
You Shall not Pass: the Zero-Gradient Problem in
Predict and Optimize for Convex Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Predict and optimize is an increasingly popular decision-making paradigm that em-1

ploys machine learning to predict unknown parameters of optimization problems.2

Instead of minimizing the prediction error of the parameters, it trains predictive3

models using task performance as a loss function. In the convex optimization4

domain, predict and optimize has seen significant progress due to recently devel-5

oped methods for differentiating optimization problem solutions over the problem6

parameters. This paper identifies a yet unnoticed drawback of this approach – the7

zero-gradient problem – and introduces a method to solve it. The suggested method8

is based on the mathematical properties of differential optimization and is verified9

using two real-world benchmarks.10

1 Introduction11

Mathematical programming is one of the fundamental tools of applied mathematics. It is utilized in12

various domains, such as finance [Cornuejols and Tütüncü, 2006], power systems [Bansal, 2005],13

robotics [Raja and Pugazhenthi, 2012], and many others. The main practical limitation of mathemati-14

cal programming is that it requires a fully-defined model describing the problem which is not always15

available in reality. A promising approach to overcome this limitation is to employ machine learning16

(ML) to predict missing parts of the model [Ning and You, 2019].17

Predict and optimize (P&O) [Elmachtoub and Grigas, 2017] is a decision-making paradigm that18

combines ML with mathematical programming. It considers optimization problems where some19

parameters are unknown and should be predicted prior to solving the problem. The P&O approach20

builds upon the observation that naively training an ML algorithm to match the distribution of21

unknown parameters is inefficient [Elmachtoub and Grigas, 2017], as this approach does not take the22

actual task performance into account. Instead, P&O aims at using task performance as the objective23

function for ML models directly.24

The standard approach to training models in machine learning is to use gradient-based algorithms,25

such as stochastic gradient descent Kiefer and Wolfowitz [1952]. In predict and optimize, computing26

the gradient of the task performance involves differentiating the solution of the optimization problem27

with respect to the parameters, which is a non-trivial task. In their seminal work, Agrawal et al.28

[2019a] have shown that a large class of convex optimization problems indeed can be differentiated.29

In this paper, we identify a fundamental drawback of differential optimization – the zero-gradient30

problem. Specifically, we show that the Jacobian of convex problems often has a large null space,31

and hence the task performance, as a function of the ML model parameters, is flat in a significant part32

of its domain. Therefore, it can not be optimized using gradient-based methods. Consequently, we33

introduce a way to compute an approximate gradient that is zero only in the optimal solution and is34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

guaranteed to not decrease performance. Finally, we validate the superiority of this method using two35

real-world problems: the portfolio optimization problem and the optimal power flow problem.36

2 Predict and optimize37

In this section, we provide an overview of the existing research in the predict and optimize domain.38

Then, we define the P&O problem and introduce the solution approach that we are going to investigate39

later in this manuscript.40

2.1 Related work41

To the best of our knowledge, the predict and optimize framework was first introduced by Elmachtoub42

and Grigas [2017]. They consider optimization problems with linear objectives and derive a convex43

approximation of the task performance function. Then, they optimize the prediction model by44

using sub-gradients of this approximation. Later, this method was extended onto combinatorial45

problems by Mandi et al. [2020]. Several other approximations were introduced in other studies46

focusing on combinatorial problems. Vlastelica et al. [2019] derive a differentiable piecewise-linear47

approximation for the task performance; Berthet et al. [2020] employ stochastic perturbations to48

approximate derivative of combinatorial problems.49

Unlike in the combinatorial case, continuous convex optimization problems do allow exact differenti-50

ation of the loss function. The sequence of works [Amos and Kolter, 2017], [Agrawal et al., 2019b],51

[Agrawal et al., 2019a] developed a differential optimization technique to compute the derivative of52

convex optimization problems. In their latest work [Agrawal et al., 2019a], the authors delivered a53

general method that allows differentiating disciplined convex programs [Grant et al., 2006]. This54

result gave rise to new applications of P&O to convex optimization: Uysal et al. [2021] applied55

convex differential optimization to the risk budgeting portfolio optimization problem; Wang et al.56

[2020] utilized it to learn surrogate models for predict and optimize; Donti et al. [2017] applied57

the method to three different real-world benchmarks. Moreover, several studies applied differential58

optimization to predict and optimize for other problem classes. In Wilder et al. [2019], it was used in59

linear optimization via constructing a quadratic approximation of the problem. Later, Mandi and Guns60

[2020] improved upon this result by using logarithmic approximations. Ferber et al. [2020] combined61

a similar idea with the cutting plane approach and used differential optimization in combinatorial62

problems.63

Outside of predict and optimize, differential optimization also has found several applications. Chen64

et al. [2021] used it to train reinforcement learning agents in the action space with convex constraints,65

and Agrawal et al. [2019c], employed it for tuning model predictive control algorithms.66

