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Abstract

Determining whether an algorithmic decision-making system discriminates against
a specific demographic typically involves comparing a single point estimate of a
fairness metric against a predefined threshold. This practice is statistically brittle:
it ignores sampling error and treats small demographic subgroups the same as large
ones. The problem intensifies in intersectional analyses, where multiple sensitive
attributes are considered jointly, giving rise to a larger number of smaller groups. As
these groups become more granular, the data representing them becomes too sparse
for reliable estimation, and fairness metrics yield excessively wide confidence
intervals, precluding meaningful conclusions about potential unfair treatments.

In this paper, we introduce a unified, size-adaptive, hypothesis-testing framework
that turns fairness assessment into an evidence-based statistical decision. Our con-
tribution is twofold. (i) For sufficiently large subgroups, we prove a Central-Limit
result for the statistical parity difference, leading to analytic confidence intervals
and a Wald test whose type-I (false positive) error is guaranteed at level . (ii)
For the long tail of small intersectional groups, we derive a fully Bayesian Dirich-
let-multinomial estimator; Monte-Carlo credible intervals are calibrated for any
sample size and naturally converge to Wald intervals as more data becomes avail-
able. We validate our approach empirically on benchmark datasets, demonstrating
how our tests provide interpretable, statistically rigorous decisions under varying
degrees of data availability and intersectionality.

1 Introduction

As machine learning (ML) systems play an increasingly central role in decision-making in conse-
quential domains — ranging from education and hiring to healthcare and criminal justice — concerns
over algorithmic fairness have gained prominence, prompting the development of various fairness
metrics [19, 29, 12, 41] and intervention strategies [46, 24]. Early proposals framed the problem as
ensuring statistical parity across protected demographic groups defined by a single sensitive attribute
such as race or gender. Demographic Parity [19], Equalized Odds and Equal Opportunity [29],
Predictive Parity [12], and related criteria remain cornerstones of the field and are implemented in
popular toolkits (e.g., FAIRLEARN [44]). These metrics are ordinarily reported pointwise, and the
decision to classify an observed metric’s value as a potential issue is addressed by defining a threshold:
everything below this threshold is ignored, while everything above this threshold is treated as an
issue [4]. Such a threshold-based approach ignores the statistical uncertainty inherent in estimating
population parameters from finite samples, treating small and large populations equivalently [36].
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Minor disparities in large groups might unjustly be overlooked, while larger disparities in smaller
groups may not provide sufficient statistical evidence for meaningful conclusions [23, 33].

The issue of uncertainty of fairness measures is further exacerbated by intersectionality — an essential
concept indicating the unique disadvantages faced by individuals belonging to multiple protected
groups [14]. In intersectional settings, numerous subgroups emerge as multiple sensitive attributes
are considered jointly. As these groups become more granular, the data representing them becomes
too sparse for reliable estimation, and fairness metrics yield excessively wide confidence intervals,
precluding meaningful conclusions about potential unfairness [45, 23]. This phenomenon produces a
sort of “resolution limit” of intersectionality: as we show in our empirical assessment (Section 4)
using the standard datasets commonly employed in fairness research, even the intersection of just
two sensitive attributes can create conditions where existing methodologies appear to detect unfair
treatment, when the uncertainty on the adopted metric is actually so large to make any unfairness
claim statistically not significant.

This observation prompts a critical research question: Atz what granularity should fairness be rig-
orously guaranteed, and how can we decide this in a principled, data-driven manner? Specifically,
there is a need for principled methodologies that identify a meaningful balance between the compre-
hensiveness of intersectionality and the statistical robustness of fairness assessments [30, 34].

Our contributions. In this work, we provide a principled methodology to measure fairness while
accounting for uncertainty and group size. Specifically, we propose a theoretically grounded fairness
measure based on hypothesis testing, and we introduce two tests to detect fairness violations. The first
test relies on the asymptotic theoretical behavior of statistical parity. In particular, we demonstrate
the asymptotic normality of statistical parity, which allows the construction of confidence intervals
and tests for fairness violations. Secondly, we propose a test based on Bayesian inference, which
is particularly useful when intersectional groups are very small and asymptotic assumptions do not
hold. We further provide empirical evidence showing that the Bayesian estimator converges to the
theoretical asymptotic behavior. Additionally, we highlight the pitfalls of current fairness measures,
especially in the context of intersectional groups. We show that existing metrics can incorrectly detect
unfairness in cases where no unfairness exists, and conversely, fail to detect statistically significant
discriminatory behavior when it is present.

How our work advances beyond prior research. Kearns et al. [33] account for the size of
intersectional groups by scaling fairness metrics — such as statistical parity — by multiplying the
metrics by the probability of belonging to a subgroup. However, to determine whether a group is
treated unfairly, one still needs to rely on a predefined threshold. Kim et al. [34] use Bayesian models
to augment labeled data with unlabeled data, producing more accurate and lower-variance estimates.
Unlike our work, they focus on unlabeled data and do not provide asymptotic results or hypothesis
tests. Foulds et al. [22, 23] employ a Dirichlet-Multinomial model distribution; however, unlike us,
they still rely on thresholds to detect which group is treated unfairly and do not provide hypothesis
tests for fairness violation. Besse et al. [6, 7] compute the asymptotic distributions of the ratios of
certain fairness metrics. We generalize their results to a broader class of fairness metrics and, in
contrast to their approach, we also address and connect our findings to the case of small intersectional
groups where the large-sample assumption does not hold.

A more exhaustive coverage of related literature is presented in Appendix A.

2 Problem Definition

Our objective is to move beyond the arbitrary nature of hand-picked thresholds by introducing a
rigorous, uncertainty-aware test for detecting group-level discrimination. To set the stage, we first
formalize our notation, then assess existing threshold-based criteria, and finally, we present and
motivate our alternative approach rooted in significance testing.

Notation and preliminary definitions. Let X’ denote the input space and ) = {0, 1} the binary
label space. For each individual x € X, lety € ) represent the ground truth label, and let f(z) € Y
denote the predicted label given by a deterministic classifier f : X — ). A prediction f(z) = 1
corresponds to a favorable decision. Protected attributes are encoded by a space of p discrete values
S=3S; x---xS,. Each S € S represents the description of an intersectional subgroup and S(X’)
the population of the subgroup. We also denote .S for the complement of S in S.



Definition 1 (Statistical parity, or SP). For any subgroup S and classifier f we measure disparate
positive-decision rates via

SP(S) = P(f(a) = 1| ¢ € S(X)) — P(f(z) = 1 | 2 € §(X)) . ()

Perfect statistical parity corresponds to SP(S) = 0.

We note that we use S as the reference group, following common practice. Alternatively, one could
use the entire population as the reference group; however, the differences are typically minimal,
especially when S represents a small intersectional group.

Definition 2 (4-Statistical parity, or 6SP). A predictor f satisfies statistical parity al level 5 when

VSeS: |SP(S)| <4. )

A threshold 0 is typically chosen (such as the Equal Employment Opportunity Commission “four-
fifths rule” [28], where # = 0.2), and unfairness is identified when |SP(S)| > 6. However, this
approach does not account for sample variability, treating a subgroup of size 10 the same as one with
10,000.

To partially compensate for heterogeneous support, Kearns et al. [33] propose

Definition 3 (-Statistical parity, or YSP). A predictor f is v—Statistical Parity subgroup fair if:
VS eS: |SP(S)|-PxeSX))<~y. 3)

However, in practice, to identify unfairly treated groups we have to chose a threshold 6 and claim
fairness violation when [SP(S)| - P(z € S(X)) > 6. Moreover, as Gohar and Cheng [27] observe:
“The second term reweighs the difference by the proportion of the size of each subgroup in relation to
the population. Consequently, the unfairness of smaller-sized groups is down-weighted in the final
~v—Statistical Parity estimation. Thus, it may not adequately protect small subgroups, even if they
have high levels of unfairness.”

