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Abstract

Generating bitmap graphics from text has gained considerable attention, yet for
scientific figures, vector graphics are often preferred. Given that vector graphics are
typically encoded using low-level graphics primitives, generating them directly is
difficult. To address this, we propose the use of TikZ, a well-known abstract graphics
language that can be compiled to vector graphics, as an intermediate representation
of scientific figures. TikZ offers human-oriented, high-level commands, thereby
facilitating conditional language modeling with any large language model. To
this end, we introduce DaTikZ, the first large-scale TikZ dataset consisting of
120k TikZ drawings aligned with captions. We fine-tune LLaMA on DaTikZ,
as well as our new model CLiMA, which augments LLaMA with multimodal
CLIP embeddings. In both human and automatic evaluation, CLiMA and LLaMA
outperform commercial GPT-4 and Claude 2 in terms of similarity to human-
created figures, with CLiMA additionally improving text-image alignment. Our
detailed analysis shows that all models generalize well and are not susceptible to
memorization. GPT-4 and Claude 2, however, tend to generate more simplistic
figures compared to both humans and our models. We make our framework,
AutomaTikZ, along with model weights and datasets, publicly available.1

1 Introduction

Recent advancements in text-to-image generation have facilitated the generation of detailed images
from simple natural language descriptions (Esser et al., 2021; Ramesh et al., 2021; 2022; Saharia
et al., 2022; Rombach et al., 2022; Zhang et al., 2023a). Models like Stable Diffusion (Rombach et al.,
2022) and DALL-E (Ramesh et al., 2021; 2022) often yield results comparable to real photographs
or human-created artworks. However, these models primarily generate raster graphics, typically at
low resolutions, which are not ideal for scientific figures. Researchers use scientific figures to convey
complex ideas or present critical findings, making them central to scientific research (Tufte, 1992;
Hsu et al., 2021). Consequently, they demand a high degree of geometric precision and legible text,
even at small font sizes, areas where raster graphics fall short. As a result, many research conferences
advocate the use of vector graphics,2 which decompose information into geometric shapes, allow
searchable text, and usually have smaller file sizes.

Automated vector graphics generation is a growing research area as well (Lopes et al., 2019; Carlier
et al., 2020; Aoki & Aizawa, 2022; Ma et al., 2022; Frans et al., 2022; Jain et al., 2023; Wu et al.,
2023), but current methods have their own share of limitations. Specifically, they mainly generate
low-level path elements of the Scalable Vector Graphics (SVG) format, either failing to maintain

1https://github.com/potamides/AutomaTikZ
2https://acl-org.github.io/ACLPUB/formatting.html
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3D contour plot of a loss function, show-
casing global and local minima. The
color gradient indicates function depth,
providing insight into the optimization
challenges in machine learning.

Visual representation of a multi-layer
perceptron: an interconnected network of
nodes, showcasing the structure of input,
hidden, and output layers that facilitate
complex pattern recognition.

Bar chart comparing BLEU scores of
Alpha, Beta, and Gamma models across
Orion, Nebula, and Pulsar datasets,
with Alpha consistently leading.
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Figure 1: Exemplary scientific figures generated with CLiMA. CLiMA takes the captions as input,
processes them with CLIP and LLaMA, and generates TikZ drawings that compile to vector graphics.

accurate geometric relations (Ma et al., 2022; Frans et al., 2022; Jain et al., 2023) or only generating
outputs of limited complexity such as single icons or font characters (Lopes et al., 2019; Carlier et al.,
2020; Aoki & Aizawa, 2022; Wu et al., 2023).

To address these limitations, we explore the use of graphic languages, which abstract from lower-level
vector graphics formats by providing high-level constructs that can be compiled to such formats (Van
Zandt, 2007; Hobby, 2014; Tantau, 2023). Language models show potential in learning these
languages to solve simple tasks (Bubeck et al., 2023; Zhang et al., 2023b), but the depth of this
capability, i.e., whether it can produce scientific figures, remains unexplored. Due to its expressiveness
and emphasis on science, which enables the creation of complex figures with only a few commands,
we focus on the graphics language TikZ in this work (Tantau, 2023). We aim to understand whether
language models can capture the nuances of TikZ and automatically generate scientific figures based
on image captions, analogous to text-to-image generation. This could not only enhance productivity
and foster inclusiveness (aiding researchers less versed in programming-like languages, such as
social scientists), but also aid education by creating tailored TikZ examples. The use case for this is
demonstrated by the TEX Stack Exchange3, where nearly 10% of the asked questions pertain to TikZ,
making it the most frequently discussed topic on the platform. Our key contributions are as follows:

(i) As part of our AutomaTikZ project, we create DaTikZ, the first large-scale TikZ dataset to
our knowledge, featuring approximately 120k paired TikZ drawings and captions.

(ii) We fine-tune the large language model (LLM) LLaMA (Touvron et al., 2023a) on DaTikZ
and compare its performance to general-purpose LLMs, specifically GPT-4 (OpenAI, 2023)
and Claude 2 (Anthropic, 2023). Both automatic and human evaluation agree that scientific
figures generated by fine-tuned LLaMA resemble human-created figures more closely.

(iii) We further develop CLiMA, a variant of LLaMA augmented with multimodal CLIP
embeddings (cf. Figure 1; Radford et al., 2021). This enhancement allows CLiMA to visually
interpret input captions, thereby improving text-image alignment. It also enables the use of
images as supplementary inputs, leading to a further boost in performance.

(iv) In addition, we demonstrate that all models exhibit few memorization problems and generate
novel outputs. However, GPT-4 and Claude 2 tend to generate simpler outputs than LLaMA
and CLiMA, sometimes producing degenerate solutions that maximize text-image similarity
by visibly copying the input caption into the output image.

2 Related Work

Our work connects to several distinct but interrelated fields, namely text-to-image generation, vector
graphics generation, scientific figure understanding, and code generation. For each field, we provide a
comprehensive review of the most relevant prior work.

3https://tex.stackexchange.com
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Text-to-Image & Vector Graphics Generation The evolution of text-to-image generation can
be characterized by three development stages: Generative Adversarial Networks (Reed et al., 2016;
Zhang et al., 2017; Brock et al., 2019; Kang et al., 2023), auto-regressive models (Ramesh et al., 2021;
Ding et al., 2021; 2022; Chang et al., 2023), and diffusion models (Rombach et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022; Zhang et al., 2023a). Although Rodriguez et al. (2023a;b) explore
their use for scientific figures, these approaches are inherently limited to generating raster graphics.