While the benefits of the differential optimization approach to predict and optimize are numerous, it67

is still not fully understood. It was reported in several studies Vlastelica et al. [2019], Wilder et al.68

[2019], that the gradient of a linear problem is zero everywhere, except for the finite set of points69

where it is undefined. Since any linear problem is convex, this observation suggests that the gradients70

of convex problems should be also thoroughly investigated.71

2.2 Problem formulation72

In this section, we introduce the P&O problem. We refer readers to Elmachtoub and Grigas [2017]73

for further details. In predict and optimize, we solve optimization problems of the form74

arg max
x

f(x,w) s. t. x ∈ C, (True problem)

where x ∈ Rn is the decision variable, w ∈ Ru is a vector of unknown parameters, f : Rn × Ru → R75

is the objective function, and C is the feasibility region. The defining feature of this problem is that76

the parameters w are unknown at the moment when the decision must be made. Therefore, the true77

optimization problem is under-defined and cannot be solved directly.78

One way to deal with the unknown parameters w is to use a prediction ŵ instead. Then, the decision79

can be computed by solving the following problem, which we refer to as the internal problem:80

x∗(ŵ) = arg max
x

f(x, ŵ) s. t. x ∈ C. (Internal problem)

2

A commonly made assumption is that instead of w, we observe a feature vector o that contains some81

information about w. Also, we have a dataset D = {(ok, wk)}, e.g., of historical data, which we82

can use to learn the relation between w and o. This setup enables using ML models to compute the83

prediction. We denote the prediction model by ϕθ, and thus we have ŵ = ϕθ(o).84

The problem described above is not specific to predict and optimize. What separates the P&O85

paradigm from earlier works is the approach to training the model ϕθ. In the past, machine learning86

models would be trained to predict w as accurately as possible, e.g., in Mukhopadhyay and Vorobey-87

chik [2017]. However, the parameter prediction error is merely an artificial objective and our true88

goal is to derive a decision x that maximizes the task performance f(x,w). The main goal of the89

P&O approach is to utilize this objective for training the model ϕθ. The task performance achieved90

by ϕθ on the dataset D can be quantified by the following loss function:91

L(θ) = − 1

|D|
∑

(o,w)∈D

f
(
x∗(ϕθ(o)

)
, w

)
(1)

Most machine learning algorithms for training models are based on computing the gradient of92

the loss function (Kiefer and Wolfowitz [1952]). To train ϕθ with a gradient-based algorithm, we93

need to differentiate L over θ, and hence we need to compute the gradient∇θf
(
x∗(ŵ), w

)
, where94

ŵ = ϕθ(o). Applying the chain rule, it can be decomposed into three terms:95

∇θf
(
x∗(ŵ), w

)
= ∇xf

(
x∗(ŵ), w

)
∇ŵx

∗(ŵ) ∇θŵ. (2)

The second term, ∇ŵx
∗(ŵ), is the Jacobian of the solution of the optimization problem over the96

prediction ŵ. An exact method to compute this Jacobian was introduced in Agrawal et al. [2019a],97

but it has never been thoroughly analyzed. In the next section, we show that ∇ŵx
∗(ŵ) has a large98

null space, thereby causing the total gradient in Eq. 2 to be zero even outside of the optimum.99

3 Differentiable optimization100

In this section, we study the derivative of convex optimization programs over the parameters of the101

objective function. We show that the gradient in Eq. 2 is often zero outside of the optimum, and102

hence it causes gradient-following methods to get stuck in suboptimal solutions. In the second part of103

this section, we introduce a method to solve this problem.104

Without loss of generality, we consider a single instance of the problem, i.e., one sample (o, w) ∈ D.105

Everywhere in this section, we denote the prediction by ŵ = ϕθ(o). Then, the decision is computed106

as a solution of the internal optimization problem defined as follows:107

x∗(ŵ) = arg max
x

f(x, ŵ) s.t. x ∈ C. (3)

We use x̂ to denote the value of x∗(ŵ) for a given prediction ŵ. As we are interested in convex108

optimization problems, we make the following assumptions:109

Assumption 1. The objective function f(x,w) is concave and twice continuously differentiable in x110

for any w.111

Assumption 2. The feasibility region C is convex, i.e., {C = {x|gi(x) ≤ 0, i = 1, . . . , l}, where gi(x)112

are convex differentiable functions. Moreover, for any x ∈ C, the gradients {∇xgi(x)|gi(x) = 0} of113

the active constraints are linearly independent. 1114

Additionally, we make an assumption about how f depends on w, which holds for many real-world115

problems, including linear and quadratic optimization problems.116

Assumption 3. The objective function f(x,w) is twice continuously differentiable in w.117

Throughout this paper, we use derivatives of different objects. For clarity, we first provide an overview118

of them: the gradient of the true objective function over the decision, ∇xf(x̂, w); the Jacobian of the119

decision over the prediction,∇ŵx
∗(ŵ); the Jacobian of the prediction over the ML model parameters,120

∇θŵ; and the gradient of the predicted objective in the internal problem, ∇xf(x, ŵ). In the next121

section, we establish some crucial properties of the Jacobian∇ŵx
∗(ŵ).122

1As is, Assumption 2 does not allow equality constraints. For clarity, we use this formulation in the main
body of the paper. In the appendix, we show that our results hold for the equality constraints as well.