From thresholds to significance. Both (2) and (3) require the practitioner to fix a global threshold ¢
without guidance on how to adapt it to subgroup size or estimation variance. Motivated by the
shortcomings above and by recent calls for uncertainty-aware auditing [18, 42, 39], we recast fairness
checking as a statistical hypothesis test and propose the following definition:

Definition 4 (Statistical Parity violation (this work)). Given a significance level o € [0, 1] and a test
statistic T with null hypothesis Hy : SP(S) = 0, we say a classifier f violates statistical parity for
subgroup S if the null hypothesis Hy is rejected at level a.

Hence fairness is assessed by whether the observed disparity could plausibly arise from sampling
noise. Crucially, the decision threshold is no longer arbitrary: it is determined by the chosen test and
«, automatically adjusting to the subgroup’s sample size.

3 A Statistical Testing Framework for Size-Adaptive Fairness Assessment

In this section we operationalise our guiding idea: replacing ad-hoc thresholds with statistically
principled tests for group-level discrimination that remain valid even when intersectional subgroups
are small.

We do so by proposing two tests to detect statistical parity violations: (i) a large-sample Wald test
that leverages an analytic asymptotic variance, and (ii) a Bayesian small-sample test that yields
finite-sample credible intervals via Monte-Carlo draws from a Dirichlet-multinomial posterior. Both
deliver a p-value (or posterior tail-probability) that can be compared with a user-selected significance
level o, automatically adapting to subgroup size and sampling noise.

This unified framework yields size-adaptive, uncertainty-aware fairness conclusions, removing the
need for arbitrary global thresholds while retaining statistical guarantees for both common and rare
intersectional groups.



3.1 Large-sample test: asymptotic normality of SP,,(.S)

For an intersectional group s let us define the following probabilities:

po,s =P(f(z) = 0,2 € S(X)), p1s =P(f(z) = 1,z € S(X)),
Po.s =P(f(z) = 0,2 € S(X)), p; g =P(f(2) =1,z € S(X)),

Furthermore, let us define the marginal ps = P(z € S(X)) and pg = P(x € S(X)).
For an i.i.d. test sample (z;)?"_; we consider the following plug-in estimator of statistical parity:

Z?:l 1f(l'i):17l'i€S(X) . 2?21 1f(l'i):171'1:€§(/\’)
Z?:l 1m¢€S(X) Z?:l 1me§(A€) ’

SP,.(S) =

where 1 denotes the indicator function. Furthermore, let V = ( 225, —PLs “Pos Pis ) apg
(ps)?? (ps)?’ (ps)?’ (ps)

p1.s(1—p1,s)  —pi,spo,s —P1,5P1.5 —P1,5P0,5
v | “Pospis  pos(l—pos)  —Pospis —P0,5P0.5 4
4 — _ _ _ _ (1 — ,) _ _ _ . ( )
P1,5P1,8 P1,5P0,s Pl,s( P15 P1,8P0,5
—Po,5P1,5 —Po,5P0,5 ~Po,sP1,5  Po,s(1—Dos)

The following result (proof in Appendix B) provides the asymptotic distribution of the statistical
parity.

Theorem 1 (Central Limit Theorem for Statistical Parity). Let o(S) = \/V T X4V, where V and
Y4 are defined above. Then

J(fg) (SP,.(S) — SP(S)) % N(0,1), asn — oo,

where — denotes convergence in distribution and N (0, 1) indicates the standard normal distribution.

From Theorem 1 we obtain the (1 — «) two-sided Wald confidence interval:

aSp-11_ %
[SPn(8) + Z2e7 (1 -],
and the corresponding p-value p = 2(1 — ®(|\/n, SP,(S)/0(5)])), where ®(-) is the cumulative
distribution function of the standard normal distribution and ®~1(-) the quantile. We reject the null
“no disparity” whenever p < «. Because o(S) depends on population probabilities, we estimate it by
plugging empirical counts into Equation (4).

3.2 Bayesian inference for small samples

Theorem 1 describes how confidence intervals for SP(S) can be computed with large samples. In
the particular case of small intersectional groups this assumption is, in general, not met and the
theoretical asymptotic estimations of SP(.S) and X4 might not be reliable. We thus move our attention
to deriving credible intervals via Bayesian inference.

Prior, likelihood and posterior. We consider the probability space over pg s, p1,s, Po 5, and p; 3.
Since the p; ;, i € {0,1},5 € {S,S} are mutually exclusive, we can assume that observations
as drawn from a categorical distribution. Hence, given n trials, let n; ;, i € {0,1},5 € {S, S}
denote the counts for each outcome, with 3, . n; ; = n. n; ; follows a multinomial distribution:

(0,5, 10,5, 11,5, M1,5) ~ Multinomial(n, po,s, Pg 5, P1,5,P1,5)- One can consider a Dirichlet prior

over p; j: (po,s, Po.5,P1,5,P1,5) ~ Dirichlet(n, ap s, aq g, 1,5, 7 g). By conjugacy, the posterior
distribution remains Dirichlet with updated parameters:

(Po,s,Po,5:P1,5,P1,5) | data ~ Dirichlet(n, ag s +n0,5, g 5+10 5, 1,5 +11,5, 01 5+n7 5) (5)



Posterior draws and credible interval. We are now interested in the posterior estimate of SP(.5).
Since there is not known closed-form expression for the posterior distribution of SP(.S), we can
approximate it using Monte Carlo sampling.

The procedure is as follows. Sample K times from the posterior, let the k-th sample be:
(pgk;,pék;,pgk%,pg ;) fork =1,..., K, and let the k-th estimate of SP(S) be

(k) (k)
SP(k)(S) plS pl,g
' k k k k) °

( ) er( ) pé;Jr ( )

Then:

* An unbiased estimate of the posterior mean of SP(.S) is given by:

E[SP(S) | data] = ZSP(’“)

* The (1 — «) credible interval is given by:
Chi-a(8) = @5 ((SPPUHHLL), Qrog ((SPPUHHLY)]

where the empirical-quantile at level v is defined by:

K

Qu({SP®(9)}E ) = inf{#%Zl{SP(k)(S) <t} > u}

k=1

The interval reflects posterior uncertainty over the statistical parity difference given the observed data
and prior. We can, hence, perform a two-sided hypothesis test for the null Hy : SP(S) = 0 from the
credible interval. Specifically, we reject the null hypothesis at level « if the value 0 is not contained
in the (1 — «) credible interval.

Choice of prior. We adopt a weakly informative symmetric (flat) Dirichlet prior, i.e. with concen-
tration parameters (1,1, 1, 1), by default; domain knowledge (e.g. historical results), when available,
can be injected via the prior parameters. We explore the possibility of incorporating additional
information into the prior in Appendix C.7.

Statistical Fairness Testing Framework. Algorithm 1 summarizes our rigorous statistical frame-
work for fairness assessment, which is specifically designed to handle varying subgroup sizes in
intersectional settings. It integrates large-sample hypothesis testing with Bayesian inference, ensuring
that fairness evaluations remain reliable even when data availability differs across subgroups. It
dynamically adjusts significance thresholds, thus accounting for statistical uncertainty and preventing
misleading conclusions about bias.

3.3 Resolution limits for statistical parity fairness violation

Auditing rare intersectional subgroups naturally raises the question: how small is too small? Even with
uncertainty-aware tests, a subgroup composed of only a few samples may fail to provide statistically
conclusive evidence of bias, regardless of how pronounced the observed disparity might be. Our
framework addresses this challenge by computing, for each overall negative prediction probability
P( f(z) = 0) and protected group size ng = ng s +n1,s, the minimum fraction of negative outcomes
in S required to reject the null hypothesis Hy : SP(S) = 0 at a specified significance level a.

Figure 1 visualizes this boundary when evaluating the hypothesis that a group is being disadvantaged
(the dual figure showing the boundary for deciding if a group is being advantaged, is reported in
Figure 5 of the Appendix). The plot has on the y-axis the fraction pg g of Os predicted in the given
group, while on the x-axis the size ng of the group. The plot reports 9 different lines corresponding
to the fraction of Os predicted in the overall population. The figure uses o = 0.05.



