
Proceedings of Machine Learning Research TBD:1–32, 2025 4th Conference on Causal Learning and Reasoning

Causal Bandits without Graph Learning

Mikhail Konobeev MKON@HEY.COM

Jalal Etesami J.ETESAMI@TUM.DE
TUM, Boltzmannstrase, Munich, GE

Negar Kiyavash NEGAR.KIYAVASH@EPFL.CH

EPFL, Station 5, Lausanne, CH

Editors: Biwei Huang and Mathias Drton

Abstract
We study the causal bandit problem when the causal graph is unknown and develop an efficient
algorithm for finding the parent node of the reward node using atomic interventions. We derive
the exact equation for the expected number of interventions performed by the algorithm and show
that under certain graphical conditions it could perform either logarithmically fast or, under more
general assumptions, slower but still sublinearly in the number of variables. We formally show that
our algorithm is optimal as it meets the universal lower bound we establish for any algorithm that
performs atomic interventions. Finally, we extend our algorithm to the case when the reward node
has multiple parents. Using this algorithm together with a standard algorithm from bandit literature
leads to improved regret bounds.
Keywords: Causal inference, Multi-arm Bandits, Graphical models, Sequential decision making

1. Introduction

Multi-armed bandit (MAB) settings provide a rich theoretical context for formalizing and analyzing
sequential experimental design procedures. Each arm in a MAB setting represents an experi-
ment/action and the consequence of pulling an arm is represented by a stochastic reward signal. The
objective of a learner in a MAB problem is to select a sequence of arms over a time horizon in order
to either find an arm that results in the maximum reward or to maximize the cumulative reward
during this time horizon. Bandit problems have a growing list of applications in various domains
such as marketing (Huo and Fu, 2017; Sawant et al., 2018), recommendation systems (Heckel et al.,
2019; Silva et al., 2022), clinical trials (Liu et al., 2020), etc. MAB algorithms are designed for the
setting when there is no structural relationships between different arms. However, this assumption
is often violated in practice because of interdependencies among the rewards of various arms. To
capture such interdependencies, different structural bandit settings have been proposed such as linear
bandits (Abbasi-Yadkori et al., 2011), contextual bandits (Agrawal and Goyal, 2013; Lattimore and
Szepesvári, 2020), and causal bandits (Lattimore et al., 2016; Lee and Bareinboim, 2018) with the
latter being the main focus of this paper.

In causal bandit setting, the dependencies between the rewards of different actions are captured by
a causal graph and actions are modeled as interventions on variables of the causal graph (Lattimore
et al., 2016). Causal bandits can effectively model complex real-world problems. For instance,
marketing strategists can adaptively adjust their strategy which can be modeled as interventions made
in their advertisement network to maximize revenue (Nair et al., 2021; Zhang et al., 2022).
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A major drawback of most existing work in causal bandit literature is the limiting assumption
that the underlying causal graph is given upfront (Lattimore et al., 2016), which is frequently violated
in most real-world applications. Similar to Lu et al. (2021), we also study the causal bandit problem
when the underlying causal graph is unknown. However, unlike Lu et al. (2021) our work does
not assume the knowledge of the essential graph of the causal graph. Our main contributions are
summarized as follows.

• We propose (section 5) and analyze (section 6) a RAndomized Parent Search algorithm (RAPS)
which does not assume the knowledge of the causal graph (or the essential graph of the causal
graph). In our analysis we derive the exact equation for the expected number of interventions
performed by RAPS on any graph.

• We describe two graphical conditions under which RAPS works in a fast or slow, but still
sublinear in the number of nodes, regime (sections 6 and 7).

• Based on RAPS we propose a method that improves upon standard bandit algorithm using
causal structure of the arms and derive upper bounds for the regret of this method (section 4).

2. Related Work

In recent years, several work on Causal Bandit problem (Lattimore et al., 2016; Sen et al., 2017; Lee
and Bareinboim, 2018; Nair et al., 2021; De Kroon et al., 2022; Yan et al., 2024) have shown that
incorporation of causal structure improves upon the performance of standard bandit MAB algorithms.
However, the aforementioned work relay on a limiting assumption that the underlying causal graph
is given. In this work, we remove this assumption.

When the causal graph is unknown, a natural approach is to first learn it through observations
and interventions. Problem of learning a causal graph from a mix of observations and interventions
has been extensively studied in causal structure learning literature (Hauser and Bühlmann, 2014;
Hu et al., 2014; Shanmugam et al., 2015). Further, merely learning the essential graph requires
more than linear (in terms of variables/nodes in the graph) number of conditional independence
tests (Mokhtarian et al., 2022). Yet learning the entire underlying causal graph might not be necessary
for a learner in order to maximize its reward. For instance, Elahi et al. (2024) study the causal bandits
problem when the causal graph is unknown and it may include latent confounders and propose that
for no-regret learning, one has to only consider sets of possibly optimal arms/interventions that are
special subsets of ancestors of the reward node. Such possibly optimal subsets becomes the parent
set when no latent confounders are present. Thus, we propose an algorithm that discovers the parents
of the reward node in sublinear number of interventions on large classes of graphs. In case when it is
known that there is at most one parent of the reward node, all of these interventions are atomic and
we show that our algorithm is optimal.

In (Feng et al., 2023), the authors study the combinatorial causal bandits problem without the
graph structure on binary generalized linear models (BGLMs) and propose a learning algorithm with
O(
√
T log(T )) expected regret. Similarly, Malek et al. (2023) study the causal bandits without the

graph structure when there are no latent confounders between the reward and its ancestors. They show
that without the graph structure the problem could be exponentially hard but by further assuming an
additive assumption on the outcome, they manage to cast the problem as an additive combinatorial
linear bandit problem with full-bandits feedback and to propose an action-eliminations algorithm.
Note that both these work relay on additional linearity assumption.
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De Kroon et al. (2022) propose a causal bandit algorithm which does not require any prior
knowledge of the causal structure and uses separating sets estimated in an online fashion. Their
theoretical result holds only when a true separating set is known and the authors do not provide
a final bound on the regret. The closest work to our paper is that of Lu et al. (2021) in which the
authors derive regret bounds for an algorithm based on central node interventions. However, they
assume the essential graph is known to the learner while our algorithm makes no such assumption.

3. Preliminaries

A Probabilistic Causal Model (PCM) (Pearl, 2009) is a Directed Acyclic Graph (DAG) G = (V, E)
over a set of random variables V with edges E and a distribution P over the variables in V that
factorizes with respect to G in the sense that the distribution over V could be written as a product of
conditional distributions of each variable given its parents. We denote the number of vertices in V by
n and assume that each variable X ∈ V takes value from a finite set [K] := {1, . . . ,K}. The set of
ancestors and descendants of a node X in G are denoted by AG(X) and DG(X), respectively. In
both cases, we might omit writing G when it is clear from the context. In our definition a node is its
own ancestor and descendant and we will use horizontal bar to exclude it, for example, for ancestors
we will write Ā(X) forA(X) \ {X}. For a given subset S ⊆ V , we defineAG(S) := ∪X∈SAG(X)
and DG(S) := ∪X∈SDG(X). The vertex-induced subgraph over nodes in S is denoted by GS .
To simplify the notation, we use AS(X) (similarly, DS(X)) for the set of ancestors (respectively,
descendants) of X in the induced subgraph GS . In addition, we will use superscript c to denote
the non-ancestors/non-descendants, for example, Ac

S(X) = S \ AS(X). A collider on a path
X1, . . . , Xℓ between two nodes X1, Xℓ ∈ V is a node Xj with 1 < j < ℓ such that Xj is a children
of both Xj−1 and Xj+1, i.e., Xj−1 → Xj ← Xj+1. For two sets A,B, we denote their symmetric
difference by A△B := (A ∪B) \ (A ∩B) and assume that all binary set operations have the same
precedence.

3.1. Problem Setting

In a causal bandit (Lattimore et al., 2016), a learner L performs a set of interventions, i.e. actions,
at each round t ∈ [T ] by setting a subset of variables Xt = (X1, . . . , Xℓ) ⊆ V to some values
xt ∈ [K]ℓ, denoted by do(Xt = xt). Playing the empty arm denoted by do() corresponds to
observing a sample from the distribution P underlying the PCM. The goal of the learner is to
maximize a designated reward variable R. When there is only one parent node of the reward node in
the graph G the causal bandit corresponds to standard stochastic K-armed bandit. In what follows,
we assume that the reward node lies outside of the set of variables V , and thus we implicitly work
with a subgraph over the nodes V \ {R}. We denote the parent set of the reward variable by P ⊆ V .
In sections 5 and 6 we start by assuming that P is the only parent of R and then later we generalize
our results to multiple parent nodes in section 7. We also allow for the reward node to have no parents
in V which we denote by writing P = ∅. The case when P = ∅ corresponds to having an empty set
of variables and thus we have A(∅) = D(∅) = ∅. The learner does not know the underlying DAG
over the variables in V and cannot intervene directly on the reward variable R.
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Performance of a learner L can be measured in terms of cumulative regret which takes into
account the rewards received from all the interactions performed,

RT
L(G,P) = T max

X⊆V
max

x∈[K]|X|
E[R|do(X = x)]−

T∑
t=1

E[R|do(Xt = xt)],

or simple regret which only focuses on the reward of the final intervention, predicted to be the best
by the learner after T interactions,

rTL(G,P) = max
X⊆V

max
X∈[K]|X|

E[R|do(X = x)]− E[R|do(XT+1 = xT+1)],

where, do(XT+1 = xT+1) is the intervention estimated to be the best by the learner L after
performing T interactions and |X| denotes the number of variables in X.

Remark. Note that in both definitions of regret, the learner is compared against an oracle that
always selects the best intervention. When the underlying DAG G does not contain any unobserved
variables, it is known that the best intervention is always over the set of parent nodes of the reward
node R (Lee and Bareinboim, 2018). Thus, in this work, we focus on a learner L that performs
interventions to detect the set of parent nodes of the reward node and then finds the best assignment
to P in order to minimize regret. Our results in sections 6 and 7 can be used to bound both simple
and cumulative regret. For conciseness, we present only a cumulative regret bound in the main text
in section 4 and extend it to a simple regret bound in appendix E.2.

