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Abstract

Recent work has shown that scene text recognition (STR) models are vulnerable
to adversarial examples. Different from non-sequential vision tasks, the output
sequence of STR models contains rich information. However, existing adversarial
attacks against STR models can only lead to a few incorrect characters in the pre-
dicted text. These attack results still carry partial information about the original pre-
diction and could be easily corrected by an external dictionary or a language model.
Therefore, we propose the Multi-Population Coevolution Search (MPCS) method
to attack each character in the image. We first decompose the global optimization
objective into sub-objectives to solve the attack pixel concentration problem exist-
ing in previous attack methods. While this distributed optimization paradigm brings
a new joint perturbation shift problem, we propose a novel coevolution energy
function to solve it. Experiments on recent STR models show the superiority of our
method. The code is available at https://github.com/Lee-Jingyu/MPCS.

1 Introduction

Scene text recognition (STR) [29, 20, 30] has garnered increasing attention in the field of computer
vision due to its wide applications, such as augmented reality [27], visual question answering [31],
automatic driving [8], etc. Despite its great success, recent studies [32, 36, 37] have shown that
STR models are vulnerable to adversarial examples, which deceive the models into making incorrect
predictions by adding imperceptible perturbations on the input images. In practice, adversarial
examples can be used to prevent private text [4, 37] in images from being recognized and exploited
by malicious optical character recognition (OCR) systems. Therefore, adversarial attacks against
STR models have become a valuable research topic.

Existing adversarial attacks in the computer vision field mainly focus on non-sequential tasks
[9, 23, 33], such as image classification, object detection, face recognition, etc. The output of these
models is usually a single label and contains limited information. In this scenario, once the model
outputs a different label, the information conveyed by the output is completely altered. In contrast, the
prediction of STR models can be seen as a series of character labels, which contain rich information.
When attacking STR models, the altered prediction may retain partial information about the original
prediction. With the retained information, the opponent could correct the mispredicted text through
an extra dictionary [22, 30, 13] or large language models (LLMs) [34, 21, 15], as shown in Figure 1.

However, existing adversarial attacks against STR models consider merely altering the model predic-
tion as a successful attack. For example, some works focus on attacking the text image with a clean
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Figure 1: Adversarial attack results with a single incorrect character could be corrected through
a language model or a dictionary. The attack results become more irreversible as the number of
perturbed characters increases.

background [4, 11]. These methods may change the background or fail to attack due to complex
backgrounds when dealing with scene text images. Differently, RoLMA [38] attacks license plate
images, whose backgrounds are more complicated, by adding some light spots on the background.
These light spots will also destroy the visual continuity of the background when dealing with scene
text images. Compared to license plate images, scene text images are harder to attack due to their
more complex backgrounds and diverse text styles. Xu et al. [36] develop an efficient optimization-
based white-box attack method to fool STR models. Furthermore, in the black-box setting, AD2E
[37] narrows the search space in the differential evolution algorithm to attack STR models. These
methods overlook the fact that the attack results still contain rich information about the correct text.

In this work, we propose a black-box pixel-level attack method aiming at attacking all characters
in the scene text image. We first discuss the reason for previous pixel-level attacks failing to attack
more characters, i.e., the attack pixel spatial concentration problem in their global optimization.
Then we decompose the global optimization objective into several sub-objectives and introduce
spatial constraints to avoid the attack pixel concentration. However, optimizing sub-objectives may
undermine the global feasibility, manifested as the joint perturbation shift problem. Therefore,
we propose the Multi-Population Coevolution Search (MPCS) method, which utilizes multiple
evolutionary adversarial pixel populations in different image subspaces to individually search for
each attack pixel in parallel. To solve the joint perturbation shift problem, MPCS introduces a
coevolution energy function that implicitly embeds the global constraint into the local objective
function. Experimental results on recent STR models demonstrate that MPCS produces substantially
more incorrect predicted characters than state-of-the-art attack methods.

2 Related works

2.1 Attacks on common vision models

Existing adversarial attack methods mainly focus on non-sequential vision tasks, such as image
classification, object detection, and facial recognition. These adversarial attack methods can be
roughly categorized into white-box attacks and black-box attacks. White-box attacks use the whole
information of the victim model, including model structure, parameters, and gradients. Fast gradient
sign method (FGSM) [9] is proposed to generate adversarial perturbation according to the sign of the
gradient. Deepfool [23] proposes to find the nearest classification hyperplane of the victim model to
generate adversarial examples. GAT [12] composes multiple attack methods and utilizes a doubly
stochastic matrix to optimize the attack order.

