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Abstract

The goal of style transfer is, given a content image and
a style source, generating a new image preserving the con-
tent but with the artistic representation of the style source.
Most of the state-of-the-art architectures use transformers
or diffusion-based models to perform this task, despite the
heavy computational burden that they require. In particular,
transformers use self- and cross-attention layers which have
large memory footprint, while diffusion models require high
inference time. To overcome the above, this paper explores
a novel design of Mamba, an emergent State-Space Model
(SSM), called Mamba-ST, to perform style transfer. To do
so, we adapt Mamba linear equation to simulate the behav-
ior of cross-attention layers, which are able to combine two
separate embeddings into a single output, but drastically
reducing memory usage and time complexity. We modified
the Mamba’s inner equations so to accept inputs from, and
combine, two separate data streams. To the best of our
knowledge, this is the first attempt to adapt the equations
of SSMs to a vision task like style transfer without requiring
any other module like cross-attention or custom normaliza-
tion layers. An extensive set of experiments demonstrates
the superiority and efficiency of our method in perform-
ing style transfer compared to transformers and diffusion
models. Results show improved quality in terms of both
ArtFID and FID metrics. Code is available at https:
//github.com/FilippoBotti/MambaST.

1. Introduction

Style Transfer is a deep learning technique aiming to
generate a new image which has the content (e.g objects,
layout) of a given image (i.e. the content image) and the
style (e.g. color or texture structure) of another image (i.e.
the style image). Style Transfer has been largely studied
[6, 11, 24, 25, 27, 29, 33, 42] and there exist several models

Figure 1. Examples of generated images from our Mamba model
given a style and a content image

which can perform it with good results in terms of quality
and consistency between content and style. Recently, style
transfer was also extended to text-based models by substi-
tuting the style image with a textual description [25, 27]. In
this work, we will not tackle or compare with this category
of models as they largely differ from standard style trans-
fer architectures. General approaches follow the encoder-
decoder pipeline and perform style transfer in an intermedi-
ate layer between these two sections [24, 29, 33, 42]. How-
ever, these models struggle to find a relation between con-
tent and style, leading to poor quality results in terms of im-
age details. For this reason, recent architectures (e.g. [11])
leverage the capability of transformers by taking advantage
of cross-attention mechanism to improve the quality of the
results. However, transformer-based architectures have a
large memory requirement. On the other hand, several ap-
proaches [6, 43, 49] tried to leverage diffusion models as
backbones for style transfer, but did not reach the same
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quality as transformer-based architecture or, as stated in [6],
required high inference time compared to the former.

On the contrary, State Space Models (SSM) [18,19] have
recently shown results comparable to transformers for long
sequence modeling and in vision task [20,23,50]. In partic-
ular, among these, Mamba [17] proved to be a competitive
alternative to transformers, but with a much lower mem-
ory requirement. Additionally, Mamba complexity scales
linearly with the sequence length, rather than quadratically,
resulting in a fast inference especially if compared with dif-
fusion models. Mamba was initially designed to work with
1D sequences (like words in a sentence), but was recently
adapted to work with 2D vision data thanks to VMamba
[32]. Recently, in a text style transfer architecture de-
scribed by Wang et al. [41], Mamba building blocks demon-
strated performance comparable to transformer-based archi-
tectures. However, additional Adaptive Layer Normaliza-
tion (AdaLN) was necessary to fuse the style and content.

In this work, we propose a way to adapt the inner equa-
tions of Mamba to perform style transfer (Fig. 1) with a
novel architecture called Mamba-ST (Mamba Style Trans-
fer). The main part of Mamba-ST is a novel block, called
Mamba-ST Decoder (MSTD), which is able to fuse the style
information extracted from an image with the content of a
different image. More in detail, both content and style are
modelled as a sequence of patch embeddings and are fed
to our proposed MSTD. In order to perform the fusion, we
modified the Mamba internal matrices to mimic the func-
tionality of a cross-attention layer, yet maintaining the core
properties of SSMs. By doing so, our solution enables the
interaction between style and content image without the
need of additional modules, like Adaptive Layer Normal-
ization (AdaLN). Our contributions can be summarized as:

• We designed a cross-attention-like method inside
SSMs. This is done by adapting the mathematical for-
mulation of internal matrices so that additional layers
like AdaLN are not required, whilst maintaining the
same properties of the basic Mamba block.