Vector graphics generation has evolved as a parallel field. Building upon innovative work in sketch
generation (Ha & Eck, 2018), Lopes et al. (2019) generate single SVG font characters made up of
straight lines and Bézier curves. Carlier et al. (2020) extend this approach to include SVG icons.
However, none of these models support text conditioning. Another branch of research focuses on
vectorizing text-to-image models (Ma et al., 2022; Frans et al., 2022; Jain et al., 2023). Although
these methods enable text conditioning, text-to-image models typically have difficulties producing
flat-colored SVG-style images, and the vectorized results tend to have imprecise geometric relations
and jagged paths (Wu et al., 2023). Addressing these challenges, Cai et al. (2023) and Wu et al.
(2023) investigate auto-regressive language modeling directly on SVG representations. Even though
these approaches better capture the aesthetics of vector graphics, they are limited to editing existing
graphics or generating monochrome icons of limited complexity.

Scientific Figure Understanding Despite the limited number of approaches dedicated to generating
scientific figures, scientific figure understanding is a subject of extensive research. Arguably, the
task that is inverse to ours is the captioning of scientific figures. Expanding on prior work in
scientific visual question-answering (Siegel et al., 2016; Kahou et al., 2018; Kafle et al., 2018),
Chen et al. (2019a;b; 2020) train a captioning model using a corpus of synthesized figure-caption
pairs. Hsu et al. (2021) extend this approach to real scientific figures, noting substantial challenges.
To improve performance, Yang et al. (2023) reformulate the task, augmenting captions with OCR
tokens and paragraphs referencing the figures. Singh et al. (2023) take a different approach and utilize
reinforcement learning to consider the quality of the captions during training. In addition to such
task-oriented models, recent advancements in multimodal large language modeling (MLLM; Liu
et al., 2023; Dai et al., 2023; Yin et al., 2023) allow for generalized visual reasoning about scientific
figures (Ye et al., 2023; Zhang et al., 2023c; Horawalavithana et al., 2023).

Code Generation As graphics languages are a subset of programming languages, our work is
closely related to code generation (Xu et al., 2022). At its core is the ongoing research on pre-training
or fine-tuning LLMs on code (Rozière et al., 2023; Li et al., 2023; Fried et al., 2023; Li et al., 2022b;
Chen et al., 2021), commonly with a multitask objective (Fried et al., 2023) consisting of causal
language modeling and infilling prediction (Bavarian et al., 2022). Despite the significant amount
of recent progress, the primary focus of code generation remains on high-resource programming
languages such as Python, Java, or JavaScript (Zan et al., 2023). TikZ commands, in comparison, are
invoked as TEX macros, and the TEX programming language is considered low-resource and typically
overlooked in model evaluations. Yet, TEX may still exist in training corpora, as evidenced by GPT-4’s
ability to comprehend TEX and TikZ (Bubeck et al., 2023; Zhang et al., 2023b). As far as we know,
there has been no comprehensive evaluation of this capability, which we also address in this work.

3 The DaTikZ Dataset

DaTikZ is, to our best knowledge, the first large-scale dataset of TikZ drawings with corresponding
captions. TikZ is well-known within the TEX community, but its resources are scattered across the
internet, making the creation of a large dataset a fundamental challenge of our work. Consequently,
we gather TikZ drawings and their captions from a variety of online resources, as detailed below.

3.1 Data Acquisition

We collect the data from dedicated websites, online repositories, the TEX Stack Exchange, arXiv
papers, and also artificial examples. A comprehensive overview of our data collection is provided in
Table 1. We gather TikZ drawings created between November 2006 and June 2023 that successfully
compile with TEX Live 2023.4 Ablation studies and examples can be found in Appendices C and E.

4https://tug.org/texlive
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Source Size Augmented
Curated Examples 981 63.2%
TEX Stack Exchange 29 238 51.31%
ArXiv Papers 85 656 67.75%
Artificial Examples 3 914 50%
All 119 789 62.71%

Table 1: Detailed breakdown of DaTikZ showing
size and percentage of augmented data for the whole
dataset and each source individually.

Curated Examples Several websites and on-
line repositories5 focus on collecting and sharing
TikZ drawings for educational purposes and to
showcase high-quality examples. Through web
scraping, we retrieve any TikZ drawings from
these sites that have associated captions.

TEX Stack Exchange We also source TikZ
drawings from TEX Stack Exchange (cf. §1). We
examine the quarterly data dump and extract
questions tagged with TikZ and relevant answers
with a minimum score of 1. To convert textual
questions into image captions, we utilize WizardLM (Xu et al., 2023), an LLM trained to follow
arbitrary instructions. Using the title and body of a question as context, we task WizardLM with
creating a descriptive caption for the figure provided in the answer. More details on the caption
generation procedure can be found in Appendix B.

ArXiv Papers ArXiv6 is a widely-used open-access archive for scientific articles. As arXiv
encourages researchers to upload their papers alongside their source files, it serves as a valuable
resource for obtaining TikZ drawings. Initially, we retrieve all papers with TEX source files and
retain those that use the TikZ package. Subsequently, we expand any include directives and extract
all TikZ environments using regular expressions. To ensure compilability, we additionally preserve
all required preamble elements. For that, we first establish a set of rules by analyzing documents
obtained from other sources that determine which package imports and configuration options should
be retained. We then parse all macro definitions and keep for each TikZ drawing the macros it uses.
Finally, we exclude any TikZ drawings that fail to compile after this extraction process (around 120k).

Artificial Examples GPT-4 has demonstrated the emergent ability to generate simple, tangible
objects (e.g., unicorns) in TikZ (Bubeck et al., 2023). While not the primary focus of this work, we
seek to transfer this ability to our models through knowledge distillation (Bucila et al., 2006). To
this end, we compile a diverse set of object descriptions derived from the object categories in the
MS COCO, LVIS, and VISOR datasets (Lin et al., 2014; Gupta et al., 2019; Gokhale et al., 2023).
Moreover, we sample emoji descriptions from the OpenMoji database.7 Following this, we instruct
GPT-4 to generate a TikZ drawing for each description, using a chain-of-thought prompt (Wei et al.,
2022) we adopt from Zhang et al. (2023b), as detailed in Appendix B.