3

Figure 1: Gradient cones x̂+G(x̂) (orange cones) and internal gradients ∇xf(x̂, ŵ) (black arrows)
at different points x̂ (red dots) in different feasibility regions C (blue cube and cylinder).

3.1 The zero-gradient theorem123

We begin by investigating the relation between the values of the function x∗(ŵ) and the gradient124

of the internal objective,∇xf(x, ŵ). Let ni := ∇xgi(x̂), i = 1, . . . , l be the normal vectors of the125

constraints at x̂, Then, the KKT conditions Kuhn and Tucker [1951] at x̂ state that there exist real126

values α1, . . . , αl such that the following holds:127

∇xf(x̂, ŵ) =

l∑
i=1

αini, αigi(x̂) = 0, αi ≥ 0, gi(x̂) ≤ 0, i = 1, . . . , l.

Under Assumptions 1 and 2, the KKT multipliers αi are uniquely defined by ŵ and x̂. Thus, as x̂ is128

defined by ŵ, we sometimes write αi(ŵ) to emphasize that it is, in fact, a function of ŵ. To provide129

a geometrical perspective on the KKT conditions, we introduce the following definition:130

Definition 3.1. Let x ∈ C and let I(x) = {i|gi(x) = 0} be the set of indices of the constraints active131

at x. Let ni = ∇xgi(x), ∀i ∈ I(x), be the normal vectors of these constraints. The gradient cone,132

G(x) :=
{∑

i∈I αini|αi ≥ 0
}
, is the positive linear span of normal vectors ni.133

Combining the KKT conditions with Definition 3.1, we immediately arrive at the following property:134

Property 3.2. Let x ∈ C and let∇xf(x, ŵ) be the internal gradient at x. Then, x is a solution to the135

problem in Eq. 3 if and only if ∀i ∈ I(x),∃αi ≥ 0, such that∇xf(x, ŵ) =
∑

i∈I(x) αini ∈ G(x),136

where I(x) is the set of indices of active constraints, I(x) = {i|gi(x) = 0}.137

While trivial, this property provides a geometrical interpretation of the problem. Effectively, a point138

x is a solution to the problem in Eq. 3 if and only if the internal gradient at this point lies inside its139

gradient cone. Figure 1 illustrates this property.140

Before studying the Jacobian∇ŵx
∗(ŵ), we first need to address the question of when this Jacobian141

exists. Sufficient conditions for existence are given in Fiacco [1976]. Under Assumptions 1-3, these142

conditions can be reformulated as follows:143

Lemma 3.3 (Theorem 2.1 in Fiacco [1976]). Let Assumptions 1-3 hold and let144

∇xf(x̂, ŵ) =
∑

i∈I(x̂)

αi(ŵ)ni

be the representation of the internal gradient with the normals of the active constraints. Then,145

suppose that the strict complementary slackness condition holds, i.e., αi(ŵ) > 0, ∀i ∈ I(x̂). Then,146

the Jacobian ∇ŵx
∗(ŵ) exists at ŵ. Moreover, αi(·) is continuous around ŵ for any i ∈ I(x̂).147

Proof of this lemma is given in Fiacco [1976]. This result establishes that strict complementary148

slackness is sufficient for the Jacobian∇ŵx
∗(ŵ) to exist. In most cases, the points that violate strict149

complementary slackness form a zero-measure set and hence can be neglected in practice.150

Now, we have all the necessary tools to describe the structure of the Jacobian ∇ŵx
∗(ŵ). Suppose151

that the strict complementary slackness condition holds at x̂ and hence the Jacobian exists. Assume152

that we perturb ŵ and obtain ŵ′. Let x̂′ = x∗(ŵ′) denote the solution corresponding to ŵ′. What153

can be said about x̂′? Strict complementary slackness implies that the constraints active at x̂ will154

remain active at x̂′ if the difference ∥ŵ′ − ŵ∥22 is small enough. Therefore, the decision x̂′ can only155

move within the tangent space of C at x̂, i.e., orthogonally to all ni, i ∈ I(x̂.) Hence, when more156

constraints are active, x̂′ can move in less directions. Formally, we obtain the following lemma:157

4

Lemma 3.4. Suppose that the strict complementary slackness conditions hold at x̂ and let158