Differently, black-box attacks can only obtain the output of the victim model. OnePixel [33] employs
the Differential Evolution (DE) algorithm to find a few adversarial pixels to attack image classification
models. Transfer-based attacks [25, 1] utilize adversarial examples generated from attacking a source
model to fool the target victim model. PRGF [5] introduces two prior-guided random gradient-free
algorithms aimed at enhancing the efficiency of black-box adversarial attacks, which leverage a
transfer-based prior provided by the gradient of a surrogate model. Furthermore, to enhance the
transferability of adversarial perturbations, LLTA [7] generates generalized adversarial perturbations
through data and model augmentation, and optimizes the final perturbation update through meta-
learning.
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These methods aim at attacking models that output non-sequential results, such as categories, posi-
tions, and scores. However, text recognition models predict text sequences, which usually contain
more information for attackers to manipulate. We need to alter more predicted characters to ensure
irreversible attack results.

2.2 Attacks on text recognition models

Text recognition models output text sequences containing more information than non-sequential
outputs, which makes adversarial attacks aimed at them more challenging. [32] introduces an
adversarial attack method targeting OCR systems, which involves making minor modifications to
printed text images to deceive the OCR system into recognizing words with meanings opposite to
the original text. [35] explores the effectiveness of the transfer-based attack algorithm in attacking
real-world OCR systems. Another approach [4] involves manipulating the background of text images
by replacing clean image backgrounds with random textures to disrupt the recognition by OCR
systems. RoLMA [38] proposes a targeted attack method to fool license plate recognition models by
adding some crafted light spots to images. Furthermore, Xu et al. [36] propose an optimization-based
method to update the perturbation iteratively, attacking both CTC-based (connectionist temporal
classification) and attention-based scene text recognition models. Based on the DE algorithm, AD2E
[37] proposes to narrow down the continuous searching space to a discrete space, which can speed up
the searching process. It generates adversarial examples by fixing a few pixels’ values to 0 or 255 in
the image.

These methods focus on changing the model output, which means attackers only need to change one
character in the model predictions. However, a text with a few incorrect characters is easy to restore
via the correction of an external dictionary or LLMs [34, 21, 15]. Therefore, in this work, we aim to
attack all characters in images to make text recognition models predict more incorrect characters.

3 Preliminary

3.1 Problem formulation

Given a scene text image X ∈ Rh×w×3 (h and w are the height and width of the image), and its
ground truth label Y = [y1, y2, ..., yn] (n means the character number), the existing paradigm of
crafting an adversarial example Xadv = X + δ is to add a small perturbation δ to X to change the
output of the victim model F , such that,

F(X) ̸= F(X + δ), s.t. ∥δ∥p ≤ ϵ, (1)

where ϵ represents the maximum perturbation.

However, when attacking scene text recognition models, merely altering the output is not enough.
We need to mislead the victim model to predict as many erroneous characters as possible, rendering
the attack results more irreversible. So we formulate a new objective as follows,

δ∗ = argmax
δ

D (F(X),F(X + δ)) , s.t. ∥δ∥p ≤ ϵ, (2)

where δ∗ is the best adversarial perturbation. D(·, ·) is the edit distance [19] between the two
predicted texts, which is measured by counting the minimum number of character operations required
to transform one string into the other.

In the black-box attack settings, the structure, parameters, and gradients of the victim model are
not accessible. The attacker can query the victim model to get the model output, which could be
either a probability distribution or a character sequence with confidence scores. In practice, most
OCR systems provide only the latter, which contains less information for attackers. Considering
practicality, we choose the latter attack scenario.

3.2 Objective decomposition

In pixel-level attacks, the final perturbation δ consists of a series of pixel perturbations δi, i.e.,
δ =

∑
δi. And each pixel perturbation δi can be represented by a single attack pixel pi = (xi, yi, vi),

where xi and yi are the coordinates, and vi is the pixel value. Former methods [33, 37] optimize δ in
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Figure 2: Illustration of the joint perturbation shift. (a) and (b) demonstrate two cases when combining
two successful perturbations into one to attack text recognition models. Characters with underlines
are incorrectly predicted.

the whole image space. This optimization paradigm is prone to fall into the local optimal solution
where attack pixels are concentrated in the local space of the image. In this case, some characters
will have no nearby attack pixel and then be correctly recognized.

To solve this problem, we decompose the optimization objective δ∗ into multiple sub-objectives δ∗i ,
turning it to be a distributed optimization problem. Then we limit the perturbation location to a
specific region in each sub-optimization problem. Specifically, we divide the image into multiple
non-overlapping subspaces {Ri}N and find a local optimal attack pixel pi in each subspace Ri. In
this way, a proper division of {Ri}N could ensure that the attack pixels are not spatially concentrated.

3.3 The joint perturbation shift problem

In this distributed optimization problem, local optimization may undermine global feasibility. Even
if each local optimized perturbation δ∗i can successfully attack the target model F , the global
perturbation δ∗ =

∑
δ∗i has a certain probability of failing to attack, i.e.,

P

(
F(X) = F(X + δ∗)|

N∧
i=1

F(X) ̸= F(X + δ∗i )

)
> 0. (3)

We term this phenomenon the joint perturbation shift problem, and give a simple illustration of
it in Figure 2. Let M and M′

be the manifold area [1] where data samples can be correctly and
incorrectly recognized by the target model, respectively. X is the original data sample with label
“secure". Although Xadv

1 = X + δ1 and Xadv
2 = X + δ2 are two successful adversarial samples

located in M, the joint perturbation δ = δ1 + δ2 may shift the adversarial sample Xadv = X + δ to
M′

and lead to a failed attack.

