
Extra Training Provides a Strong Baseline for CLIP

Alaa Khaddaj*

alaakh@mit.edu
MIT

Hadi Salman*

hady@mit.edu
MIT

Andrew Ilyas
ailyas@mit.edu

MIT

Guillaume Leclerc
gleclerc@mit.edu

MIT

Aleksander Mądry
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Abstract

Contrastive Language-Image Pretraining (CLIP) models exhibit good perfor-
mance on a range of vision tasks. To improve the performance of this class of
models even further, several works have proposed to modify the CLIP training
procedure. In this work, we show that it is possible to achieve substantial gains
using a much simpler strategy. Specifically, existing CLIP models—especially
those trained on smaller datasets—tend to be undertrained. As a result, simply
extending the training procedure according to a simple heuristic can significantly
improve the performance of CLIP models.
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Figure 1: CLIP models trained on smaller datasets are undertrained. The blue curve on the
left corresponds to the zero-shot accuracy of a CLIP model trained on CC12M for 75 epochs. This
model was trained using the learning rate schedule represented by the blue curve on the right, and
achieves a zero-shot ImageNet accuracy of 31%. After resetting the scheduler and training for 10
additional epochs (orange curve on the right), the zero-shot accuracy increases by 10% (orange curve
on the left).

1 Introduction

Zero-shot inference has become a popular paradigm in computer vision. In this paradigm, one
trains a model on vast amounts of data and leverages the resulting embeddings (without fine-tuning
or weight updates) to perform inference on downstream tasks [BMR+20; RKH+21]. One popular
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approach to zero-shot image classification is the Contrastive Language-Image Pre-Training (CLIP)
[RKH+21] framework. CLIP models perform remarkably well on a range of classification tasks,
including ImageNet [RRS+19] and its variants [HZB+19; BMA+19; WGX+19; HBM+20].

The success of CLIP has led to a line of work that aims to further improve the performance of CLIP
models [YWV+22; MKW+21; LFH+22; WIK+21]. These approaches typically modify the CLIP
architecture or loss function, and achieve better downstream performance compared to a baseline
CLIP model trained with a canonical training procedure.

Our contributions. We find that a simple addition to the CLIP training recipe—namely, resetting
the learning rate scheduler and training for a few more epochs—can significantly improve CLIP
models’ downstream utility for zero-shot classification. Improvements from additional training are
particularly pronounced for models trained on smaller datasets such as Conceptual Captions 3M and
12M [SDG+18; CSD+21].

Extra training provides a simple yet effective baseline for CLIP performance on these smaller
datasets. Our results also suggest that the canonical training procedure for CLIP on small datasets
may lead to undertraining.

2 Background

Contrastive language-image pretraining, or CLIP, is a representation learning framework that uses
paired image-caption data to learn general representations for both text and images. Specifically, a
CLIP model comprises of two neural networks: an image encoder EI mapping images to embedding
vectors in Rd and a text encoder ET mapping text to the same space.

Given a dataset of image-caption pairs (xi, ti), where xi is an image and ti is the corresponding
textual caption, CLIP models encode the image x and the caption t using the relevant encoders into
an image embedding zI and a caption embedding zT , respectively, that belong to the same space.
CLIP models are then trained by matching the corresponding image and caption embeddings of a
given batch, i.e., by minimizing the cross-entropy loss between the embeddings of matching image-
caption pairs, and maximizing the loss between non-matching pairs.

CLIP models trained on large datasets, e.g., LAION [SVB+21], achieve remarkable results
[RKH+21], however, are very expensive to train. Instead, many works opt to train CLIP models
on smaller datasets, such as Conceptual Captions 3M and 12M [SDG+18; CSD+21].

Zero-shot classification. This framework lends itself naturally to “zero-shot” classification. In
particular, given a new dataset of image-label pairs, we can embed the natural-language description
of each possible label using the text encoder. We can then classify each image by first encoding it
using the image encoder, then finding the closest label in the embedding space.

Performance. CLIP models demonstrate impressive zero-shot performance on several image clas-
sification tasks, such as ImageNet classification [DDS+09]. Recent large CLIP models (trained on
LAION [SVB+21]) surpass 90% accuracy on ImageNet [FSW+23]. Furthermore, CLIP models tend
to be quite robust to distribution shift. For example, the achieve high accuracy on the corresponding
ImageNet variations benchmarks [RRS+19; HZB+19; BMA+19; WGX+19; HBM+20].