Algorithm 1 Size-Adaptive Fairness Testing (SAFT)

1: Imput: Subgroup S, significance level o, minimum support 72 (we use 17=30)
2: Output: Fairness decision (Reject H or Fail to Reject Hy)
3: Compute n; j, 4 € {0,1},5 € {S, S}
4: if min{no s,n1,5,n9,5,71 5} > 7 then
5:  apply the Wald test of §3.1 {large-sample regime}
6: else
7:  use the Bayesian test of §3.2 {small-sample regime}
8: end if
9: Compute statistical parity measure SP(S)
10: Report point estimate SP,,(.9) or posterior mean
11: Report (1 — ) confidence/credible interval
12: Report p-value or posterior tail probability
13: if p < o then
14:  Reject Hy {Fairness violation detected}
15: else
16:  Fail to reject Hy {No statistically significant violation}
17: end if
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Figure 1: Resolution limits for Statistical Parity violations under varying global negative rates
P(f(x) = 0), when detecting disadvantaged groups (the dual figure showing the boundary for
deciding if a group is being advantaged, is reported in Figure 5 of the Appendix). Each curve traces
the minimal fraction of negative outcomes needed to reject Hy: SP(S) = 0 at v = 0.05 as a function
of the group size n. To the left of each vertical bar is the “no-power” zone, where subgroups are
too small to detect discrimination, regardless of the observed disparity. The shaded region above
each curve is the “discrimination zone”, where the subgroup’s negative rate is enough to establish a
statistically significant parity violation.

A pair (ng, po,s) needs to be above the line to indicate significant disparity. For instance, the point
(10, 0.6) on the green line (P(f(z) = 0) = 0.3) indicates that, when in the overall population there
are 30% of Os predicted, a demographic subgroup of size 10 needs to have at least 6 individuals
predicted 0, in order to have a negative discrimination case. When in the overall population there
are 40% of Os predicted (red line), a group of size 10 requires 8 negative cases to have unfairness.
When instead the prediction in the overall population is balanced (purple line, P(f(xz) = 0) = 0.5) a
subgroup of size 10 requires at least 9 negative cases to have a legitimate discrimination complaint.

We can observe that, as the global negative rate P(f(x) = 0) increases, the required subgroup size
ns grows steeply to evaluate disadvantaged groups. For example, when 90% of the population is
predicted negative, a group needs to be composed of at least 35 individuals, all predicted negative,
to have any statistically valid unfairness, highlighting the difficulty of auditing under severe class
imbalance.

By charting these boundaries, our framework highlights the resolution limits of intersectionality,
while providing practitioners a tool to determine exactly how much data each intersectional slice
needs to be audit-worthy, preventing spurious signalling of fairness violations on small subgroups.



3.4 Generalisation to other fairness measures

Analogous results can be derived for other fairness metrics. Indeed, it holds the general form of the
theorem (we defer the proof to Appendix B):

Theorem 2. Letp = (p1,...,pq) a set probabilities of q disjoint events, with y i p; = 1; let
C = (Cy,...,C,) ~ Categorical(p) be the related categorical distribution, and let C1,... C"
be n i.i.d. realizations of C. Let ¢ be a continuously differentiable (in an neighbourhood of EC')
function ¢ : R? — R. Then

g <¢(711§:Ci)—¢(EC)> —d>N(O,1) , asn— oo,
i=1

where 0 = VVT XV, V = V(¢(EC)) is the gradient of ¢, and ¥ = [diag(p) — ppT] is the
covariance matrix of C, where diag(p) indicates a diagonal matrix with entries p;.

For example, considering Equal Opportunity:

EO(S) =P(f(x) =1y =1, 2€ 5(X)) -P(f(x) =1y =1, z € 5(X)),

) p2 =P(f(z) =1,z €

Theorem 2 can be apply by choosing p; = P(f(z) =0,z € S(X)|y
)= 1,2 € S(X)|y = 1), and

S(X)y = 1), ps = P(f(z) = 0,2 € S(X)|y = 1), pa = P(f(z
¢(1’1,$2,x3,$4) - I1+2w2 B msﬂfﬁam'

From Theorem 2, one can also obtain equivalent results to [6, 7] (but with a simpler computation
of the covariance matrix). Indeed, for example, the asymptotic behaviour of the Disparate Impact

assessment:
P(f(x) = 1] € S(x))
P(f(z)=1|z € S(X))’
can be obtained by choosing p; = P(f(z) = 0,z € S(X)), p2 = P(f(x) =1,z 6 S(X)), p3 =
P(f(x) =0,z € S(X)),ps =P(f(z) =1,z € S(X)), and ¢(x1, 22, x3,74) = - L3ty

T +9L‘2 T4

DI(S) =

The results for the Bayesian test can be extended under analogous conditions. Indeed, one can
consider a general probability space over p = (p1,. .., pq) of ¢ disjoint events. Consider n trials and
indicate with (n, ..., n4) the counts for each outcome. The likelihood is again Multinomial(n, p),
and with a Dirichlet prior over p with concentration parameters (a1, . . ., &), by conjugacy we obtain
a posterior distribution distributed as a Dirichlet(n, oy + n1, ..., aq + ng). One can then consider a
fairness metric ¢ : R? — R and via Monte Carlo sampling can construct a (1 — «) credible interval
and hypothesis test for ¢, analogously to the procedure used for SP(S).

In general, our framework can model all those fairness metrics based on the confusion matrix and
related conditional probabilities.

4 Experiments

In this section, we empirically validate our size-adaptive testing framework on two canonical fairness
benchmarks under increasingly fine-grained intersectional slices.

4.1 Datasets and Models

We selected two standard datasets ! used in fairness benchmarks: the Adult Income dataset [5] and
the COMPAS recidivism dataset [2]. We include additional experiments on two other datasets in the
Appendix. We apply standard data preprocessing and train an XGBoost classifier g : X — ) (training
details are in Appendix C.2). To examine intersectional effects, we first audit non-intersectional
subgroups (race, age and sex) and then all two-way and three-way intersections of these protected
attributes.

'COMPAS from propublica (compas-scores-two-years.csv); Adult from fairlearn.org, originally from UCL


https://github.com/propublica/compas-analysis
https://fairlearn.org/main/api_reference/generated/fairlearn.datasets.fetch_adult.html
https://archive.ics.uci.edu/dataset/2/adult

COMPAS The COMPAS dataset is widely used in the study of algorithmic fairness and risk
assessment in the criminal justice system. It is often cited in fairness literature due to observed
disparities in prediction outcomes across racial groups, most notably between Black and White
defendants [2]. It includes information about criminal defendants, such as the number of prior
convictions and charge degree. The protected variables are race ("African-American", "Asian",
"Caucasian", "Hispanic", "Native American", "Other"), age ("Under 25", "25-45", "Over 45"), and
sex ("Female", "Male"). The binary target variable indicates whether a defendant is predicted to
reoffend within two years (y = 0) or not (y = 1).

Adult The Adult Income dataset is based on census data, which includes 14 categorical and
numerical features (e.g. education, martital status, occupation, etc.). The protected variables are
race ("Amer-Indian-Eskimo", "Asian-Pacific-Islander”, "Black”, "Other", "White"), age ("Under
18", "18-40", "40-65", "Over 65"), and sex ("Female", "Male"). The binary target is whether the
individual annual income exceeds 50k per year (y = 1) or not (y = 0).

Reproducibility All experiments were run on a server equipped with an Intel Xeon Gold 6312U
CPU and 256 GB of RAM. Our full codebase—including data preprocessing, model training, and
auditing notebooks—can be found at https://github.com/alanturin-g/SAFT.

4.2 Comparison with point-wise estimations

We consider both COMPAS and Adult datasets over 20 random 2:1 train-test splits, followed by
model training and fairness auditing each subgroup on every split. In each case, we compare our
approach against the fixed-threshold dSP criterion (6 = +.1, as, e.g., in [1]), to highlight how a
threshold-based audit, while common, fails to account for sampling variability.

