. ∆M denotes the average
change in weight vector magnitude, and ∆D denotes the average change in direction, as formally defined in
Appendix D.

4 Methods

4.1 Overview of BiDoRA

Our method, BiDoRA, optimizes the trainable parameters in DoRA layers by solving a bi-level optimization
problem. Let M = {m1, m2, . . . , mn} denote the set of magnitude components for all n DoRA modules,
and V = {∆V1, ∆V2, . . . , ∆Vn} denote the set of corresponding direction components. Specifically, we first
learn the direction components V∗(M) on the training split of the downstream dataset Dtr at the lower
level. The magnitude component M is tentatively fixed at this level; thus, the resulting optimal direction
component V∗(M) is a function of M. At the upper level, we determine the optimal magnitude component
M∗ by optimizing the loss on a validation split Dval. In practice, Dtr and Dval are typically created by
splitting the original training set without using additional data. This bi-level optimization problem is solved
using an efficient gradient-based algorithm, where parameters at two levels are optimized iteratively until
convergence. While this work focuses on the empirical validation of BiDoRA, our choice of optimization
strategy is grounded in established theoretical research. The convergence properties of similar gradient-
based bi-level algorithms have been previously analyzed (Pedregosa, 2016; Rajeswaran et al., 2019), providing
confidence in the stability of our training procedure. Furthermore, the ability of such frameworks to improve
generalization—a core objective of BiDoRA—has also been formally studied (Bao et al., 2021), supporting
the rationale that our approach can mitigate overfitting.

4.2 Orthogonal Regularization

A central goal of BiDoRA is to learn the two disentangled components of a weight update: magnitude
and direction. The direction component, ∆V, is responsible for finding a low-rank basis for the update
directions. To maximize the expressive power of this component and prevent overfitting, its basis vectors
(i.e., the columns of the direction matrix) should be as diverse and non-redundant as possible.

The orthogonality of neural network weights has been identified as a beneficial property (Bansal et al.,
2018) and can effectively mitigate the overfitting issue (Balestriero & richard baraniuk, 2018). By enforcing
orthogonality, the direction vectors are constrained to represent distinct, independent pathways for updates,
ensuring that the limited parameter budget of the low-rank matrix is used efficiently to explore the solution
space. Therefore, we define a Gram regularization loss (Xie et al., 2017) for the direction component:

R(V) =
n∑

k=1

∥∥(Vk + ∆Vk)⊤(Vk + ∆Vk) − If
∥∥2

F
(3)
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where I is the identity matrix and ∥ · ∥F denotes the Frobenius norm. Intuitively, R(V) encourages each
column of the direction matrix, representing a specific direction, to be orthogonal to one another. Since each
column has already been normalized (equivalent to projected to the unit sphere), this also prompts each
column to be far away from the other, thereby reducing the redundancy of parameters. The effectiveness of
this constraint is empirically validated in our ablation study (Table 4), which shows a consistent performance
improvement resulting from the enhanced generalization ability of the learned direction component.

4.3 A Bi-level Optimization Framework

Lower level. At the lower level, we train the low-rank direction component V by minimizing a loss Ltr

defined on the training set Dtr. The overall training objective at this level is Ltr(V, M) = L(V, M; Dtr) +
γR(V). Here, L represents the fine-tuning loss, given the low-rank direction component V, the magnitude
component M, and the training split Dtr of the downstream dataset. R(V) is the orthogonal regularizer
defined in Eq. (3), with γ as a trade-off hyperparameter. In this level, we only update V while keeping M
fixed, resulting in the following optimization problem:

V∗(M) = arg min
V

Ltr(V, M) (4)

where V∗(M) denotes the optimal solution for V in this problem, which is a function of M.

Upper level. At the upper level, we validate the previously fixed magnitudes M on the validation set
Dval, using the optimal direction component V∗(M) that was learned at the lower level. This results in a
validation loss Lval(V∗(M), M) = L(V∗(M), M; Dval). We determine the optimal magnitude component
M by minimizing this validation loss:

min
M

Lval(V∗(M), M) (5)

A bi-level optimization framework. Integrating the two levels of optimization problems, we have the
following bi-level optimization framework:

min
M

Lval(V∗(M), M)

s.t. V∗(M) = arg min
V

Ltr(V, M) (6)

Note that these two levels of optimization problems are mutually dependent on each other. The solution
of the optimization problem at the lower level, V∗(M), serves as a parameter for the upper-level problem,
while the optimization variable M at the upper level acts as a parameter for the lower-level problem. By
solving these two interconnected problems jointly, we can learn the optimal magnitude component M∗ and
incremental direction matrices V∗ in an end-to-end manner.

Two reasons exist behind the choice of setting the magnitude component as the upper level instead of the
converse one: 1) In literature, the upper level usually has much fewer parameters than the lower level. In
our case, the design of setting the magnitude of complexity O(k) as the upper level and the direction of
complexity O(dr + kr) as the lower level is consistent with the common practice. 2) BiDoRA resembles the
DARTS method (Liu et al., 2018) in neural architecture search where the subnets are selected by a selection
variable. Specifically, the magnitude vector resembles a selection variable on the direction matrix by softly
selecting each direction (subnets) via scaling.