4 Multi-population coevolution search

Following the distributed optimization paradigm, we propose the Multi-Population Coevolution
Search (MPCS) method, which divides the image horizontally into N equal regions {Ri}N and
utilizes evolutionary populations to search in each region. Meanwhile, a coevolution energy function
is introduced to address the joint perturbation shift problem. Next, we will elaborate on the MPCS
algorithm.

Initialization. We first randomly initialize an adversarial pixel population Pi in each region Ri. Each
population Pi contains M adversarial pixels {pji}M , whose coordinates are randomly initialized and
values are fixed to θ, which can be formulated as follows,

Pi = {pji = (xj
i , y

j
i , v

j
i )|(x

j
i , y

j
i ) ∈ Ri, v

j
i = θ}M , (4)

where xj
i and yji are the pixel coordinates, vji is the pixel rgb value. Moreover, based on the finding

from [37] that the adversarial pixel values of θmax = (255, 255, 255) and θmin = (0, 0, 0) have a
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higher possibility to successfully attack than other values, we set θ as follows,

θ =

{
θmax, G(vji ) ≤ µ,

θmin, G(vji ) > µ,
(5)

where G(vji ) denotes the gray value of vji , and µ is set to 127 (the median of the set of pixel values).
After that, we calculate the prior energy Ep of each adversarial pixel in populations as,

Ep(pji ) = Dist(Y,F(X +∆(pji ))), (6)

where ∆(·) is the perturbation generated by replacing the original pixel with the adversarial pixel, and
Dist(Y, ·) denotes the distance between the predicted label and the ground truth label Y (detailed in
Appendix D). Here, Ep is equal to the local objective function.

Coevolution. We let the N populations coevolve in the direction of higher energy following the
differential evolution (DE) algorithm [3, 37]. Briefly, each adversarial pixel p in a population has a
probability of mutating into a new adversarial pixel p

′
. Among p and p

′
, the one with higher energy

will be retained for the next generation.

However, as the existence of the joint perturbation shift problem, the prior energy function Ep cannot
filter the best adversarial pixel. Therefore, we propose a novel coevolution energy function Ec, which
implicitly embeds the global constraint into the local objective function,

Ec(pji ) = Dist(Y,F(X +∆({pji} ∪ {p∗k}N−1)), s.t. 1 ≤ k ≤ N, k ̸= i, (7)
where {p∗k}N−1 is the set of adversarial pixels with the highest energy in the other N − 1 populations.
Note that in the first generation, we select {p∗k}N−1 according to their prior energy Ep. After the
first generation, we replace Ep with Ec to calculate the energy of adversarial pixels. In this case, the
evolution of one population will influence the other populations, which is similar to the coevolution
phenomenon in nature.

Early stop. We propose an early stop mechanism, which terminates the evolution of the populations
whose maximum energy has not increased compared to the previous generation. When the maximum
number of generations gmax is reached or when all populations have ceased evolution, we obtain the
best adversarial pixels {p∗i }N from each population.

Post process. If {p∗i }N can successfully attack the victim model, we take them as the final attack
pixels {padvi }N ; otherwise, we will employ a pixel set population Pv to search for better pixel values
following DE algorithm,

Pv = {Qt}L, Qt = {pti|(xt
i, y

t
i) = (x∗

i , y
∗
i )}N , (8)

where L is the population size of Pv , Qt is the t-th adversarial pixel set whose pixel coordinates are
frozen to be the same as {p∗i }N and values are randomly initialized. The energy function of Pv is
calculated as,

Ev(Qt) = Dist(F(X),F(X +∆(Qt))). (9)

At the max generation g
′

max of Pv, we obtain the best adversarial pixel set Qbest as the final attack
pixels {padvi }N . With the final attack pixels, the adversarial example is generated as follows,

Xadv = X +∆({padvi }N ). (10)

5 Analysis

We make a theoretical analysis of the superiority of our proposed coevolutionary energy function Ec

over the prior energy function Ep. For a certain pixel pji in population Pi, we define:

A := I{F(X) ̸= F(X +∆(pji ))}, Ep(pji ) ∝ P (A = 1), (11)

where I is the indicator function whose value is 0 or 1, and the estimator Ep(pji ) approximately
reflects the relative strength of the probability of A = 1. Similarly, we define:

B := I{F(X) ̸= F(X +∆({pji} ∪ {p∗k}N−1)}, Ec(pji ) ∝ P (B = 1), (12)
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where k ̸= i and {p∗k}N−1 denotes the local optimal pixels in the other N − 1 populations.