Figure 2 illustrates a selection of intersectional subgroups (one per panel) from the COMPAS dataset.
In each panel, we specify the minimum (72,,;,) and maximum (7,4, ) size of the protected group
across different train-test splits. The gray band marks the no-detection region under a fixed-threshold
approach. For each train-test split we compute the point-wise SP estimation, the Bayesian (blue) and
the asymptotic (red) credible/confidence intervals. In panel (a) we observe a scenario where §SP
would detect a violation, since all point estimates are outside the gray band, and our approach agrees,
since we can reject Hy. In panel (b), with a smaller intersectional group, dSP would detect fairness
violations, but our approach shows that, due to the wide confidence interval, we cannot reject Hy and
detect a violation. It is worth observing that in this scenario, due to the small size of the protected
group, the asymptotic behaviour would not be reliable; our approach SAFT would indeed rely on the
Bayesian inference instead. In panel (c), we show how, for small groups, the train-test split can have
a strong impact: §SP would detect fairness violations in roughly half the cases, while our answer is
consistent across all splits. A similar pattern, but with a fairness violation consistently detected on
our side, is shown in panel (d) for a bigger group.
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Figure 2: Point-wise estimation versus confidence intervals, COMPAS dataset.

Figure 3 shows analogous results for the Adult dataset. In panel (a) we show a cross-split, cross-
approach agreement on a fairness violation detection. In panel (b) we have a disagreement, as SP
would detect fairness violations, but our approach cannot reject Hy. In panel (c) we have the opposite
disagreement: §SP would not detect fairness violations, but we show that with such big group H can
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Figure 3: Point-wise estimation versus confidence intervals, Adult dataset.

be rejected, and a fairness violation warning raised. In panel (c) we show a scenario where the train-
test split impacts both §SP and our approach. In general, these results show how a fixed-threshold
approach cannot accommodate groups of different size even within the same dataset-model scenario,
and can be sensitive to different train-test split. Conversely, our approach take into account the group
size and is generally more robust regarding train-test splits.

4.3 Comparison with vSP

We again consider all intersectional groups (across all 20 train-test splits) on COMPAS and Adult
to compare the decision from our framework with those from a threshold-based ySP approach. We
plot the size of the protected group against its ySP score computed according to Equation 3. We also
compute the fairness violation with our statistical testing approach SAFT (Algorithm 1), and use the
results as color-code in the scatterplots: red for fairness violation detection, blue for no violation.
Figure 4 (COMPAS on the left, Adult on the right) shows that no single threshold (horizontal line) on
~SP can cleanly separate true violations from non-violations. These plots further support the need for
a size-adaptive hypothesis-testing approach.
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Figure 4: Protected groups size, YSP scores, and interval-based fairness violations.

5 Conclusions

In this work, we have shown how fairness auditing can move beyond brittle point estimates and
arbitrary thresholds. By providing an analytic Central-Limit result for the statistical parity difference
and coupling it with a Bayesian Dirichlet-multinomial estimator, our framework conveys size-adaptive
confidence and credible intervals that remain valid from the most common to the rarest intersectional
subgroups.

Limitations. Our Bayesian framework inherently requires the specification of a prior distribution,
which encodes assumptions about the parameters before observing the data. Even when employing
weakly informative (flat) priors, one is still making a modelling choice. However, this is standard
within the Bayesian framework and should be understood as a natural consequence of its formulation.



Moreover, while we discuss the generalization to other fairness measures, our focus is on statistical
parity (and on equal opportunity in Appendix C.9) and leaves open empirical validation for additional
group fairness definitions.

Future work. Looking ahead, we intend to extend our methodology to consider tests for individual
fairness [17, 25, 21] and counterfactual fairness [35], which evaluate whether the model behaves fairly
for individuals and under hypothetical changes to sensitive attributes, and represent an additional
classes of fairness metrics, different from the group fairness metrics considered in this work.

Broader Impact. Our testing framework strengthens fairness audits by providing transparent, size-
adaptive confidence intervals, which can reduce both false alarms and overlooked harms, especially
for under-represented intersectional groups. At the same time, because fairness admits many metrics
and any auditor can choose the one most favourable to their goals, there is a risk of using selective
reporting to hide genuine bias. We therefore urge practitioners to apply our methods responsibly:
report all tested metrics and provide transparent interpretations of confidence intervals rather than as
standalone justifications for deployment.

Acknowledgments and Disclosure of Funding

This work is conducted as part of the Horizon Europe project PRE-ACT (Prediction of Radiotherapy
side effects using explainable Al for patient communication and treatment modification). It is
supported by the European Commission through the Horizon Europe Program (Grant Agreement
number 101057746), by the Swiss State Secretariat for Education, Research and Innovation (SERI)
under contract number 22 00058, and by the UK government (Innovate UK) under application number
10061955.

Furthermore, the authors wish to thank Filippo Ascolani for the fruitful discussions regarding the
statistical framework.

References

[1] Avinash Agarwal, Harsh Agarwal, and Nihaarika Agarwal. Fairness score and process standard-
ization: framework for fairness certification in artificial intelligence systems. Al and Ethics,
3(1):267-279, 2023.

[2] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data
and analytics, pages 254-264. Auerbach Publications, 2022.

[3] Ainhize Barrainkua, Paula Gordaliza, Jose A Lozano, and Novi Quadrianto. Uncertainty matters:
stable conclusions under unstable assessment of fairness results. In International Conference
on Artificial Intelligence and Statistics, pages 1198—1206. PMLR, 2024.

[4] Joachim Baumann, Aniké Hanndk, and Christoph Heitz. Enforcing group fairness in algorithmic
decision making: Utility maximization under sufficiency. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, pages 2315-2326, 2022.

[5] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996.

[6] Philippe Besse, Eustasio del Barrio, Paula Gordaliza, and Jean-Michel Loubes. Confidence
intervals for testing disparate impact in fair learning. arXiv preprint arXiv:1807.06362, 2018.

[7] Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes, and Laurent Risser.
A survey of bias in machine learning through the prism of statistical parity. The American
Statistician, 76(2):188-198, 2022.

[8] Umang Bhatt, Javier Antordn, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo
Fogliato, Gabrielle Melancon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, et al. Uncer-
tainty as a form of transparency: Measuring, communicating, and using uncertainty. In Proc. of
the 2021 AAAI/ACM Conference on Al, Ethics, and Society, pages 401-413, 2021.

[9] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
pages 77-91. PMLR, 2018.

10



[10] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785-794, 2016.

[11] John J Cherian and Emmanuel J Candes. Statistical inference for fairness auditing. Journal of
Machine Learning Research, 25(149):1-49, 2024.

[12] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153-163, 2017.

[13] Paulo Cortez and Alice Maria Gongalves Silva. Using data mining to predict secondary school
student performance. In Proceedings of the 5th Annual Future Business Technology Conference
(FUBUTEC 2008), pages 5—12, April 2008.

[14] Kimberle Crenshaw. Mapping the margins: Intersectionality, identity politics, and violence
against women of color. Stanford Law Review, 43(6):1241-1299, 1991.

[15] Kimberlé Crenshaw. Demarginalizing the intersection of race and sex: A black feminist critique
of antidiscrimination doctrine, feminist theory and antiracist politics. In Feminist legal theories,
pages 23-51. Routledge, 2013.

[16] Eustasio Del Barrio, Paula Gordaliza, and Jean-Michel Loubes. A central limit theorem for Ip
transportation cost on the real line with application to fairness assessment in machine learning.
Information and Inference: A Journal of the IMA, 8(4):817-849, 2019.

[17] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214-226, 2012.

[18] Kawin Ethayarajh. Is your classifier actually biased? measuring fairness under uncertainty
with bernstein bounds. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2914-2919. Association for Computational Linguistics, July
2020.

[19] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In Proc. of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 259-268, 2015.

[20] Antonio Ferrara, Francesco Bonchi, Francesco Fabbri, Fariba Karimi, and Claudia Wagner.
Bias-aware ranking from pairwise comparisons. Data Mining and Knowledge Discovery,
38(4):2062-2086, 2024.