Optimization algorithm. We use a gradient-based optimization algorithm (Choe et al., 2023) to solve the
bi-level optimization problem presented in Eq. (6). A significant challenge in this process is the computation
of the upper-level loss gradient with respect to the magnitude component M, as this gradient depends on
the optimal solution of the lower-level problem, V∗(M). For deep neural networks, the lower-level objective
is non-convex, meaning that finding the true optimal solution V∗(M) would require running its optimization
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Algorithm 1: BiDoRA
Input: Training dataset Dtr and validation dataset Dval

1 Initialize trainable magnitude components M = {mk}n
k=1 and low-rank direction components

V = {∆Vk}n
k=1 = {{Ak}n

k=1, {Bk}n
k=1}

2 // Search Phase
3 while not converged do
4 Update magnitude M by descending ∇MLval(V − ξ∇VLtr(V, M), M)
5 Update direction V by descending ∇VLtr(V, M)
6 Derive the optimal magnitude M∗ = {m∗

k}n
k=1

7 // Retraining Phase
8 Train V until converge using Dtr

⋃
Dval and derive the optimal direction V∗

Output: V∗ and M∗

process to full convergence. Performing this complete inner optimization for every single update of the
upper-level variable M is computationally intractable. To address this issue, we use the following one-
step-unrolled approximation of V∗(M) inspired by previous work (Liu et al., 2018):

∇MLval(V∗(M), M) ≈ ∇MLval(V − ξ∇VLtr(V, M), M) (7)

Table 1: RoBERTabase/large (Rb/l) and DeBERTaXXL (DXXL) with different fine-tuning methods on the
GLUE benchmark (Wang et al., 2019). A higher value is better for all datasets. The best results are shown
in bold.

Method Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
Rb(FT) 125.0M 90.3 94.8 89.3 61.6 86.7 92.8 76.9 91.2 85.5

Rb(Adapter) 0.9 M 86.5 94.0 88.4 58.8 92.5 89.1 71.2 89.9 83.8
Rb(LoRA) 0.15 M 86.8 94.3 88.0 60.3 93.0 89.6 72.9 90.1 84.4
Rb(DoRA) 0.17 M 86.8 94.2 89.2 60.5 92.9 89.6 73.2 90.2 84.6

Rb(BiDoRA) 0.17 M 87.1 94.4 89.4 61.3 92.7 90.6 76.0 90.1 85.2
Rl(FT) 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9

Rl(Adapter) 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
Rl(LoRA) 0.39 M 90.6 96.3 90.0 66.9 94.5 91.2 86.3 91.7 88.4
Rl(DoRA) 0.39 M 90.6 96.4 89.8 65.8 94.7 91.2 86.6 92.0 88.4

Rl(BiDoRA) 0.39 M 90.6 96.1 90.1 67.0 94.6 91.7 86.9 92.0 88.6
DXXL(DoRA) 4.9M 91.2 96.3 92.3 71.1 95.3 91.6 91.8 90.8 90.0

DXXL(BiDoRA) 4.9M 91.7 96.3 92.6 72.3 95.2 92.0 92.3 90.8 90.4

where ξ is the learning rate at the lower level, and the one-step-unrolled model V̄ = V − ξ∇VLtr(V, M)
is used as a surrogate for the optimal solution V∗(M). We then compute the approximated gradient as
follows:

∇MLval(V − ξ∇VLtr(V, M), M)
=∇MLval(V̄, M) − ξ∇2

M,VLtr(V, M)∇V̄Lval(V̄, M) (8)

≈∇MLval(V̄, M) − ξ
∇MLtr(V+, M) − ∇MLtr(V−, M)

2ϵ
(9)

where ϵ is a small scalar and V± = V ± ϵ∇V̄Lval(V̄, M). Since directly computing the matrix-vector
multiplication term in Eq. (8) is computationally expensive, we use finite difference to approximate this
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product as in Eq. (9), following Liu et al. (2018). As detailed in Algorithm 1, the direction component V
and the magnitude component M are updated using gradient descent iteratively until convergence. After
acquiring the optimal magnitudes M∗ through the process above, the direction component V is retrained on
the union of training and validation splits to achieve the best performance on downstream tasks, resulting
in the final learned V∗. The rationale for using both data splits in the retraining phase is to improve data
utilization, analogous to neural architecture search, where the full dataset is used to train the final network
after the optimal architecture has been determined.

In practice, the convergence of the search phase is determined by the evaluation metric at the upper level.
For the subsequent retraining phase, we adopt a stopping criterion similar to DoRA’s, observing performance
on a separate, held-out test set that is not used during the bi-level optimization process.

5 Experiments

5.1 Experimental Setup

We compare BiDoRA with several PEFT methods, including Adapter tuning (Houlsby et al., 2019), LoRA
(Hu et al., 2021), and DoRA (Liu et al., 2024a). BiDoRA does not use any additional data compared to
other baselines, as we create the validation set for upper-level optimization by splitting the original training
set with an 8:2 ratio for all tasks. All methods in the experiment, including ablation studies, are trained
until convergence for a fair comparison. Detailed descriptions of these baseline methods are provided in
Appendix C.

Our experiments cover a wide range of tasks, including natural language understanding (NLU), natural
language generation (NLG), and token classification. Please refer detailed dataset settings and experimental
settings in Appendix A and Appendix B, respectively. Our implementation is based on the Huggingface
Transformers library (Wolf et al., 2019) and the Betty library (Choe et al., 2023).

Table 2: RoBERTabase/large (Rb/l) with different fine-tuning methods on the Reuters21578 benchmark (Pad-
manabhan et al., 2016). A higher value is better for all datasets. The best results are shown in bold.

Method Param ModApte ModHayes ModLewis
Rb(FT) 125.0M 85.4 77.6 77.1

Rb(Adapter) 0.9 M 85.3 77.5 76.8
Rb(LoRA) 0.15 M 84.7 74.3 74.7
Rb(DoRA) 0.17 M 84.8 78.2 76.6

Rb(BiDoRA) 0.17 M 85.3 79.9 77.6
Rl(FT) 355.0M 84.8 77.5 76.6

Rl(Adapter) 0.44 M 84.8 77.9 76.7
Rl(LoRA) 0.39 M 84.7 77.7 76.7
Rl(DoRA) 0.39 M 84.8 77.4 76.7

Rl(BiDoRA) 0.39 M 84.9 78.9 77.3

5.2 Experiments on Natural Language Understanding Tasks

In this section, we evaluate the performance of BiDoRA on NLU tasks, with a particular focus on text
classification. Table 1 presents the results of fine-tuning the RoBERTa-base, RoBERTa-large, and DeBERTa
XXL models on the GLUE benchmark with baseline PEFT methods and BiDoRA. The results show that
BiDoRA achieves superior or comparable performance compared to baseline methods across all datasets with
the same number of trainable parameters. Table 2 presents the results of fine-tuning RoBERTa models on the
Reuters21578 datasets, where BiDoRA outperforms all baseline methods by an even larger margin. Notably,
BiDoRA achieves performance comparable to or even better than full fine-tuning. The superior performance
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Table 3: RoBERTabase/large (Rb/l) with different fine-tuning methods on BioNLP dataset (Collier et al.,
2004) and CoNLL2003 dataset (Sang & De Meulder, 2003). A higher value is better for all metrics. The
best results are shown in bold.