Given the impressive performance of CLIP models, there are a number of works interested
in further improving it. For example, prior work has proposed modifying the training objec-
tive [MKW+21; LFH+22], imposing additional supervision during training [LLZ+22], leveraging
additional data augmentations [FAR+23], or imposing a particular structure on the learned represen-
tations [FRL+22; GBB+22].

3 Extra Training Provides a Strong Baseline for CLIP

In this section, we investigate the performance of CLIP models and show they might be undertrained
when trained on smaller datasets. We then propose a simple modification to the training procedure
that significantly improves performance, and study its effectiveness when applied to models trained
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on larger datasets. We finally compare our method with other proposed approaches and discuss the
implications of our results on the research community.

3.1 Method

CLIP models are typically trained with a “cosine” learning rate schedule, where the learning rate
increases linearly to a maximum value, then decays on a cosine curve (see Figure 1). Our “extra
training” procedure consists of two steps, to be performed after the model’s training has concluded.
Specifically, we first reset the learning rate schedule, along with the optimizer’s parameters. We then
train for k more epochs.

Note that extra training is not equivalent to simply training the model for more epochs, since the
optimizer is reset to its original state. Instead, our method is closer to initializing the CLIP model
weights to that of a model pretrained on the same training dataset. Consequently, the implementation
of our method is straightforward and consists of first training a CLIP model on the dataset then use
the resulting weights to initialize a new CLIP model to be trained (for a small number of epochs) on
the same dataset.

3.2 Results

We study the effect of extra training on CLIP’s downstream performance in two contexts, which we
call the small-data and big-data regimes. In the small-data regime, we train our own CLIP models
using OpenCLIP’s recipe [IWW+21] and match their reported accuracies. In the big-data regime,
we leverage one of the OpenCLIP models pretrained on LAION-400M [SVB+21].

In the small-data regime, CLIP models are undertrained. Applying our extra training cycle
outlined in Section 3.1 improves significantly and consistently the performance of several CLIP
models on a range of downstream tasks. For example, the ImageNet zero-shot accuracy of several
CLIP models increases by an average of 8% after applying our extra training cycle (see Table 1 for
more results). Note that simply training for longer does not improve performance, as the accuracy
of the CLIP model saturates after few training epochs (see Figure 1).

Model ImageNet ImageNet-V2 ImageNet-A ImageNet-O ImageNet-R ImageNet-Sketch ObjectNet
ResNet-50 41.7 (+11.3%) 35.6 (+9.84%) 9.44 (+4.39%) 47.5 (+8.15%) 53.5 (+11.3%) 31.1 (+8.55%) 28.2 (+8.24%)
ViT-B-32 38.6 (+7.83%) 33.1 (+7.14%) 7.76 (+2.75%) 43.9 (+7.70%) 52.8 (+10.2%) 31.6 (+7.95%) 22.1 (+6.63%)
ViT-B-16 44.9 (+8.40%) 38.0 (+7.09%) 12.0 (+3.59%) 45.5 (+5.60%) 60.5 (+9.77%) 35.1 (+8.17%) 30.3 (+7.73%)

Table 1: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the abso-
lute change in zero-shot accuracy on the corresponding downstream classification task. Note that the
performance of several CLIP models improves significantly on each downstream task. For example,
applying our simple strategy on a ResNet-50 CLIP model leads to a zero-shot accuracy of 41.7% on
ImageNet—an improvement of 11.3% compared to the performance reported by the literature. See
Appendix B for additional results.

In the large-data regime, CLIP models are less undertrained. Our previous experiment reveals
that CLIP models trained on smaller datasets might be undertrained. In this section, we investigate
whether CLIP models trained on large-scale datasets, such as LAION-400M [SVB+21], might be
undertrained. To this end, we consider a CLIP model (with ViT backbone) pretrained on LAION-
400M [IWW+21] and we apply the additional training procedure for 15 extra epochs (on the same
dataset). Comparing the zero-shot performance of the new model to that of the original model,
we observe that both models achieve similar performance on a range of datasets (see Table 2),
suggesting that undertraining is less of an issue at scale.

https://github.com/mlfoundations/open_clip
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ImageNet ImageNet-A ImageNet-O ImageNet-R ImageNet-Sketch ImageNet-V2 ObjectNet
OpenCLIP 62.94 21.69 53.45 73.40 49.39 55.11 43.91
Ours 63.29 19.80 56.05 75.51 52.82 54.84 43.09

Table 2: CLIP models trained on large datasets are less likely to be undertrained. Comparison
of the performance of two ViT-B-32 CLIP models on several downstream tasks. The first row
corresponds to a public CLIP model trained on LAION 400M [IWW+21], while the second row
corresponds to applying our strategy to the public model. Note that training for an extra cycle leads
to similar performance, which suggests that CLIP models trained on large datasets are less likely to
be undertrained.