[21] Antonio Ferrara, David Garcia-Soriano, and Francesco Bonchi. Beyond shortest paths: Node
fairness in route recommendation. Proc. of the VLDB Endowment, 18(9):3230-3242, 2025.

[22] James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. Bayesian modeling of
intersectional fairness: The variance of bias. In Proceedings of the 2020 SIAM International
Conference on Data Mining, pages 424-432. SIAM, 2020.

[23] James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. An intersectional
definition of fairness. In 2020 IEEE 36th international conference on data engineering (ICDE),
pages 1918-1921. IEEE, 2020.

[24] Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P
Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in machine
learning. In Proceedings of the conference on fairness, accountability, and transparency, pages
329-338, 2019.

[25] David Garcia-Soriano and Francesco Bonchi. Maxmin-fair ranking: individual fairness under
group-fairness constraints. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 436-446, 2021.

[26] Avijit Ghosh, Lea Genuit, and Mary Reagan. Characterizing intersectional group fairness with
worst-case comparisons. In Artificial Intelligence Diversity, Belonging, Equity, and Inclusion,
pages 22-34. PMLR, 2021.

11



[27] Usman Gohar and Lu Cheng. A survey on intersectional fairness in machine learning: Notions,
mitigation, and challenges. In International Joint Conference on Artificial Intelligence, 2023.

[28] Irwin Greenberg. An analysis of the eeocc “four-fifths” rule. Management Science, 25(8):762—
769, 1979.

[29] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[30] Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration:
Calibration for the (computationally-identifiable) masses. In International Conference on
Machine Learning, pages 1939-1948. PMLR, 2018.

[31] Johannes Himmelreich, Arbie Hsu, Ellen Veomett, and Kristian Lum. The intersectionality
problem for algorithmic fairness. In Proceedings of the Algorithmic Fairness Through the Lens
of Metrics and Evaluation, volume 279, pages 68-95. PMLR, 14 Dec 2025.

[32] Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994.

[33] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International conference on machine
learning, pages 2564-2572. PMLR, 2018.

[34] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics,
and Society, pages 247-254, 2019.

[35] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness.
Advances in neural information processing systems, 30, 2017.

[36] Selim Kuzucu, Jiace Cheong, Hatice Gunes, and Sinan Kalkan. Uncertainty as a fairness
measure. Journal of Artificial Intelligence Research, 81:307-335, 2024.

[37] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science & Business
Media, 2006.

[38] Edward Mascha and Thomas Vetter. Significance, errors, power, and sample size: The blocking
and tackling of statistics. Anesthesia and analgesia, 126:691-698, 02 2018.

[39] Mathieu Molina and Patrick Loiseau. Bounding and approximating intersectional fairness
through marginal fairness. Advances in Neural Information Processing Systems, 35:16796—
16807, 2022.

[40] Giulio Morina, Viktoriia Oliinyk, Julian Waton, Ines Marusic, and Konstantinos Georgatzis.
Auditing and achieving intersectional fairness in classification problems. arXiv preprint
arXiv:1911.01468, 2019.

[41] Cecilia Panigutti, Alan Perotti, André Panisson, Paolo Bajardi, and Dino Pedreschi. Fairlens:
Auditing black-box clinical decision support systems. Information Processing & Management,
58(5):102657, 2021.

[42] Manish Raghavan and Pauline T Kim. Limitations of the" four-fifths rule" and statistical parity
tests for measuring fairness. Geo. L. Tech. Rev., 8:93, 2024.

[43] Eugen Slutsky. Uber stochastische asymptoten und grenzwerte. Metron, 1925.

[44] Hilde Weerts, Miroslav Dudik, Richard Edgar, Adrin Jalali, Roman Lutz, and Michael Madaio.
Fairlearn: Assessing and improving fairness of ai systems. Journal of Machine Learning
Research, 24(257):1-8, 2023.

[45] Ke Yang, Joshua R. Loftus, and Julia Stoyanovich. Causal intersectionality and fair ranking. In
Symposium on Foundations of Responsible Computing, 2021.

[46] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without dis-
parate mistreatment. In Proceedings of the 26th International World Wide Web Conference,
WWW ’17, pages 1171-1180, 2017.

12



Appendices

A Background and Related Work 13
B Proofs 14
C Additional experiments and discussions 16
C.1 Additional datasets . . . . . . . . . . ... 16
C.2 Training Details . . . . . . . . . . . . e 16
C.3 Additional results for Statistical Parity . . . . ... ... ... ... .. ...... 16
C.4 Bayesian vs. Asymptotic Interval Convergence . . . . .. ... ... ... .... 24
C.5 Effects of small sample size on the asymptoticresults . . . . . . . ... ... ... 25
C.6 Choiceof . . . . . . . e 25
C.7 Influence of theprior . . . . . . ... ... ... ... ... 25
C.8 Comparison with Bootstrapping . . . . . . .. ... ... ... ... . . ..... 26
C.9 Results for Equal Opportunity . . . . . . . ... ... 26
D NeurlIPS Paper Checklist 31

A Background and Related Work

Early research on algorithmic fairness framed the problem as ensuring Statistical Parity across
sensitive groups defined by single attributes such as race or gender. Demographic Parity [19],
Equalized Odds and Equal Opportunity [29], Predictive Parity [12], and related criteria remain
cornerstones of the field and are implemented in popular toolkits (e.g., FAIRLEARN [44]). A large
body of work subsequently proposed pre-, in-, and post-processing interventions to satisfy one or
more of these metrics [46, 24].

While the above metrics are ordinarily reported as single numbers, they are in fact noisy estimates
computed on finite samples. Angwin et al. [2] and the ensuing debate around COMPAS highlighted
how small data perturbations can flip an “unfair” judgment. Kearns et al. [33] observed that even with
large overall data sets, fairness estimates for minority sub-groups can have extremely high variance, a
problem magnified under intersectionality. Recent surveys [7, 8] consolidate evidence that ignoring
estimation error leads to both false alarms (flagging random fluctuation as bias) and missed harms
(overlooking small but significant disparities in large groups).

Intersectionality [15, 27, 26, 20] demands analysis at the cross-sections of multiple protected attributes
(e.g. “Black women over 50”). Empirical studies such as Gender Shades [9] revealed accuracy
gaps that only appear at such intersections. Yet the number of subgroups grows exponentially
with attribute count, leaving most groups sparsely represented. Foulds et al. [23] formalized this
“resolution limit” and demonstrated that point estimates become statistically meaningless in the
low-data regime. Subsequent work proposed auditing algorithms that search adaptively for large-effect
subgroups without exhaustively enumerating all intersections [33, 40], but these methods still deliver
binary verdicts on noisy estimates. Complementary to these estimation strategies, Molina and
Loiseau [39] provide high-probability bounds that connect easily measured marginal fairness to
otherwise intractable intersectional fairness. Their analysis shows when marginal guarantees suffice
and offers computable certificates that scale to many attributes.

A direct frequentist remedy is to report confidence intervals (CIs) around each fairness metric. Boot-
strap CIs for Demographic Parity, Equalized Odds, and related metrics are supported in FAIRLEARN
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and have been advocated by Besse et al. [6], Del Barrio et al. [16], and Cherian and Candes [11]. In
NLP, Ethayarajh [18] introduces Bernstein-bounded unfairness, deriving analytic Bernstein bounds
that convert a small, partially annotated sample into a tight confidence interval on bias. Wide inter-
vals immediately signal when data are insufficient to draw conclusions, a property exploited in the
FairlyUncertain benchmark [3]. Nevertheless, Bootstrap Cls are not reliable when sample sizes are
extremely small. Additionally, Himmelreich et al. [31] advocate for hypothesis testing for fairness in
intersectional settings; however, differently from us they focus on the accuracy computed per group
and solely rely on central limit results, without considering alternatives for small sample sizes.

Beyond estimating metrics more precisely, several authors treat disparities in predictive uncertainty
themselves as indicators of unfairness. Bhatt et al. [8] decompose aleatoric and epistemic uncertainty
across groups; higher epistemic uncertainty for a subgroup suggests under-representation in the
training data. Kuzucu et al. [36] leverage uncertainty estimates from deep ensembles and Bayesian
neural networks to design uncertainty-aware mitigation strategies.