BioNLP CoNLL2003
Method Param Accuracy Precision Recall F1 Accuracy Precision Recall F1
Rb(FT) 125.0M 93.9 69.0 78.9 73.6 99.3 95.7 96.3 96.0

Rb(Adapter) 0.9 M 93.9 69.1 78.8 73.7 99.3 95.7 96.4 96.0
Rb(LoRA) 0.15 M 93.9 69.0 78.8 73.6 99.3 95.4 96.3 95.8
Rb(DoRA) 0.17 M 94.0 69.2 79.1 73.8 99.3 95.3 96.2 95.8

Rb(BiDoRA) 0.17 M 93.9 71.2 78.6 74.7 99.3 95.9 96.5 96.2
Rl(FT) 355.0M 94.0 69.4 79.6 74.1 99.4 96.2 97.0 96.6

Rl(Adapter) 0.44 M 94.0 69.4 79.7 74.2 99.4 96.1 97.0 96.6
Rl(LoRA) 0.39 M 93.9 69.2 79.3 73.9 99.4 96.2 97.0 96.6
Rl(DoRA) 0.39 M 94.0 69.4 79.7 74.2 99.4 96.2 97.1 96.6

Rl(BiDoRA) 0.39 M 94.0 71.3 79.3 75.1 99.4 96.4 97.1 96.7

Table 4: Ablation studies. We evaluate the performance of BiDoRA without retraining (w/o retraining),
without bi-level optimization (ξ = 0), without orthogonal regularization (w/o cst.), and with retraining
magnitude .

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg
BiDoRA (retraining magnitude) 87.0 94.3 89.1 60.7 92.7 91.0 73.4 89.9 84.8

BiDoRA (w/o retraining) 87.0 94.2 89.0 57.3 92.4 90.6 71.6 90.0 84.0
BiDoRA (ξ = 0) 86.9 94.2 89.0 59.4 90.8 91.2 75.9 90.0 84.7

BiDoRA (w/o cst.) 87.0 94.4 88.6 61.3 92.7 90.2 76.0 90.1 85.0
BiDoRA 87.1 94.4 89.4 61.3 92.7 90.6 76.1 90.1 85.2

of BiDoRA on both benchmarks verifies the effectiveness of its bi-level optimization mechanism. By training
the magnitude and direction components on two distinct sub-datasets, BiDoRA enhances the flexibility of
the learning process and improves learning capacity compared to DoRA, resulting in a performance boost.

5.3 Experiments on Natural Language Generation Tasks

In this section, we evaluate BiDoRA’s performance on the NLG task. Table 5 presents the results of fine-
tuning a GPT-2 model on the E2E dataset with baseline PEFT methods and BiDoRA. The results show
that BiDoRA achieves the best performance across all five evaluation metrics, demonstrating the superiority
of BiDoRA in fine-tuning pre-trained models for NLG tasks.

Table 5: Performance of BiDoRA and baseline methods for fine-tuning GPT2-medium on the E2E dataset
(Novikova et al., 2017). A higher value is better for all metrics. The best results are shown in bold.

Method Param BLEU NIST MET ROUGE-L CIDEr
FT 354.9M 68.0 8.61 46.1 69.0 2.38

Adapter 11.1M 67.0 8.50 45.2 66.9 2.31
LoRA 0.39M 67.1 8.54 45.7 68.0 2.33
DoRA 0.39M 67.0 8.48 45.4 70.1 2.33

BiDoRA 0.39M 69.0 8.72 46.2 70.9 2.44
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5.4 Experiments on Token Classification

Further evidence of the effectiveness of BiDoRA can be observed in Table 3, which reports the results of token
classification tasks. Unlike the NLU tasks discussed in the previous section, which involve classifying entire
sentences and focusing on capturing global semantics, token classification requires classifying each token
within a sentence, highlighting the importance of capturing local context. On the BioNLP dataset, BiDoRA
consistently outperforms baseline methods by a large margin in terms of F1 score. On the CoNLL2003
dataset, BiDoRA either outperforms or matches all baseline methods across all metrics. Consistent with our
previous findings, BiDoRA effectively fine-tunes pre-trained models for token classification tasks.

5.5 Experiments on Extremely Small Datasets

Table 6: Fine-tuning ESM on the thermostability prediction task (Chen et al.). A higher value is better
for all metrics, with the best results highlighted in bold.

Methods #Params Accuracy Precision Recall F1
FT 652.7M 79.8 81.2 79.8 78.4

LoRA 1.5M 75.9 78.2 75.9 75.5
DoRA 1.6M 76.9 78.7 76.9 76.2

BiDoRA 1.6M 78.8 79.1 78.8 78.2

Table 7: Fine-tuning ESM on the BBP task (Dai et al., 2021). A higher value is better for all metrics, with
the best results highlighted in bold.