• A novel vision-based Mamba architecture, called
Mamba-ST, which is able to perform style transfer
with comparable results with respect to transformer-
and diffusion-based architectures.

• The proposed approach allows a better memory usage
w.r.t. transformers and a much faster inference time
compared with diffusion models.

2. Related Work
Style Transfer. The problem of style transfer has been
widely studied in the literature [2, 4, 12, 22, 24, 28, 31]. The
first attempt to transfer style was the one proposed by Gatys
et al. [15], which shows that is possible to merge content

and style features extracted by a CNN by solving an opti-
mization problem. Later, the introduction of AdaIN [24] al-
lowed to perform arbitrary style transfer adjusting the mean
and the variance of the content image and align them with
the ones of the style image. Thanks to its efficiency, AdaIN
became a very popular architecture. Later, the advent of
transformers [31,34] showed how self-attention mechanism
can improve the quality of the results by finding stronger
relations between the style and the content. Subsequently,
Deng et al. [11] introduced a fully-transformer-based ar-
chitecture, StyTr2, which, combined with a new content-
aware positional encoding scheme, outperforms state-of-
the-art methods for style transfer. Despite the capability
reached in terms of quality, these methods heavily depend
on transformers, so they scale quadratically with the image
size, which limits their use only on small images.

Recently, diffusion-based style transfer methods [6, 43,
49] showed how to leverage the generative capability of dif-
fusion models in order to perform style transfer. InST [49]
captured the information of the style with a text-based in-
version method and then transfer it. StyleDiffusion [43] in-
troduced a CLIP-based style disentanglement loss to disen-
tangle style and content in the CLIP image space. Despite
the quality of the images produced with these architectures,
the content and the style are not perfectly merged together
and the results are not yet on par with the ones generated by
transformer-based models. Finally, StyleID [6] proposed
a new style transfer method which exploits the knowledge
of Stable Diffusion 1.4 [35] without requiring supervision
or optimisation. StyleID simply substitutes key and value
of content with those of styles inside self-attention layers,
but, despite the improved results w.r.t. previous methods,
it still requires high inference time compared to the one of
transformer-based architectures. In order to solve the men-
tioned problems regarding memory usage and speed, while
maintaining quality and coherency during style transfer, we
propose a new full Mamba-based architecture.

State Space Models. Despite the well known superiority
of transformer-based architecture in vision tasks [3, 14, 37,
46, 47], one of the most crucial problems of these architec-
ture remains their quadratic complexity and high memory
requirement. For this reason, recently, several works tried to
overcome this issue [5,7,8,13,40]. In particular, State Space
Models (SSMs) [18, 19] were inspired by control systems
theory and have been recently introduced in deep learning
field in order to take the advantage of their linear complex-
ity [23,32,39,50]. Structured State Space Models [18] pro-
posed a new parametrization for SSM in order to get the ad-
vantage of parallelization during training and achieve high
speed during inference. Mamba [17] was recently intro-
duced as an improved SSM. Its main contribution consists
in making the SSM parameters input-dependent. Since its
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superiority compared to other SSMs in terms of memory
usage, time complexity and quality of the results, Mamba
has been widely applied in deep learning, from NLP [39],
to vision field [32, 50] like super-resolution [20, 36] or even
diffusion models [23]. Recently, a first attempt of using
Mamba for text-driven style transfer was presented [41], but
it failed to take the advantage of the inner SSMs matrix and
still used custom normalization layers like AdaLN for trans-
ferring the style. In this context, Mamba was utilized not for
merging content and style directly, but primarily as a feature
extractor to exploit its fast inference speed. Notably, the
combined AdaLN+Mamba model exhibited limited gener-
alization capabilities, requiring separate training for each
new (text, image) pair. Consequently, Mamba facilitated
more rapid interaction between image patches, while the
style fusion process was primarily handled by the AdaLN
layers. On the contrary, we adapt the inner equation of
Mamba and provide a full Mamba-based architecture which
is able to merge content and style without any other mod-
ule like AdaLN or cross-attention. Moreover, our method
learns how to transfer style and, once trained, can be used
with any image-style pair without the need to be retrained.

3. Method
In this section, the proposed architecture is introduced

by firstly describing Mamba and then showing how its inner
equation can be adapted to perform style transfer.