Existing solutions thus improve fairness assessment along isolated axes—frequentist intervals or
Bayesian models—but none provides a unified, scalable framework that (i) quantifies estimation
uncertainty, (ii) adapts gracefully to the extreme sparsity of intersectional subgroups, and (iii) remains
agnostic to the choice of fairness metric. We address this gap by introducing a statistically principled
method that merges Bayesian modeling with concentration-inequality guarantees, yielding valid
uncertainty bounds at small subgroup granularity without prohibitive computation.

B Proofs

We first prove Theorem 2 which is the general version. Then, we show how Theorem 1 follows
consequently.

Theorem 2. Let p = (p1,...,p,) a set probabilities of q disjoint events, with > p; = 1; let
C = (Cy,...,C,) ~ Categorical(p) be the related categorical distribution, and let C1,. .. ,C"
be n i.i.d. realizations of C. Let ¢ be a continuously differentiable (in an neighbourhood of EC')
function ¢ : R? — R. Then

v (%ﬁ ic’? - ¢<EO>> SN(O,1), asn oo,

where 0 = VV T XV, V = V(¢(EC)) is the gradient of ¢, and > = [diag(p) — pp”] is the
covariance matrix of C, where diag(p) indicates a diagonal matrix with entries p;.

Proof of Theorem 2. Let C*,. ..,C™ be i.i.d. samples from the categorical distribution C' ~
Categorical(p), where each C" is a one-hot vector in R? (i.e., C* € {ei,...,e,} and EC" =
EC = p).

Define the sample mean:

Then, by the multivariate Central Limit Theorem [37], we have:
Vi(Co —p) S N(0,3)
where . = diag(p) — pp ' is the covariance matrix of the categorical variable C.

Now, let ¢ : R? — R be a function continuously differentiable in an neighbourhood of p = EC.
Then, by the multivariate Delta Method [37], we have:

Vi (6(Ca) = 9(p) 5 N(0.07).
where 02 = VXV, with V = V¢(EC) = Vé(p), and, hence:

Vo (6(Cn) — (@) % N(0,1) .

g
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Furthermore, we point out that by Slutsky’s Theorem [43] one can use the covariance ¢ estimated
from the data, instead of the population one.

We now show that the asymptotic normality of the Statistical Parity estimator SP,,(S) (Theorem 1)
follows from Theorem 2 by expressing it as a smooth function of the empirical mean of a categorical
random variable.

Theorem 1 (Central Limit Theorem for Statistical Parity). Let 0(S) = /V T X4V, where V =

((Z(;)SQ , (_ppsl)f , (_pp;)’f , (];152) , and X4 is defined in Equation 4 of the paper. Then

U\(Z) (SP,.(S) — SP(S)) % N(0,1), asn — oo,

where — denotes convergence in distribution and N (0, 1) indicates the standard normal distribution.

Proof of Theorem 1. Define the following four mutually exclusive and exhaustive events:
er=(f(z) = 1,2 € S(X)), e2 = (f(x) =0,z € S(X)),
es = (f(z) =1,z € S(X)), er = (f(z) =0,z € S(X)).
Let C' € R* be a categorical random variable representing a one-hot encoding over these events, with
probability vector p = (p1,s, Po,s, P1,5: Po,5)-

Let C', ..., C" bei.i.d. realizations of C, and define the empirical mean:

1 n
p = — ct.
p=2
=1
Then p is a consistent estimator of the population vector EC' = p.

Now define the function ¢ : R* — R by
pr D3
p1+p2 p3tps’
which corresponds to the population Statistical Parity:
SP(S) = é(p) , SPw(S) =) -
Note that ¢ is continuously differentiable in a neighborhood of p, provided the denominators p; + po
and ps + p4 are nonzero, which holds under standard assumptions.

d(p1,p2,p3,P4) =

By Theorem 2, we have the convergence:

U*(Z) 6(h) — 6(p)) 5 N(0,1)

where 0(S) = VVTXV,V = Vé(p), and ¥ = diag(p) — pp ' is the covariance matrix of the
categorical variable C.

Direct computation of the gradient yields:
o ( Po,s —p1,s —Pos P1,5 )
~ \s)? (ps)?7 (09)?” (05)?)
with ps = p1,s + po,s and pg = p; 5+ Py 5-

The covariance matrix X for this 4-category categorical variable coincides with the matrix >4 defined
in Equation (4) of the main paper. Hence, the asymptotic variance is exactly

(0(8)2 =V, V.

Thus,
V(8P (S) ~ SP(8)) 4 N(0,1).
a(S)
which proves Theorem 1 as a special case of Theorem 2. O

The results for Equal Opportunity and Disparate Impact are obtained analogously, as special cases of
Theorem 2.
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C Additional experiments and discussions

Due to space constraints, the main paper focused on a selected set of datasets and results. Here, we
present broader discussions and analysis.

C.1 Additional datasets

The additional experiments include the German Credit [32] and the Student Performance [13] datasets.

German The German Credit dataset, sourced from a German bank, comprises 1000 loan applicants
characterized by twenty attributes (three of which are considered protected), including financial and
personal details. Its primary use is in binary classification tasks to predict creditworthiness, with
binary target "bad" (y = 0) and "good" (y = 1). The three protected variables considered are: Sex
("Male", "Female"), Foreign worker ("Foreign", "Not foreign"), and Age ("Under 30","30-40","40-
50","Over 50").

Student The Student Performance dataset focuses on student achievement in secondary education
at two Portuguese schools. It includes attributes related to student grades, demographics, social
factors, and school-related characteristics. The data was gathered for 649 students through school
reports and questionnaires. The binary target variable indicates whether a student’s final grade falls
within the range of 0 to 10 (y = 0) or exceeds 10 (y = 1). The protected variables considered are: age
("Adult" (> 18), "Minor" (< 18)), Sex ("F", "M") for Female and Male students, Pstatus ("T","A"),
which indicates the parent’s cohabitation status, living Together or Apart, and Address ("U","R"),
which indicates student’s home address type, Urban or Rural areas.

C.2 Training Details

In all experiments, we train an XGBoost classifier [10] on each dataset without hyperparameter tuning,
since our focus is on fairness auditing rather than maximizing predictive performance. We perform 20
independent 2:1 stratified train—test splits to account for sampling variability. The following default
XGBoost parameters were used for all runs:

* n_estimators = 100

* max_depth = 6

* learning_rate = 0.3

* subsample = 1.0

* colsample_bytree = 1.0

* objective = "binary:logistic"

* eval_metric = "logloss"

After training on each split, we evaluate accuracy on the held-out test set. Table 1 reports the mean
and standard deviation of test accuracy over the 20 splits for each dataset.

Table 1: Mean accuracy and standard deviation of the XGBoost model over 20 random 2:1 splits.

Dataset Mean Accuracy Std. Deviation
Adult 0.8702 0.0021
COMPAS 0.7141 0.0094
German 0.7633 0.0229
Student 0.7681 0.0177

C.3 Additional results for Statistical Parity

Figure 5 shows the resolution limits for Statistical Parity violations when detecting when a group is
advantaged.
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Figure 5: Resolution limits for Statistical Parity violations under varying global negative rates
P(f(x) = 0), when detecting advantaged groups (the dual figure showing the boundary for deciding
if a group is being disadvantaged is reported in Figure 1 in the main paper). Each curve traces the
maximal fraction of negative outcomes needed to reject Hy: SP(S) = 0 at o« = 0.05 as a function
of the group size n,. To the left of each vertical bar is the “no-power” zone, where subgroups are
too small to detect discrimination, regardless of the observed disparity. The shaded region below
each curve is the “discrimination zone”, where the subgroup’s negative rate is enough to establish a
statistically significant parity violation.