3.2 Data Augmentation

Prior research indicates a correlation between caption length and caption quality (Gelman et al., 2002;
Hartley, 2003; Huang et al., 2023). Notably, Huang et al. (2023) propose a heuristic to judge scientific
captions with less than 30 tokens as being of poor quality. Given the recent advancements in MLLM,
and notably in MLLM with a focus on science (cf. §2), we propose the automatic augmentation of such
captions (Belouadi & Eger, 2023a;b). For an in-depth analysis of implications, refer to Appendix C.

Specifically, we leverage LLaVAR (Zhang et al., 2023c), instructing it to generate short descriptions
for TikZ drawings with captions containing fewer than 30 tokens (cf. Appendix B).8 Inspired by the
CapFilt method (Li et al., 2022a), we generate five candidate descriptions and rank them based on
their text-image similarity using CLIPScore (Hessel et al., 2021). The final augmented caption is
then formed by concatenating the original caption with the top-ranked description. For GPT-4, we
cannot rely on the heuristic, as the captions used are not scientific. Instead, we augment all captions
to increase diversity in our dataset while retaining the original captions as well. Table 1 displays the
percentage of augmented captions in our dataset. On average, this method increases the CLIPScore
of captions with originally fewer than 30 tokens from 24.76 to 29.12, a substantial improvement
in text-image similarity, especially considering that CLIPScore typically ranges between zero and
40 (Hessel et al., 2021). The CLIPScore for original captions exceeding 30 tokens is 27.06.

5https://texample.net, https://tikz.net, https://pgfplots.net & https://github.com projects
6https://arxiv.org
7https://openmoji.org
8In this work, we use the Moses tokenizer (Koehn et al., 2007) to count tokens.
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4 Methods

We leverage LLaMA (Touvron et al., 2023a) as the base model in most experiments, using captions
from DaTikZ as model input and TikZ code as ground truths. Since TEX source files from arXiv were
included in LLaMA’s pre-training data, it may have prior knowledge beneficial for this task. We
choose the original LLaMA release over its updated revisions, LLaMA 2 (Touvron et al., 2023b) and
CodeLLaMA (Rozière et al., 2023), as their training data is not as clearly specified. This uncertainty
and their more recent release would make it difficult to create a test set without training-to-test data
leakage. We also experiment with GPT-4 and Claude 2, as earlier research hints at inherent potential
for our task (cf. §3.1 and §2), and employ the same chain-of-thought approach outlined in §3.1.
However, as they are proprietary, we can only address data leakage for LLaMA (Aiyappa et al., 2023).

4.1 CLiMA

A potential drawback of vanilla LLaMA is that it may not understand visual concepts, given that
it was not designed to process image data. However, this ability could significantly enhance the
creation of scientific figures. Therefore, we modify LLaMA by combining it with a CLIP ViT-H/14
model (Cherti et al., 2023). CLIP is frequently employed to establish a bridge between vision and
natural language, thereby facilitating the creation of MLLMs (Yin et al., 2023).

However, unlike most MLLM methods, to our knowledge we are the first to use CLIP’s multimodal
projection layer, which allows us to extract visual information from both text and images in a common
embedding space (cf. Figure 1). This approach is akin to text-to-image models like DALL-E and
CLIP-GEN (Wang et al., 2022b), that make use of this duality to generate raster graphics. In our
case, our primary objective is to provide LLaMA with a visual interpretation of the input caption,
anticipating that this adjustment will boost the alignment with generated TikZ drawings. In addition,
it also enables us to experiment with supplying rasterized scientific figures as an additional input (cf.
§5). As this new model can be described as using CLIP inside LLaMA, we refer to it as CLiMA.

We accomplish this integration by connecting CLIP’s output with LLaMA’s input via soft prompt-
ing (Lester et al., 2021); i.e., we prepend CLIP’s embedding vector to LLaMA’s input embeddings of
the caption. This requires adding a feed-forward layer with dimensions 𝛿ViT-H/14 × 𝛿LLaMA to connect
image features of dimension 𝛿ViT-H/14 with LLaMA’s word embedding space of dimension 𝛿LLaMA.
Following insights from Liu et al. (2023), we pre-train this adaption layer on a dataset of 595K generic
text-image pairs for one epoch while keeping both CLIP and LLaMA frozen during the process.

4.2 Error Handling & Correction

A general issue with our language modeling approach to TikZ generation is that outputs may violate
the syntactic and semantic rules of TEX, potentially leading to errors and uncompilable documents.
While there are constrained decoding algorithms that can force models to form valid programs (Poesia
et al., 2022; Scholak et al., 2021), they depend on parse trees and are only useful for languages with a
context-free grammar. TEX, however, has a flat, unstructured syntax that is generally impossible to
parse (Erdweg & Ostermann, 2010), rendering these methods unsuitable for our approach.

As an alternative, we propose an iterative resampling method, leveraging the diagnostic data produced
during compilation. If an error arises during compilation, we analyze the logfile to identify its source.
Rather than resampling from the start, we then reverse the generation process to just before the error
line and continue sampling from there. If the error persists, we infer that the origin of the problem lies
earlier in the code and reverse further back, specifically 4(𝑖−1) lines above the error, with 𝑖 denoting
the current iteration. While this method does not guarantee error-free results, it provides a more
efficient and targeted strategy than simply reinitiating sampling from the beginning.

5 Experiments

Before fine-tuning our models on DaTikZ, we extract a sample of 1k human-created items to serve
as our test set. As LLaMA’s training started in December 2022, we only sample items introduced
after this date to avoid data leakage. We conduct both automatic (§5.1) and human evaluations (§5.2).
Additional results and instances of generated TikZ drawings are available in Appendices C and E.
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Model Sizes In terms of model size, we fine-tune LLaMA7b and CLiMA7b, each with 7 billion
parameters (7b), as well as LLaMA13b and CLiMA13b with 13 billion parameters (13b), respectively.
During inference, we additionally evaluate CLiMA13b with CLIP receiving compiled human-created
TikZ drawings as input instead of captions, which we refer to as CLiMAimg for clarity (cf. §4.1).

Training Given the size of these models, we introduce trainable low-rank adaption weights (LoRA;
Hu et al., 2022) while keeping the base model weights frozen and in half precision (Micikevicius et al.,
2018). Following Dettmers et al. (2023), we apply LoRA to all linear layers. In addition, we find
that training the embedding layer and language modeling heads is crucial for successful fine-tuning.
Since we are not aware of any studies applying LoRA to these layers, we make them fully trainable
and leave this investigation to future work. In line with Liu et al. (2023), we train for 12 epochs with
AdamW (Loshchilov & Hutter, 2019) and a batch size of 128, but increase the learning rate to 5e−4
as this leads to faster convergence. As a form of data augmentation only possible for CLiMA, we
randomly replace the captions forwarded to CLIP with the reference image in 50% of the cases.