3.1. Background on Mamba

State-Space Models, like S4 [18], learn to map a 1-D se-
quence x(t) ∈ R to another 1-D sequence y(t) ∈ R as out-
put, maintaining an internal state space h(t) ∈ RN , where
N is the state size. Differently from other sequence learning
approaches like transformers, SSMs scale linearly w.r.t. the
sequence length. SSMs are described by a linear ordinary
differential equation (ODE) system:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(1)

where the matrices A ∈ RN×N , B ∈ RN×1, C ∈ R1×N

and D ∈ R are learnable. In order to be usable in deep
learning architectures, a discretization phase is applied to
the system. Here we decided to use the zero-order holder
(ZOH) rule, where ∆ represents the step parameter. Specif-
ically, by denoting with Ā, B̄ the discretized matrices, writ-
ten in a RNN form, the equation becomes:

hk = Āhk−1 + B̄xk

yk = Chk +Dxk

(2)

Given their ability to compress the context in a finite state,
recurrent networks are more efficient than transformers, yet

their main limitation becomes how well the state can com-
press the context information [17] (e.g. understanding the
most relevant words in a sentence while ignoring the oth-
ers). For this reasons, Gu et al. introduced Mamba [17], by
adding an input dependency on the matrices B,C and ∆:

B = LinB(x), C = LinC(x),∆ = Lin∆(x) (3)

with Lin∗ being a linear, fully-connected layer.
This contribution, combined with an efficient selective

scan algorithm for temporal coherency, maintains all the
computation efficiency but with a state that is able to bet-
ter memorize and understand the context information.

3.2. Overall Architecture

Given the ability of Mamba to better understand contex-
tual information while maintaining the efficiency of a re-
current network, in this work we aim to adapt Mamba to
perform style transfer. To this end, we propose Mamba-ST,
whose architecture is shown in Figure 2 (a). Our system is
composed of three main components: (i) two Mamba En-
coders that encode content and style images, respectively,
(ii) a Mamba Style Transfer (ST) Decoder (MSTD) that
fuses together content and style information and (iii) a CNN
decoder to rearrange the decoder output back to an image.

Both content and style images are divided into patches
and projected into 1D embeddings using a PatchEmbed
layer [44]. The PatchEmbed takes the images I ∈
RC×H×W as input, and produces a series of embeddings
t ∈ RD×(h·w), where h = H

p and w = W
p (with p the patch

size), and D is the hidden dimension of each embedding.
Then, we employ the two different domain-encoders, which
take as input the corresponding embedding set (i.e. content
and style), to learn the visual representations of the images.
After that, content and style representations extracted by the
Mamba encoders are fed to the Mamba-ST Decoder (see
Fig. 2 (c)) which is tasked to merge the two streams of in-
formation. Finally, a depatchify block is used to obtain a
feature map of size D× h×w that the CNN decoder trans-
forms to obtain the output image of size C ×H ×W .

3.3. Mamba Encoder

Each of the encoders is composed of three Mamba En-
coder layers, illustrated in Fig. 2 (b), whose structure is
derived from VMamba [32], except for a skip connection
that we added between each layer, in order to avoid van-
ishing gradient problem. After an initial layer normaliza-
tion, the embeddings are fed to the Base Visual SSM (Base
VSSM), illustrated in Fig. 2 (d). The Base VSSM struc-
ture is achieved by substituting the S6 module employed by
Mamba to perform the selective scan, with its 2D counter-
part called 2D-SSM (Fig 2 (e)).

The 2D-SSM learns the matrices A,B,C and ∆ and
models the state of the layer and the output, which is the
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Figure 2. a) Mamba-ST full architecture. It takes as input a content and a style image and generates the content image stylized as the style
image. b) Mamba encoder derived from [32] with an additional skip connection (rightmost). c) Our Mamba-ST Decoder, which takes both
style and content as input. In particular, style embeddings are shuffled before passing to ST-VSSM in order to loose spatial information,
maintaining only higher level information. d) The inner architecture of the Base VSSM. e) The inner architecture of the Base 2D-SSM. f)
Our ST-VSSM. Notably, DWConv is shared among content and style embedding. g) Our modified ST 2D-SSM, where the matrices A,B
and ∆ are computed from the style, the input of the selective scan are the style embedding and the matrix C is calculated using the content.