3.3 Discussion and Implications

In Section 3.2, we show that CLIP models trained on smaller datasets might be undertrained and pro-
pose a simple strategy to mitigate undertraining. In this section, we compare our proposed strategy
with other approaches employed to improve the performance of CLIP models.

Specifically, we consider several previously proposed methods for refining the basic CLIP training
procedure [CWL+22; GBB+22; FRL+22; LLZ+22; FAR+23]. These approaches modify the CLIP
training objective or impose additional structure on the learned representations. On smaller datasets,
CLIP models trained using the proposed approaches show an accuracy improvement compared to
baseline CLIP models. However, it turns out that simply applying the additional training procedure
from this work yields competitive results (see Table 3). Our results underscore the importance of
having strong baselines for CLIP training, and of applying proposed approaches to large datasets
when compute is available.

Method Pretraining
CC3M CC12M

CLIP (baseline) [RKH+21] 20.6 36.5
ProtoCLIP [CWL+22] 21.5 –
CyCLIP [GBB+22] 22.1 –
CLOOB [FRL+22] 24.0 –
DeCLIP [LLZ+22] 27.2 41.0
CLIP (Improved) [FAR+23] 27.4 44.4

CLIP (Ours) 24.2 41.7

Table 3: Comparison of different CLIP training strategy. The first row displays ImageNet zero-
shot accuracy of ResNet-50 CLIP model trained using the canonical training scheme. Subsequent
rows display the performance of CLIP models trained according to different strategies in the litera-
ture. Last row presents the performance obtained by applying our additional training strategy. Note
that the various approaches in the literature improve the performance of the original model.

3.4 Studying and Mitigating Undertraining

In Section 3.2, we show that CLIP models trained on smaller datasets might be undertrained and
propose a simple strategy to improve the performance of CLIP models. In this section, we study
how applying our strategy at different epochs and for different durations affects the performance of
CLIP models.

How many extra epochs should we train for? As we show in Section 3.2, resetting the learning
rate scheduler and training for a fixed number of additional epochs improves CLIP performance. We
now want to study how the zero-shot performance of several CLIP models changes as we vary the
number of additional training epochs K.
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(a) Applying the additional training procedure for
few extra epochs is enough to improve perfor-
mance. The ImageNet zero-shot accuracy of several
CLIP models (y-axis) increases as we apply the ad-
ditional training procedure for more epochs (x-axis).
Note that the performance improvement saturates af-
ter applying the procedure for only three additional
epochs. See Appendix B for additional results.
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(b) Applying our strategy to improve perfor-
mance. The blue curve corresponds to the accuracy
of the original CLIP model. Each other curve repre-
sents the zero-shot accuracy of the CLIP model after
applying our strategy with different starting points.
For example, the orange curve corresponds to apply-
ing our strategy after 10 training epochs. Note that
applying our strategy earlier during training leads to a
performance improvement beyond the final accuracy
reached after training for 75 epochs. See Appendix B
for additional results.

To this end, we train three CLIP models (ResNet-50, ViT-B-32 and ViT-B-16), and then apply the
extended training procedure to them, each time with a different number of additional training epochs.
We observe that for models trained on CC12M, performance improvement saturates after applying
three extra epochs (see Figure 2a). This suggests that the extra overhead needed to achieve peak
performance can be fairly minor.

At which epoch should we apply the extended training? So far, we have been applying the
extended training after the original model training was completed. However, would it be beneficial
to apply it earlier in the training?

It turns out that such an earlier application can improve the model performance beyond what can
be achieved with the full training cycle. To fully examine this phenomenon, we explore stopping
the original training procedure at different epochs, and in each case we restart the training (and the
learning rate scheduler) for 10 additional epochs. We observe that applying this extended training
as early as 10 epochs into the original training cycle already improves performance beyond what is
achieved after a complete training of the original model (see Figure 2b). For example, our model
reaches an accuracy of 37% after a total of only 20 epochs, higher than the original model’s final
accuracy of 31% that was trained on 75 epochs.