4. Regret Analysis

Herein, we present regret bounds achieved by a combination of our algorithm aimed at discovering
parent nodes and presented later in sections 5 and 7, and a standard multi-armed bandit algorithm
such as UCB (Cappé et al., 2013). First, for simplicity we assume that the reward variable is [0, 1]-
bounded although it is possible to extend our results to more general σ-subgaussan variables. Next,
we introduce the following assumptions which are similar to the assumptions in (Lu et al., 2021).

Assumption 1 (Ancestoral Effect Identifiability) Let Z ⊆ P be a sequence of length 0 ≤ ℓ ≤ |P|
of last elements of P in some topological order. Further, let X,Y ∈ V \ D(Z) be any two variables
such that X ∈ A(Y ) in G. Assume

|P {Y = y|do(Z = z)} − P {Y = y|do(X = x,Z = z)}| > ε,

for some x, y ∈ [K] and z ∈ [K]|Z| where ε > 0 is a universal constant.

Assumption 2 (Reward Identifiability) Let X be an arbitrary ancestor of a node in P in graph
under intervention over Z, GZ, where Z ⊆ P is a sequence of length 0 ≤ ℓ ≤ |P| of last elements of
P in some topological order. We assume that there exists x ∈ [K] such that

|E[R|do(Z = z)]− E[R|do(X = x,Z = z)]| > ∆,

for some ∆ > 0 and z ∈ [K]|Z|.
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The first assumption allows our algorithm to obtain information about the overall graph structure by
only intervening on one node along with a subset of the reward parents. The second assumption is
necessary to determine whether the reward node is a descendant of any node. We hypothesize that
assumption 1 could be eased to only hold for nodes X,Y such that the shortest directed path between
X and Y is at most a certain length. In this case intervening on a node would provide information
about local structure of the graph. For the case when there is one parent of the reward node and this
information is available to the learner, Lu et al. (2021) show that the second assumption is necessary
in that without it any learner suffers Ω(

√
nKT ) regret in the worst case.

In order to bound the regret, we need to analyze the number of distinct nodes intervened on by a
learner L in a graph G to find the set of parent nodes P . We denote this quantity by NL(G,P) and
unless stated otherwise, we assume that the learner uses the proposed RAPS algorithm presented first
in algorithm 1 in section 5 for the single parent case and later extend to multiple parents in section 7.
Our regret bound is given for conditional regret defined as follows:

RT
L(G,P | E) = T max

X⊆V
max

x⊆[K]|X|
E[R|do(X = x)]−

T∑
t=1

E[R|do(Xt = xt), E],

where E is the event that our algorithm correctly finds the set of parent nodes, formally defined in
theorem 17. Additionally, we denote by ∆X=x the mean reward gap of playing arm do(X = x) for
any intervention set X and realization x from playing the best arm. Our main result is the following
theorem proved in appendix E.

Theorem 3 Assume that P ≠ ∅, i.e., the reward variable has at least one parent in V . For the
learner that uses algorithm 2 and then runs a UCB the following bound1 for the conditional regret
holds with probability at least 1− δ:

RT
L(G,P | E)≤max

{
1

∆2
,
1

ε2

}
K |P|+1E[N(G,P)] log

(
nKn

δ

)
+
∑

x∈[K]|P|

∆P=x

(
1 +

log T

∆2
P=x

)
. (1)

Our regret bound has two terms: the first comes from finding the set of parent nodes and the
second from determining the best intervention over the parents. The bound above improves on
the performance of standard multi-armed bandit algorithm because the terms in eq. (1) depend on
the number of parents of the reward node and there are K |P| such parents, while with standard
bandit algorithm there will be Kn terms in the summation similar to the second term in eq. (1). The
main limitation of our work is the 1

min{ε,∆}2 -dependence and we believe that by playing each arm
proportionally to its’ inverse reward gap while simultaneously trying to estimate the set of parent
nodes is a good direction for future work that would improve this dependence. In appendix H we
provide experimental results showing the values of ε and ∆ for different Erdős-Rényi graphs. In
what follows we present and provide an analysis of our algorithm to discover parent nodes.

5. Randomized Parent Search Algorithm

In this section we present our learner, i.e., RAndomized Parent Search algorithm (RAPS), for the
case when the reward node has at most one parent. The algorithm is shown in algorithm 1. We

1. f(n) ⪯ g(n) stands for an inequality up to a universal constant.
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Algorithm 1 RAndomized Parent Search algorithm (RAPS) for single parent node

Require: Set of nodes V of G given as input
Output: The parent node P ∈ V of the reward node or ∅ if there is no parent node in V

1: RAPS works by calling REC(C = V) defined as follows
2: function REC(C)
3: if C = ∅ then
4: return ∅
5: X ∼ Unif(C)
6: Intervene on X to determine if P ∈ DC(X)
7: if P ∈ DC(X) then
8: P̂ ← REC(DC(X) \ {X})
9: if P̂ = ∅ then

10: return X
11: return P̂
12: return REC(C \ DC(X))

denote the parent node by P (which is set to be ∅ when there is no parent) and denote the number of
distinct nodes intervened on by our algorithm by N(G, P ). This algorithm could be run multiple
times to discover each parent node as will be later discussed in section 7. After the parent node is
discovered, one could use standard algorithms from bandit literature (see, for example, Lattimore and
Szepesvári, 2020) to find the best intervention over it to minimize the simple or cumulative regret.
Algorithm 1 defines a recursive function REC with single argument denoted by C — the so called
candidate set of nodes in G which might contain P — and this function is called initially with all
the nodes in the graph as its argument. We will explain RAPS first with an example. Consider the
graph with four nodes in fig. 1 where P is the parent of reward node R (not shown on the figure).

X1

P X2

X3

Figure 1: An example of DAG with a
single parent node P .

The algorithm starts by calling the recursive function with
C = V = {X1, X2, X3, P}. Assume that during this call
the recursive function samples X3. Changing the value of
this node should allow the learner to determine the descen-
dants which are in this case {X2, X3} and do not include P .
The learner realizes this because R does not change unless
P changes. Thus, there will be another call of the recursive
function with C = V \ {X2, X3} = {X1, P} on line 12.
After that, if in the recursion the node X1 is sampled, the
same function is called on line 8 with C = {P}. This is
because P is the only descendant of X1 not including X1

in the graph over the nodes in {X1, P}. Lastly, the algorithm will have to sample P and return it as
the discovered parent node.

5.1. Determining Descendants

In general, RAPS intervenes on a randomly selected node X ∈ C on line 6. Several interventions on
X should be sufficient to determine the descendants of X and whether P ∈ DC(X). This is because
changing the value of X should change the values of the descendants of X and we can determine if
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P ∈ DC(X) by checking if the value of the reward variable R changes. Notice that if Y ̸∈ C, then
none of the descendants of Y are in C which means that it is possible to find DC(X) simply by taking
DG(X) ∩ C.

Let R̄ and R̄do(X=x) denote sample mean of the reward variable under observational and inter-
ventional distributions. Our assumption 2 allows us to determine whether an arbitrary node X is
an ancestor of the reward node. This is done by comparing

∣∣R̄− R̄do(X=x)
∣∣ for all x ∈ [K] with

∆/2 and concluding that X is an ancestor of P in G (and therefore in GC where C is an argument
passed to the recursive function in algorithm 1) if for some x ∈ [K] the absolute difference exceeds
the threshold. Assumption 1 allows to determine the descendants of X after an intervention on it.
For this we consider as the descendants the set of nodes Y ∈ C such that for some x, y ∈ [K] the
absolute difference

∣∣∣P̂ (Y = y)− P̂ (Y = y|do(X = x)
∣∣∣ exceeds ε/2, where P̂ (·), P̂ (·|do(X = x))

are the empirical distributions over Y without any intervention and under intervention do(X = x).
In theorem 17 we provide the exact number of times the algorithm needs to intervene on each node,
i.e. the sample sizes to compute R̄, R̄do(X=x), P̂ (·), P̂ (·|do(X = x)), in order to find the parent
node with high probability.

Our analysis in later sections only concern the number of distinct nodes our algorithm needs
to intervene on to find the parent node P . In what follows, we first present the exact expression to
compute the expected number of distinct node interventions performed by RAPS. Next, we introduce
classes of DAGs for which this expected value is either asymptotically logarithmic or sublinear in
the number of nodes n.

6. Analysis of RAPS for Single Parent Case

We start by stating the exact expression for the expected number of distinct node interventions
performed by algorithm 1. The proof is in appendix A.

6.1. Expected Number of Interventions

Theorem 4 The expected number of distinct node interventions performed by a learner that uses
algorithm 1 to determine the parent node P is given by

E[N(G, P )] =
∑
X∈V

1

|A(P )△A(X) ∪ {X}|
. (2)

Next, we present two conditions under which RAPS performs sublinearly. In the “fast” regime,
it requires O(log(n)) expected number of interventions, while in the “slow” regime, it requires
O
(

n
logd(n)

)
expected number of interventions with d being the maximum degree in the skeleton of

G. It is noteworthy that our algorithm even in the slow regime outperforms the naı̈ve exploration
method that requires Ω(n) interventions. Moreover, in appendix G, we introduce a universal lower
bound on the expected number of interventions required by any learner to find the parent node and
show that eq. (2) matches this lower bound.
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P X1 X2 . . . Xn−1

Figure 2: An example of a line graph, such graphs satisfy the condition of theorem 7.

6.2. Fast Regime

In order to introduce the condition under which RAPS performs fast, we first characterize the candidate
sets C ⊆ V , that is the sets of nodes that the recursive function algorithm 1 could be called with as an
argument. To this end, we define the following family of subsets of V .

Definition 5 A candidate family of a graph G with a parent node P is a family of subsets given by

CG(P ) :=
{
Dc(W)

∣∣W ⊆ Ac(P )
}
∪
{
Dc

D(X)(W) \ {X}
∣∣X ∈ A(P ),W ⊆ Ac

D(X)(P )
}
.