Methods #Params Accuracy Precision Recall F1
FT 652.9M 89.4 89.9 89.4 89.4

LoRA 1.9M 86.8 87.7 86.8 86.7
DoRA 2.0M 89.4 91.3 89.4 89.3

BiDoRA 2.0M 92.1 93.1 92.1 92.0
We conduct an additional experiment on biomedical datasets, including two classification
tasks—thermostability prediction (Chen et al., 3,695 training samples) and blood-brain barrier pep-
tide prediction (BBP, Dai et al. (2021), 936 training samples), which contain significantly fewer samples
than standard NLP tasks. The results are presented in Table 6 and Table 7, respectively. For the
classification tasks, we use accuracy, precision, recall, and F1 score to evaluate performance. Consistent with
our previous findings, BiDoRA effectively fine-tunes pre-trained models on extremely small datasets. Our
method outperforms the baselines by a larger margin as the dataset size decreases, confirming our previous
conclusion that our method effectively combats the overfitting issue on various network architectures and
diverse tasks.

5.6 Ablation Studies

In this section, we perform ablation studies to investigate the effectiveness of individual modules or strategies
in BiDoRA. We fine-tune a RoBERTa-base model on the GLUE benchmark under different ablation settings,
and the results are shown in Table 4.

Retraining. We test the model directly obtained from the search phase to evaluate the effectiveness of
further retraining the direction component. The results show that BiDoRA outperforms BiDoRA (w/o
retraining) on average, highlighting the necessity of retraining.

The rationale for retraining the direction component instead of the magnitude in the retraining phase is
analogous to neural architecture search: after the optimal magnitude (the "architecture") is found in the
search phase, it is frozen, and the direction component (the "sub-network") is trained from scratch using all
available data. The results in Table 4 validate this choice, showing that retraining the direction component
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leads to superior performance than retraining the magnitude. All splits are intentionally used to maximize
data utilization and performance.

Bi-level optimization. We set ξ to zero in Algorithm 1 to assess the effectiveness of the bi-level opti-
mization framework. This ablation setting can be interpreted as an alternative learning method where two
optimization steps are carried out alternately on two different splits of the training dataset. Notably, in the
alternative learning method, the updating of each component is unaware of the others, making the training
less stable. In contrast, the hyper-gradient used in bi-level optimization avoids this issue by connecting
the two levels in a certain way. The results show that BiDoRA outperforms BiDoRA (ξ = 0) on average,
demonstrating the efficacy of the bi-level optimization strategy.

Orthogonal regularization. We examine the effectiveness of the orthogonality constraint in Eq. (3) by
setting γ to zero. Results show that BiDoRA outperforms BiDoRA (w/o cst.) on average, indicating the
effectiveness of applying the orthogonality regularizer to alleviate overfitting.

5.7 Weight Decomposition Analysis

One important motivation of DoRA is to bridge the inherent differences between LoRA and FT. Similar to
DoRA, we conduct a weight decomposition analysis on the correlation between the change of magnitudes and
that of directions (detailed in Appendix D) for BiDoRA and baseline methods by fine-tuning a GPT2-medium
model on the E2E dataset. As shown in Fig. 3, FT, DoRA, and BiDoRA all exhibit negative correlation
values, while LoRA shows a positive correlation, consistent with the findings in Liu et al. (2024a). Notably,
BiDoRA achieves a negative correlation of −8.042, closer to FT than DoRA’s −1.784. This improvement is
attributed to the decoupled training process of the two layers, which allows for a higher learning capacity
compared to DoRA.

5.8 Discussion

The advantage of BiDoRA is supported by both theoretical insights and empirical evidence, as illustrated
as follows.

Motivation. Theoretically, Liu et al. (2024a) showed that LoRA’s training pattern tends to be coupled in
terms of magnitude-direction correlation, which degrades learning capacity. Their solution was to introduce
a reparameterization that decouples these components in the formulation. We build upon DoRA following
their theory and further decouple magnitude and direction in terms of training dynamics. Specifically, the
two components are trained in separate loops within a bilevel optimization framework, which is expected to
improve performance in an intuition similar to DoRA.

Empirical evidences. We performed a Wilcoxon signed-rank test to compare the performance of DoRA
and BiDoRA. Specifically, we used the results from Table 1. For each PEFT method, we collected 9 values
(8 values from each dataset plus the average performance) from one base model and concatenated the results
from three base models (RoBERTa-base, RoBERTa-large, and DeBERTa-XXL) to obtain a list of 27 values.
A comparison of these 27 values between DoRA and BiDoRA reveals that BiDoRA is significantly better
than DoRA, with a p-value of 2.4 × 10−4. This result demonstrates that BiDoRA offers a non-marginal
improvement over DoRA.

Additionally, the weight decomposition analysis, including (Fig. 3 and Fig. 4), indicates that BiDoRA
achieves better decoupling of the components compared to DoRA. Evaluation metrics across various tasks
demonstrate the superior performance of BiDoRA, confirming that our decoupled optimization loop leads
to improved outcomes.

6 Conclusion and Future Works

We propose BiDoRA, a novel bi-level optimization framework for parameter-efficient fine-tuning of large-scale
pre-trained models. By conducting weight decomposition following the DoRA approach, our method trains
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the two components separately in two interconnected optimization levels using different sub-datasets. In this
way, BiDoRA not only decouples the learning process of the two components, resulting in a learning pattern
closer to FT, but also effectively alleviates overfitting. Empirical studies on various NLP tasks demonstrate
that BiDoRA outperforms DoRA and other baselines, highlighting the effectiveness of our method.