Our final goal is to increase the expectation of Z, which is defined as,

Z := I{F(X) ̸= F(X +∆({p∗k}N )}, (13)

where {p∗k}N denotes the local optimal pixels in all N populations.

Next, according to the joint perturbation shift problem illustrated in Sec 3.3, we have:

P (Z = 1|A = 1) < 1, P (Z = 0|A = 1) > 0, (14)

which means the conditional distribution P (Z|A = 1) is not a deterministic distribution. Therefore,
the conditional entropy of Z given A = 1 is strictly positive, i.e.,

H(Z|A = 1) = −
∑

z∈{0,1}

P (Z = z|A = 1)logP (Z = z|A = 1) > 0. (15)

On the other side, Ec(pji ) ≤ Ec(p∗i ) holds for all pixels in population Pi. It means that if a successful
attack can be achieved by the joint perturbation ∆({pji} ∪ {p∗k}N−1), then the joint perturbation of
all the local optimal pixels ∆({p∗k}N ) must also yield a successful attack. Therefore:

P (Z = 1|B = 1) = 1, P (Z = 0|B = 1) = 0. (16)

Similarly, we have H(Z|B = 1) = 0 < H(Z|A = 1), which reveals that when B = 1 (joint
perturbation succeeds), the prediction of the global attack result Z is completely deterministic, unlike
when A = 1 (local perturbation succeeds). It means that the prior energy function Ep has a certain
degree of information loss when estimating the attack performance of pixel pji , while the coevolution
energy function Ec fills the loss.

6 Experiments

6.1 Experiment settings

Datasets and models. We validate the effectiveness of our proposed attack method on four frequently-
used datasets, including ICDAR13 [17] (horizontal regular scene text, 1015 images), SVTP [26]
(perspective distorted text, 645 images), CUTE80 [28] (curved scene text, 288 images), and IC-
DAR15 [16] (irregular scene text, 2077 images). We fool three mainstream paradigms of scene text
recognition, including the CTC-based paradigm (CRNN [29]), the attention-based paradigm (ASTER
[30] and SAR [20]), and the multi-modal paradigm (IGTR [6]). All the models are from MMOCR
[18] or OpenOCR [24]. If not specified, the experiments are conducted on the CRNN model and the
CUTE80 dataset for convenience.

Metrics. We employ four metrics including the attack success rate before/after text correction
(SR/SR*), the perturbation rate (PR), and the (L2) distance between the adversarial image and the
original image. Specifically, we employ GPT-4o mini [14] to correct the mispredicted text results and
then calculate the SR* metric. The PR metric measures the proportion of the mispredicted characters,

PR =

S∑
i=1

D(Yi,F(Xadv
i ))

len(Yi)
, (17)

where S represents the total number of successful adversarial examples, len(·) denotes the length of
the text, and D(·, ·) is the edit distance between the two predicted texts. The L2 metric measures the
image perturbation degree.

Text correction. Many STR methods use an extra dictionary to correct their prediction [22, 30, 13].
Language models can do the same job, and they are more flexible. So we choose to employ GPT-4o
mini [14] for text correction and then calculate the SR* metric. Further details are in Appendix C.

6.2 Comparison with pixel-level attacks

We replicate two state-of-the-art black-box pixel-level attack methods, AD2E [37] and OnePixel
[33], which are also DE-based methods, and compare their attack performance with ours, as shown
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Table 1: Comparison with other pixel-level attack methods. SR* is the attack success rate after
correction by GPT-4o mini [14]. PR denotes the character perturbation rate.

Model Method CUTE80 IC13 SVTP

SR. ↑ SR*. ↑ PR. ↑ L2. ↓ SR. ↑ SR*. ↑ PR. ↑ L2. ↓ SR. ↑ SR*. ↑ PR. ↑ L2. ↓

CRNN
OnePixel 95.60 60.09 52.26 4.25 95.31 43.78 49.82 3.98 96.76 58.06 42.99 3.93
AD2E 95.60 49.73 29.75 4.20 96.31 36.24 29.77 3.97 96.99 42.61 23.50 3.91
MPCS 87.36 86.75 94.54 4.30 85.47 70.12 90.19 4.02 85.65 77.67 80.07 4.04

ASTER
OnePixel 57.98 20.59 39.18 4.23 41.86 14.05 39.63 3.95 68.17 28.93 33.41 3.89
AD2E 57.14 16.93 28.67 4.22 47.66 13.48 32.94 3.96 67.45 22.35 22.06 3.92
MPCS 51.26 27.77 74.93 4.32 43.31 21.60 83.05 3.98 57.17 42.14 51.79 3.95