LetW be an arbitrary set of non-ancestors of P . All descendants of these non-ancestors could be
removed from the starting candidate set C = V . This corresponds to the first family on the right
hand side in the definition of CG(P ). At the same time, the algorithm might also reduce the set of
candidate nodes if it discovers an ancestor of the parent node P . This happens when the recursive
function is called on line 8. Let X be an intervened on ancestor of P , then the candidate set reduces to
the subset of descendants of X . This set might again exclude arbitrary non-ancestors of P previously
denoted byW , but this time in the subgraph over D(X). We provide an example of the candidate
family for the line graph in fig. 2 later in this section. Next theorem shows that when the recursive
function in algorithm 1 is called, its argument belongs to the candidate family CG(P ). The proof is
in appendix B.

Lemma 6 All possible arguments C with which the recursive function in algorithm 1 is called are
contained within the candidate family CG(P ).

At a high level, algorithm 1 performs O(log n) interventions if for each C ∈ CG(P ) of large size,
the number of ancestors of P in GC is large, or the number of non-ancestors of P each of which
has large number of descendants is large. The latter condition could be interpreted as the condition
that the non-descendants of P asymptotically form a line graph. This is captured formally by the
following result, proved in appendix B.

Theorem 7 For a constant 0 < α < 1 and C ∈ C, let the set of “heavy” non-ancestors to be

HC(α) :=
{
X ∈ Ac

C(P )
∣∣ |DC(X)| ≥ α |C|

}
. (3)

Assume that G is such that for any C ∈ CG(P ) at least one of the following holds i) |HC(α)| ≥ β |C|,
ii) |AC(P )| ≥ γ |C|, or iii) |C| ≤ c logk(n), for fixed 0 < α, β, γ < 1, c ∈ R>0, and k ≥ 1. Then,
E[N(G, P )] = O(logk n).

The assumption of theorem 7 states that for all candidate sets considered by the recursive function
in algorithm 1 either the cardinality of C is upper bounded by c logk(n) or in the subgraphs GC one
of the following holds:

• there is a β-fraction of nodes that are among the non-ancestors of P and have at least an
α-fraction of nodes as their descendants,
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X1 X2 . . . Xn/2

P

Xn/2+1 Xn/2+2 . . . Xn−1

Figure 3: An example of a graph where P has n children, but only half of them form a line graph
(X1 → · · · → Xn/2). O(logk n) expected number of interventions still suffices because the other
half of the nodes are all children of Xn/2.

• there is a γ-fraction of nodes that are ancestors of P .

Notice that in the condition of theorem 7 there is no restriction on the structure of the ancestors
of P . Thus, if the number of ancestors of P is sufficient we have that RAPS has at most logarithmic
number of distinct node interventions. At the same time, when there are more than constant number
of non-ancestors, theorem 7 requires them to have a certain structure. Consider, for example,
the line graph in fig. 2. In this case the candidate family consists of the sets {X1, . . . , Xi−1}
and {P,X1, . . . , Xi−1} for i ∈ [n − 1]. The condition of theorem 7 still holds since for every
candidate set C ∈ CG(P ) it holds that there is a β-fraction of “heavy” non-ancestors of P in
GC . Such non-ancestors contain many other non-ancestors of P as their descendants. To see this,
let C = {X1, . . . , Xi−1} for some i ∈ [n − 1] (the other case is similar) and consider the set{
X1, . . . , X⌊i/2⌋

}
. Each node in this set has at least i/2 descendants and there are at least i/2− 1

such nodes. Thus, the condition holds for α, β close to 1
2 . Note also that even if P is not the first node

in a topological ordering of a graph but its’ non-descendants still satisfy the condition of theorem 7,
then the RAPS succeeds inO(logk n) expected number of interventions. Additionally, from theorem 4
it is easy to see that the log n upper bound on the number of distinct node interventions is tight.

At the same time, the condition of theorem 7 for non-descendants in subgraphs over candidate
sets of large size is more general than just requiring all non-descendants to form a line graph. First,
notice that if the parent node has Ω(n) children, each with only one parent, then the algorithm
requires Ω(n) interventions no matter how the remaining nodes are arranged. This case is similar to
the case of d-ary trees for which our result in appendix G implies Ω

(
n

logd n

)
lower bound on distinct

node interventions. However, if, for example, half of the nodes form a line and the other half are
all children of the last node on the line as shown in fig. 3, then the condition of theorem 7 is still
satisfied and RAPS remains in the fast regime in terms of the number of distinct node interventions.

6.2.1. ERDŐS-RÉNYI RANDOM GRAPHS

In addition to providing examples of instances for which the condition of theorem 7 holds, we show
that Erdős-Rényi random DAGs with large enough edge probability p also satisfy this condition.
While originally, Erdős-Rényi model was proposed for undirected graphs, it naturally extends to
DAGs as well (Hu et al., 2014). For this, label the nodes in V from 1 to n. Next, select a permutation
π over [n] uniformly at random. Subsequently, for two nodes i, j ∈ [n] such that i < j draw an
edge {i, j} with probability p. Finally, if an edge {i, j} is picked, orient it as i→ j if π(i) < π(j)
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and i← j otherwise. For such randomly generated DAG, the following result holds. The proof is
provided in appendix C.

Corollary 8 The family of Erdős-Rényi random DAGs satisfies the condition of theorem 7 in
expectation if

p ≥ 1−
(

1− c

logk n− 1

)1/(logk n−1)

,

for any constant c ∈ [0, 1]. Therefore, for such graphs, RAPS requires E[N(G, P )] = O(logk n)
expected number of interventions.

As shown in theorem 16 in appendix C, the result of theorem 8 holds for

p ≥ log(logk(n)− 1)− log(1− c)

logk(n)− 1

and asymptotically the lower bound for p in theorem 8 behaves as Θ
(
k log log(n)

logk(n)

)
.

6.3. Slow Regime

In this section, we provide a bound on the expected number of interventions of RAPS under a more
relaxed assumption than the condition in theorem 7. The following theorem states that if there
are at most O

(
n

logd(n)

)
nodes X ∈ V \ {P} such that all paths between X and P are inactive,

then the expected number of interventions required by RAPS is bounded by O
(

n
logd(n)

)
, where d

is the maximum degree in the skeleton of G. Under the faithfulness assumption (Pearl, 2009), the
aforementioned condition means that there are at mostO

(
n

logd(n)

)
nodes in V which are independent

with the parent node P .

Theorem 9 Let G be an arbitrary DAG in which there are at mostO
(

n
logd(n)

)
nodes X ∈ V \{P}

such that either P is disconnected with X , or all paths between P and X are blocked by colliders.
Then, E[N(G, P )] = O

(
n

logd n

)
, where d is the maximum degree in the skeleton of G.

The proof of theorem 9 is in appendix D and in appendix G we show that d-ary directed trees are
worst case examples for which the bound is tight even though such trees do not have colliders.

7. Generalization to Multiple Parent Nodes

Let P be the set of all parent nodes of the reward node. We generalize algorithm 1 to an algorithm
that finds all the parent nodes of the reward node by repeatedly discovering each of the parent nodes
in algorithm 2 with a more detailed version of the same algorithm presented in algorithm 4 in the
appendix.

10
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Algorithm 2 RAPS for multiple parents

1: P̂ ← ∅,S ← V
2: while True do
3: P̂ ← the result of running algorithm 1 providing it with S and P̂
4: if P̂ = ∅ then
5: break
6: P̂ ← P̂ ∪

{
P̂
}

7: S ← S \ D(P̂ )
8: return P̂

Remark. On line 3 algorithm 2 calls algorithm 1 to find a next parent node P with the starting
candidate set being equal to S. While previously algorithm 1 could use only atomic interventions
to determine if an arbitrary X ∈ V is an ancestor of P , in this case this algorithm will intervene on
P̂ ∪{X} to find if there exists a realization that changes R by changing the value of X while keeping
the other values in the intervention set constant. In other words, the mean reward estimate and
empirical distributions over all the nodes under intervention will be compared to the corresponding
values under all interventions over P̂ and the descendants of X are determined similarly. If a change
under same values of P̂ but different values of X occurs, then X concluded to be an ancestor of
some parent node in P \ P̂ . Algorithm 2 uses the observation that if P, P ′ ∈ P and P ∈ Ā(P ′),
then P ′ will be discovered by algorithm 1, but not P . This happens because even if P is intervened
on, the algorithm would have to exclude the descendants of P before returning P as the parent of the
reward node. Afterwards, by recalling algorithm 1 and providing it with P̂ that contains P ′, it will
be able to discover P as another parent node.

As an example, consider the graph in fig. 4. During the first call to algorithm 1 the node P2 will
be discovered. In the second call to algorithm 1 with P̂ = {P2}, there needs to be an intervention on
P2 in order to cut the causal link from P1 to P2 to determine whether P1 is a parent of the reward
node R.

P1 P2 R

Figure 4: An example DAG with multi-
ple parent nodes.

The following theorem proved in appendix F gener-
alizes the conditions of theorems 7 and 9 such that the
algorithm 2 discovers each parent node with the number of
interventions as in theorems 7 and 9, respectively. This is
done by considering all graphs from which the descendants
of some subsequence of parent nodes were removed. The
nodes in the subsequence are selected as the last nodes in
some topological ordering of the nodes in P .

Theorem 10 Let τ (P) be the set of all topological orderings of the parent nodes P . Assume that
the condition of theorem 7 holds for all graph-parent-node pairs with at least c logk(n) nodes in the
graph in the set{

(GV\D(P),∅)
}
∪
{
(GV\S(τ,i), τi)

∣∣ τ ∈ τ (P), i ∈ [|P|],S(τ, i) =
⋃

P∈τ [i+1:]

D(P )

}
,

where τ [i+1:] consists of the last |P|− i elements of τ , τi is the i-th element of τ and c > 0 is some
constant. Then the expected number of interventions required by algorithm 2 to find all parent nodes

11
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Figure 5: Regret of UCB and RAPS+UCB on binary tree graph with n = 20 nodes. The last character
in the label specifies the number of parent nodes.

is O
(
|P| logk n

)
. Similarly, assume that all graph-parent-node pairs in the set above with graphs of

size at least cn
logd(n)

satisfy the condition of theorem 9. Then the expected number of interventions

required by algorithm 2 is O
(

|P|n
logd n

)
.