Figure 3. The 2D selective scan with a 2× 2 example image.

encoded visual representation of the image. The core of 2D-
SSM is the selective scan mechanism [17] adapted for 2D
sequences (Fig. 3). We follow [32] and use four different
scan directions to maintain spatial information. Then, for
each scan, we calculate state and output following Eq. (2)
and merge them together by reordering and summing them.
The algorithm is presented in Alg. 1.

3.4. Mamba-ST Decoder

The Mamba-ST Decoder (MSTD) is tasked to merge the
content and the style visual representations, extracted by the
two Mamba encoder blocks, in a single representation, ef-
fectively performing style transfer. Its overall structure is
similar to the encoder one, but differs in two main charac-
teristics. First, it takes as input both style and content em-
beddings, which are fed to a modified version of the base
VSSM called ST-VSSM (see Fig. 2 (f)). Secondly, inside
the ST-VSSM, the 2D-SSM is replaced by the proposed ST-
2D-SSM (see Fig. 2 (g)) which is specifically designed to
fuse content and style information.

Recently, [1] and [9] showed a duality between Mamba
equation and transformer self-attention. In particular,
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they suggested that query Q, key K and value V ma-
trices employed in the self attention equation (Att =

Softmax(Q·KT

√
d

) · V ) can be expressed as:

Q ≈ C,K ≈ B, V ≈ X (4)

where X is the input sequence. Following this symme-
try between Mamba and self-attention, our intuition was to
mimic a cross-attention mechanism by letting A,B and ∆
matrices be dependent from the style source s, while mak-
ing C dependent from the content x as follows:

B = LinB(s),∆ = Lin∆(s), C = LinC(x) (5)

Similarly, we decided to pass the encoded style features in-
stead of the content as input sequence for the ST-2D-SSM.
More in detail, based on Eq. (2), we incorporate the style
information inside the state, as the equation for the state de-
pends only on A and B matrices:

hk = Āhk−1 + B̄sk (6)

Then, the output is made dependent on both style and con-
tent since C is derived from the content image:

yk = Chk (7)

This allows to effectively merge content and style informa-
tion and to perform style transfer.

The inner selective-scan mechanism inside the decoder
layer is the same as the one inside the encoder. Furthermore,
in order to remove content details from the style that could
jeopardize the style transfer, we decided to apply a random
shuffle to the style embedding, as shown in Fig. 2 (c). In
this way, the hidden state of the model loses every infor-
mation about the content of the style picture, leaving only
style information. In Alg. 2, we provide the full algorithm
description of the decoder block.

3.5. Losses

We train our model using two perceptual losses. The
content loss LC focuses on preserving the content of the
original image, while the style loss LS aims to transfer the
style of the source image to the target image.

We implement the two losses using a pretrained VGG19
model following [2,11,24]. Let xc be the content image, xs

be the style image and xg be the generated image. Given
Nl the number of the layers selected from the VGG19, we
define ϕi(x) as the features extracted from the i-th layer
with as input the image x. The content loss is defined as:

LC =
1

Nl

Nl∑
i=0

∥ϕi (xg)− ϕi (xc)∥2 (8)

The style loss is instead defined as:

LS =
1

Nl

Nl∑
i=0

(∥µ (ϕi (xg))− µ (ϕi (xs))∥2

+∥σ (ϕi (xg))− σ (ϕi (xs))∥2)

(9)

where µ(·) is the mean of a given feature map and σ(·) is
the standard deviation of a given feature map.

Furthermore, we also use two identity losses [11, 34].
These help in learning better representations for both con-
tent and style. Let xc

g be the image generated using the con-
tent image xc as both style and content information, and
xs
g be the generated image using the style image xs as both

style and content information, we then define:

Lid1 = ||xc
g − xc||2 + ||xs

g − xs||2, (10)

Lid2 =
1

Nl

Nl∑
i=0

(||ϕ(xc
g)− ϕ(xc)||2

+ ||ϕ(xs
g)− ϕ(xs)||2)

(11)

The final loss which we use to train our model is:

L = λCLC + λSLS + λid1Lid1 + λid2Lid2, (12)

with λC = 7, λS = 10, λid1 = 70 and λid2 = 1 in order to
balance the magnitude of each loss [11].

4. Experiments
Implementation details We use the COCO dataset [30]
as our content dataset and the WikiArt dataset [38] as our
style dataset to train our model. We adopt the same hy-
perparameters setting as [11], with the exception of the
learning rate, which we set to 0.00005 without utilizing any
warm-up period. Our model is trained for a total of 160,000
iterations with a batch size of 8 on a single NVIDIA L40S
GPU. Moreover, we set p (i.e. the patch size) to 8.