SAR
OnePixel 65.98 19.26 43.40 4.20 42.52 16.16 41.40 3.91 58.45 18.89 28.67 3.87
AD2E 70.08 25.00 30.68 4.18 42.52 14.10 28.51 3.88 57.67 17.30 21.56 3.87
MPCS 58.61 33.76 66.02 4.19 34.22 15.77 55.31 3.82 48.35 25.96 45.01 3.83

IGTR
OnePixel 41.38 24.29 61.55 4.35 24.27 17.19 55.66 4.02 41.41 24.04 54.22 4.03
AD2E 42.24 25.00 36.04 4.31 23.95 14.95 33.14 3.97 42.29 18.94 30.28 4.02
MPCS 61.21 49.14 89.86 4.44 39.67 32.05 82.86 4.16 54.87 37.95 79.29 4.22

in Table 1. In specific, we set the number of attack pixels to 10 (the same as ours) when reproducing
these methods. As shown in Table 1, our method achieves the highest perturbation rate (PR) on four
mainstream STR models and three widely used datasets. For example, when attacking the SOTA
STR model IGTR [6], our method achieves 89.86%, 82.86%, and 79.29% PRs on the CUTE80, IC13,
and SVTP datasets respectively, surpassing the second-best method by 28.31%, 27.21%, and 25.07%.

Furthermore, when attacking the CRNN, ASTER, and SAR models on the CUTE80 dataset, our
method achieves 26.66%, 7.18%, and 14.5% higher SR* metrics than the second-best method,
although our SR metrics is slightly lower due to the joint perturbation shift. It demonstrates that our
attack method is much more irreversible and that the PR metric can effectively evaluate the attack’s
irreversibility.

Table 2: Comparison with other attack paradigms. Sparse-rs [2] is a black-box attack method targeting
image classification models. UDUP [4] is a transfer-based attack method targeting OCR systems. Xu
et al. [36] propose a white-box attack method targeting STR models.

Model Method CUTE80 IC13 SVTP

SR. ↑ PR. ↑ L2. ↓ SR. ↑ PR. ↑ L2. ↓ SR. ↑ PR. ↑ L2. ↓

CRNN

Sparse-rs 63.73 40.23 11.22 56.77 38.10 11.44 76.11 52.70 9.80
UDUP 2.76 82.86 0.63 0.23 13.33 0.14 0 0 0.19

Xu et al. 33.51 30.35 2.88 30.95 41.20 3.06 49.65 21.47 2.85
MPCS 87.36 94.54 4.30 85.47 90.19 4.02 85.65 80.07 4.04

ASTER

Sparse-rs 12.55 7.65 11.41 9.50 6.84 11.46 22.18 11.27 9.88
UDUP 0.97 30.00 1.20 0.12 16.67 0.15 0 0 0.20

Xu et al. 36.26 35.38 2.85 32.84 38.70 3.04 56.29 23.04 2.82
MPCS 51.26 74.93 4.32 43.31 83.05 3.98 57.17 51.79 3.95

SAR
Sparse-rs 19.23 11.65 11.43 12.47 9.54 11.45 24.77 12.03 9.76
UDUP 3.70 107.45 1.78 0 0 0.20 0.18 16.67 0.17
MPCS 58.61 66.02 4.19 34.22 55.31 3.82 48.35 45.01 3.83

6.3 Comparison with other attack paradigms

To demonstrate the superiority of our proposed method in attacking STR models, we compare our
method with several other attack paradigms, as shown in Table 2. Xu et al. [36] propose a white-
box attack method that updates the perturbation iteratively by optimization. When reproducing its
code, we set the upper limit of the L2 metric to 10 to prevent image distortion caused by excessive
perturbation, while our L2 metrics are less than 5. On the CRNN model and CUTE80 dataset, the
SR and PR of this method are 53.85% and 64.19% lower than ours. This is because this method can
hardly find successful perturbations under low perturbation limitations.
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Table 3: Ablation study of our method. MP means the multi-population mechanism, CEF denotes
the coevolution energy function, MG represents that the population will evolve to the maximum
generation (i.e., it will not stop when the attack is successful), and ES is the early stop mechanism.

Method MP CEF MG ES SR. ↑ SR*. ↑ PR. ↑ L2. ↓
Baseline 95.6 55.58 29.75 4.20

MPCS

✓ 76.37 52.95 52.37 4.32
✓ ✓ 88.46 75.42 71.43 4.30
✓ ✓ ✓ 90.66 87.20 99.72 4.29
✓ ✓ ✓ ✓ 87.36 86.75 94.54 4.30

Besides, we compare our method with UDUP [4], a transfer-based attack method that fools OCR
models by generating adaptive underpainting. As shown in Table 2, this method has extremely
low SR when attacking STR models, up to 84.6% lower than ours. This is because UDUP cannot
successfully add underpainting to scene text images with complicated backgrounds. Furthermore,
we adopt Sparse-rs [2], a black-box attack method designed for image classification models, for
attacking text recognition models by modifying its victim models and loss function. Our method
outperforms Sparse-rs with +23.63% SR, +54.31% PR, and -6.92 L2 on CUTE80 and CRNN. These
results demonstrate that attack methods tailored for image classification models are not suitable for
attacking text recognition models.