5.1 Automatic Evaluation

We use a variety of automatic evaluation metrics to evaluate the performance of our models on our test
set in terms of code, image, and caption-image similarity. In particular, we use the following metrics:

CLIPScore calculates the similarity between image and text, as outlined in §3.2. We utilize it to
evaluate the correlation between a rasterized TikZ drawing and its corresponding caption.

CLIPScoreimg is technically the same metric as CLIPScore, but with human-made TikZ drawings
as a reference input. Therefore, it assesses the similarity of two images rather than an image
and a caption. To our best knowledge, we are the first to use CLIPScore in this configuration.

Kernel Inception Distance (KID) assesses the quality of generated TikZ drawings by comparing
their distribution with the distribution of real images in the test set (Binkowski et al., 2018).
This comparison helps determine how realistic the generated images appear in general. We
extract image features using the same CLIP model utilized in CLIPScore.

CrystalBLEU is an n-gram-based metric designed to measure textual similarity (Eghbali & Pradel,
2023). As a variant of BLEU (Papineni et al., 2002), optimized for evaluating code, we
employ it to assess the similarity between human-created and machine-produced TikZ code.

Extended Edit Distance (EED) is a metric dedicated to assessing string similarity (Stanchev et al.,
2019), much like CrystalBLEU. We utilize it to determine the minimum number of
operations needed to convert the machine-generated code into the reference code.

Compilation Sampling Rate (CSR) measures how frequently we need to sample from a model to
yield compilable TikZ code that outputs an image. This is crucial as some metrics depend on
images. With LLaMA and CLiMA, we use iterative resampling (cf. §4.2) and account for
partial samples. This is not feasible with GPT-4 and Claude 2 due to their chain-of-thought
prompt, which generates code across multiple steps. We take a relaxed stance, counting a
sample as successful if it results in an image, even if there are errors.

Results We compute the above metrics for each model and present the system-level scores in
Figure 2. The radar chart on the left illustrates that there are small but noticeable score differences
between the LLaMA and CLiMA models, revealing some intriguing trends. Aligning with the intuitive
expectation that larger models yield better performance (Kaplan et al., 2020), the 13b models clearly
outperform the 7b models on all string-similarity and image-based metrics by 0.2–0.5pp (percentage
points). A notable exception is CSR, where all models perform comparably. This shows that all
models require approximately 1.2 samples per caption to generate a compilable TikZ drawing.

Within model sizes, CLiMA7b outperforms LLaMA7b on CrystalBLEU, EED, CLIPScore, and
CLIPScoreimg by up to 0.4pp, suggesting that, even when only text inputs are involved, integrating
CLIP into the model has a predominantly positive effect. CLiMA13b continues this trend, showing
a 0.1pp higher CLIPScore than LLaMA13b. However, we also see that this does not necessarily
have to increase the similarity with a reference image as well, as LLaMA13b has a 0.1pp higher
CLIPScoreimg. On CrystalBLEU and EED, CLiMA13b again fares better, although, with 0.1pp, the
gap is not as pronounced as for the 7b models, possibly due to diminishing returns (Hong et al., 2023).

6
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Figure 2: Automatic evaluation results for LLaMA7b/13b, CLiMA7b/13b/img, GPT-4, and Claude 2.
Axes representing metrics where lower values are better (CSR, EED, and KID) have been inverted.
Detailed scores are provided in Appendix C for further reference.

The right radar chart compares our best text-only model, CLiMA13b, with CLiMAimg, GPT-4, and
Claude 2. As before, all models perform roughly the same on CSR, except for Claude 2, which needs
noticeably more samples. As expected, CLiMAimg, having access to reference images, improves upon
CLiMA13b in CLIPScoreimg by 1.2pp. However, this does not lead to an improvement in CLIPScore,
echoing our earlier observation that image and caption-image similarity do not always correlate. It
also does not improve KID, demonstrating that the overall quality of the images remains constant.
Nevertheless, the string-based metrics are 0.1–0.4pp higher, indicating that conditioning on reference
images positively impacts code similarity.

We also observe that Claude 2 performs much worse than GPT-4, and both perform noticeably worse
than both CLiMA13b and CLiMAimg on most metrics. The drastically lower CrystalBLEU and EED
(up to 3.9pp) suggest that GPT-4 and Claude 2 generate fundamentally different code (in Appendix A
we show that it exhibits a lower level of complexity). The up to 6.6pp lower CLIPScoreimg and over
six times as large KID indicate that not only do the generated images look different from human ones,
but also that the general quality of images is much different from the human distribution. However,
most strikingly, both models achieve an up to 2.1pp higher CLIPScore. Upon investigation, we find
that both models tend to produce degenerate images, which visibly copy the input caption into the
output image. Since the outputs of CLIP (and by extension CLIPScore) can be controlled with images
of text (Ramesh et al., 2022), Claude 2, and in particular GPT-4, essentially employ such typographic
attacks to achieve exceptional caption-image similarities. We further explore this phenomenon in §6.

Overall, CLiMA7b and CLiMA13b outperform their respective LLaMA models in five out of seven
metrics each, with Claude 2 and GPT-4 substantially underperforming all of them. While CLiMAimg
unsurprisingly improves upon CLiMA13b, CLiMA13b is the best model with only textual inputs.

5.2 Human Evaluation

To further evaluate the effectiveness of our models, we conduct a human annotation campaign using
best-worst scaling (BWS; Louviere et al., 2015). As a form of comparative annotation, BWS yields
high-quality results even when the number of annotations is low (Kiritchenko & Mohammad, 2016;

7
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Figure 3: Distributions of BWS scores per model for caption and reference similarity. Scores span
from -1 (poor) to 1 (excellent). The “•” markers denote expected values, and “×” signifies the mode.

2017). Within this method, annotators are tasked to compare tuples of 𝑛 = 4 items, identifying the
best and the worst item based on a given property. Real-valued scores, ranging from -1 (poor) to
1 (excellent), are then computed by subtracting the fraction of times an item is chosen as the worst
from the fraction of times it is chosen as the best (Orme, 2009).