∇xf(x̂, ŵ) =
∑

i∈I(x̂) αini, αi > 0, ∀i ∈ I(x̂) be the internal gradient. Let N (x̂) =159

span({ni | i ∈ I(x̂)}) be the linear span of the gradient cone. Then N (x̂) is contained in the160

left null space of∇ŵx
∗(ŵ), i.e., v∇ŵx

∗(ŵ) = 0, ∀v ∈ N (x̂)161

The formal proof of this result can be found in the appendix. Lemma 3.4 is very important, as it162

specifies in what directions x∗(ŵ) can move as a consequence of changing ŵ. Now, the first term in163

the chain rule in Eq. 2, ∇xf(x̂, w), specifies in what directions x∗(ŵ) should move in order for the164

true objective to increase. Naturally, if these directions are contained in the null space of ∇ŵx
∗(ŵ),165

then the total gradient in Eq. 2 is zero. This observation constitutes the main theorem of this paper –166

the zero-gradient theorem.167

Theorem 3.5 (Zero-gradient theorem). Let ŵ be a prediction, and let x̂ be the solution of the internal168

optimization problem defined in Eq. 3. Suppose that the strict complementary slackness conditions169

hold at x̂ and let N (x̂) = span({ni | i ∈ I(x̂)}) be the linear span of the gradient cone at x̂. Then,170

∇xf(x̂, w) ∈ N (x̂) =⇒ ∇θf(x̂, w) = 0.171

The proof of this theorem is obtained by simply applying Lemma 3.4 to the chain rule in Eq. 2.172

The theorem claims that the gradient of the P&O loss in Eq. 1 can be zero in the points outside173

of the optimal solution. Hence, any gradient-following method “shall not pass” these points. In174

particular, the zero-gradient phenomenon happens in such points x̂ where the true gradient∇xf(x̂, w)175

is contained in the space N (x̂) spanned by the gradient cone G(x̂). As the dimensionality of this176

space grows with the number of active constraints, the zero-gradient issue is particularly important177

for problems with a large number of constraints. In the worst case, N (x̂) can be as big as the whole178

decision space Rn, thereby making the total gradient ∇θf(x̂, w) from Eq. 2 zero for any value of179

the true gradient ∇xf(x̂, w). In the following sections, we introduce a method that resolves the180

zero-gradient problem and provides theoretical guarantees for its performance.181

3.2 Quadratic programming approximation182

The fundamental assumption of the predict and optimize framework is that training ϕθ using the183

task performance loss is better than fitting it to the true values of w. Hence, the models trained with184

predict and optimize might output ŵ that is significantly different from the true w and yet produces185

good decisions. Taking this argument one step further, we claim that the objective function f(x, ŵ) in186

the internal optimization problem in Eq. 3 does not need to be the same as the true objective f(x,w).187

In particular, we suggest computing decisions using a simple quadratic program (QP):188

x∗
QP (ŵ) = arg max

x
−∥x− ŵ∥22 s.t. x ∈ C. (4)

The reasons for this choice are manyfold. First, the internal objective fQP (x, ŵ) = −∥x− ŵ∥22, is189

strictly concave and hence x∗
QP (ŵ) is always uniquely-defined. Moreover, the range of xQP (ŵ) is190

C, i.e., ∀x ∈ C, ∃ŵ such that x = x∗
QP (ŵ). Hence, it can represent any optimal solution. However,191

the most important property of QP is that its Jacobian is very simple, which we explain below.192

The problem in Eq. 4 has a simple geometrical interpretation: the point x = ŵ is the unconstrained193

maximum of fQP (x, ŵ) and x∗
QP (ŵ) is its Euclidean projection on the feasibility set C, see Figure 2.194

To compute the Jacobian ∇ŵ x∗
QP , we need to understand how perturbations of ŵ affect x∗

QP .195

Employing the geometrical intuition above, we obtain the following lemma:196

Lemma 3.6. Let ŵ be a prediction and x̂ be the optimal solution of the QP problem defined in197

Eq. 4. Let the strict complementary slackness condition hold and let {ni|i ∈ I(x̂)} be the normals198

of the active constraints. Let {ej |j = 1, . . . , n − |I(x̂|)} be an orthogonal complement of vectors199

{ni|i ∈ I(x̂)} to a basis of Rn. Then, the representation of the Jacobian ∇ŵxQP (ŵ) in the basis200

{ni} ∪ {ej} is a diagonal matrix. Its first |I(x̂)| diagonal entries are zero, and the others are one.201

Proof of this lemma can be found in the appendix. Lemma 3.6 implies that the Jacobian ∇ŵxQP (ŵ)202

has a simple form and can be easily computed by hand. While providing computational benefits, this203

approach does not address the zero-gradient problem. In the next section, we introduce a method to204

compute an approximate of the Jacobian∇ŵxQP (ŵ) that has a strictly one-dimensional null space.205

Combined with the QP approximation, it is guaranteed to at least not decrease the task performance.206

5

AA

Figure 2: Left: Illustration of QP. The internal gradient (black arrow) at the solution of the QP x̂
(red point) is orthogonal to the feasibility region C (blue area) and points towards the unconstrained
maximum ŵ (purple cross). Right: Illustration of the r−smoothed problem. The internal gradient
(black arrow) is orthogonal to the r−smoothed feasibility region Cr(x̂, ŵ) (green circle) at the
decision x̂ (red point).