6.4 Ablation study

In this section, we conduct comprehensive ablation experiments on the four main components of
our proposed method. We reproduce AD2E [37] under our experiment settings and use it as our
baseline. As shown in Table 3, after replacing the single population in the baseline with our proposed
multi-population (MP), the PR increases by 22.62% while the SR decreases by 19.23% (due to the
joint perturbation shift problem). As shown in Figure 3, with the spatial constraints imposed by
MP, adversarial pixels within each population gradually converge to small regions that are evenly
distributed across the entire image during the evolution process. Next, we employ the coevolution
energy function (CEF) to get SR and PR increased by 12.09% and 19.06%, demonstrating its
effectiveness.

Furthermore, in order to achieve a better performance, we force all the populations to evolve until the
maximum generation (MG) rather than stopping evolution when the attack is successful. The fourth
row shows that this solution gains an improvement of 2.2% and 28.29% on SR and PR, respectively.
Meanwhile, we propose the early stop (ES) mechanism to balance the extra time consumption caused
by MG. According to the last row in Table 3, it has a small impact on the attack performance. And
the average total number of evolutionary generations with ES is less than that without ES, as shown
in Figure 4.

Figure 3: Population evolution visualization.
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Table 4: Influence of the population number N and the population size M . We set up 6 experiments
on two datasets while keeping the sum of all population sizes constant.

N , M CUTE80 IC13

SR.↑ PR. ↑ L2. ↓ SR.↑ PR. ↑ L2. ↓
(4, 150) 75.27 61.84 2.75 69.60 56.19 2.59
(5, 120) 77.47 70.23 3.09 73.19 60.75 2.90
(6, 100) 84.61 71.83 3.37 74.41 63.93 3.17
(10, 60) 87.35 94.54 4.30 80.11 87.23 4.02
(20, 30) 91.20 124.52 6.03 88.27 133.77 5.72

6.5 Influence of hyper-parameters

Firstly, we investigate the influence of the population number N and the population size M of Pi, as
shown in Table 4. We keep the sum of all population sizes constant, i.e., N ×M = 600, and adjust
the combination of N and M . As N increases to 20 on CUTE80, the SR, PR, and L2 rise to 91.20%,
124.52%, and 6.03, respectively. We adopt N = 10, which also has a promising attack performance
with smaller perturbation.

6.6 Correction by the dataset dictionary

We also conduct experiments on a more traditional text correction method, i.e., through an extra
dictionary. We use the test set vocabulary of the IC15 dataset as the dictionary to correct the results of
successful attacks through it. As shown in Table 5, among the attack results on the three STR models,
our method exhibits much higher SR and PR compared to both OnePixel [33] and AD2E [37]. These
results demonstrate that our method still has better attack irreversibility under this setting.

6.7 Effect range of adversarial pixels

We conduct experiments to investigate the effect range of adversarial pixels. In specific, we restrict
the location of adversarial pixels to ensure that some characters do not have adversarial pixels around
them. As shown in Table 6, when the adversarial pixels are restricted to the left half and right half of
the image, the PR metric decreases by 20.42% and 13.68%, respectively. These results demonstrate
that the adversarial pixel has a higher possibility of affecting nearby characters rather than farther
characters.

Table 5: The attack results on the IC15 dataset. SR*
is the attack success rate after correction by the dataset
dictionary.

Method CRNN ASTER SAR

SR*. ↑ PR. ↑ SR*. ↑ PR. ↑ SR*. ↑ PR. ↑
OnePixel 42.15 77.93 19.19 62.18 21.10 65.20
AD2E 29.63 50.31 18.32 51.17 17.23 50.24
MPCS 71.19 94.48 35.53 78.27 27.84 73.87

Table 6: The attack performance on the
CUTE80 dataset when the perturbation
area is limited to the left and right half
of the image, respectively.
Perturbation Area SR. ↑ PR. ↑ L2. ↓

Left 32.97 74.12 3.38
Right 39.01 80.68 3.65
All 87.36 94.54 4.30

7 Discussion and limitations

In this work, we propose a pixel-level black-box attack method targeting at altering each character in
STR models’ prediction, termed as MPCS. By modifying only a few pixels in the image, MPCS can
mislead STR models to predict more incorrect characters than previous methods, while maintaining
the whole visual semantic information. We believe MPCS offers valuable applications while requiring
careful consideration of its societal implications. On the positive side, the generated adversarial
examples can strengthen STR models through adversarial training, improving their robustness against
real-world perturbations. Additionally, MPCS enables effective privacy protection by preventing

9



unauthorized OCR extraction of sensitive text with minimal visual distortion. For example, when
users upload images to social platforms, we could add tiny perturbation pixels to the images so that
the private texts may not be correctly recognized and collected by malicious OCR systems. Besides,
the potential misuse of such adversarial attacks raises important concerns. Malicious actors could
exploit MPCS to bypass security systems, manipulate automated text recognition, or evade content
moderation, highlighting the need for responsible research practices and countermeasures.