In this work, we focus on caption similarity (CS) and reference similarity (RS). In CS, annotators
evaluate image tuples based on text-image similarity with captions (similar to CLIPScore). We
construct 4-tuples consisting of our two leading text-only models from automatic evaluation (CLiMA13b
and LLaMA13b), GPT-4, and human reference images. In RS, the human reference images are used
as the standard of comparison instead (similar to CLIPScoreimg), so we replace them in the tuples
with CLiMAimg, while leaving the other models unchanged. Each property is then annotated by four
unique expert annotators with relevant research experience (cf. Appendix D).9 To ensure a manageable
workload for the annotators, we create our tuples from a subset of 100 items sampled from our test
set. We assess the consistency of the annotators using split-half reliability (SHR; Kiritchenko &
Mohammad, 2017). This method involves randomly splitting all annotations into two sets, calculating
scores for each set, and then determining the correlation between them using Spearman’s 𝜌.

Results For CS, the SHR is 𝜌 = 0.6, indicating a moderate but adequate consensus among annotators.
Figure 3 (left) exhibits kernel density estimates for the computed scores, with marked modes and
expected values. Unsurprisingly, humans perform best with a mode near 1. CLiMA13b is the only other
model with a mode above 0, followed by LLaMA13b, while GPT-4 lags behind. This indicates that
when sampling once with a given caption, CLiMA13b is most likely to generate the best image. Since
CLiMA13b and LLaMA13b retain their earlier CLIPScore ranking, but GPT-4 drops substantially, we
hypothesize that human annotators are not as prone to typographic attacks as metrics. However, we
still observe a slight bias towards images of text. In 75% of cases where GPT-4 is selected as the
best model, it copies more n-grams from the caption into the image than the worst-ranked image,
potentially leading to outliers and thus a slightly higher expected value than CLiMA13b or LLaMA13b.

Regarding RS, we record a similar SHR, with 𝜌 = 0.58. For LLaMA13b, CLiMA13b, and CLiMAimg,
the distributions in Figure 3 (right) are almost normally distributed, with the mode and expected
value being nearly identical. As with CLIPScoreimg, LLaMA13b is ranked marginally higher than
CLiMA13b, indicating CLIPScoreimg correlates well with human rankings (Appendix C details exact
correlations). On a similar scale, CLiMAimg outperforms LLaMA13b. In contrast, GPT-4 follows a
nearly uniform distribution, with a slight downward trend for better scores. Therefore, its mode is
noticeably lower than for the other models. The expected value, albeit only slightly, is also the lowest.

In summary, our human evaluation aligns well with our automatic metrics, with the added benefit
of lower susceptibility to typographic attacks. CLiMA13b outperforms LLaMA13b on CS, while
CLiMAimg surpasses LLaMA13b on RS. GPT-4 shows peculiar distributions, with the mode (and also
the expected value for RS) lagging behind, highlighting the effectiveness of our models.

9We tried crowdsourcing as well, but due to low agreement with experts, we concluded that crowdworkers
lack the necessary expertise for our tasks (cf. Appendix D).
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Figure 4: Proportion of unique code n-grams (𝑛 ∈ [1, 10]) that do not appear in the training data (left),
and proportion of caption n-grams that were copied into the output image (right).

6 Analysis

The issue of language models memorizing and copying training data is a prevalent concern (McCoy
et al., 2023; Carlini et al., 2023; Raunak & Menezes, 2022; Meehan et al., 2020). Similarly, we
discovered in §5.1 that GPT-4 and Claude 2 tend to perform typographic attacks by memorizing and
copying input captions. In this section, we analyze the extent of these issues on our test set using the
concept of n-gram novelty (McCoy et al., 2023). Specifically, to measure code novelty, we determine
the proportion of n-grams in the model-generated TikZ code that are not found in the training data. To
measure caption copying, we calculate the proportion of n-grams from the caption that were copied
verbatim into the output code. For comparison, we also calculate both metrics for human references.

Figure 4 displays the results for both metrics (𝑛 ∈ [1, 10]) after filtering code comments. In terms
of code novelty, models tend to generate less novel code than humans for smaller n-grams (𝑛 < 4).
However, for 𝑛 > 6, models become more novel, with more than 80% of all model n-grams being
novel for 𝑛 > 8. McCoy et al. (2023) observe the same phenomenon in all datasets investigated and
conclude that this ratio is the normal case when a model is not affected by memorization of the training
data. Regarding caption copying, GPT-4 and Claude 2 copy considerably more n-grams from the
caption than our models. For 1-grams (i.e., 𝑛 = 1), CLiMA13b and LLaMA13b copy around 6.5% of
n-grams, while GPT-4 and Claude 2 copy more than 10%. For 𝑛 > 5, CLiMA13b, LLaMA13b, and
humans practically stop copying, but Claude 2 and especially GPT-4 continue with an almost linear
trend, hinting at instances where they might copy the entire caption (cf. Appendix E for examples).
This reinforces our hypothesis from §5.1 and points towards CLIPScoreimg as a more robust metric
for assessing the visuals of text-rich images since it seems less susceptible to typographic attacks.

7 Conclusion & Future Work

In this work, we present AutomaTikZ, a project for automatically generating TikZ drawings based on
natural language descriptions. As part of AutomaTikZ, we release DaTikZ, a pioneering dataset
of aligned TikZ drawings and captions, and CLiMA, a novel model architecture which integrates
multimodal CLIP embeddings into LLaMA. By fine-tuning CLiMA on DaTikZ, we demonstrate that
it outperforms LLaMA on several metrics and also surpasses proprietary GPT-4 and Claude 2. In
addition, CLiMA can also process images, potentially extending its application to vectorization and
conditioning on sketches. Important finds are that (i) integrating CLIP can lead to improvements,
even when only text inputs are involved, provided the task relates to visual concepts, and that (ii)
attention should be paid to typographic attacks when evaluating models that generate text-rich images.

In future research, we aim to incorporate insights from the caption generation community and enrich
our input texts with other figure-mentioning sections of the source documents (cf. §2). We also plan
to enhance our extraction pipeline, especially since we had to exclude over 120k TikZ images from
arXiv that failed to compile. We hope that these modifications will bring us a step closer to bridging
the gap to human performance.
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8 Ethics Statement

We ensure that the TikZ drawings we gather from online sources are licensed in a manner that
permits us to copy and redistribute them. Most sources license their content under a Creative
Commons attribution license,10 the GNU Free Documentation License,11 or the MIT license.12 ArXiv
is an exception in that, even though it allows licensing under a Creative Commons license, the
majority of papers are published under a non-exclusive license, which does not grant us permission
to redistribute.13 As a result, we exclude any TikZ drawings from arXiv that use this license in
the public release of DaTikZ. Nevertheless, we do release AutomaTikZ in conjunction with the
dataset generation code, enabling anyone to recreate the full version of DaTikZ themselves. As
for auto-generated samples, OpenAI prohibits the use of GPT-4 for creating competing services,
restricting this part of our dataset to non-commercial applications.14

Apart from our dataset, in this work we compare openly developed models with the proprietary GPT-4
and Claude 2, whose full training details and hyperparameters have not been published. While we
strive for a fair evaluation of all models, the lack of transparency in proprietary systems inevitably
hinders comparative evaluations and reproducibility.