3.3 Local smoothing207

We identified a fundamental issue of differential optimization – the zero-gradient problem. We208

showed that the null space of the Jacobian∇ŵx(ŵ) depends on the number of constraints active at209

x̂. Generally, this number can be as large as the number of optimized variables n, and the gradient-210

descent algorithms can get stuck in certain points on the boundary of the feasibility region.211

In this section, we propose a simple way to modify the feasibility region – we smooth C locally212

around the point for which we compute the Jacobian, thereby ensuring that its null space becomes213

one dimensional. First, we define a method for the general setup, without imposing any assumptions214

on the optimization problem. Then, we demonstrate that combined with the QP approximation from215

Section 3.2, this smoothing approach has theoretical guarantees.216

We begin with the general case – the problem in Eq. 3. Let ∇xf(x̂, ŵ) =
∑

i∈I(x̂) αini be the217

internal gradient at x̂ for some αi ≥ 0, ∀i ∈ I(x̂). Then, we introduce the following definition:218

Definition 3.7. Let r > 0 be a positive real number. Let c = x̂ − r ∇xf(x̂,ŵ)
∥∇xf(x̂,ŵ)∥2

. The lo-219

cal r-smoothed feasibility region, Cr(x̂, ŵ) := {y|y ∈ Rn, ∥y − c∥2 ≤ r}, is a ball of ra-220

dius r around c. The local r−smoothed problem Pr(x̂, ŵ) with parameters x̂, ŵ is defined as221

x∗
r(ŵ) := arg maxx∈Cr(x̂,ŵ) f(x, ŵ).222

Figure 2 shows an example of the local r−smoothed problem. Now, let x̂r = x∗
r(ŵ) denote the223

solution of Pr(x̂, ŵ). By construction, the internal gradient at x̂r lies in the one-dimensional gradient224

cone, and hence, by Property 3.2, x̂r = x̂. The main purpose of smoothing is to approximate the225

gradient in Eq. 2 by substituting ∇ŵx
∗(ŵ) with ∇ŵx

∗
r(ŵ). We highlight that the decisions are still226

computed using the non-smoothed problem x∗(ŵ) and x∗
r(x̂, ŵ) is used exclusively to perform the227

gradient update step. In other words, we use the following expression to compute the gradient:228

∇θf(x
∗(ŵ), w) ≈ ∇xf

(
x̂, w

)
∇ŵx

∗
r(ŵ) ∇θŵ (5)

It is worth mentioning that the strict complementary slackness in the original problem is a stronger229

condition than the strict complementary slackness on Pr(x̂, ŵ). Therefore, the Jacobian of the230

r−smoothed problem can exist even for predictions ŵ where the true Jacobian does not.231

Generally, the efficiency of r−smoothing depends on the form of the internal problem in Eq. 3. Below,232

we show that combining r−smoothing with the QP approximation has guarantees on its performance.233

First, we notice that Lemma 3.6 prescribes the Jacobian of the r−smoothed QP problem:234

Property 3.8. Let x̂ = x∗
QP (ŵ) be a decision derived via QP. Suppose that the complementary235

slackness conditions hold for Pr(x̂, ŵ) and let e1 = ∇xfQP (x̂, ŵ) be the internal gradient. Let236

{e2, . . . , en} be a complement of e1 to an orthogonal basis of Rn. Then, the Jacobian ∇ŵx
∗
r(ŵ) of237

the local r−smoothed problem expressed in the basis {e1, e2, . . . , en} is a diagonal matrix. Its first238

entry is zero, others are ones.239

As Cr(x̂, ŵ) is defined by a single constraint, the null space of∇ŵx
∗
r(x̂, ŵ) is always one-dimensional.240

Hence, the zero-gradient problem can only occur when the internal gradient ∇xfQP (x̂, ŵ) and the241

true gradient ∇xf(x̂, w) are exactly collinear. Hence, we expect r−smoothing to significantly242

improve upon the zero-gradient problem. Next, we show that the r−smoothed Jacobian is actually a243

good approximation. In the following theorem, we demonstrate that the local r−smoothing of the244

QP approach indeed yields a “good” direction for the gradient steps.245

6

Theorem 3.9. Let x̂ = x∗
QP (ŵ) be the decision obtained via QP and let ∇ŵx

∗
r(ŵ) be the Ja-246

cobian of the r−smoothed QP problem. Let ∆ŵ = ∇xf(x̂, w) ∇ŵx
∗
r(ŵ) be the prediction per-247

turbation obtained by using this Jacobian and let ŵ′(t) = ŵ + t∆ŵ be the updated prediction.248