Evaluation details We compare our model both qualita-
tively and quantitatively with several state-of-the-art mod-
els designed for image-to-image style transfer: StyleID [6],
AesPA-Net [22], StyTr2 [11], AdaAttn [31] AdaIN [24].
We intentionally avoid comparing with style transfer meth-
ods which use textual descriptions as style condition instead
of an image (including StyleMamba1 [41]) since it would
not be a fair comparison.

To quantitatively evaluate our model, we employ four
primary metrics: ArtFID [45], FID [21], LPIPS [48], and
CFSD [6]. We did not consider content loss LC and style
loss LS as complementary evaluation metrics since [6]
noted that utilizing these losses for both training and evalu-
ation would introduce evaluation biases.

1Furthermore, no code is available for this paper
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Figure 4. Visual comparison with the current state-of-the-art models.

More in detail, FID [21] measures the overall similarity
between generated and style images distributions. LPIPS
[48] evaluates the content preservation between a source
image and the stylized image, thereby measuring how well
the content is preserved in the stylized image. ArtFID [45]
is a metric found to be highly correlated with human judg-
ment, and fuses together style transfer and content preser-
vation. ArtFID is calculated as (1 + FID) · (1 + LPIPS).

CFSD (Content Feature Structural Distance) [6] is a met-
ric designed to address the limitations of LPIPS [6, 16].
Indeed, LPIPS utilizes a feature space extracted by a pre-
trained AlexNet [26], which is trained on the ImageNet
dataset [10] for classification tasks. However, ImageNet is
known to be texture-biased [16], meaning that style injec-
tion can influence the LPIPS measure, potentially leading
to inaccurate assessments of content preservation. CFSD
has been hence introduced as distance metric based on the
spatial correlation between image patches.

For each model, we calculate the metrics on 800 gener-
ated samples obtained by randomly sampling 40 style im-
ages and 20 content images following [6]. Furthermore, we
calculate the inference time (s) to generate the 800 images
and memory usage (MebiByte, MiB) with batch size 1.

Quantitative analysis In Tab. 1 quantitative evaluation of
several state-of-the-art models w.r.t. the proposed system
is presented. Notably, our method outperforms previous

architecture in ArtFID, which, as previously discussed, is
strongly correlated with human judgment. Additionally, our
method achieves the lowest FID, indicating superior style
transfer to the content image. On the other side, in terms
of content preservation metrics (i.e. LPIPS and CFSD) our
model has comparable, albeit slight worse performance.
This trade-off highlights our model capability to transfer the
style at the cost of a marginal reduction of content preserva-
tion. However, we argue that, compared to the best SOTA
model (AdaIN) in terms of FID and ArtFID we are able to
also improve LPIPS and CFSD and, if compared with the
best SOTA model (StyleID) in terms of LPIPS or CFSD,
we are able to improve both FID and ArtFID.

AdaIN, thanks to its lightweight backbone, is also the
most efficient model in terms of both time and memory us-
age. Specifically, it can generate 800 images (derived from
20 content images combined with 40 style images) in just
12.26 seconds, while maintaining minimal memory con-
sumption. At the same time though, even if it surprisingly
achieves the second best results in ArtFID and FID, it heav-
ily falls behind (it is indeed the worst) in terms of LPIPS and
CFSD meaning that it fails in preserving the correct con-
tent in the samples. The second fastest model is AdaAttn;
however, it demands significantly higher memory capacity.
Finally, our proposed model strikes a balance between time
and memory usage, requiring low memory while delivering
an acceptable inference time. This is particularly evident
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Metrics Time and Memory usage

Model ArtFID ↓ FID ↓ LPIPS ↓ CFSD ↓ Time (s) ↓ Memory Usage (MiB) ↓
AdaIN [24] 27.81 16.80 0.56 0.35 12.26 824

AdaAttN [31] 30.81 19.46 0.51 0.32 23.89 5554
StyTr2 [11] 29.31 18.77 0.48 0.32 52.35 2160

AesPA-Net [22] 35.45 22.85 0.49 0.33 165.99 4184
StyleID [6] 28.65 18.29 0.49 0.29 2744.38 19930

Ours 27.11 16.75 0.53 0.33 24.70 1414

Table 1. Performance comparison of the SOTA models and our proposed model on 512 × 512 resolution. The best result for each metric
is highlighted in bold, while the second-best result is marked in red. Time is calculated generating the entire 800 stylized images. Memory
usage is calculated with batch 1.