Within the scope of these limiting aspects, however, our models perform best in generating TikZ
across the tested conditions. Yet, our models should not be used as a substitute for human judgment
and critical thinking. They may carry any biases, flaws, or gaps that exist in the base models and
training data and could potentially misinterpret the input, fabricate non-existent details, or overlook
crucial information. Users should be aware of potential differences between the results they expect
and the output the models generate.

Furthermore, while our models are designed to aid in the production of legitimate scientific figures,
they could potentially be used to generate disinformation and fake science in the hands of malicious
actors.
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A Code & Image Complexity

Source Tokens Cplx Qlty
Human 916.56 0.76 0.83
CLiMA13b 422.56 0.46 0.4
LLaMA13b 420.28 0.46 0.39
GPT-4 186.73 0.31 0.38
Claude 2 179.42 — —

Table 2: Average number of tokens in
TikZ documents, along with averaged min-
max normalized BWS scores for image
complexity (Cmplx) and quality (Qlty).

An interesting phenomenon we observe in our experiments
in §5 is noticeable differences in TikZ code size. As
shown in Table 2, human-created TikZ drawings, after
filtering comments, contain twice the number of tokens as
CLiMA13b and LLaMA13b, which in turn have twice as
many tokens as GPT-4 and Claude 2. We investigate how
this discrepancy is reflected in the compiled images, in
particular, whether images created from code with fewer
tokens are less complex and whether this also affects
image quality. To this matter, we gather another round
of BWS scores. Analogous to §5.2, we form tuples with
CLiMA13b, LLaMA13b, GPT-4, and humans. We assign
a single annotator to evaluate image tuples in terms of
complexity and, due to the potentially subjective nature of the task, four annotators to evaluate image
quality. Since we obtain an SHR of 𝜌 = 0.68 for image quality, we conclude that all annotators have a
similar idea of what constitutes it.

We display averaged and min-max normalized BWS scores in Table 2. Unsurprisingly, there is a
clear correlation between code size and image complexity. Humans score over twice as high as
GPT-4, with CLiMA13b and LLaMA13b falling in between. A link to quality is also visible, although
less pronounced. Humans excel distinctly, but CLiMA13b, LLaMA13b, and GPT-4 are not far apart.
Nonetheless, in absolute terms, CLiMA13b still ranks higher than LLaMA13b, and GPT-4 comes in
last. Overall, this confirms our observations in §5.1 that GPT-4 and Claude 2 produce code most
different from humans, yielding figures that are simpler than other models. Consequently, we believe
that our tool can assist humans better in creating more detailed TikZ drawings.

B Prompt Engineering

Our work involves developing a series of prompts to guide general-purpose language models in
accomplishing specific tasks. In this section, we discuss each model and the corresponding prompts
we designed. Within a prompt, terms enclosed in curly braces symbolize placeholder variables that
are substituted during inference.

WizardLM We employ WizardLM to create captions for TEX Stack Exchange content based on a
question and its title (cf. §3.1). We force the generated tokens to start with “Desired outcome:”
which we subsequently strip from the output, along with any text generated after the first newline:

Create a clear and specific caption for an image that depicts the1

desired outcome of the following question. Utilize all relevant2

details provided in the question, particularly focusing on the3

visual aspects. Avoid referencing any example images or code4

snippets. Ensure that your caption is comprehensive and accurate:5

6

{TITLE}7

8

{QUESTION}9

LLaVAR We use LLaVAR to generate short descriptions for scientific figures (cf. §3.2). We
initially tried to provide LLaVAR with the original caption as context to improve it directly, but in
many cases this seemed to confuse the model. Therefore, we decided to create short descriptions
based solely on the figure and later append them to the original caption. We found that short, concise
prompts work best for generating these descriptions:

{IMAGE}1

Write a short description for the image.2
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Model CER↓ CSR↓ EED↓ KID↓ CLIPimg↑ CLIP↑ BLEU↑

LLaMA7b 0.644 1.183 56.393 0.059 80.237 26.733 2.732
LLaMA13b 0.552 1.178 55.762 0.053 81.12 26.898 3.258
CLiMA7b 0.545 1.202 56.045 0.068 80.671 26.776 2.82
CLiMA13b 0.656 1.184 55.708 0.05 81.017 26.966 3.369
CLiMAimg 0.658 1.175 55.264 0.057 82.252 26.994 3.469
Claude 2 1.115 1.758 59.135 0.333 75.589 27.753 0.137
GPT-4 0.384 1.147 58.667 0.222 78.63 29.115 0.181

Table 3: Precise system-level scores for automatic evaluation metrics. CLIPScore is abbreviated with
CLIP and CrystalBLEU with BLEU. CER shows the average number of compile time errors. Arrows
indicate whether larger or smaller scores are better, and the best scores are visually highlighted.

GPT-4 & Claude 2 To generate TikZ drawings (cf. §3.1, §4, and §5), we use the same prompt for
GPT-4 and Claude 2, which was originally designed by Zhang et al. (2023b) and slightly modified
for our task. After a comparison with our own prompts and prompts from other works (Bubeck et al.,
2023), we found it to work best in our initial experiments. As a chain-of-thought prompt it breaks
down the task of code generation into a series of logical steps. By default, the models tend to copy the
input caption into the output image. To counter this, we additionally instruct the models not to include
the caption in generated images. However, instances of caption copying still occur, as discussed in §6:

Draw a TikZ picture for the following caption: {CAPTION}. First,1

you need to provide an abstract step-by-step drawing guide. Then,2

you need to generate the full code (beginning with "\documentclass"3

and ending with "\end{document}") following the guide. Avoid any4

direct inclusion of the caption or any lengthy text sequences within5

the code. Finally, summarize the drawing.6

C Additional Details on Experiments

In this section, we conduct additional ablation studies and provide more specific aspects of our
experiments in §5. This will provide a clearer understanding of our methodologies and their respective
considerations and limitations.