Using a cyclic learning rate can improve CLIP training As mentioned in Section 3.2, CLIP
models typically employ a single-cycle cosine learning rate scheduler [LH17] (see Figure 1). We
showed, however, that 1) applying this schedule for a single cycle leads to suboptimal performance,
and 2) employing an additional short cycle boosts accuracy. This additional cycle is reminiscent
of cyclic learning rate schedulers. To investigate whether the use of such schedulers improves per-
formance, we train a CLIP model using a multicycle cosine learning rate scheduler. Using this
strategy, we obtain CLIP models that—with much fewer training epochs—outperform the CLIP
models trained with the standard cosine learning rate schedule (see Figure 3).

4 Related Work

Zero-shot inference is an increasingly popular paradigm where the goal is to solve a specific task
that is unseen during training [RKH+21]. One notable example of zero-shot models is the CLIP

The first 10 epochs correspond to the original training cycle, while the second 10 epochs correspond to our
strategy.
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Figure 3: Applying a cyclic learning rate schedule improves performance. Each curve represents
the ImageNet zero-shot accuracy of a ResNet-50 CLIP model as a function of the number of training
epochs. The orange curve corresponds to the standard training strategy using a cosine LR scheduler,
while the blue curve corresponds to training the CLIP model with a cyclic LR Scheduler. Note that
applying a cyclic LR improves performance. See Appendix B for additional results.

model [RKH+21] that achieved state-of-the-art results on a range of zero-shot classification tasks,
most notably ImageNet and its variants [RRS+19; HZB+19; BMA+19; WGX+19; HBM+20].

Given the remarkable performance of CLIP models, several works have proposed approaches to
improve their performance. Some of these works modify the underlying training procedure. For
example, FLIP masks at random a subset of the ViT input tokens and drops them [LFH+22]. Other
works have proposed using strong and weak data augmentations (for both vision and text backbones)
when computing the similarity between an image and a caption [FAR+23].

Another line of work modifies the objective function used for training the CLIP model. For instance,
SLIP [MKW+21] combines an image contrastive loss (SimCLR [CKN+20]) with the CLIP objective
function [RKH+21]. Other approaches propose clustering similar images and captions ([CWL+22]),
imposing geometrical consistency between an image-caption pair embeddings ([GBB+22]), impos-
ing additional supervision ([LLZ+22]) or using Hopfield networks to control the covariance of the
learned representations [FRL+22].

Finally, additional works proposed pretraining the vision backbone prior to training the CLIP model
[FWX+22; FSW+23; SFW+23], or ensembling several trained CLIP models [IWW+21].

5 Conclusion

In this paper, we have demonstrated that CLIP models trained on smaller datasets might be under-
trained. To improve the performance of such CLIP models, we propose a simple additional training
procedure, and demonstrate its effectiveness and competitiveness with existing approaches. This
suggests that the methods proposed to improve CLIP performance should be tested at a larger scale
in order to accurately reflect their potential benefits.
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A Experimental Setup

Pretraining datasets. In our experiments, we train our CLIP models on three datasets of increas-
ing size, namely CC3M [SDG+18], CC12M [CSD+21], and LAION-400M [SBV+22]. Each of
these dataset contains image-caption pairs of datapoints which are using to train CLIP model via
contrastive learning.

Models. We consider three different models in our experiments: ResNet-50, ViT-B-32, and ViT-
B-16. We first pretrain a version of these models from scratch on the above datasets (except for
LAION-400M), matching the results of publicly available models on OpenCLIP. For LAION-400M,
we use the checkpoint available on OpenCLIP.

Validation datasets. To evaluate the performance of our models, we use several datasets, includ-
ing ImageNet variations such as ImageNet-V2, ImageNet-A, ImageNet-R, ImageNet-S, and Ob-
jectNet [RRS+19; HZB+19; BMA+19; WGX+19; HBM+20], as well as suite of transfer learning
datasets used in [KSL19; SIE+20]. We utilize the CLIP benchmarks repository to evaluate all of our
models.