Metrics Time and Memory usage

ArtFID ↓ FID ↓ LPIPS ↓ CFSD ↓ Time (s) ↓ Memory Usage (MiB) ↓
Content as input 2D-SSM 28.17 17.76 0.50 0.33 24.71 1414

# Scan Directions = 1 34.69 21.49 0.54 0.63 15.84 1288
# Scan Directions = 2 28.17 17.91 0.49 0.33 19.05 1294

Dim state=8 27.26 16.79 0.53 0.33 22.93 1424
Dim state=32 28.34 17.33 0.55 0.34 27.73 1446

w/o random in inference 27.63 16.25 0.60 0.36 24.39 1430

Ours 27.11 16.75 0.53 0.33 24.70 1414

Table 2. Various ablation studies. The best result for each metric is highlighted in bold, while the second-best result is marked in red. Time
is calculated generating the entire 800 stylized images. Memory usage is calculated with batch 1.

when comparing with diffusion-based models like StyleID,
which is both memory-intensive and time-consuming.

Qualitative analysis Qualitative comparisons are shown
in Fig. 4. As it can be seen, we are able to achieve com-
parable results w.r.t. the current state-of-the-art models.
Looking at the figure, AdaIN is able to correctly apply the
style, but the overall content is greatly altered as LPIPS
and CFSD value in Tab. 1 already showed. On the other
side, StyTr2, AesPA-Net and AdaAttn sometimes struggle
to maintain color coherency when applying the style. For
example, in the second row the middle girl’s dress is turned
to blue instead of green which was the color in the original
content image. Finally, StyleID is able to produce coherent
images that present both the original content and the style
features, but with very high contrast and saturation in the
colors which is typical of diffusion models. This may al-
ter the faithful application of styles characterized by soft
colors (see first and third rows) or, on the other side, push
too much the application of high-contrast styles (see sec-
ond row). The fourth row instead provides examples where
every method is capable of producing satisfactory results.

Finally, our method represents a trade-off between the pre-
vious style transfer models. We are able to both apply styles
while maintaining the correct color coherency of the content
image, but, at the same time, without excessively changing
the saturation and contrast of the generated samples.

Figure 5. Zoomed results which show the patch problem inside
the results. Gaps are present between each patch in the results and
the model failed to uniformly apply the style.
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Despite the excellent results, sometimes the model fails
to correctly apply the style, as shown in Fig. 5. Sometimes
it reproduces non-homogeneous patches inside the output
images with a gap between them. A possible reason is that
Mamba-ST inherits RNNs limitations; in some cases, it is
difficult to ensure continuity between the patches due to the
memorization of context information inside the state.

Figure 6. Ablation study of our model without the random shuffle
in the style embedding. The generated images become a blend of
both context and style images.

Ablation Finally, we performed several ablation studies
to determine the optimal configuration for our system. Re-
sults are shown in Tab. 2. First, we investigated the effect
of passing the content image instead of style to the selec-
tive scan. This resulted in overall worse performance. Also
looking at the mathematical analysis provided in the supple-
mentary Sec. 7.1, we ultimately opted for passing the style
as input to the selective scan. The second and third rows
of Tab. 2 show the performance of our model when trained
using 1 or 2 scan directions instead of 4. When adopting a
single direction, the overall performance drop largely while
2 directions improve a bit, yet still being lower than the fi-
nal architecture with 4 directions. The inference time with
4 scans is only slightly worse. In the fourth and fifth rows
of Tab. 2 we show the effect of varying the dimension of
the Mamba internal state. The performance improves when
increasing the dimension from 8 to 16 (our final model), but
drop when further increasing it from 16 to 32. Based on
these findings, we select 16 as the dimension of the internal
state. Finally, in the sixth row of the table, we tested remov-
ing the shuffling module at inference. The improved FID
indicates that the model more accurately captures the stylis-
tic features of the reference image, leading to good stylized
images. Nevertheless, this adjustment led to a large dete-
rioration in LPIPS. This outcome suggests that the model
might overly emphasize the style at the expense of preserv-

ing the content fidelity. Without shuffling, the spatial and
structural information within the style image is maintained,
ultimately leading to a blended version of the content and
style. The shuffling module is thus necessary even at infer-
ence for effectively capturing high-level style information.