One limitation of BiDoRA is its training efficiency (see Appendix E) in terms of per-step cost, which could
potentially be reduced by using more advanced hyper-gradient estimators, such as SAMA (Choe et al., 2024)
or MixFlow-MG (Kemaev et al., 2025). Furthermore, while we have empirically shown that BiDoRA induces
better decoupling between the magnitude and direction components (Fig. 3 and Fig. 4), a formal theoretical
analysis of this property is currently lacking and serves for future work.
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A Datasets and Models

A.1 Natural Language Understanding

The GLUE Benchmark (Wang et al., 2019) comprises a diverse array of tasks that are widely employed for
evaluation in natural language understanding. It encompasses two single-sentence classification tasks, three
tasks assessing similarity and paraphrasing, and four tasks focusing on natural language inference. Specif-
ically, it includes MNLI (MultiNLI, Williams et al. (2017)), SST-2 (Stanford Sentiment Treebank, Socher
et al. (2013)), MRPC (Microsoft Research Paraphrase Corpus, Dolan & Brockett (2005)), CoLA (Corpus
of Linguistic Acceptability, Warstadt et al. (2019)), QNLI (Question NLI, Rajpurkar et al. (2018)), QQP
(Quora Question Pairs, Wang et al. (2017)), RTE (Recognizing Textual Entailment, Dagan et al. (2005)),
and STS-B (Semantic Textual Similarity Benchmark, Cer et al. (2017)). We summarize the statistical data
for all datasets within the GLUE Benchmark in Table 8. Following existing practices, the development set
is used in GLUE as the test data since the actual test set is not publicly available. We report the overall
(matched and mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the other tasks.

The Reuters-21578 (Padmanabhan et al., 2016) dataset is one of the most widely used data collections for
text categorization research. It was collected from the Reuters financial newswire service in 1987 and is
used for text classification and natural language processing tasks. Three splits are available: ModApte,
ModHayes, and ModLewis. These documents cover various topics, such as politics, economics, and sports.
F1 score is used as the evaluation metric across all three splits. We summarize the statistical data for all
text classification tasks used in our experiments in Table 9.

Table 8: The statistical data for all datasets within the GLUE Benchmark (Wang et al., 2019).

Dataset Metrics Train Dev Test Label Task
MNLI Accuracy 393k 20k 20k 3 NLI
SST-2 Accuracy 67k 872 1.8k 2 Sentiment
MRPC Accuracy 3.7k 408 1.7k 2 Paraphrase
CoLA Matthews Corr 8.5k 1k 1k 2 Acceptability
QNLI Accuracy 108k 5.7k 5.7k 2 QA/NLI
QQP Accuracy 364k 40k 391k 2 Paraphrase
RTE Accuracy 2.5k 276 3k 2 NLI
STS-B Pearson Corr 7.0k 1.5k 1.4k 1 Similarity

Table 9: The statistical data for the Reuters-21578 dataset (Padmanabhan et al., 2016).

Dataset Metrics Train Test
ModApte F1 8.8k 3k
ModHayes F1 18k 0.7k
ModLewis F1 12k 5.5k

A.2 Natural Language Generation

In our experiments on natural language generation, we use the E2E (Novikova et al., 2017) dataset, which was
initially introduced as a dataset for training end-to-end, data-driven natural language generation systems.
Multiple references can be associated with each source table used as input. Each sample input (x, y) consists
of a series of slot-value pairs accompanied by an associated natural language reference text. The E2E dataset
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comprises approximately 42k training examples, 4, 600 validation examples, and 4, 600 test examples from
the restaurant domain.

We utilize the following five evaluation metrics: BLEU (Papineni et al., 2002), NIST (Lin & Och, 2004),
METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin, 2004), and CIDEr (Vedantam et al., 2015). We
summarize its statistical data in Table 10.

Table 10: The statistical data for E2E dataset (Novikova et al., 2017).

Dataset Metrics Train Validation
E2E BLEU, NIST, MET, ROUGE-L, CIDEr 42k 4.6k

A.3 Token Classification

For token classification, we fine-tune the RoBERTa-base and RoBERTa-large models on the BioNLP dataset
(Collier et al., 2004) and the CoNLL2003 dataset (Sang & De Meulder, 2003). BioNLP (Collier et al., 2004)
is a Named Entity Recognition dataset that contains biological entities such as DNA, RNA, and protein. It
is essentially a token classification task where we want to classify each entity in the sequence. CoNLL-2003
(Sang & De Meulder, 2003) focuses on language-independent named entity recognition. It concentrates on
four types of named entities: persons, locations, organizations, and miscellaneous entities that do not belong
to the previous three groups. Accuracy, precision, recall, and F1 score are used as evaluation metrics. We
summarize the statistical data for all used token classification tasks in Table 11.

Table 11: The statistical data for token classification tasks (BioNLP (Collier et al., 2004) and CoNLL2003
(Sang & De Meulder, 2003)).

Dataset Metrics Train Validation Test
BioNLP Accuracy,Precision,Recall,F1 17k 1.9k 3.9k
CoNLL2003 Accuracy,Precision,Recall,F1 14k 3.3k 3.5k

A.4 Biomedical Experiments

The ESM (Evolutionary Scale Modeling, Rives et al. (2021)) model is a transformer-based protein language
model designed for protein sequence analysis, leveraging the transformer architecture to capture evolutionary
patterns. We fine-tune the ESM model using the Protein Aligner checkpoint (Zhang et al., 2024a) on two
classification tasks—thermostability prediction (Chen et al., 3,695 training samples) and blood-brain barrier
peptide prediction (BBP, Dai et al. (2021), 936 training samples). Notably, protein analysis datasets are
typically much smaller than those in NLP, in which case the large pre-trained models are prone to overfitting,
even when using PEFT methods. The trainable parameters (on the order of millions) are significantly
overparameterized compared to the available samples (thousands or even hundreds), highlighting the need
for our overfitting-resilient counterpart.

B Experimental Settings

In this section, we provide detailed experimental settings. We maintain consistent configurations across
experiments, including LoRA rank, LoRA α, batch size, maximum sequence length, and optimizer, to ensure
a fair comparison. The hyperparameter tuning for our method is straightforward and convenient.
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B.1 RoBERTa

We summarize the experimental settings for the GLUE benchmark in Table 12 and for the Reuters21578
dataset and token classification tasks in Table 13.