In Figures 2 and 3 of the main paper, we showed the results for Statistical Parity for a selection of
intersectional subgroups (one per panel) from the COMPAS and Adult datasets. In each panel, we
specified the minimum (72,,,5,,) and maximum (n,,,,) size of the protected group across different
train-test splits. In Figures 6, 7, 8, 9, 10, 11 we show the complete set of intersectional subgroups
for the four datasets Adult, COMPAS, German and Student. We have omitted panels for empty
intersectional groups (("Asian’, ’Less than 25°, "Female’) and (N.A.’, ’Less than 25°, ’Female’) in
COMPAS, CA.PI’, Under 18’, "Male’) in Adult). For every split, we plot the Bayesian credible
interval (blue), and the asymptotic normal confidence interval (red). In certain panels, such as the
final one in Figure 10, some lines are absent. This occurs because, in some train-test splits, the
intersectional group had no instances in the test fold.

As for the results in the main paper, these findings highlight the limitations of a fixed-threshold
approach, which struggles to account for variations in group size within the same dataset-model
setup and remains sensitive to different train-test splits. In contrast, our method considers group size,
demonstrating greater robustness across train-test variations.
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Figure 6: Point-wise estimation versus confidence intervals, Adult dataset.
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Figure 7: Point-wise estimation versus confidence intervals, Adult dataset (continued).
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Figure 8: Point-wise estimation versus confidence intervals, COMPAS dataset.
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Figure 9: Point-wise estimation versus confidence intervals, COMPAS dataset (continued).
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Figure 11: Point-wise estimation versus confidence intervals, Student dataset
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Furthermore, in Figure 4, we considered all intersectional groups (across all 20 train-test splits) on
COMPAS and Adult to compare the decision from our framework with those from a threshold-based
~SP approach. In Figure 12, we extend the same approach for the two other datasets, German and
Student. The results show that a fixed threshold on SP fails to consistently distinguish fairness
violations, highlighting the necessity of a size-adaptive hypothesis-testing approach like SAFT.

1 German dataset Student dataset

Fairness violation detected Fairness violation detected
NO Fairness violation detected NO Fairness violation detected
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Figure 12: Protected groups size, vSP scores, and interval-based fairness violations.

C.4 Bayesian vs. Asymptotic Interval Convergence

To illustrate how our Bayesian credible intervals smoothly interpolate between robust small-sample
uncertainty and asymptotic normality, Figure 13 shows four synthetic subgroups with sizes n €
{1,10, 100, 1025}. In each panel we plot (i) the posterior density of the statistical-parity gap under
a uniform Dirichlet prior (blue curve), (ii) the corresponding 95% credible interval (blue shaded
region), and (iii) the asymptotic 95% confidence interval from Theorem 1 (red curve region) centered
at the same point estimate. As n grows, the two intervals converge and the posterior density sharpens,
while for very small n the Bayesian interval remains appropriately wide, reflecting high epistemic
uncertainty.

('Asian’', 'Less than 25', '‘Male') Asian
ns=1 ns =10
40 i i i i
| s B
530 ! ; 9 i o
S i i $2 11— AT (-
$20 L > i !
o 1 o I I 1
E 1 GLJ : 1 Il 1
10 ] (rag § v NN I\
1 1. | U
| _V/ 0,
H ) " 0 i ik 1
-0.50 -0.25 0.00 0.25 -0.50 -0.25 0.00 0.25 0.50
SP SP
('Black’, '25 - 45', 'Female') Black
10.0 ns =100 ] ns = 1025
' 20 H H i
H i
3 315 i !
C C 1
g g :
o o 10 H
o g ]
i L g E
0

0.0

Figure 13: Comparison of Bayesian credible intervals (blue) and asymptotic normal confidence
intervals (red) for subgroups of size ng. As ng increases, the posterior density concentrates and the
two intervals converge; for small ng, the Bayesian interval remains larger, correctly encoding high
uncertainty.
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C.5 Effects of small sample size on the asymptotic results

The Wald variance for subgroup S can be rewritten as:

p1,s 1— Pi,s P1,5 _ P1,5
02 _ P1,stpo,s p1,s+po,s + P1,5+Po,5 P1,5+Po,5

N ng ng

Since ng ~ n - P(S) (and analogously for ng) the variance decreases at rate 1/n, even for rare
groups. Both asymptotically and for small samples, small subgroups do not lead to inflated variance.

That said, the more subtle issue is that in finite samples, the plug-in variance o may actually

underestimate uncertainty when ng is small. In particular, when the estimated of plglﬁ is very

) in the variance formula becomes

close to 0 or 1, the estimation of the term —2%:5 (1 — _Ps

P1,s+po,s P1,s+po,s
near zero. This drives the Wald variance estimate to be artificially small, even though the underlying

sampling uncertainty is high for such extreme proportions with small ng.

This can make the Wald test anti-conservative, falsely rejecting the null due to high variance in small
groups not captured by the asymptotic approximation. This effect can be seen, for example, in the
top-left plot of Figure 13.

This is why we introduce the Bayesian Dirichlet—-multinomial test to provides calibrated inference
in the small-sample regime. Hence, the problem is not variance inflation, but undercoverage due to
inappropriate reliance on asymptotics when subgroup counts are small.

C.6 Choice of nn

In Algorithm 1 we suggested choosing 7 = 30, since thirty observations is a widely used
rule-of-thumb to trust CLT-based Wald tests [38] because coverage and power stabilize around
that cell size in typical multinomial settings. In Table 2 we analyze the effect of the choice of n for
SAFT applied to the Adult dataset. One can observe how from around twenty observations the total
number (over all train-test splits and over all possible sub-groups) of fairness violations detected
stabilizes. Hence, also our empirical results confirm thirty observations as a safe choice to switch
from the bayesian to the asymptotic test. With a smaller 7, e.g., n = 5, the amount of samples appear
to be too small to rely on asymptotic results, indeed the CLT might induce to over-reject the null, as
explained in Appendix C.5.

Table 2: Total number of fairness violations detected by SAFT in Adult for all train-test splits and for
all sub-groups for different values of n

n 1 2 5 10 20 30 40 50 100 | 200 | 500 | 1000
# of violations | 1159 | 1144 | 1118 | 1098 | 1097 | 1097 | 1097 | 1096 | 1098 | 1097 | 1097 | 1097

Clearly, users may raise or lower n if their data warrant it.

C.7 Influence of the prior

We now explore the impact of the prior choice and the incorporation of prior information, derived
from the training set. We consider:

* Uniform (flat) Dirichlet prior, which imposes no substantive prior information;

* Empirical Bayes priors derived from training-set frequencies.

For each subgroup we set

A

- max(1, min(co,s, Co,s, C1,5, €1,5))

[CO,S =+ 1,C0’§ + 1701,3 + ].,Cl’g + 1], A E {05, ]., 2, 5}

where ¢; ; is the number of training samples with label ¢ € {0, 1} in group j € {s, 5}.

25



This construction scales the prior strength by A while preserving the empirical class proportions,
and caps the influence when any cell count is extremely small. Table 3 shows the results with the
confidence/credible intervals (Cls) for some selected subgroups from the Adult dataset.

The results show prior influence for extremely small subgroups, while all CIs rapidly converge to the
asymptotic regime as ng grows. For the smaller ng case, the Wald intervals are spuriously narrow,
clearly under-representing the true sampling uncertainty. In contrast, the uniform-prior Bayesian
credible intervals are much larger, appropriately reflecting the scarcity of data. As we introduce
empirical-Bayes priors, these intervals shrink toward the Wald width but remain more conservative
than asymptotic bounds, demonstrating that modest data-informed priors can stabilize inference
without overconfidence. With hundreds or thousands of samples, all methods produce nearly identical
intervals, illustrating that prior effects vanish once more data is available.