Meanwhile, although MPCS does not affect the viewing of text images by human eyes, the pixels it
disturbs are still quite different from the original pixels. In future work, we will investigate finding a
better pixel value optimization method to minimize the deviation between adversarial and original
pixel values, thus enhancing the attack imperceptibility.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction in Sec. 1 clearly state the main claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Sec. 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly describe the key steps in our method in Sec. 4. The experiment
settings are also detailed in Sec. 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code as the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec. 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars, as our method has a very significant improvement,
as shown in Table 1. Also, the number of experiments is too large, and the cost is too high.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully checked the Ethics Guidelines to make sure our research is
with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in Sec 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation is provided in the code repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is employed to correct the attack results. The details could be found in
Sec 6 and Appendix C.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Implementation details

In our experiments, we set the population number N and the population size M to 10 and 60,
respectively. For population Pv , we set the population size L to 600. The max generation gmax and
g

′

max are set to be 10 and 1 for a low query budget. The height h and width w of the input image are
32 and 100, respectively. The experiments are conducted on a workstation with a single GeForce
RTX 3090 GPU, a 2.90 GHz Intel(R) Xeon(R) Gold 6226R CPU, and 64G RAM, based on Pytorch
v2.0.1.

B Visualization

We visualize our adversarial examples and their corresponding attack results, and compare them
with other attacks, as shown in 5. Furthermore, we visualize the generated adversarial examples
against the CRNN model under different settings in Table 4, as shown in Figure 6. Typically, the
attack performance becomes better with the increasing N . Besides, we notice that only a few pixels
are needed to attack a single character, as shown in the second and third rows. Therefore, we can
dynamically adjust the attack pixel number according to specific images to weaken the perturbation
in practice.

Figure 5: Visualization of the adversarial examples and their attack results. Characters with underlines
are incorrectly predicted. Compared to other methods, our approach exhibits extraordinary attack
performance. Zoom in to get a better view.

C Text correction by LLM

We employ GPT-4o mini [14] to correct the mispredicted text results and calculate the SR* metric.
The prompt is formed as follows:

“Correct the spelling of the following words:

slacrest =>
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Image

Label “callb” “labls”“callb” “fabties”“aalld”

Image

Label “a444” “maaf”“hally” “alail”“nidely”

𝑵

Image

Label “cess” “cess”“cod” “geswi”“cod”

Image

Label

6

“rubblack” “fuistrer”“plislnek” “foishaotes”“rubbbick”

Origin

“club”

“14”

“6”

“publick”

Figure 6: Visualization of our adversarial examples against the CRNN model under different attack
settings. N is the population number, which is equal to the attack pixel number. The sum of
population sizes is 600 in all experiments.

peach =>

staron =>

......"

The output of the model may be like:

“Here’s the corrected list of words:

slacrest => Seacrest

peach => peach (unchanged)

staron => station

......"

After we get the model output, we first remove the annotations like “(unchanged)" to avoid their influ-
ence. Then we convert all words to lowercase and compare the predicted words with corresponding
labels in lowercase. If the predicted word is different from its label, we treat it as a failed attack;
otherwise, it is a successful attack.

D The calculation of distance

We employ CTC Loss [10] to calculate the distance Dist(Y,F(Xadv)). Y = [y1, y2, ..., yn] (n
means the gt character number) is the ground truth label, and F(Xadv) denotes the model output.
Since we employ the black-box attack setting where the model output F(Xadv) includes a character
sequence [ŷ1, ŷ2, ..., ŷm] (m means the predicted character number) and a confidence score sequence
[ŝ1, ŝ2, ..., ŝm] (s ∈ [0, 1]), we need to preprocess it to facilitate the CTC loss calculation.

Firstly, we define the character dictionary Dict. Next, we generate a m× (l + 1) matrix T as,

T [a, b] =


ŝa, Dict(ŷa) = b,

1

l + 1
, Dict(ŷa) ̸= b,

(18)

where Dict(ŷa) represents the index of character ŷa in the dictionary. Then we apply the log-softmax
function along the second dimension of tensor T to obtain the matrix T ∗ of logarithmic probabilities.
After that, we can calculate the CTC loss between T ∗ and Y .
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Figure 7: The average shortest distance between adversarial pixels on the CRNN model.

Figure 8: Visualized comparison on the CRNN, ASTER, and SAR models. The underlined characters
are incorrectly predicted. The red rectangles in images outline the characters with no nearby
adversarial pixel. Zoom in to get a better view.
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Figure 9: The relation between the correction success rate (CSR) by GPT-4o mini and the perturbation
rate (PR) of texts.