Theorem 10 gives general conditions for the upper bounds on the number of interventions. Below,
we combine our result for Erdős-Rényi graphs from section 6.2.1 with the result of theorem 10 to
arrive at a condition on the probability p such that algorithm 2 discovers all parents of the reward
node. The proof is in appendix F.

Corollary 11 Let Gn,p be an Erdős-Rényi graph with

p ≥ 1−
(

1− c0

logk(c1 log
k(n))− 1

)1/(logk(c1 log
k(n))−1)

,

for some constants c0 ∈ [0, 1] and c1 ∈ R>0, then to discover P , algorithm 2 needs E[N(G,P)] =
O
(
|P| logk(n)

)
expected number of interventions.

8. Experiments

In this section we describe an experiment aimed at showing improved regret with our approach.
Other experiments that verify our theoretical findings about the number of interventions that RAPS

takes, an analysis of the values of ε and ∆ in Erdős-Rényi graphs, and the results of running the
combination of RAPS and UCB on such graphs are presented in appendix H. Here we consider the
case when the underlying graph is a binary tree with n = 20 nodes including the reward node, with
the parent(s) of the reward node chosen uniformly at random. The PCM is such that the value of
the root node is chosen randomly and each other node passes the value of its’ parent to its’ children
with probability 0.9 and samples a value uniformly at random with probability 0.1. All nodes in the
graph take on binary values. The probability of the reward node taking value 1 is equal to the mean

12
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value of its’ parents and we set δ = 0.01. Even though our algorithm operates in the slow regime
on trees as discussed in appendix G, we still expect to see an improvement since discovering the
set of parent nodes drastically reduces the set of arms that a standard multi-armed bandit algorithm
needs to choose from. The results are presented in fig. 5 with the number of parents ranging from 1
to 3. For each experiment we performed 10 independent runs and presented their means and standard
deviations. The results for UCB do not change significantly and thus the error bars for this algorithm
could not be seen. All our experiments (including the ones in the appendix) could be run during a
day on a single laptop.

9. Conclusion

We proposed a causal bandit algorithm that does not require the knowledge of the graph structure of
the causal graph including the knowledge of the essential graph. Our algorithm achieves improved
regret by finding the set of parent nodes of the reward node using causal structure of the arms and
thus reducing the number of arms a standard MAB algorithm needs to explore.
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Appendix A. Exact Number of Interventions

Theorem 4 The expected number of distinct node interventions performed by a learner that uses
algorithm 1 to determine the parent node P is given by

E[N(G, P )] =
∑
X∈V

1

|A(P )△A(X) ∪ {X}|
. (2)

Proof First we show that algorithm 1 is equivalent to algorithm 3 in the sense that the same sequences
of nodes are intervened on by both algorithms with the same probability. Although the algorithm 3
is not practical because it uses the graph structure on line 5, it allows us to present a proof for this
theorem. This algorithm first samples a permutation τ of nodes in V and then intervenes on a node
X ∈ τ only if none of the nodes in A(P )△A(X) appeared before X in the permutation. As an
example, suppose that algorithm 3 selects permutation (X3, X2, X1, P ) in fig. 1. Then the nodes
intervened on by algorithm 3 are the same as the nodes intervened on by algorithm 1 in the example
in section 5. This is because X2 is a descendant of X3 (and X3 is not an ancestor of P ) and therefore
it will not be intervened on. Moreover, if algorithm 3 selects permutations (X3, X1, X2, P ) and
(X3, X1, P,X2), the resulting intervention sequences would be the same run of algorithm 3.

Algorithm 3 An algorithm equivalent to algorithm 1.

Require: Set of nodes V of G given as input
Output: The parent node P ∈ V of the reward node or ∅ if there is no parent node in V

1: Sample a random permutation τ of nodes in V
2: P̂ ← ∅, i← 0
3: ForX ∈ τ do
4: i← i+ 1
5: if A(P )△A(X) ∩ (τ1, . . . , τi−1) ̸= ∅ then
6: continue
7: Intervene on X to determine if P ∈ D(X)
8: if P ∈ D(X) then
9: P̂ ← X

10: return P̂

By induction on the intervened on nodes, the base case is clear since in both algorithm 1 and
algorithm 3 the first node is sampled with probability 1/n and always intervened on. Let W =
(W1, . . . ,Wl) be a uniformly random permutation of any l elements of V and W′ be a subsequence of
W with an element of W ∈W included in W′ if no element ofA(P )△A(W ) \ {W} was included
before it. For the example in fig. 1 and sequence W = (X3, X2) we have W′ = (X3) since, as
mentioned before, X3 ∈ A(P )△A(X2)\{X2}. Note that in algorithm 1 a node could be intervened
on only when it was not intervened on before and none of the non-common ancestors of that node
and the parent node were intervened on. Thus, let S = {X ∈ V : A(P )△A(X) ∪ {X} ∩W′ = ∅}
be the set of nodes that could be intervened on by algorithm 1 in the next round. The probability that
a node X ∈ S is sampled by algorithm 1 given the sequence W′ is 1/s, where s = |S|. On the other
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hand, the probability that a node X ∈ S is intervened on next by algorithm 3 is

P {X is sampled before A(P )△A(X) \ {X}|W} (4)

=

n−l−s∑
k=0

P {Wl+1:l+k ∩ (A(P )△A(X) \ {X}) = ∅ and Wl+1+k = X|W} (5)

=
n−l−s∑
k=0

(
n−l−s

k

)
k!(n− l − k − 1)!

(n− l)!
(6)

=
n−l−s∑
k=0

(n− l − s)!(n− l − k − 1)!

(n− l − s− k)!(n− l)!
(7)

=
1

s

n−l−s∑
k=0

(
n−l−k−1

s−1

)(
n−l
s

) =
1

s
, (8)

where Wl+1:l+k consists of k elements sampled uniformly at random after sampling W, we used
the fact that there are n− l − s “good“ elements from which we need to sample k elements before
sampling Wl+1+k = X while the remaining elements could come in any order, and to get the last
equality we used the hockey-stick identity (Jones, 1994). The hockey-stick identity states that for
any n, r ∈ N such that n ≥ r it holds that

∑n
i=r

(
i
r

)
=

(
n+1
r+1

)
. By the chain rule of probability, the

intermediate result holds.
Next, with W = (W1, . . . ,Wn) being a uniformly random permutation corresponding to a run

of algorithm 3, and defining AX = {algorithm 3 intervenes on X}, W<i = (W1, . . . ,Wi−1) we
can get

E[N(G, P )] = E[
∑
X∈V

I {AX}] =
∑
X∈V

P {AX} (9)

=
∑
X∈V

n−|A(P )△A(X)\{X}|∑
i=1

P {A(P )△A(X) \ {X} ∩W<i = ∅|Wi = X}P {Wi = X} (10)

=
∑
X∈V

n−|A(P )△A(X)\{X}|∑
i=1

(
n−|A(P )△A(X)\{X}|−1

i−1

)
(i− 1)!(n− i)!

(n− 1)!
· 1
n

(11)

=
∑
X∈V

1

|A(P )△A(X) \ {X}|+ 1

n−|A(P )△A(X)\{X}|∑
i=1

(
n−i

|A(P )△A(X)\{X}|
)(

n
|A(P )△A(X)\{X}|+1

) (12)

=
∑
X∈V

1

|A(P )△A(X) \ {X}|+ 1
, (13)

where we used the fact that to haveA(P )△A(X)\{X}∩W<i = ∅ we need to sample i−1 “good“
elements from n− |A(P )△A(X) \ {X}| − 1 elements (since Wi is fixed to be X) while the rest of
the n− i elements could be shuffled, and to get the last equality we used the hockey-stick identity
(Jones, 1994).
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Appendix B. Logarithmic Upper Bound

Lemma 12 All possible arguments C with which the recursive function in algorithm 1 is called are
contained within the candidate family CG(P ).

The proof of this lemma uses the following proposition.

Proposition 13 For a graph G = (V, E) let U ⊆ V and S ⊇ D(U), then DS(U) = D(U).

Proof Let X ∈ D(U), then there is a directed path from some U ∈ U to X in G. Each node on
this path belongs to D(U) ⊆ D(U) ⊆ S. Thus, in the graph GS this path is preserved and we get
X ∈ DS(U). Conversely, if X ∈ DS(U), then there is a directed path from some U ∈ U to X in
GS . Adding vertices and connections to a graph does not remove existing paths and thus there is a
path from U ∈ U to X in G and therefore X ∈ D(U).

Proof [Proof of lemma theorem 6] In the proof we omit writing CG(P ) and write C instead for
simplicity. The proof is by induction. For the base case we have C = V = V \ D(∅) ∈ C. By
induction hypothesis

C = V \ D(W) for someW ⊆ V \ A(P ), or (14)

C = D̄(Z) \ DD(Z)(W) for some Z ∈ A(P ),W ⊆ D(Z) \ AD(Z)(P ). (15)

Notice that in eq. (15) we have D(W) ⊆ D(D(Z) \ AD(Z)(P )) ⊆ D(Z) and thus by theorem 13 it
could be rewritten as

C = D̄(Z) \ D(W) for some Z ∈ A(P ),W ⊆ D(Z) \ AD(Z)(P ). (16)

Next, we will consider four cases depending on whether the condition P ∈ DC(X) on line 7 of
algorithm 1 holds and whether C conforms to eq. (14) or eq. (16).