C.1 Training Challenges

During the training phase, we limit the context size of our models to 1200 tokens due to constraints
of our existing GPU resources, and filter out all examples that exceed this limit. Although most
examples were within these limits, they were generally very close to the maximum allowable length.
This prevented us from training our models to perform functions such as multi-turn conversations
like chatbots, which could have allowed compiler logs to be fed back into the model to obtain
improved outputs. Although we did consider this approach in preliminary experiments with vanilla
LLaMA and its instruction-tuned derivatives in a zero-shot setting, the baseline performance of these
models was too poor to produce usable TikZ output. Instead, by drawing parallels to text-to-image
generation models that condition the output solely on the input caption and using our iterative
resampling technique to improve the outputs, we provide more resource-efficient alternatives with
good performance.

C.2 In-depth Evaluation Metric Scores

Table 3 presents the precise system-level scores from our automatic evaluation in §5.1. As observed
in that section, CLiMAimg and CLiMA13b generally outperform the other models, with CLIPScore
being a notable exception due to GPT-4 and Claude 2 being prone to caption copying. The table
also contains the Code Error Rate (CER), which indicates the average number of compile time errors
of our models. As evidenced, it largely reflects the trends of CSR. Most models generate less than
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Training Configuration CER↓ CSR↓ EED↓ KID↓ CLIPimg↑ CLIP↑ BLEU↑

Full Training 0.545 1.202 56.045 0.068 80.671 26.776 2.82
−Caption Augmentation 0.603 1.169 56.384 0.056 78.312 25.703 2.714
−Image Training 0.681 1.178 56.336 0.08 80.129 26.604 2.736
−ArXiv Papers (86k) 2.145 1.546 60.552 0.229 75.15 25.328 0.886
−TEX Stack Exchange (29k) 0.624 1.207 56.274 0.071 80.461 26.958 2.936
−Artificial Examples (4k) 0.503 1.194 56.51 0.079 79.912 26.68 2.537
−Curated Examples (1k) 0.656 1.22 56.246 0.072 80.346 26.815 2.711

Table 4: Ablation study results for CLiMA7b demonstrating how omitting either caption augmentation
or randomly forwarding images to CLIP instead of captions during training impacts performance
on the test set. The study also evaluates the impact of each data source by training CLiMA7b on
subsets of DaTikZ, omitting one data source each time. Scores lower or higher than those from full
training (taken from Table 3) are shaded in red and green, respectively. Color intensity mirrors each
score’s proportion to the minimum and maximum values of its metric.

one error on average, with Claude 2 being the only exception. Overall, GPT-4 achieves the best
score, possibly because it has fewer opportunities to make mistakes by generating shorter and less
complex code than other models (cf. §A). Since CLIPScore, at a fundamental level, evaluates similar
aspects to CS from our human evaluation in §5.2 (caption-image similarity), and CLIPScoreimg
is the intuitive counterpart to RS (image similarity), we also calculate their respective Spearman
correlations. At the segment-level, the correlation coefficients are 0.23 for CLIPScore and CS, and
0.25 for CLIPScoreimg and RS (the degrees of correlation aligning with values commonly found for
machine translation metrics; Freitag et al., 2021; Rei et al., 2022). The system-level correlations are
0.5 and 0.8, respectively. The higher correlations witnessed for image over caption-image similarity
lends credibility to our hypothesis regarding CLIPScore’s biases favoring images of text.

C.3 Ablation Studies

In this subsection we delve into ablation studies performed to understand the degree to which data
augmentation and the different data sources of DaTikZ contribute to the test set performance of our
models.

Impact of Data Augmentation In our work, we incorporate two key data augmentation techniques:
we (i) automatically augment image captions in DaTikZ (cf. §3.2), and we (ii) randomly replace
image captions forwarded to CLIP with reference images during the training of CLiMA (cf. §5).
Even though we show that caption augmentation improves caption-image alignment, we have yet
to conclusively quantify its effect on model performance. Similarly, although mixing text-only and
text-image modalities is common when training models accepting both unimodal and multimodal
input (Li et al., 2020; Wang et al., 2022a), the implications of our particular training strategy remain
to be explicitly measured. To investigate these matters, we conduct an ablation study using CLiMA7b
as a representative model for efficiency reasons. In particular, we construct a version of CLiMA7b
that uses DaTikZ without caption augmentation and another version where we train without sampling
images. The performance on our evaluation metrics compared to full training results of CLiMA7b
can be seen in Table 4.

Although eliminating caption augmentation reveals subtle improvements for CSR and KID, the
model noticeably underperforms for all other metrics, particularly CLIPScore (1.1pp lower) and
CLIPScoreimg (2.4pp lower). Interestingly, the metrics that show an improvement do not compare
model outputs with individual references but either do not use references at all (CSR) or use them
only to evaluate general characteristics (KID). On the other hand, metrics with worse results are
mostly reference-based. We attribute this observation to the reduced amount of information carried by
non-augmented captions, most likely leading to a decline in CLiMA’s ability to capture the connection
between captions and images and, therefore, delivering lower performance in reference-based metrics.
Conversely, with less information that might otherwise constrain the output space, the model is likely
to gain more flexibility in producing figures. We conjecture that this allows the model to concentrate
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more on aspects that contribute positively to metrics without direct references, such as CSR and KID.
This hypothesis provides a plausible explanation for our observed results.

Upon examining the impacts of not sampling images during the training process, we find that most
metrics exhibit worse performance, with only CSR yielding comparable results. These findings
support our choice of training strategy and show that integrating images throughout the training
process can bolster performance even when only textual inputs are considered at the evaluation stage.

In summary, we observe that both data augmentation techniques contribute positively to model
performance. Caption augmentation enhances the caption-image alignment, benefiting CLiMA7b,
while leveraging images during training results in improvements as well.

Importance of each Data Source Given the diverse data sources making up DaTikZ (arXiv, TEX
Stack Exchange, curated examples, and artificial examples; cf. §3.1), we aim to assess the contribution
of each source to the test set performance. This exploration serves multiple purposes: firstly, it
enables us to justify the integration of each source; secondly, it can inform future data collection
initiatives. To realize this objective, we develop four additional variants of CLiMA7b, where each
variant is trained by omitting one data source and utilizing only the remaining three. As before, we
plot the difference in performance compared to the full training results in Table 4, which should
expose the importance of each data source.