Table 12: The hyperparameters we used for RoBERTa on the GLUE benchmark (Wang et al., 2019).
Method Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20k 12k 25k 20k 15k 20k 15k 12k
Lower learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Upper learning rate 5e-5 1e-5 2e-5 5e-5 2e-5 5e-5 1e-5 1e-5
Lower weight decay 0.1
Upper weight decay 0.1 0.1 0.1 0.1 0 0.1 0.1 0.01
Max Seq Length 512
Regularization Coefficient 1e-5

RoBERTa-large Total batch size 32
Global steps 50k 20k 30k 20k 60k 40k 15k 10k
Lower learning rate 1e-5
Upper learning rate 1e-5
Lower weight decay 0.5 0.5 0 0.2 0.5 0.5 0.5 0.5
Upper weight decay 0.5 0.05 0 0.2 0.5 0.5 0.1 0.5
Max Seq Length 128
Regularization Coefficient 0 0 1e-5 1e-5 0 1e-5 0 1e-5

B.2 GPT-2

We summarize the experimental settings for the GPT-2 experiments in Table 14. The experimental config-
uration, particularly during the inference stage, follows the approach described by Hu et al. (2021).

C Baselines in Experiments

We compare BiDoRA with Full Fine-Tuning (FT), Adapter tuning (Houlsby et al., 2019), LoRA (Hu et al.,
2021), and DoRA (Liu et al., 2024a) in all our experiments. We provide a brief introduction to these methods
here.

Full Fine-Tuning (FT) is a commonly used method for adaptation. The model is initialized with pre-
trained weights and biases, and all model parameters are updated through gradient descent.

Adapter tuning (Houlsby et al., 2019) inserts layer adapters between neural modules, such as the MLP
module or the self-attention module. It incorporates two fully connected layers within an adapter layer, with
a nonlinearity function applied between them.

LoRA (Hu et al., 2021) adds trainable incremental update matrices to pre-trained weight matrices. Following
the experimental settings of LoRA, we applied BiDoRA to Wq and Wv matrices (the query and value weight
matrices in the self-attention module) for a fair comparison.

DoRA (Liu et al., 2024a) proposes weight-decomposed adaptation, which formulates the incremental ma-
trices as a product of magnitude and direction components, thereby accelerating training and aligning the
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Table 13: The hyperparameters we used for RoBERTa on the Reuters21578 dataset (Padmanabhan et al.,
2016), BioNLP dataset (Collier et al., 2004), and CoNLL2003 dataset (Sang & De Meulder, 2003).

Method Settings ModApte ModHayes ModLewis BioNLP CoNLL2003
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 8

RoBERTa-base Total batch size 32
Global steps 20k 20k 20k 12k 12k
Lower learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Upper learning rate 3e-5 3e-5 3e-5 1e-5 2e-5
Lower weight decay 0.1 0.1 0.1 0.1 0.2
Upper weight decay 0.1
Max Seq Length 512
Regularization Coefficient 0 1e-5 0 1e-5 0

RoBERTa-large Total batch size 32
Global steps 20k 20k 20k 12k 15k
Lower learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Upper learning rate 1e-5 1e-5 1e-5 2e-5 1e-5
Lower weight decay 0.2 0.1 0.2 0.02 0.1
Upper weight decay 0.1 0.1 0.1 0.02 0.1
Max Seq Length 128
Regularization Coefficient 0 1e-5 0 0 1e-5

Table 14: The hyperparameters we used for GPT-2 on the E2E NLG benchmark (Novikova et al., 2017).
Settings Training
Optimizer AdamW
Warmup Ratio 0.06
Scheduler Linear
LoRA rank ranka = ranku = 4
LoRA α 32
Label Smooth 0.1
Lower learning rate 1e-3
Upper learning rate 1e-4
Lower weight decay 1
Upper weight decay 1
Max Seq Length 512
Regularization Coefficient 1e-5
Settings Inference
Beam Size 10
Length Penalty 0.9
no repeat ngram size 4

training behavior with full fine-tuning. In contrast, our BiDoRA trains the two components on distinct
sub-datasets to alleviate overfitting.
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D Weight Decomposition Analysis

We provide a brief review of the weight decomposition analysis proposed in Liu et al. (2024a). Define
the weight decomposition of a weight matrix W ∈ Rd×k (e.g., query matrix in an attention layer) as
W = m V

∥V∥c
= ∥W∥c

W
∥W∥c

, where m ∈ R1×k is the magnitude vector, and V ∈ Rd×k is the directional
matrix, with ∥ · ∥c representing the vector-wise norm of a matrix across each column. This decomposition
ensures that each column of V/∥V∥c remains a unit vector, and the corresponding scalar in m defines the
magnitude of each vector. Liu et al. (2024a) examine the magnitude and directional variations between W0

and WFT, defined as ∆Mt
FT =

∑k

n=1
|mn,t

FT −mn
0 |

k and ∆Dt
FT =

∑k

n=1
(1−cos(Vn,t

FT ,W0
n))

k . Here, ∆Mt
FT and

∆Dt
FT represent the magnitude and direction differences between W0 and WFT at the t-th training step,

respectively, with cos(·, ·) denoting cosine similarity. mn,t
FT and mn

0 are the nth scalars in their respective
magnitude vectors, while Vn,t

FT and W0
n are the nth columns in Vt

FT and W0. Intuitively, a consistent
positive slope trend across all the intermediate steps implies a difficulty in concurrent learning of both
magnitude and direction, suggesting that slight directional changes are challenging to execute alongside
more significant magnitude alterations. In contrast, a relatively negative slope signifies a more varied learning
pattern, with a more pronounced negative correlation indicating a larger learning capacity.

Complementary to Fig. 3 in the main paper on the query matrix, we provide additional results of weight
decomposition analysis in Fig. 4 on the value matrix to complement the findings in Section 5.7. We can
draw two key observations from Fig. 4: 1) Consistent with the results in Liu et al. (2024a), both FT and
DoRA exhibit negative correlation values of −49.279 and −5.485, respectively, while LoRA shows a positive
correlation with a value of 2.503. 2) BiDoRA achieves a negative correlation value of −10.547, indicating
closer alignment with FT compared to DoRA. The analysis of how BiDoRA achieves this improvement is
similar to that discussed in Section 5.7.