Then, for t → 0+, using ŵ′(t) results in a non-decrease in the task performance. In other words,249

f
(
x∗
QP (ŵ

′(t)), w
)
≥ f

(
x∗
QP (ŵ), w

)
.250

Interestingly, this result does not depend on r. However, this is to be expected – no matter the251

radius of Cr, the Jacobian of Pr(x̂, ŵ) is still the same by Lemma 3.6. Theorem 3.10 shows that252

using r−smoothing together with the QP approximation results in analytically computable Jacobian253

that has a strictly one-dimensional null space. Therefore, we are much less likely to encounter the254

zero-gradient problem when using this approximation. However, the resulting one-dimensional null255

space contains the only direction that can move the prediction ŵ, and hence the decision x̂, inside C.256

This might become crucial, for example, when the optimal solution with respect to the true objective257

lies in the interior of C. To resolve this problem, we use the projection distance regularization method258

first suggested in Chen et al. [2021]. Specifically, we add a penalty term259

p(ŵ) = α∥x̂− ŵ∥22, (6)

where α ∈ R+ is a hyperparameter. Minimizing this term, we push ŵ along the null-space of the260

Jacobian towards the feasibility region and eventually move x̂ inside C.261

3.4 The training process262

In this section, we summarize the results of Sections 3.1-3.3 and describe the final algorithm we263

use to solve the P&O problems. For each problem instance (o, w), we first compute the prediction,264

ŵ = ϕθ(o), and the decision using the QP approximation method, x̂ = x∗
QP (ŵ). Then, we obtain the265

achieved objective value, f(x̂, w). During training, we update the model parameters θ by performing266

the steps described in Algorithm 1.267

Algorithm 1
for (o, w) ∈ D do

x̂← x∗
QP

(
ϕ(o)

)
▷ Compute the decision

fx ← ∇xf(x̂, w) ▷ Compute the true gradient

f̂x ← ∇xf(x̂, ŵ) ▷ Compute the internal gradient

f0 ← f⊤
x f̂x

∥f̂x∥2
▷ Project the true gradient on the null space of∇ŵx

∗
r(ŵ)

∆ŵ ← fx∇ŵx
∗
r(ŵ) = fx − f0. ▷ Compute the prediction perturbation

∆ŵreg ← 2α(x̂− ŵ) ▷ Compute the anti-gradient of the penalty from Eq. 6

∆θ ← (∆ŵ +∆ŵreg)∇θ ϕθ(o) ▷ Approximate the total gradient

θ ← θ + η∆θ ▷ Perform the gradient step of size η

4 Experiments268

The main result of Section 3 is the zero-gradient theorem, which describes when the gradient269

∇θf
(
x∗(ŵ), w

)
is zero. To deal with it, we introduced the QP approach for computing the decisions,270

r−smoothing for approximating the Jacobian ∇ŵx
∗(ŵ), and projection distance regularization to271

deal with the remaining null space dimension. Our solution deals with the zero gradient problem272

by combining these methods. In this section, we use two real-world P&O problems to evaluate the273

efficiency of our method.274

4.1 Portfolio optimization275

Following Wang et al. [2020], we apply the predict and optimize framework to the Markowitz276

mean-variance stock market optimization problem Markowitz and Todd [2000]. In this problem, we277

act as an investor who seeks to maximize the immediate return but minimize the risk penalty. The278

7

(a) (b) (c)

Figure 3: Comparison of different methods on the portfolio optimization problem. y−axis represents
the mean and the standard deviation of the regret on the test set for four seeds. The lower the better.
(a) Regret for different λ. (b) Regret during training for λ = 0.25. (c) Regret during training for
λ = 2.

decision variable, x ∈ Rn, is a positive vector representing our investment in different securities. The279

budget constraint forces the investments to add up to one, i.e.,
∑

i xi = 1. The objective is defined as280

f(x, p,Q) = p⊤x− λx⊤Qx, where p ∈ Rn is the immediate return of the securities, λ ≥ 0 is the281

risk-aversion weight, and Q ∈ Rn×n is the positive definite matrix of covariance between securities.282

The portfolio optimization problem is then defined as follows:283

arg max
x

p⊤x− λx⊤Qx︸ ︷︷ ︸
f(x,p,Q)

s. t.
n∑

i=1

xi = 1, x ≥ 0. (7)

This is a quadratic optimization problem with unknown parameters (p,Q), as neither the immediate284

return nor the true covariance matrix is known at the decision-making moment. Following Wang285

et al. [2020], we use historical data from QUANDL WIKI prices QUANDL [2020] for 505 largest286

companies on the American market for the period 2014-2017. The dataset is processed and for every287

day we obtain a feature vector summarizing the recent price dynamic. For further details on the288

processing we refer readers to the code2 and to Wang et al. [2020]. For each run, we randomly split289

data into train, validation, and test sets by using 70%, 15%, and 15% of the whole dataset respectively.290