Case I: P ∈ DC(X). Consider the set D(X) \ D(W ′) for someW ′ ⊆ D(X). It consists precisely
of descendants of X but not Y ∈ W ′ ⊆ D(X). Thus, we can remove all nodes Y ∈ D(W ′) from
the original graph G and the descendants of X in this new graph will be equal to D(X) \ D(W ′):

D(X) \ D(W ′) = DV\D(W ′)(X). (17)

Next, we consider two subcases depending on whether C conforms to eq. (14) or eq. (16).

i) C is such that eq. (14) holds for someW ⊆ V \ A(P ). Then using the above, it is left to show
that there exists W ′ ⊆ D(X) \ AD(X)(P ) such that DV\D(W ′)(X) = DV\D(W)(X) = DC(X)
since D̄(X) is what the recursive function will be called with in algorithm 1. For this we can set
W ′ = D(W) ∩ D(X). Indeed,W does not contain any ancestors of P and thus D(W) does not
contain ancestors of P in G which means thatW ′ ∩ AD(X)(P ) = ∅. Moreover, V \ D(W) removes
only non-descendants of X from G compared to V \ D(W ′). This is true because

D(X) ∩ (V \ (D(W) ∩ D(X))) = D(X) \ D(W) ⊆ V \ D(W) (18)

and D̄C(X) ∈ C follows from theorem 13.
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ii) C is such that eq. (16) holds for some Z ∈ A(P ),W ⊆ D(Z) \ AD(Z)(P ). Similarly to the
item i) forW ′ = D(W) ∩ D(X) we get

D(X) ∩ (V \ (D(W) ∩ D(X))) = D(X) \ D(W) ⊆ D̄(Z) \ D(W), (19)

where the last step follows from the fact that Z ∈ Ā(X) which is true because X ∈ C ⊆ D̄(Z).
Additionally,W ′ ⊆ D(X) \ AD(X)(P ). This is true becauseW does not contain the ancestors of P
in GD(Z) and D(X) is a subset of D(Z) since Z ∈ Ā(X). Finally, the fact that D̄C(X) ∈ C follows
from combining the results above and theorem 13.

Case II: P ∈ Dc
C(X) which is equivalent to X ∈ Ac

C(P ). In fact, we will show that X ̸∈ A(P )
by contradiction. To this end, assume that X ∈ A(P ). In algorithm 1 the candidate set C with
which the recursive function is called decreases in size during each call. At the same time, if at
some point sample Y ∈ A(P ) ∩ Ac(X) gets sampled, then the candidate set will consists of a
subset of descendants of Y to which X does not belong. Thus, to sample X at some point we must
not have sampled such Y before which means A(P ) ∩ Ac(X) ⊆ C. In particular, this means that
A(P ) ∩ D(X) ⊆ C which intern leads to X ∈ Ac

C(P ) which is a contradiction. Thus, X ̸∈ A(P ).

In what follows, we again consider two subscases depending on whether C conforms to eq. (14) or
eq. (16).

i) C = V \ D(W) for someW ⊆ Ac(P ). First, we show that

D(X) \ DC(X) ⊆ D(W). (20)

Indeed, for Y ∈ D(X) \ DC(X) there must be a directed path from X to Y in G but not in
GV\D(W) which corresponds to the original graph with the descendants ofW removed. Therefore,
the descendants ofW block all the directed paths from X to Y and therefore Y ∈ D(W). Next,
notice that since X ∈ Ac(P ) we can setW ′ =W ∪ {X} ⊆ Ac(P ) and using the result above get

C \ DC(X) = V \ D(W) \ DC(X) = V \ D(W) \ D(X) = V \ D(W ′) ∈ C. (21)

ii) C = D̄(Z)\D(W) for some Z ∈ A(P ),W ⊆ D(Z)\AD(Z)(P ). Again, consider directed paths
from X to any Y ∈ D(X) \ DC(X). Note that D(X) \ DC(X) = DD̄(Z)(X) \ DD̄(Z)\D(W)(X)

where we used theorem 13 with the fact that X ∈ D̄(Z) which implies D(X) ⊆ D̄(Z), and the
definition of C. Similarly to the previous item we get that removing the set D(W) from GD̄(Z)

removes all paths from X to Y in this graph and thus Y ∈ D(W) or D(X) \ DC(X) ⊆ D(W).
SettingW ′ = W ∪ {X} as before givesW ′ ⊆ D(Z) \ AD(Z)(P ) since X ∈ D̄(Z) and as stated
above X ̸∈ A(P ). Thus, by theorem 13 we get the desired result.

Theorem 7 For a constant 0 < α < 1 and C ∈ C, let the set of “heavy” non-ancestors to be

HC(α) :=
{
X ∈ Ac

C(P )
∣∣ |DC(X)| ≥ α |C|

}
. (3)

Assume that G is such that for any C ∈ CG(P ) at least one of the following holds i) |HC(α)| ≥ β |C|,
ii) |AC(P )| ≥ γ |C|, or iii) |C| ≤ c logk(n), for fixed 0 < α, β, γ < 1, c ∈ R>0, and k ≥ 1. Then,
E[N(G, P )] = O(logk n).
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Proof Based on the definition of algorithm 1, it is straightforward to see that the following recursion
holds

T (C) = 1

|C|
∑

X∈AC(P )

T (D̄C(X)) +
1

|C|
∑

X∈Ac
C(P )

T (Dc
C(X)) + 1, (22)

where T (C) denotes the number of interventions performed by the recursive function in algorithm 1
given candidate set C. We will show that T (C) ≤ c′ log |C|+c logk(n) for some c′ > 0 by considering
two cases: |C| ≤ c log(n) and |C| > c log(n). The case where |C| ≤ c log(n) is straightforward
since each node in C is intervened on at most once and |C| ≤ c logk(n).

Next, consider the case |C| > c logk(n). We provide a proof for the case when |HC(α)| ≥ β |C|
then comment on why the result holds when |AC(P )| ≥ γ |C|. By theorem 6 we have that for all
X ∈ AC(P ) it holds that D̄C(X) ∈ C and for all X ∈ Ac

C(P ) it holds that Dc
C(X) ∈ C, thus the

condition of the theorem holds for the recursive calls and we can use induction hypothesis after
which it is left to check that

c′

|C|
∑

X:X∈AC(P )∧|DC(X)|>1

log(|DC(X)| − 1) +
c′

|C|
∑

X∈Ac
C(P )

log(|C| − |DC(X)|) + 1 (23)

+
c

|C|
∑

X∈AC(P )

logk(n) +
c

|C|
∑

X∈Ac
C(P )

logk(n) (24)

is bounded above by c′ log |C| + c logk(n). First, note that the eq. (24) is bounded by c logk(n)
since AC(X) ∪ Ac

C(X) = C. Next, consider the eq. (23). Note that for X ̸∈ HC(α) we can
upper bound |DC(X)| − 1 and |C| − |DC(X)| by |C|. At the same time, for X ∈ HC(α) we have
|C| − |DC(X)| ≤ (1− α) |C|. Then our goal is to show

c′(|C| − |HC(α)|)
|C|

log |C|+ c′ |HC(α)|
|C|

log((1− α) |C|) + 1 (25)

≤ c′ log |C| = c′(|C| − |HC(α)|)
|C|

log |C|+ c′ |HC(α)|
|C|

log |C| , (26)

rearranging we get

|C|
c′ |HC(α)|

≤ log
1

1− α
= log

(
α

1− α
+ 1

)
. (27)

Notice that since for any x > −1 it holds that x
1+x ≤ log(x+ 1), it suffices to show

|C|
c′ |HC(α)|

≤ α ⇐⇒ |C| ≤ c′ |HC(α)|α. (28)

From our assumption on |HC(α)| it suffices to pick c′ ≥ 1
αβ . For the base case consider C = {X,Y }

then for X ̸= P we have that either there is a single edge P → X or P is disconnected with X for
the condition of the theorem to hold. Then the recursion in eq. (22) could be rewritten as

T ({X,Y }) = 1

2
T ({Y }) + 1

2
T ({X}) + 1, (29)

from which it follows that
T ({X,Y }) = 2 ≤ c log(2). (30)
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For the case when |AC(P )| ≥ γ |C| consider the setH′ of size at least γ
2 |C| of the ancestors of

P which are closest to P in the topologically sorted order in the graph GC . Each node X ∈ H′ has
at most |C| − γ

2 |C| descendants. The rest of the proof follows similar steps as for the case when
|HC(α)| ≥ β |C|.

Appendix C. Fast Parent Discovery in Erdős-Rényi Graphs

In this subsection we show that Erdős-Rényi graphs satisfy the condition for fast discovery of the
parent node for sufficiently large values of p. We first state the following theorem.

Theorem 14 Let Gn,p be Erdős-Rényi random DAG with probability of each edge between n nodes

being equal to p. Assume p ≥ 1−
(

1−c
n−1

)1/(n−1)
for some constant c ∈ [0, 1], and denote by X,Y

the first and last nodes in the topological order, respectively. It holds that

E |D(X)| ≥ cn, and (31)

E |A(Y )| ≥ cn. (32)

Proof In the proof we show by induction that the expected number of descendants of the root node
(the first node in topological order) is lower bounded by cn. The expected number of the ancestors
could be lower bounded using the same reasoning. Denote by pn,i the probability that there are
exactly i descendants of the root node in the graph Gn,p and note that

E |D(X)| =
n∑

i=1

ipn,i. (33)

Furthermore, pn,i satisfies the following recursion:

pn,i = (1− (1− p)i−1)pn−1,i−1 + (1− p)ipn−1,i (34)

= pn−1,i−1 + (1− p)i−1((1− p)pn−1,i − pn−1,i−1), (35)

with p1,1 = 1 and pn,i = 0 if i > n or i = 0. Thus, we can write

E |D(X)| =
n∑

i=1

ipn−1,i−1 +

n∑
i=1

i(1− p)i−1((1− p)pn−1,i − pn−1,i−1) (36)

=

n∑
i=1

ipn−1,i−1 −
n∑

i=1

(1− p)i−1pn−1,i−1 (37)

+

n∑
i=1

[
i(1− p)ipn−1,i − (i− 1)(1− p)i−1pn−1,i−1

]
. (38)

Note that
n∑

i=1

[
i(1− p)ipn−1,i − (i− 1)(1− p)i−1pn−1,i−1

]
= 0 (39)
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as a telescoping sum and by induction hypothesis we have that

n∑
i=1

ipn−1,i−1 =

n∑
i=1

(i− 1)pn−1,i−1 +

n∑
i=1

pn−1,i−1 ≥ c(n− 1) + 1, (40)

therefore it is left to prove

n∑
i=1

(1− p)i−1pn−1,i−1 ≤ 1− c. (41)

To prove this we first show that pn,i ≤ (1− p)n−i, again by induction. This holds for n = 1 and
all i or i = 0 and all n > 1. Furthermore by induction hypothesis we have

pn,i ≤ (1− (1− p)i−1)(1− p)n−i + (1− p)i(1− p)n−1−i (42)

= (1− p)n−i + (1− p)n−1 + (1− p)n−1 = (1− p)n−i. (43)

Using this result together with the fact that pn−1,0 = 0 we have

n∑
i=1

(1− p)i−1pn−1,i−1 ≤ (n− 1)(1− p)n−1 ≤ 1− c, (44)

where the last inequality follows from the assumption of the theorem. To finish the proof, note that
for n = 1 we have E |D(X)| = 1 ≥ c.