In conclusion, Fig. 6 presents examples generated by our
best model when shuffling is disabled during the training
phase too. The absence of shuffling prevents the model from
isolating style information in the generated output. Instead,
it retains content details from the style image as well. Con-
sequently, the output is a blended version of both the content
and style images, rather than a proper transfer of style.

5. Conclusion
In this work we investigated the adaptation of Mamba

inner equation for image driven style transfer, leveraging its
lightweight capability to lower time consumption and mem-
ory usage w.r.t. the state of the art. Specifically, we propose
a new Mamba block, called Mamba-ST Decoder which is
able to accept two streams of information as input and fuse
them together in a single output. Finally, we provide an
extensive set of comparison with SOTA models and a com-
prehensive set of ablation studies proving the efficacy of the
proposed solution.

6. Acknowledgments
This work was funded by “Partenariato FAIR (Fu-

ture Artificial Intelligence Research) - PE00000013, CUP
J33C22002830006” funded by the European Union -
NextGenerationEU through the italian MUR within NRRP.

References
[1] Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden at-

tention of mamba models. arXiv preprint arXiv:2403.01590,
2024. 4, 11

[2] Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu, and
Jiebo Luo. Artflow: Unbiased image style transfer via re-
versible neural flows. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
862–871, 2021. 2, 5

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[4] Prashanth Chandran, Gaspard Zoss, Paulo Gotardo, Markus
Gross, and Derek Bradley. Adaptive convolutions for
structure-aware style transfer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 7972–7981, 2021. 2

[5] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 2

8



[6] Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injec-
tion in diffusion: A training-free approach for adapting large-
scale diffusion models for style transfer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8795–8805, 2024. 1, 2, 5, 6, 7

[7] Tri Dao. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023. 2

[8] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
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7. Supplementary Material

7.1. Style Transfer computation

In this section we formalize the relation between style
transfer computed via Transformers cross-attention and our
Mamba-ST. In particular, we take inspiration from [1]
and [9], where a formalization of the relationship between
Mamba and self-attention was first proposed. We start by
noting that self-attention can be written as matrix transfor-
mation:

Y = MX (13)

where M = softmax(QKT ) and X = V . Considering
Mamba discretized equations:

hk = Āhk−1 + B̄xk

yk = Chk +Dxk

(14)

following [1], we can represent Eq. (1) as:

yt = Ct

t∑
j=1

( t∏
k=j+1

Āk

)
B̄jxj (15)

To simplify the calculus, we remove Dxk since it can be
seen as a skip connection multiplied by a scale factor D.
We can also define the matrices derivation as:

Ci = LinC(xi)

∆k = softplus
(
Lin∆(xk)

)
Āk = exp

(
∆kA

)
B̄j = ∆kLinB(xj)

(16)

Then, we define yi =
∑i

j=1 yi,j , which maps the contribu-
tion of each input xj on the output yi. In particular, yi,j is
as follow:

yi,j =LinC(xi)︸ ︷︷ ︸
C

( i∏
k=j+1

exp (

∆k︷ ︸︸ ︷
softplus(Lin∆(xk))A)︸ ︷︷ ︸

Ak

)
·

∆k︷ ︸︸ ︷
softplus(Lin∆(xj)) LinB(xj)︸ ︷︷ ︸

Bj

xj

(17)

By simply applying exponential property we can rewrite it
as:

yi,j =LinC(xi)︸ ︷︷ ︸
C

(
exp

( i∑
k=j+1

∆k︷ ︸︸ ︷
softplus(Lin∆(xk))A

)
︸ ︷︷ ︸

Ak

)
·

∆k︷ ︸︸ ︷
softplus(Lin∆(xj)) LinB(xj)︸ ︷︷ ︸

Bj

xj

(18)

Furthermore, the two Softplus functions can be approx-
imated summing only over positive values and using a
ReLU:

yi,j ≈LinC(xi)︸ ︷︷ ︸
C

(
exp

i∑
k=j+1

Lin∆(xk)>0

∆k︷ ︸︸ ︷
Lin∆(xk)A

︸ ︷︷ ︸
Ak

)