E Attack pixel spatial concentration problem

In this section, we demonstrate the attack pixel spatial concentration problem that exists in previous
pixel-level attack methods [33, 37]. Firstly, we give a quantitative analysis by calculating the average
shortest distance between adversarial pixels. Given N adversarial pixels [p1, p2, ..., pN ], we calculate
the distance between each adversarial pixel and its nearest adversarial pixel to get [d1, d2, ..., dN ],
and then calculate the average value of d. As shown in Figure 7, our method has greater average
distances on four datasets than previous methods. This is because our proposed multi-population
mechanism restricts the adversarial pixel location in the horizontal direction.

Furthermore, we give a qualitative comparison by visualizing the attack results of OnePixel [33]
and AD2E [37] with ours on the CRNN [29], ASTER [30], and SAR [20] models, respectively. The
attack pixel number is 10. As shown in Figure 8, both OnePixel and AD2E have the adversarial
pixel local aggregation problem when attacking the three STR models. The attack pixels concentrate
within localized regions of the image, resulting in some characters having no attack pixels nearby.
Consequently, these characters can be correctly recognized by the model. Meanwhile, they can only
alter one or two predicted characters in most cases. Differently, our method effectively solves the
adversarial pixel local aggregation problem through the multi-population mechanism. The attack
pixels we generated are evenly distributed across the entire image along the horizontal direction,
ensuring that each character in the image has at least one nearby attack pixel.

F The perturbation rate metric

To evaluate whether PR metrics can accurately reflect the irreversibility of attacks, we visualize the
relationship between the correction success rate (CSR) by GPT-4o mini and the perturbation rate (PR)
of texts. As shown in Figure 9, on the CUTE80 [28], IC13 [17] and SVTP [26] datasets, the overall
correction success rate decreases as the perturbation increases. It demonstrates the effectiveness of
the perturbation rate.

G Transfer attack on commercial OCR system

We implement transfer attacks on BaiduOCR (https://cloud.baidu.com/doc/OCR/index.
html) using adversarial examples that can successfully attack SAR. As shown in Figure 10, the
transfer attack achieves 53.44%, 63.51%, and 62.65% LPR on IC13, IC15, and SVTP datasets,
respectively. Some qualitative results are also shown in Figure 10. These results demonstrate that our
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Pred for → a premier → b kyro → u
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Pred 30 → e soymilk → 50 beads → beal

Dataset

Figure 10: The result of conducting a transfer attack on BaiduOCR using adversarial samples obtained
by attacking the SAR model.

𝑋:

𝑋𝑎𝑑𝑣:

𝑌: "𝑠𝑒𝑎𝑐𝑟𝑒𝑠𝑡"

𝐹(𝑋𝑎𝑑𝑣): "𝑠𝑙𝑎𝑔𝑟𝑒𝑠𝑒"

Figure 11: Metric computation example.

method has good transferability and is still capable of misleading the model to predict a significant
number of incorrect characters during the transfer attack.

H Metric computation example

We provide a real metric computation example in this section. As shown in Figure 11, the original
image X has a predicted label Y = "seacreast", and the adversarial example image Xadv is recog-
nized by the STR model F as F(Xadv) = "slagrese". Then, the edit distance between their predicted
labels is D(Y,F(Xadv)) = 3, and the length of the ground truth is len(Y ) = 9. Therefore, the
perturbation rate (PR) of this adversarial example is PR = D(Y,F(Xadv))

len(Y ) = 33.33%. Besides, the
L2 metric evaluates the average L2 distance between the original image and the adversarial example
image: L2 = 1

S

∑S
i=1 ||Xi −Xadv

i ||2. In this example, the L2 distance is 3.62. As for the success
rate before/after correction (SR/SR*), for example, if the number of samples is 1000, and 800 of
them are successfully attacked, then the SR is 80%. Next, we use an LLM to correct the mispredicted
texts. If 200 of them cannot be corrected, then the SR* is 20%.

I Evaluation on non-Latin scripts

To further examine the generality of our proposed method beyond Latin scripts, we additionally
conducted experiments on a Chinese text recognition benchmark. Our main experiments rely on
STR models provided by MMOCR and OpenOCR, both of which are trained on large-scale English
datasets. Consequently, our primary evaluation focuses on four widely used English benchmarks.

However, as our method does not depend on any script-specific assumptions, we expect it to generalize
to non-Latin scripts as well. To validate this, we performed a comparative study on the dataset
introduced in “Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical
Study.” Specifically, we randomly sampled 200 images from this benchmark and applied both our
attack and the baseline method to the IGTR model, which was trained on Chinese datasets by
OpenOCR. Our method achieved a success rate (SR) of 51.85% and a perturbation rate (PR) of
34.44%, outperforming the baseline (SR: 38.89%, PR: 21.12%). These results demonstrate that our
approach maintains strong effectiveness on non-Latin scripts, further confirming its generalizability
across different languages and writing systems.
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