Corollary 15 The family of Erdős-Rényi random DAGs satisfies the condition of theorem 7 in
expectation if

p ≥ 1−
(

1− c

logk n− 1

)1/(logk n−1)

,

for any constant c ∈ [0, 1]. Therefore, for such graphs, RAPS requires E[N(G, P )] = O(logk n)
expected number of interventions.

Proof From our lower bound on p and theorem 14 it follows that for all subgraphs of size at least
logk n the first and last nodes in the topological order have at least cn descendants and ancestors
respectively. Let C be an arbitrary candidate set of size larger than 4 logk n considered by algorithm 1
when run on the graph Gn,p. Let j ∈ [m] with m = |C| be the index of P in the topologically sorted
order in the subgraph of Gm,p over nodes in C. We will comment bellow on the situation when
P ̸∈ C. We consider two cases. First, if j ≤ m/2, then consider m/4 subgraphs each consisting of
m−m/2− i last nodes for i ∈ [m/4] of the original graph Gn. The size of each of these subgraph
is at least logk n and by theorem 14 we have that each node at index m/2 + i− 1 in the topological
order of the original graph Gm has at least cm/4 descendants. Since there are m/4 such nodes, the
first condition of theorem 7 is satisfied. The same happens for the cases when P ̸∈ C because in that
case all the nodes in C are non-ancestors of P since for P ̸∈ C it must be the case that the algorithm
intervened on P at some point before considering C. Second, if j > m/2, then by theorem 14 we
have that the number of ancestors of P is at least cn/2 which means that the second condition of
theorem 7 is satisfied.
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Remark 16 Note that since (1− 1/n)n ≤ e−1 we have log(n/c) log (1− 1/n) ≤ − log(n/c)
n and

thus (1− 1/n)log(n/c) ≤
(
c
n

)1/n. Using this together with the Bernoulli inequality (1+x)r ≥ 1+rx

for x ≥ −1 and r ≥ 1 we get that assuming logk n ≥ 1+max(1, (1−c)e) the condition of theorem 8

is satisfied for p ≥ log(logk(n)−1)−log(1−c)

logk(n)−1
. Additionally, by using L’Hópital’s rule and the fact that

limn→∞ (1/n)1/n = 1, we get that the two lower bounds for p presented in theorem 8 and here are
asymptotically equivalent.

Appendix D. Sublinear Upper Bound

Theorem 9 Let G be an arbitrary DAG in which there are at mostO
(

n
logd(n)

)
nodes X ∈ V \{P}

such that either P is disconnected with X , or all paths between P and X are blocked by colliders.
Then, E[N(G, P )] = O

(
n

logd n

)
, where d is the maximum degree in the skeleton of G.

Proof Let AX = {the algorithm intervenes on the node X}, then

E[N(G, P )] = E[
∑
X∈V

I {AX}] =
∑
X∈V

P(AX). (45)

We split the sum above into three parts. First, consider the nodes X that are at distance at most
m from the parent node for some m to be specified later. There are at most dm+1 such nodes and
for each of them we bound the probability P(AX) by 1. Similarly, for all nodes X such that there
is no collider-free path between P and X we also bound the probability P(AX) by 1. Each of the
leftover nodes has a collider-free path of length at least m to P . We will show that this means that
the probability P(AX) ≤ 2/m. Define

BX = {the algorithm intervenes on the node P before intervening on the node X} , (46)

then using the law of total probability we can write

P(AX) = P(AX |BX)P(BX) + P(AX |Bc
X)P(Bc

X), (47)

where Bc
X stands for the complement of the event BX , i.e.

Bc
X = {the algorithm intervenes on node P after intervening on the node X} . (48)

Consider the probability P(AX |BX). For this probability not to be zero it must be the case that the
node X is a descendant of the parent node P . Therefore, there must be a directed path of length at
least m from P to X . Note that any node on this path except for the node P cannot be intervened on
before the node X is intervened on. Therefore, by the time the algorithm intervenes on the node X
there are at least m nodes in the set of candidate nodes from which it has to sample the node X and
hence

P(AX |BX) ≤ 1

m
. (49)

Next, consider the probability P(Bc
X). If there is a directed path from P to X , then no node on this

path could have been intervened on before the round at which the algorithm intervenes on X since
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otherwise X would have been removed from the candidate set. Similarly, if there is a directed path
from X to P , then intervening on any node on the path means excluding X from the candidate set.
Thus, in these two cases P(Bc

X) ≤ 1/(m+ 1) as there are at least m+ 1 nodes on the path of length
at least m. Lastly, consider the case when there are no directed paths between P and X . Since for
this X there exists a collider-free path, there must be a path containing exactly one ancestor of both
X and P . Intervening on any node on this path other than the node which is an ancestor of both
X and P means excluding X from the candidate set because the intervened on node would be an
ancestor of X or P but not both. Thus, there are at least m nodes in the candidate set by the time the
algorithm intervenes on X and therefore

P(Bc
X) ≤ 1

m
. (50)

Bounding the other probabilities by one gives P(AX) ≤ 2/m. Bounding the number of nodes in the
third group by n and combining all of the above we get

E[N(G, P )] = O
(
dm+1 +

n

m
+

n

logd(n)

)
. (51)

Finally, setting m = logd

(
n

logd(n)

)
− 1 finishes the proof.

Appendix E. Regret Bounds

E.1. Cumulative Regret

Lemma 17 Let

AX,Z =
{
∃x ∈ [K], z ∈ [K]|Z| :

∣∣∣R̄− R̄do(X=x,Z=z)
∣∣∣ > ∆/2

}
,

DX,Y,Z =
{
∃x, y ∈ [K], z ∈ [K]|Z| :

∣∣∣P̂ (Y = y)− P̂ (Y = y|do(X = x,Z = z))
∣∣∣ > ε/2

}
for any X,Y ∈ V , Z ⊆ P with nodes being the last in some topological order ofP and Ac

X,Z, D
c
X,Y,Z

be their compliments. Define E as the event that for every node we correctly determine its descendants
and whether it is an ancestor of P using the criteria described in section 5.1, i.e.

E =
⋂
Z

⋂
X∈A(P )

AX,Z ∩
⋂

X∈Ac(P )

Ac
X,Z ∩

⋂
X∈V

( ⋂
Y ∈D̄(X)

DX,Y,Z ∩
⋂

Y ∈Dc(X)

Dc
X,Y,Z

)
,

where the intersection with respect to Z is over all possible sequences of last elements of P in all topo-
logical orders. Then it holds that P {E} ≥ 1−δ if B = max

{
32
∆2 log

(
8nK(K+1)n

δ

)
, 8
ε2

log
(
8n2K2(K+1)n

δ

)}
.

Proof By Hoeffding’s inequality for bounded random variables for fixed X,Y ∈ V with X ∈ A(Y ),
Z ⊆ P , x, y ∈ [K] and z ∈ [K]|Z| it holds that∣∣∣P̂ (Y = y|do(X = x,Z = z))− P {Y = y|do(X = x,Z = z)}

∣∣∣ ≥ (52)

≥

√
1

2B
log

(
8n2K2(K + 1)n

δ

)
(53)
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with probability at most δ
4n2K2(K+1)n

and

∣∣∣P̂ (Y = y|do(Z = z))− P {Y = y|do(Z = z)}
∣∣∣ ≥√

1

2B
log

(
8

δ

)
(54)

with probability at most δ
4nK(K+1)n . Additionally, by Hoeffding’s inequality for 1-subgaussian

random variables we have that for fixed X ∈ V and x ∈ [K] it holds that

∣∣∣E[R|do(X = x,Z = z)]− R̄do(X=x,Z=z)
∣∣∣ ≥√

2

B
log

(
8nK(K + 1)n

δ

)
(55)

with probability at most δ
4nK(K+1)n . Moreover,

∣∣∣R̄do(Z=z) − E[R|do(Z = z)]
∣∣∣ ≥√

2

B
log

(
8(K + 1)n

δ

)
(56)

with probability at most δ
4(K+1)n . Consider the event which is the union of the above bad events.