To evaluate the performance of different algorithms, we use regret, defined as291

regret(o, w) = f
(
x∗(ϕθ(o), w

))
−max

x
f
(
x,w

)
. (8)

In the experiments, we used λ from the set {0, 0.1, 0.25, 0.5, 1, 2}. For the larger value of λ, the true292

objective f(x, p,Q) is “more” quadratic, and hence its maximum is more likely to lie in the interior293

of C. For smaller λ’s, on the other hand, the true objective becomes almost linear and hence it usually294

attains its maximum on the boundary of C.295

First of all, we define the QP approximation of the portfolio optimization problem:296

x∗(ŵ) = arg max
x
−(x− ŵ)⊤I(x− ŵ) s. t.

n∑
i=1

xi = 1, x ≥ 0. (9)

Table 1: Performance of the QP approximation

Final test regret

λ QP approximation Predict both Q and p

0 0.061± 0.002 0.064± 0.002
0.1 0.047± 0.002 0.052± 0.002
0.25 0.040± 0.002 0.045± 0.002
0.5 0.039± 0.001 0.041± 0.001
1 0.040± 0.002 0.041± 0.002
2 0.039± 0.001 0.04± 0.001

As the problem is quadratic, the only differ-297

ence introduced by the QP approximation comes298

from using the identity matrix I instead of Q.299

The results in Table 1 indicate that it performs300

at least as well as learning to predict both p and301

Q, and hence in all other experiments we used302

the QP approximation to compute the decisions.303

To investigate the zero-gradient effect, we304

compared four ways to train the predictor:305

with/without r−smoothing and with/without the306

penalty term from Eq. 6. The model used for307

2Placeholder for the link to the GitHub repository

8

the predictor is a 2-layer neural network, further details on the training process are described in the308

appendix. The results in Figure 3 indicate that r−smoothing significantly improves the performance309

when the true objective is more linear. This result matches the theory from Section 3, as linear true310

objective pushes the decision x̂ towards the boundary of C, and hence it is more likely to enter points311

with a large gradient cone. For the more quadratic objectives, the true maximum is often in the312

interior of C, and hence r−smoothing alone is not sufficient to reach it. In this case, the regularization313

term from Eq 6 becomes crucial, as it is the only method that can push x̂ inside C.314

4.2 Optimal power flow in a DC grid315

Figure 4: Comparison of different
methods on the DC grid OPF prob-
lem. y−axis represents the mean
and standard deviation of the test re-
gret for twelve random seeds.

To further understand the zero-gradient phenomenon, we con-316

sider the optimal power flow problem (OPF) for DC grids [Li317

et al., 2018]. Due to power losses, the constraints in this prob-318

lem are non-linear, thus making it computationally hard. In319

our experiments, we used a linearized version of the problem320

that represents a DC grid without power losses. The deci-321

sion variable is the vector of nodal voltages v ∈ Rn, and the322

unknown parameter w represents either the value gained by323

serving power to a customer or the price paid for utilizing324

a generator. The reference voltage v0 ∈ R, the admittance325

matrix Y, and the constraint bounds represent the physical326

properties of the grid.327

max
v

f(v, w) = −v0w⊤(Y v)

subject to: V ≤ v ≤ V̄

P ≤ −v0Y v ≤ P̄

I ≤ Yij(vi − vj) ≤ Ī

We refer the reader to Li et al. [2018] for further details of the328

problem. Importantly, the feasibility region is defined by multiple linear constraints, and therefore329

we expect it to have numerous vertices with large gradient cones. The objective function f(v, w)330

quantifies the social welfare [Veviurko et al., 2022] generated by all the users of the power grid.331

Importantly, f(v, w) is linear, and hence its maximum lies on the boundary of the feasibility region.332

We compared the same four methods as before on this problem using randomly generated grids333

with four generators and twelve loads. Same as before, we use QP approximation, x∗
QP (ŵ) =334

arg maxx∈C(−∥ŵ − x∥22), to compute the decisions. The results in Figure 4 confirm our hypothesis –335

even though we differentiate through a quadratic problem, the linearity of the true objective causes336

the zero-gradient effect as the decision is pushed towards the boundary of the feasibility region. Then,337

due to a large number of constraints, it is likely to enter a vertex with a large gradient cone and get338

stuck there. In this case, r−smoothing greatly outperforms the standard differential optimization339

method from Agrawal et al. [2019a], while the projection distance regularization does not help a lot.340

5 Conclusion341

In this work, we discover and explain the zero-gradient problem in P&O for convex optimization.342

In particular, we show that the null space of the Jacobian of a convex optimization problem can343

get arbitrarily large, especially in the case with numerous constraints. This phenomenon prevents344

gradient-following algorithms from learning optimal solutions in convex P&O problems.345