(a) FT(k = −49.279) (b) LoRA(k = 2.503) (c) DoRA(k = −5.485) (d) BiDoRA(k = −10.5)

Figure 4: Magnitude and direction updates for (a) FT, (b) LoRA, (c) DoRA, and (d) BiDoRA of the
value matrices across different layers and intermediate steps after fine-tuning the GPT2 model on the E2E
dataset (Novikova et al., 2017). Different markers represent matrices from different training steps, while
different colors indicate matrices from each layer. The values of negative correlation are shown at the top,
denoted by k.

E Training Cost

Table 15: Average training time cost on the GLUE benchmark (Wang et al., 2019).

Method LoRA DoRA BiDoRA
Per-step cost ×1 ×1.36 ×3.54
Total steps 27.45k 27.45k 17.37k
Total time ×1 ×1.36 ×2.24

Table 15 compares the training efficiency of LoRA, DoRA, and BiDoRA on the GLUE benchmark using the
RoBERTa-base model. The table details the total training steps required for convergence and the per-step
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Table 16: Experiment results on different data partitions of BiDoRA.
Partition ModApte ModHayes ModLewis

0.6 85.32 79.76 77.69
0.7 85.32 80.01 77.74
0.8 85.34 79.93 77.63
0.9 85.27 79.85 77.64
1.0 85.23 79.59 77.42

computational cost, which is normalized relative to LoRA for reference. For a fair comparison, all methods
were benchmarked on a single NVIDIA A100 GPU. The results show that BiDoRA converges in fewer steps
than LoRA and DoRA, while the per-step cost for BiDoRA is modestly higher, as its bi-level optimization
process requires iterative updates between the two levels and the computation of hypergradients. The
total training time for BiDoRA is approximately 1.64 times that of DoRA, a training cost that remains
comparable to the baselines. Given BiDoRA’s superior performance across various tasks, we argue that this
slight increase in computational cost is an acceptable trade-off, underscoring our method’s practicality.

F The Role of Hyperparameter

The hyperparameter tuning for BiDoRA is simple, convenient, and straightforward. We further conducted
experiments regarding the dataset partition of Dtr and Dval to provide insights into its role in BiDoRA.
The dataset partition helps maintain the balance of inner/outer optimization by assigning different portions
of data. The direction component has more trainable parameters, so it is reasonable to use more data for
training the lower level while using the remaining data for training magnitudes. As shown in Table 16,
we varied the inner-level dataset Dtr partition from 0.6 to 1.0 with 0.1 intervals and experimented with
RoBERTa-base on three splits of the Reuters21578 dataset to examine its influence.

The results indicate that both extreme cases are negative to the overall performance. When the inner
partition is too small (≤ 0.6), directions are not well-trained, and when the inner partition is 1.0, magnitudes
are not trained at all, leading to a significant performance drop. These findings demonstrate that bi-level
optimization is effective in the sense that both levels are necessary for enhancing performance. Although
tuning the partition ratio may further improve overall performance, we maintain a consistent data partition
of 8 : 2 in all the experiments for simplicity. A fixed configuration of data partition already consistently
yields superior performance of BiDoRA, demonstrating that our method is robust to this hyperparameter
within a certain range.

G Comparison with Other General Methods for Addressing Overfitting

There are some common experimental settings that may be used to reduce overfitting. For DoRA, two
promising methods are increasing weight decay and adopting a more aggressive dropout rate. We conducted
experiments on these two methods separately. We kept hyperparameters that have been well-tuned in
DoRA and can achieve optimal results while only tuning the weight decay value. Similarly, we tune the
dropout rate of DoRA while keeping the weight decay value to be optimized. We conducted experiments on
RoBERTa-base on three datasets. The results are presented in Table 17 and Table 18.

We can draw the observation that neither of these approaches effectively addresses overfitting issues or
enhances the model’s generalization ability. On the other hand, BiDoRA exploits the specific magnitude-
direction structure of DoRA and the strategy of training the two distinct components on separate splits of
the dataset. An advantage of our methodology is that it can be easily combined with other general-purpose
overfitting-alleviating strategies since BiDoRA does not modify the original DoRA architecture.
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Table 17: Experiment results on different weight decay values of DoRA.
Method CoLA MRPC RTE

DoRA (weight decay = 0) 59.3 88.7 72.9
DoRA (weight decay = 0.05) 60.1 89.2 73.3
DoRA (weight decay = 0.1) 60.5 89.2 73.2
DoRA (weight decay = 0.2) 60.3 89.0 73.2

BiDoRA 61.3 89.4 76.0

Table 18: Experiment results on different dropout rates of DoRA.
Method CoLA MRPC RTE

DoRA (dropout rate = 0) 59.2 89.2 72.9
DoRA (dropout rate = 0.1) 60.2 88.9 71.4
DoRA (dropout rate = 0.2) 55.1 87.8 64.2

BiDoRA 61.3 89.4 76.0

H Additional Experiments

H.1 Compare with recent work.

To demonstrate the superiority of our method, we provide an additional comparison with several recent
PEFT techniques. The methods included are:

• Full Fine-Tuning (FF): The entire model is fine-tuned, with updates to all parameters.

• Adapter Tuning (Houlsby et al., 2019; Lin et al., 2020; Rücklé et al., 2020; Pfeiffer
et al., 2020): Methods that introduce adapter layers between the self-attention and MLP modules
for parameter-efficient tuning.

• LoRA (Hu et al., 2022): A method that estimates weight updates via low-rank matrices.

• AdaLoRA (Zhang et al., 2023): An extension of LoRA that dynamically reallocates the param-
eter budget based on importance scores.