Since for Z there are
∑|P|

ℓ=0

(|P|
ℓ

)
Kℓ = (K + 1)|P| choices, by union bound we have that the

probability of this bad event is at most δ. Note that under the complement of this bad event for
X ̸∈ A(P ) and all x ∈ [K], z ∈ [K]|Z| by assumption 2 and the choice of B as in the statement of
theorem 17 we have∣∣∣R̄do(Z=z) − R̄do(X=x,Z=z)

∣∣∣ ≤ ∣∣∣R̄do(Z=z) − E[R|do(Z = z)]
∣∣∣ (57)

+
∣∣∣R̄do(X=x,Z=z) − E[R|do(X = x,Z = z)]

∣∣∣ (58)

≤ ∆/2, (59)

and for some x ∈ [K], z ∈ [K]|Z|∣∣∣R̄do(Z=z) − R̄do(X=x,Z=z)
∣∣∣ ≥ |E[R|do(Z = z)]− E[R|do(X = x,Z = z)]| (60)

−
∣∣∣R̄do(Z=z) − E[R|do(Z = z)]

∣∣∣ (61)

−
∣∣∣E[R|do(X = x,Z = z)− R̄do(X=x,Z=z)]

∣∣∣ (62)

> ∆/2, (63)

Similarly, under the complement of the same event we get that for Y ̸∈ D(X) and all x, y ∈ [K], z ∈
[K]|Z| it holds that∣∣∣P̂ (Y = y|do(Z = z))− P̂ (Y = y|do(X = x,Z = z)

∣∣∣ ≤ (64)

≤
∣∣∣P̂ (Y = y|do(Z = z))− P {Y = y|do(Z = z)}

∣∣∣ (65)

+
∣∣∣P̂ (Y = y|do(X = x,Z = z))− P {Y = y|do(X = x,Z = z)}

∣∣∣ (66)

≤ ε/2, (67)
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and if Y ∈ D(X), then for some x, y ∈ [K], z ∈ [K]|Z|∣∣∣P̂ (Y = y|do(Z = z))− P̂ (Y = y|do(X = x,Z = z)
∣∣∣ ≥ (68)

≥ |P {Y = y|do(X = x,Z = z)} − P {Y = y|do(Z = z)}| (69)

−
∣∣∣P {Y = y|do(X = x,Z = z)} − P̂ (Y = y|do(X = x,Z = z))

∣∣∣ (70)

−
∣∣∣P̂ (Y = y|do(Z = z))− P {Y = y|do(Z = z)}

∣∣∣ > ε/2. (71)

Theorem 3 Assume that P ≠ ∅, i.e., the reward variable has at least one parent in V . For the
learner that uses algorithm 2 and then runs a UCB the following bound2 for the conditional regret
holds with probability at least 1− δ:

RT
L(G,P | E)≤max

{
1

∆2
,
1

ε2

}
K |P|+1E[N(G,P)] log

(
nKn

δ

)
+
∑

x∈[K]|P|

∆P=x

(
1 +

log T

∆2
P=x

)
. (1)

Proof By lemma theorem 17 it holds that for every node we can correctly identify whether that
node is an ancestor of P and all the descendants of that node with probability at least 1− δ using
the criteria described in section 5.1. That means that algorithm 1 will correctly discover the parent
node under the same good event in BE[N(G, P )]

∑|P|+1
ℓ=1 Kℓ ⪯ BE[N(G, P )]K |P|+1 interventions

since to discover each new parent we need to perform interventions over all possible values of
the previously discovered parents and all the remaining candidate nodes. Subsequently running a
standard bandit algorithm such as UCB to find an optimal intervention on P leads to regret bound of∑

x∈[K]|P| ∆P=x

(
1 + log T

∆2
P=x

)
(Lattimore and Szepesvári, 2020).

E.2. Simple Regret

In this subsection we provide an upper bound on simple regret. First, similar to how it is done in the
main text, we define conditional simple regret:

rTL(G,P|E) = max
X⊆V

max
x∈[K]|X|

E[R|do(X = x)]− E[R|do(XT+1 = xT+1), E], (72)

where E is the event that all descendants of any node in V are correctly identified together with
whether any node is an ancestor of P , defined in theorem 17. Suppose that the learner runs a standard
bandit algorithm that is designed to minimize cumulative regret, for example, UCB, from round
N(G,P) + 1 to round T . After that the final intervention do(X = x) for arbitrary x ∈ [K] and
X ∈ V is sampled with probability

1

T

T∑
t=1

I {It = do(X = x)} , (73)

where It is the intervention performed in round t. Standard conversion of cumulative regret bound to
simple regret bound (see e.g., Lattimore and Szepesvári, 2020, Proposition 33.2) leads to theorem 18
stated below.

2. f(n) ⪯ g(n) stands for an inequality up to a universal constant.
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Algorithm 4 Full version of RAPS for unknown number of parents

Require: Set of nodes V of G, ε,∆, probability of incorrect parent set estimate δ
Output: Estimated set of parent nodes P̂

1: P̂ ← ∅,S ← ∅, P̂ ← ∅, C ← V,D′ ← ∅ ▷ D′ is the set of descendants of last ancestor of R
2: B ← max

{
32
∆2 log

(
8nK(K+1)n

δ

)
, 8
ε2

log
(
8n2K2(K+1)n

δ

)}
3: Observe B samples from PCM and compute R̄ and P̂ (X) for all X ∈ V
4: while C ̸= ∅ do
5: X ∼ Unif(C)
6: for x ∈ [K] and z ∈ [K]|P̂| do
7: Perform B interventions do(X = x, P̂ = z)

8: Compute R̄do(X=x,P̂=z), P̂ (Y |do(X = x, P̂ = z)) for all Y ∈ V
9: Estimate descendants of X:

D ←
{
Y ∈ V | ∃x ∈ [K], z ∈ [K]|P̂|,

such that
∣∣∣P̂ (Y |do(P̂ = z))− P̂ (Y |do(X = x, P̂ = z))

∣∣∣ > ε/2

}
10: if ∃x ∈ [K], z ∈ [K]|P̂| such that

∣∣∣R̄do(P̂=z) − R̄do(X=x,P̂=z)
∣∣∣ > ∆/2 then

11: C ← D \ {X}
12: P̂ ← X,D′ ← D
13: else
14: C ← C \ D
15: S ← S ∪ D
16: if C = ∅ and P̂ ̸= ∅ then
17: P̂ ← P̂ ∪

{
P̂
}

18: S ← S ∪ D′

19: C ← V \ S
20: P̂ ← ∅
21: return P̂

Corollary 18 For the learner described above we can bound conditional simple regret as follows:

rTL(G,P|E) ⪯ 1

T
max

{
1

∆2
,
1

ε2

}
K |P|+2E[N(G,P)] log

(
nKn

δ

)
(74)

+
1

T

∑
x∈[K]|P|

∆P=x

(
1 +

log T

∆2
P=x

)
. (75)

Appendix F. Generalization to Multiple Parent Nodes

Theorem 10 Let τ (P) be the set of all topological orderings of the parent nodes P . Assume that
the condition of theorem 7 holds for all graph-parent-node pairs with at least c logk(n) nodes in the
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graph in the set

{
(GV\D(P),∅)

}
∪
{
(GV\S(τ,i), τi)

∣∣ τ ∈ τ (P), i ∈ [|P|],S(τ, i) =
⋃

P∈τ [i+1:]

D(P )

}
,

where τ [i+1:] consists of the last |P|− i elements of τ , τi is the i-th element of τ and c > 0 is some
constant. Then the expected number of interventions required by algorithm 2 to find all parent nodes
is O

(
|P| logk n

)
. Similarly, assume that all graph-parent-node pairs in the set above with graphs of

size at least cn
logd(n)

satisfy the condition of theorem 9. Then the expected number of interventions

required by algorithm 2 is O
(

|P|n
logd n

)
.

Proof As noted in the main text, algorithm 2 discovers the parent nodes in a reverse topological order,
let τ ∈ τ (P) be such an order and i =

∣∣∣P̂∣∣∣ ≤ |P| be a number of the iteration of the while loop in
algorithm 2. First, assume i < |P|. We argue that the expected number of interventions during a
call of algorithm 1 is the same as the expected number of interventions done by algorithm 1 when
there is only one parent node P which is equal to the (|P| − i)-th element of τ and P̂ = ∅ on the
graph GV\S(τ,|P|−i). If i = |P|, then we need to show that the call to algorithm 1 with P̂ = P on the
graph GV\D(P) is the same as running algorithm 1 on the graph-parent-node pair (GV\D(P),∅) with
P̂ = ∅. Proving these results leads to the proof of the result of the theorem since by the assumption
of the theorem we have that (GV\S(τ,|P|−i), P ) and (GV\D(P),∅) satisfy the assumptions of either
theorem 7 or theorem 9. Let X be an arbitrary node, intervened on during the call of algorithm 1
by algorithm 2. If X is an ancestor of P in GC for some C, then X is also an ancestor of P in
GV\S(τ,|P|−i)∩C since no ancestor of P is contained in S(τ, |P| − i) because of its definition. Then
in there will be a recursive call for the candidate set D̄C(X). At the same time, if X is not an ancestor
of any node in P̂ in GC then X is not an ancestor of any such node in GV\S(|P|−i)∩C since it is a
subgraph of the graph GC , and therefore there will be a recursive call for the candidate set Dc

C(X).
Finally, if X is not an ancestor of P in GC but there exist some P ′ ∈ P such that P ′ ̸= P and X
is an ancestor of P ′ in GC , then the call to algorithm 1 by algorithm 2 will return P ′ which is a
contradiction. Thus, by induction on the elements of P we have that the sequences of candidate
sets C with which the recursive function of algorithm 1 is called when this algorithm is called by
algorithm 2 and the sequences of of candidate sets C with which the recursive function of algorithm 1
is called when this algorithm is executed on GV\S(τ,|P|−i) are equally likely and we conclude that
the expected number of interventions in these two cases is the same.

Corollary 19 Let Gn,p be an Erdős-Rényi graph with

p ≥ 1−
(

1− c0

logk(c1 log
k(n))− 1

)1/(logk(c1 log
k(n))−1)

,

for some constants c0 ∈ [0, 1] and c1 ∈ R>0, then to discover P , algorithm 2 needs E[N(G,P)] =
O
(
|P| logk(n)

)
expected number of interventions.

Proof The minimum p in the condition of theorem 8 grows with decreasing n. Therefore, for the
condition of theorem 10 it suffices that for the smallest subgraph GV\D(P) considered by algorithm 2
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the condition of theorem 8 holds. However, this graph needs to be of size at least c1 logk(n) since
otherwise the bound is trivial. Plugging n′ = c1 log

k(n) as n in the condition of theorem 8 leads to
the desired result.