Table 3: Influence of the prior

Other, Under 18, A.PI., Over 65, White, Over 65, Black
Female Male Female
ng 2 12 210 1522

Asymptotic normal CI

Bayesian CI with uniform prior
Bayesian CI with empirical prior, A
Bayesian CI with empirical prior, A
Bayesian CI with empirical prior, A
Bayesian CI with empirical prior, A
Bootstrapping CI

5

0.
1
2
5

[-0.204, -0.192]
[-0.190, 0.488]
[-0.240, 0.014]
[-0.236, 0.037]
[-0.228, 0.035]
[-0.195, 0.000]
[-0.204, -0.192]

[-0.271, 0.041]
[-0.176, 0.176]
[-0.196, 0.048]
[-0.196, 0.052]
[-0.177,0.037]
[-0.156, 0.011]
[-0.203, 0.073]

[-0.182, -0.123]
[-0.174, -0.115]
[-0.179, -0.121]
[-0.179, -0.123]
[-0.177, -0.125]
[-0.176, -0.128]
[-0.178, -0.118]

[-0.130, -0.097]
[-0.127, -0.097]
[-0.138,-0.114]
[-0.138,-0.113]
[-0.138, -0.114]
[-0.139, -0.113]
[-0.130, -0.098]

C.8 Comparison with Bootstrapping

In moderate to large subgroups, nonparametric bootstrap intervals (e.g., [44]) coincide, both theo-
retically and empirically, with the Wald limits obtained from our CLT analysis, so bootstrapping
adds computation without accuracy gains at that scale. In small intersectional subgroups where
Wald approximations fail, the bootstrap typically inherits the same pathologies: with pronounced
class imbalance, resamples frequently yield zero counts in one or more contingency cells (e.g.,
no predicted positives for group .5), producing degenerate or undefined disparity estimates and a
highly discrete, skewed resampling distribution that yields off-center, overly narrow intervals. In
the last row of Table 3, the bootstrap intervals closely track the asymptotic confidence interval even
at small ng, indicating that resampling does not remedy the underlying approximation error in
this setting. Accordingly, we use analytic CLT intervals when regularity conditions are met, and
Dirichlet-multinomial credible intervals when any cell counts are in the single digits, where they
remain well-calibrated and avoid degeneracy.

C.9 Results for Equal Opportunity

In Figures 14 and 15 (Adult dataset) and Figures 16 and 17 (COMPAS dataset), we present the results
for Equal Opportunity. In each panel, 7,,;, and n,,4, denote the minimum and maximum number of
instances belonging to the protected group with y = 1 across different train—test splits. Compared to
the plots for Statistical Parity Figures 6 to 9, those for Equal Opportunity show wider CIs, consistently
reflecting lower n; ; counts given the additional conditioning on i = 1 for Equal Opportunity.
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Figure 14: Point-wise estimation versus confidence intervals for Equal Opportunity, Adult dataset.

27



('ALE.', '40 - 65', Fer
n,

(‘ALE.', '18 - 40", 'Male’)

, "Over 65', 'Female’)
Imin = 0, Nmax =

'male’)
Nmin = 0, Nmax = 4

(ALE.", '18 - 40", 'Female’)
Nmin = 0, Ny, 6 Nnin = 3, 1y

(‘Under 18", 'Male’)
Nimin = 0, Nmax = 0

—t
e —
-05 0.0 05 ~010 -0.05 0.00 005 0.10
EO EO
(AP, '18 - 40", 'Male') ('AP1, 40 - 65', 'Female’)
in = 33, Nax = 59 Nonin = B, Mg, = 14
.

('A.PL, 18 - 40", 'Female’)
9 Nimin =

Nimin = 8, Mimax = 1

-0.10 -0.05 0.00 0.05 0.10
EO
(ALE.", 'Over 65', ‘Male’) (ALE., 'Under 18", "Female’) (‘ALE., 'Under 18",
Nin = 0, Ny = 0 Dinin = 0, Nina = 0 Donin = 0, Ny =
——
.
=
=
B
—
—
—
——=
——]
——
]
E=—
——
=
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 —-0.50 -0.25 0.00 0.25 -0.2 0.0 0.2 -0.5 0.0
EO EO EO EO EO EO
(APL, 40 - 65, 'Male') (‘APL, ‘Over 65', ‘Female’) (‘APL, ‘Over 65', 'Male') (‘APL, 'Under 18", ‘Female’) (‘APL', 'Under 18', 'Male’) (‘Black', 18 - 40', 'Female’)
inin = 50, Nppax = 76 Ninin = 0, Ninax = 1 Dinin = 0, Nipaye = 3 inin = 0, Moy = 0 =0, Nax = 0 Ninin = 9, Ny = 21
=
-06 -04 -02 00 02 05 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 005 010 -06 -04 -02 0.0 02
EO €0 3 EO
(‘Black’, '18 - 40", ‘Male') (‘Black', '40 - 65", 'Female’) (‘Black', '40 - 65", 'Male') (‘Black', ‘Over 65', ‘Female’) (‘Black’, ‘Over 65', ‘Male’) (‘Black’, 'Under 18", ‘Female’)
4, =59 Nimin = 21, Nyax = 38 = 80, Ny = 107 in = 0, Nimax = 1 =2,Npa =9 Mrmin = 0, N = 0
o || B
S — = =
0.2 -02 -01 0.0 01 -06 -04 -02 00 02 -0.5 0.0 0.5 -0.10 -0.05 0.00 0.05 0.10
EO EO EO EO
(‘Black’, 'Under 18', 'Male') (‘Other', '18 - 40', 'Female’) (‘Other', '18 - 40", 'Male') (‘Other, '40 - 65', 'Female') (‘Other, '40 - 65', (‘Other, 'Over 65', 'Female’)
= 0 Ninin = 0, Ninax = 6 min = 3, N = 7 inin = 0, N = 3 Donin = 3, Ninax min = 0, Ninax =
p— —
=
e —
[
-0.10 -0.05 0.00 0.05 0.10 -0.50-0.25 0.00 0.25 0.50 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 —0.10 —-0.05 0.00 0.05 0.10
EO EO EO EO EO EO
(‘Other', ‘Over 65', 'Male') (‘Other', 'Under 18", ‘Female’) (‘White', '18 - 40", 'Male’) (‘White', '40 - 65', 'Female’)
Nmin = 0, Nmay 0 in = 0, Amax = 0 Nemin = 974, Nma, 1097 Nemin = 253, Nmax = 297
T
=
E——
N
==
==
——
==
==
=2
—
===
=
==
=
—=
=
=
-010 -005 000 005 010 -010 -005 000 005 010 =-02 -01 00 01 -01 00 01
EO €0 €0 €0
‘Male') (‘White', 'Under 18", ‘Female’) (‘White', 'Under 18, ‘Male’)
133 Nimin = 0, Nimax = 0 imin = 0, Nmax = O

-0.10 -0.05 0.00 0.05 010
EO

er 65, 'Female’)
21

('White', 'Over 65',
6, N,

(‘White', '40 - 65', ‘Male') (‘White', ‘Ove
min = 1796, Nimax = 1891 n, 11,n
—— —_—
==
== —
== ————n
== e
= ——] 0
—— e ——
— et
—— —
—=
==
= e
==
e———

-0.10 -0.05 0.00 0.05 010 =010 -0.05 0.00 0.05 0.0
EO EO

01

0.0
EO

(continued).

Figure 15: Point-wise estimation versus confidence intervals for Equal Opportunity, Adult dataset
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Figure 16: Point-wise estimation versus confidence intervals for Equal Opportunity, COMPAS dataset
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Figure 17: Point-wise estimation versus confidence intervals for Equal Opportunity, COMPAS dataset
(continued)
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D NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. We provide the theoretical framework for hypothesis testing
for fairness in Section 3 and empirical results in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed in the Conclusions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We detail the assumption of theoretical results in Section 3. We formally proof
our results in the Supplementary Material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes how experiments were run at a high level in §4.1, while
the specific details to reproduce the results are described in the Supplementary Material.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data are available in the Supplementary Material, and instructions to
reproduce the results are given.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Experiments Section describes how many data splits were used for the
results, and details about the models used, even though they are not a central part of the
results, are included in the Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the results across all the train-test splits. Furthermore, we report
confidence/credible intervals as correctly produced via central limit results or bayesian
inference.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Reproducibility in §4.1 provides the computational resources needed to repro-
duce the experiments, and, while running the experiments only takes a few minutes, more
details are provided in the Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in the Conclusions.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs only for editing/formatting.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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