To resolve this issue, we introduce a method to compute an approximation of the Jacobian. It346

is done by smoothing the feasibility region around the current solution and thereby reducing the347

dimensionality of the null space to one. We prove that the combination of smoothing with the QP348

approximation results in the gradient update steps that at least do not decrease the task performance,349

but often allow to escape the zero-gradient cones. To enable movement along the remaining one-350

dimensional null space, we add a projection distance regularization term. The suggested method351

leads to significantly better results for the convex P&O problems that suffer from the zero-gradient352

problem the most – those with many constraints and with the true optimum lying on the boundary of353

the feasibility set.354

9

References355

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.356

Differentiable convex optimization layers. Adv. Neural Inf. Process. Syst., 32, 2019a.357

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating358

through a cone program. April 2019b.359

Akshay Agrawal, Shane Barratt, Stephen Boyd, and Bartolomeo Stellato. Learning convex optimiza-360

tion control policies. pages 1–26, 2019c.361

Brandon Amos and J Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.362

34th International Conference on Machine Learning, ICML 2017, 1:179–191, 2017.363

RC Bansal. Optimization methods for electric power systems: An overview. International Journal of364

Emerging Electric Power Systems, 2(1), 2005.365

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean Philippe Vert, and Francis366

Bach. Learning with differentiable perturbed optimizers. Adv. Neural Inf. Process. Syst., 2020-367

Decem:1–24, 2020.368

Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy369

feasibility constraints through differentiable projection for energy optimization. e-Energy 2021 -370

Proceedings of the 2021 12th ACM International Conference on Future Energy Systems, pages371

199–210, 2021.372

Gerard Cornuejols and Reha Tütüncü. Optimization methods in finance, volume 5. Cambridge373

University Press, 2006.374

Priya L Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic375

optimization. Adv. Neural Inf. Process. Syst., 2017-Decem:5485–5495, 2017.376

Adam N Elmachtoub and Paul Grigas. Smart" predict, then optimize". arXiv preprint377

arXiv:1710.08005, 2017.378

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. MIPaaL: Mixed integer program as a379

layer. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pages 1504–1511, 2020.380

Anthony V Fiacco. Sensitivity analysis for nonlinear programming using penalty methods. Mathe-381

matical programming, 10(1):287–311, 1976.382

Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined Convex Programming, pages 155–210.383

Springer US, Boston, MA, 2006. ISBN 978-0-387-30528-8.384

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.385

The Annals of Mathematical Statistics, pages 462–466, 1952.386

Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Berkeley Symposium on Mathe-387

matical Statistics and Probability, 2:481–492, 1951.388

Jia Li, Feng Liu, Zhaojian Wang, Steven H. Low, and Shengwei Mei. Optimal Power Flow in389

Stand-Alone DC Microgrids. IEEE Transactions on Power Systems, 33(5):5496–5506, 2018. ISSN390

08858950. doi: 10.1109/TPWRS.2018.2801280.391

J Mandi, E Demirovic, P J Stuckey, and T Guns. Smart predict-and-optimize for hard combinatorial392

optimization problems. Proc. Conf. AAAI Artif. Intell., 2020.393

Jayanta Mandi and Tias Guns. Interior point solving for LP-based prediction+optimisation. October394

2020.395

Harry M Markowitz and G Peter Todd. Mean-variance analysis in portfolio choice and capital396

markets, volume 66. John Wiley & Sons, 2000.397

Ayan Mukhopadhyay and Yevgeniy Vorobeychik. Prioritized allocation of emergency responders398

based on a continuous-time incident prediction model. In International Conference on Autonomous399

Agents and MultiAgent Systems, 2017.400

10

Chao Ning and Fengqi You. Optimization under uncertainty in the era of big data and deep learning:401

When machine learning meets mathematical programming. Computers & Chemical Engineering,402

125:434–448, 2019.403

QUANDL. Quandl wiki prices, 2020., 2020.404

Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal path planning of mobile robots: A405

review. International journal of physical sciences, 7(9):1314–1320, 2012.406

Ayse Sinem Uysal, Xiaoyue Li, and John M Mulvey. End-to-End risk budgeting portfolio optimization407

with neural networks. July 2021.408

Grigorii Veviurko, Wendelin Böhmer, Laurens Mackay, and Mathijs de Weerdt. Surrogate dc micro-409

grid models for optimization of charging electric vehicles under partial observability. Energies, 15410

(4):1389, 2022.411

Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of412

blackbox combinatorial solvers. pages 1–19, 2019.413

Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Automatically learning compact414

quality-aware surrogates for optimization problems. June 2020.415

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the Data-Decisions pipeline: Decision-416

Focused learning for combinatorial optimization. AAAI, 33(01):1658–1665, July 2019.417

11

	Introduction
	Predict and optimize
	Related work
	Problem formulation

	Differentiable optimization
	The zero-gradient theorem
	Quadratic programming approximation
	Local smoothing
	The training process

	Experiments
	Portfolio optimization
	Optimal power flow in a DC grid

	Conclusion