∆k︷ ︸︸ ︷
ReLU(Lin∆(xj)) LinB(xj)︸ ︷︷ ︸

Bj

xj

(19)

Finally, considering the following values:

Qi = LinC(xi))

Kj = ReLU(Lin∆(xj)LinB(xj))

Hi,j = exp

i∑
k=j+1

Lin∆(xk)>0

(
Lin∆(xk)

)
A
)

X = xj

(20)

We obtain that:

Y = QiHi,jKj ·X (21)

which is a matrix transformation like 13. That demonstrates
that we can simulate attention inside SSM, by assuming that
B,C and ∆ play the role of Key, Query and Value from
transformers attention, respectively. Additionally, the ma-
trix A is the matrix that modulates the values of the previous
patches, because is the one that is multiplied with the states
i− j inside the state space equations 14.

Finally, in order to compute style transfer in a similar
way of StyTr2 [11], but exploiting Mamba equations, we
make the matrix B,∆, and consequentially A, dependent
from the style s, and the matrix C dependent from the con-
tent image x, employing a linear projection:

B = LinB(s),∆ = Lin∆(s), C = LinC(x) (22)
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Algorithm 1 Base VSSM

Require: Patch sequences p
Ensure: Encoded patch pe

1: x← Lin(p)
2: z ← Lin(p)
3: x← DWConv(x)
4: x← SiLU(x)
5: for d in {scan-directions} do
6: B ← LinB(x)
7: C ← LinC(x)
8: ∆← Lin∆(x)
9: Ā← ∆⊗ parameterA

10: B̄ ← ∆⊗B
11: yd ← SelectiveScan(Ā, B̄, C)(x)
12: end for
13: for d in {scan-directions} do y ← y + yd
14: end for
15: y ← LayerNorm(y)
16: y ← y ∗ SiLU(z)
17: y ← Lin(y)

Algorithm 2 ST-VSSM

Require: Content c, Shuffled Style s
Ensure: Stylized patches y

1: x, s← Lin(c), Lin(s)
2: z ← Lin(c)
3: x, s← DWConv(x), DWConv(s)
4: x, s← SiLU(x), SiLU(s)
5: for d in {scan-directions} do
6: B ← LinB(s)
7: C ← LinC(x)
8: ∆← Lin∆(s)
9: Ā← ∆⊗ parameterA

10: B̄ ← ∆⊗B
11: yd ← SelectiveScan(Ā, B̄, C)(s)
12: end for
13: for d in {scan-directions} do y ← y + yd
14: end for
15: y ← LayerNorm(y)
16: y ← y ∗ SiLU(z)
17: y ← Lin(y)

Comparison between the base VSSM block (on the left) and our ST-VSSM (on the right) that enables style injection.

Additionally, we make the inner state, hence, the matrix
Hi,j style-dependent. By doing so, the output can be seen
as a modulation of the inner state by the matrix C, which is
content dependent.

7.2. VSSM code comparison

In this section we present the two versions of our ST-
VSSM algorithm. On the left (alg. 1) is shown the Base
VSSM algorithm used inside the two encoders in order to
extract features from the images. As it can be seen, all
the matrices depend only on the single input x and are ob-
tained with linear projections, as stated in [32]. On the right
(alg. 2) the proposed ST-VSSM is shown, which is used to
fuse the style and the content information in a single out-
put. The first difference is that ST-VSSM takes as input
both style and content information. It is worth noting that
the depth-wise convolution shares the same weights for both
the inputs. The core of ST-VSSM algorithm relies on how
the matrices A,B,C and ∆ are computed: as it can be seen,
the matrices B and ∆ (and consequentially the matrix A)
are derived from the style source, while the matrix C is de-
rived from the content source. Moreover, the input of the
selective scan is the style source and not the content. As
stated, this is justified by the fact that we want to make the
state dependent only from the style source, while modulat-
ing it with the content information in order to compute the
output.

7.3. Additional Results

In Fig. 7 we present additional results of our model com-
pared with several state of the art architectures.
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Figure 7. Additional comparisons with the current state-of-the-art models.

13


	. Introduction
	. Related Work
	. Method
	. Background on Mamba
	. Overall Architecture
	. Mamba Encoder
	. Mamba-ST Decoder
	. Losses

	. Experiments
	. Conclusion
	. Acknowledgments
	. Supplementary Material
	. Style Transfer computation
	. VSSM code comparison
	. Additional Results