• DoRA (Liu et al., 2024a): Decomposes pretrained weights into magnitude and direction, using
LoRA for efficient directional updates.

• VeRA (Kopiczko et al., 2023): Employs a single pair of low-rank matrices across all layers to
reduce trainable parameters.

• FourierFT (Gao et al., 2024): Fine-tunes models by learning a subset of spectral coefficients in
the Fourier domain.

• AFLoRA (Liu et al., 2024b): Freezes low-rank adaptation parameters using a learned score,
reducing trainable parameters while maintaining performance.

• LaMDA (Azizi et al., 2024): Fine-tunes large models via spectrally decomposed low-dimensional
adaptation.

• SSH (Shen et al., 2025b): Fine-tunes large models after transforming weight matrices with the
discrete Hartley transformation (DHT).

• MaCP (Shen et al., 2025a): Fine-tunes large models by projecting the low-rank adaptation
weight change into the discrete cosine space.
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We present experimental results on the GLUE benchmark with the RoBERTa-base model, following the
settings from Shen et al. (2025b) and Shen et al. (2025a) and citing their reported baseline results for
reference. The results in Table 19 indicate that BiDoRA consistently outperforms all baselines, including
DoRA, across these diverse NLU tasks, demonstrating its robust generalization capability.

Table 19: Performance of various fine-tuning methods on the GLUE benchmark for the RoBERTa-base
model. The evaluation metrics are Matthews Correlation Coefficient (MCC) for CoLA, Pearson Correlation
Coefficient (PCC) for STS-B, and accuracy for all other tasks.

Model SST-2 MRPC CoLA QNLI RTE STS-B Avg.& Method (Acc.) (Acc.) (MCC) (Acc.) (Acc.) (PCC)
FF 94.8 90.2 63.6 92.8 78.7 91.2 85.22
BitFit 93.7 92.7 62.0 91.8 81.5 90.8 85.42
AdptD 94.7 88.4 62.6 93.0 75.9 90.3 84.15
LoRA 95.1 89.7 63.4 93.3 78.4 91.5 85.23
AdaLoRA 94.5 88.7 62.0 93.1 81.0 90.5 84.97
AFLoRA 94.1 89.3 63.5 91.3 77.2 90.6 84.33
LaMDA 94.6 89.7 64.9 91.7 78.2 90.4 84.92
VeRA 94.6 89.5 65.6 91.8 78.7 90.7 85.15
FourierFT 94.2 90.0 63.8 92.2 79.1 90.8 85.02
SSH 94.1 91.2 63.6 92.4 80.5 90.9 85.46
MaCP 94.2 89.7 64.6 92.4 80.7 90.9 85.42
DoRA (r = 8) 94.9 89.9 63.7 93.3 78.9 91.5 85.37
BiDoRA (r = 8) 95.7 90.2 65.8 93.4 79.4 90.5 85.83
DoRA (r = 16) 94.8 90.4 65.6 93.1 81.9 90.7 86.08
BiDoRA (r = 16) 95.0 90.8 66.7 93.3 82.6 90.9 86.55

H.2 Robustness of BiDoRA towards different rank settings.

We also explore the impact of different rank configurations on BiDoRA and DoRA, evaluating them with
ranks of 8 and 16 in addition to the rank of 4 used in the main paper. Performance was assessed by
fine-tuning RoBERTa-base on the GLUE benchmark, as detailed in Section 5.2. The average accuracies
reported in Table 19 demonstrate that BiDoRA consistently surpasses DoRA across all rank configurations,
highlighting its resilience and superior performance regardless of the rank setting.

H.3 Quantitative performance gap between training and testing set.

As visualized in Fig. 2, BiDoRA achieves a smaller gap between training and test performance. Here, we
quantitatively present this performance gap on the RoBERTa-base model in Table 20. The training set metric
is calculated as a moving average of the per-batch metric with a decay ratio of 0.99. Since BiDoRA has two
training loops, its training metric is a weighted average (0.8 × inner-loop metric + 0.2 × outer-loop metric),
based on the data split size, inner : outer = 8 : 2, in our case. The results show that the performance gap
for BiDoRA is consistently lower than that of DoRA across all datasets. This suggests that DoRA is more
prone to overfitting, an issue that BiDoRA effectively addresses.

I Evidence on Orthogonality of Incremental Matrix

To verify that the orthogonal regularization (OR) proposed in Section 4.2 encourages the columns of the
direction matrix to be orthogonal, we visualize the normalized eigenvalues of the matrix in Fig. 5. The results
show that, compared to methods without OR (i.e., DoRA and BiDoRA w/o cst.), BiDoRA with OR produces
eigenvalues that are more closely aligned with those of a purely orthogonal matrix, where all eigenvalues
would be one. This effect holds for both the query and value matrices and verifies the effectiveness of the
OR constraint.
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Table 20: Quantitative performance gap between training and test sets for DoRA and BiDoRA using the
RoBERTa-base model. The gap is calculated as the training metric minus the test metric, where a smaller
value indicates less overfitting.

Method SST-2 MRPC CoLA QNLI RTE STS-B Avg.
DoRA 2.0 9.5 32.5 6.6 18.0 8.8 12.9

BiDoRA 1.7 7.0 23.3 0.2 14.0 4.7 8.5

(a) DoRA-query matrix (b) BiDoRA (w/o cst.)-query matrix (c) BiDoRA-query matrix

(d) DoRA-value matrix (e) BiDoRA (w/o cst.)-value matrix (f) BiDoRA-value matrix

Figure 5: Eigenspectra of the direction matrix for query (top) and value (bottom) matrices across different
layers. The figure compares three fine-tuning methods: BiDoRA, BiDoRA without orthogonal regularization
(w/o cst.), and DoRA. Both axes are on a log scale, and only the 64 largest eigenvalues are shown for
visualization clarity. Experiments were conducted on the CoLA dataset (Warstadt et al., 2019) with the
RoBERTa-base model.
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