Appendix G. Universal Lower Bound

In this section we show that the result of section 6.1 is tight in the sense that any algorithm that finds
the parent node P (or determines it does not exist in the graph G) requires at least the number of
interventions performed by RAPS.

Theorem 20 Fix a causal graph G and a parent node P . Any learner L that correctly identifies the
parent node P , for any graph obtained from G by relabeling3of the nodes and having P take one of
n vertices or P = ∅, satisfies

E[NL(G, P )] ≥
∑
X∈V

1

|AG(P )△AG(X) \ {X}|+ 1
,

where the expectation is taken with respect to the random assignment of the indices 1 through n
identifying each node and the randomness in running RAPS.

The proof could be found below. Consider, for example, a null graph G = (V, ∅). The number of
ancestors of every vertex is equal to one and the expression in theorem 20 becomes Ω(n). At the
same time, even if the graph is connected and its skeleton is a line graph it is possible to have a lower
bound of Ω(n) by having all vertices separated from P by colliders as in fig. 6. In this figure, every
node Xi where 1 ≤ i < n− 1 is odd is a collider on the path between Xi−1 and Xi+1 and assume
that X0 ≡ P . The number of ancestors of every node Xj , where 1 < j < n − 1 is even, equals
one leading to Ω(n) lower bound. If a graph is connected and has no colliders, theorem 9 results in
O
(

n
logd(n)

)
upper bound on the number of interventions. The upper bound in theorem 9 is tight for

perfect d-ary trees. In such trees the number of non-common ancestors between P (possibly P = ∅)
and any node X is lower bounded by the distance from X to the root assuming that X comes from
one of the subtrees, other than the subtree containing P . Thus, considering only the last term in the
summation results in

E[NL(G, P )] ≥
logd(n+1)∑

h=1

(d− 1)dh−1

h+ 1
≥ (n+ 1)(d− 1)

d(logd(n+ 1) + 1)
,

which matches the asymptotic upper bound of theorem 9. By adding an extra knowledge about the
essential graph, the algorithm in Greenewald et al. (2019) can detect the parent node with at most
O(log n) number of atomic interventions.
Proof [Proof of theorem 20] The proof uses Yao’s principle (Yao, 1977) from which it follows that
we need to show that the best deterministic algorithm performs at least the number of interventions
in the lower bound of the theorem against some distribution over graphs G. Thus, in what follows, let
P be the probability measure over the random graphs obtained by randomly and uniformly relabeling

3. Relableing corresponds to the assignment of indices 1 through n identifying each node, but not the assignment of
random variables to nodes.
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P X1 X2 X3 . . . Xn−1

Figure 6: An example of a graph with a skeleton that is a line graph and n/2 − 1 colliders (n is
assumed to be even). Our lower bound in theorem 20 implies that any learner requires Ω(n) atomic
interventions to discover P in this graph.

the nodes of the graph G, such a random graph will be denoted by H. Assume that the learner L does
not intervene on the same node twice. Moreover, assume that if it intervenes on a non-ancestor of P
it will not subsequently intervene on any of its’ descendants and that if it intervenes on an ancestor of
P it will not subsequently intervene on any of the non-descendants of that ancestor. We can make
this assumption as any learner which does not satisfy it would intervene on the same nodes with the
same results as a new learner which avoids making these redundant interventions. We denote by D
the set of all learners that satisfy this assumption. Our goal is to lower bound

inf
L∈D

EH[N(H,L)] = inf
L∈D

E

[∑
X∈V

I {AX}

]
= inf

L∈D

∑
X∈V

P {AX} , (76)

where AX = {the learner L intervenes on the node X}. Let Z be a node selected uniformly at
random and independently from the sampling of the graph and the parent node, then∑

X∈V
P {AX} = n

∑
X∈V

P {Z = X}P {AX} = nP {A} , (77)

where A = {the learner L intervenes on a randomly selected node Z}. Note that for learner L there
are only two ways not to intervene on any node Z. The first is to intervene either on an ancestor of
Z which is not an ancestor of P and the second is to intervene on an ancestor of P which is not an
ancestor of Z. Using this we get

P {A} = P {L intervenes on Z before any node in AH(P )△AH(Z) \ {Z}} . (78)

We note that any deterministic learner L could be represented by a sequence of nodes W1, . . . ,Wn

with Wi ̸= Wj for i ̸= j, and for a random graph H the learner intervenes on the node Wi if there is
no element of AH(P )△AH(Wi) in the sequence W<i = (W1, . . . ,Wi−1). Using the law of total
probability we write

P {A} =
n−1∑
l=0

P
{
A

∣∣ |AH(P )△AH(Z) \ {Z}| = l
}
P {|AH(P )△AH(Z) \ {Z}| = l} . (79)

Moreover, we have

P
{
A

∣∣ |AH(P )△AH(Z) \ {Z}| = l
}
= (80)

=

n−l∑
i=1

P
{
(AH(P )△AH(Z) \ {Z}) ∩W<i = ∅| (81)

|AH(P )△AH(Z) \ {Z}| = l, Z = Wi

}
× P {Z = Wi} (82)

=

n−l∑
i=1

(
n−i
l

)
l!(n− l)!

(n− 1)!
· 1
n
=

1

l + 1
, (83)
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Figure 7: (a) Comparison between eq. (2) from theorem 4 and the experimental number of in-
terventions of algorithm 1 on Erdős-Rényi random DAGs. (b-c) The results of running RAPS on
Erdős-Rényi random DAGs with large and small p. (d) Results of running algorithm 2 to discover
multiple parent nodes.

where to get to the last line we used the fact that Z is selected uniformly at random, we have to
choose l elements from n− i elements to label the set AH(P )△AH(Z) \ {Z} while the rest of the
nodes could be labeled randomly, and to get the last equality we used the hockey-stick identity (Jones,
1994) similar to the proof of theorem 4 in appendix A. Finally, the result follows from noticing that
the probability of |AH(P )△AH(Z) \ {Z}| = l is independent of the labeling of the nodes and thus
is equal to |{X∈V:|AG(P )△AG(X)\{X}|=l}|

n .

Appendix H. Experiments

In this section we discuss additional experimental results aimed at testing our theoretical findings.
Unless stated otherwise we obtain the average regret or number of interventions to discover the
parent node(s) and the standard deviation over 20 independent runs.

H.1. Algorithmic Aspect

In this subsection we ignore the statistical aspect of finding the set of parent nodes and assume that
each intervention gives us perfect information about the descendants of the intervened on node as
well as whether that node is an ancestor of a parent node.

Firstly, we confirm that the eq. (2) could be used to compute the expected number of interventions
required to discover the parent node in fig. 7. In this experiment we generate Erdős-Rényi random
DAG as described in section 6.2.1 with different values of p and for each such DAG compute the
expected number of interventions as predicted in eq. (2), as well as perform 20 independent runs on
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the same graph of algorithm 1. The average over those 20 runs and the standard deviation are shown
as the line and the shaded area, respectively, similar to the other figures. For this experiment we set
the number of nodes in all graphs n = 1000. Notice also that eq. (2) matches the lower bound in
theorem 20, thus in fig. 7 we show that the performance of our algorithm matches the performance of
the best possible algorithm.

Secondly, in fig. 7 we confirm the result of theorem 8 by showing that when p = 1 −(
0.5

log2(n)−1

)1/(log2(n)−1)
in Erdős-Rényi random DAG obtained as discussed in section 6.2.1, then

the number of interventions required scales as O(log n). At the same time, in fig. 7 we show that
when p = logn

n , then the number of interventions scales as n
logn .

Additionally, we verify the result of theorem 11 in fig. 7. On this figure we see that in Erdős-Rényi
graphs with p as in the lower bound of theorem 11 (with c0 = 0.5, c1 = 1 and k = 1) the number of
interventions required to discover |P| parents grows as (|P|+ 1) log(n).

H.2. Statistical Aspect

In fig. 8 we present the regret of running our approach RAPS+UCB and of running just UCB on
Erdős-Rényi graphs. For this figure we set p = log log(10)/ log(10) and K = 4. We sample an
Erdős-Rényi graph as discussed in section 6.2.1 with 9 nodes and then add the reward node with a
uniformly selected parent. The PCM is such that each node takes the value of a randomly selected
parent and uniformly sampled value in the set [K] when there are no parents. The probability of the
reward node taking value equal to 1 is the value of its’ parent divided by the maximum value that
it can take, K. The value of δ is set to be 0.01. For UCB algorithm there is only one line since the
regrets between the different runs are very close. We can see that while the average regrets of the
two approaches are close, RAPS+UCB has a much bigger variance: it can be much faster than UCB
due to quickly finding the parent node or it can not find the parent node during the selected horizon
T = 107. In our analysis of the results we found that this is due to the large budget B that might
be required for some Erdős-Rényi graphs. Note that with our approach it is possible to estimate the
number of steps it will take to discover the set of parent nodes and thus one can decide whether or
not to use RAPS before the experiment. Due to the dependence of budget B on ε and ∆, we explore
how the values of these variables depend on the parameters of Erdős-Rényi graphs and the number
of parents.

In fig. 9 we present the results of our experiments aimed at studying the behavior of ε and ∆. For
the first figure we vary probability of an edge p and set n = 10, for the second we vary the number
of nodes n and set probability of an edge to be p = log log(n)/ log(n), while for the last figure we
set p = log log log(n)/ log log(n) and n = 16. We can see that for Erdős-Rényi graphs ε can take
small values for substantially high probability and its’ value decreases with the number of nodes n.

32



C-BANDITS

0.00 0.25 0.50 0.75 1.00
T 1e7

0

1

2

3

4

5

Cu
m

ul
at

iv
e 

Re
gr

et

1e6
rapsucb
ucb

Figure 8: Regret on Erdős-Rényi graph with p = log log(n)/ log(n). Bold opaque lines show the
mean over 10 runs, other lines show the regrets for each of the 10 runs.
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Figure 9: Values of ε and ∆ for different parameters of Erdős-Rényi graphs and the number of
parents.
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