Hyperparameters. When training our CLIP models on CC3M [SDG+18] and CC12M [CSD+21],
we use hyperparameters similar to the ones employed in [IWW+21]. Specifically, we use train our
models for a total of 75 epochs using a global batch size of 2,560 (256 samples per GPU), a learning
rate of 10−3, and a weight decay of 0.5.

OpenCLIP repository can be found here https://github.com/mlfoundations/open_clip.
CLIP benchmarks can be found here https://github.com/LAION-AI/CLIP_benchmark.
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B Additional Results

B.1 How Many Extra Epochs?
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Figure 4: Applying the additional training procedure for few extra epochs is enough to im-
prove performance. The zero-shot accuracy of several CLIP models (y-axis) increases as we apply
the additional training procedure for more epochs (x-axis). Note that the performance improvement
saturates after applying the procedure for only three additional epochs.

B.2 When to Apply our Strategy?

0 20 40 60 80
Number of Epochs

0

10

20

30

40

A
cc

ur
ac

y

ImageNet

0 20 40 60 80
Number of Epochs

0

2

4

6

8

10

A
cc

ur
ac

y

ImageNet-A

0 20 40 60 80
Number of Epochs

0

10

20

30

40

50

A
cc

ur
ac

y

ImageNet-O

0 20 40 60 80
Number of Epochs

0

10

20

30

40

50

A
cc

ur
ac

y

ImageNet-R

0 20 40 60 80
Number of Epochs

0

5

10

15

20

25

30

A
cc

ur
ac

y

ImageNet-Sketch

0 20 40 60 80
Number of Epochs

0

10

20

30

A
cc

ur
ac

y

ImageNet-V2

Start Epoch
0 10 20 50 60 75

Figure 5: Applying our strategy early during training already improves performance. The
blue curve corresponds to the accuracy of the original CLIP model. Each non-blue curve represents
the zero-shot accuracy of the CLIP model after applying our strategy with different starting points.
For example, the orange curve corresponds to applying our strategy on the CLIP model after it has
been trained for 10 epochs (out of 75 epochs in total). Note that applying our strategy earlier during
training leads to a performance improvement beyond the final accuracy reached by the model trained
for 75 epochs.
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Cyclic LR Scheduler

This is a supplementary figure to Figure 3 which shows how cyclic learning rate schedule, instead
of a cosine one, can lead to better zero-shot performance for CLIP models trained from scratch.
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Figure 6: Applying a cyclic learning rate schedule improves performance. Each curve repre-
sents the zero-shot accuracy of a ResNet-50 CLIP model as a function of the number of training
epochs. The orange curve corresponds to the standard training strategy using a cosine LR scheduler,
while the blue curve corresponds to training the CLIP model with a cyclic LR Scheduler. Note that
applying a cyclic LR improves performance.

B.3 Additional Zero-Shot Results on Downstream Tasks

Here we show the performance improvements of our models on a suite of transfer learning tasks,
and a range of tasks from the CLIP benchmarks repository.

Model Caltech101 Cars CIFAR10 CIFAR100 DTD FGVC Aircraft
ResNet-50 76.4 (+6.03%) 26.2 (+13.3%) 49.4 (+18.5%) 27.5 (+13.0%) 22.1 (+1.86%) 2.67 (+1.05%)
ViT-B-32 77.3 (+3.39%) 19.2 (+7.26%) 81.3 (+9.69%) 43.0 (+2.15%) 21.4 (-0.80%) 2.31 (+0.15%)
ViT-B-16 79.1 (+3.69%) 26.8 (+9.03%) 80.0 (+2.06%) 48.2 (+4.09%) 23.1 (-0.60%) 2.52 (+0.00%)

Table 4: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the ab-
solute change in zero-shot accuracy on the corresponding downstream classification task.

Model Flowers Pets STL10 SUN397 SVHN
ResNet-50 34.6 (+11.1%) 62.0 (+13.0%) 89.6 (+3.20%) 47.5 (+2.93%) 13.6 (+6.93%)
ViT-B-32 34.0 (+10.6%) 57.8 (+2.80%) 92.0 (+2.47%) 47.3 (+2.47%) 22.6 (+5.42%)
ViT-B-16 37.8 (+14.1%) 64.7 (+12.2%) 93.9 (-0.20%) 48.6 (-0.60%) 19.7 (+2.45%)

Table 5: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the ab-
solute change in zero-shot accuracy on the corresponding downstream classification task.

CLIP benchmarks can be found here https://github.com/LAION-AI/CLIP_benchmark
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