The greatest performance decline occurs with the removal of arXiv, a consistent outcome across all
metrics. As the primary contributor of scientific figures totaling 86k, its absence instigates a decline
of 4.5pp for EED, 5.5pp for CLIPScoreimg, 1.4pp for CLIPScore, and 1.9pp for CrystalBLEU.
Similarly, CER inflates nearly fourfold, and CSR experiences a noticeable increase, as well. Strikingly,
however, results diverge for DaTikZ’s second largest source, the TEX Stack Exchange, which provides
29k examples. Contrary to expectations, the general downward trend is comparatively small, with
EED and CLIPScoreimg only suffering a 0.2pp decrease and CLIPScore and CrystalBLEU even
improving by 0.2pp and 0.1pp, respectively. We attribute this outcome to TEX Stack Exchange’s
unique focus on providing problem-specific minimum working examples rather than scientific figures
like the rest of DaTikZ. Although this could still provide valuable training signals, we did not design
our test set (only ~100 of its 1k random samples originate from this source) to evaluate the ability of
our models to follow technical advice given in the figure captions. Consequently, we plan to improve
our testing framework in future work. Next, although we exclude artificial examples from our test set
due to their non-human origin and their removal from the training data improves CER and CSR, their
absence still has a negative impact on all other metrics. Without artificial examples, EED drops by
0.5pp, CLIPScoreimg by 0.8pp, CLIPScore by 0.1pp and CrystalBLEU by 0.3pp, showing that
distillation of GPT-4 is a useful component in the training process. Lastly, even though curated
examples constitute the smallest data source (less than 1k examples), their omission from the training
data induces greater negative performance impacts than the removal of TEX Stack Exchange (0.2pp
for EED, 0.3pp for CLIPScoreimg and 0.1pp for CrystalBLEU). We attribute this disproportionate
value per size to the likely higher quality of code and captions inherent to curated examples.

Overall, if the results are examined independently, we observe that each source has primarily positive
effects. However, when evaluated in the context of the source sizes, we find that curated examples
create a particularly noticeably positive impact, whereas TEX Stack Exchange exhibits smaller effects.
These insights will guide us to focus more on collecting such curated examples in future work.

D Annotator Demographics

Our annotators are proficient in English, possessing a C1 level or above as per the Common European
Framework of Reference for Languages.15 They all come from a science and technology background
with research experience. They specifically consist of one female and one male faculty member, one
female PhD student, three male PhD students, and two female and two male assistants from other
institutions.

In addition to these expert annotators, we also conducted preliminary tests with crowdworkers via
Amazon Mechanical Turk,16 gathering ten crowd-annotations per tuple for each task. However, the

15https://www.coe.int/lang-cefr
16https://www.mturk.com
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. . . LSTM→ LSTM→ LSTM→ LSTM→ . . .

LSTM←LSTM←LSTM←LSTM←. . . . . .

®𝑥2 ®𝑥3 ®𝑥4 ®𝑥5

®ℎ5®ℎ4®ℎ3®ℎ2

®ℎ→2 ®ℎ→3 ®ℎ→4

. . . . . .

®ℎ←3 ®ℎ←4 ®ℎ←5

(a) A diagram representing a recurrent neural network
consisting of several LSTM blocks, processing the input
sequence simultaneously forwards and backwards (to
exploit both directions of temporal dependence). Con-
tains some rather tight manoeuvering.
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(b) A plot comparing the distribution functions of Bose-
Einstein, Boltzmann, and Fermi-Dirac statistics as a
function of the reduced chemical potential 𝛽(𝜖 − 𝜇).
This visualiation highlights the differences between the
three types of distribution functions, which are used to
describe the behavior of particles in different statistical
systems.
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(c) Tree with aligned matrix. A probability tree with
an aligned matrix listing the possible outcomes, their
probabilities and three columns for events described in
later tasks. It uses the grahdrawing library and requires
LuaLaTeX.
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(d) Our approach is a modified version of meta-seq2seq.
A transformer decoder (TD) is trained to produce a se-
quence of actions 𝑎𝑄1 , . . . , 𝑎

𝑄
𝑚 given a query instruction

𝐼𝑄 . The context are demonstrations (𝐼𝑘 , 𝐴𝑘) produced
by our generative model. We use a transformer encoder-
decoder (T) to encode instructions and state 𝑆 and a
transformer encoder (TE) to encode actions. The trans-
formers that process instructions (pink blocks) receive
state 𝑆 as the input of the encoder.

Figure 5: Illustrative examples from the DaTikZ, licensed for free distribution. The examples are from
https://github.com/PetarV-/TikZ, https://github.com/janosh/tikz, https://tikz.net,
and https://arxiv.org, respectively.

correlation between the results of the crowdworkers and the experts was strikingly low (𝜌 < 0.1).
Since the crowdworkers also showed low agreement among themselves, we decided to discontinue
further experiments with crowdsourcing.

E Examples

In Figure 5, we provide human-created examples from DaTikZ. Further, Figure 6 contains examples
of scientific figures generated by CLiMA13b, LLaMA13b, and GPT-4 for our human evaluation (cf.
§5.2). Each model is represented by one high-scoring and one low-scoring instance, as assessed by
our expert annotators in terms of caption similarity. It is worth noting that the low-scoring example of
GPT-4 suffers from caption copying. We provide additional examples of caption copying in Figure 7.
Instances of generated code can be found in Figure 8.
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𝑛

2𝑛

CLiMA13b (good): The ansatz (5.17) and (5.18) for 𝛼 = 2. The red
points are evenly spaced, and the blue points scale quadratically with
𝑛. The image is a white background with blue and red dots scattered
across it. The dots are placed in various arrangements, creating a
visually interesting pattern. Some dots are clustered together, while
others are spaced further apart, covering the entire background.

CLiMA13b (bad): For the 𝑃 = 2 scheme, the regular cell footprint is
a standard five-point Laplacian, and if any point in the footprint is a
cut cell, it is then “irregular.” Cut cells are shown with dark shading,
irregular cells with light shading, and the remaining white cells are
“regular.”

𝑇𝑧P•
0 = 𝜁𝑧 (𝑧)

L𝛾𝑧 (𝑧)

LLaMA13b (good): Local configuration of the path and the foliation
(in red) around the point 0 = Ψ𝑧 (𝑧) . The image displays a complex
mathematical formula with various symbols and notation, including
a black dot, waves, and arrows. The formula seems to be related to
physics or engineering, and it is written on a white background for easy
readability.
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LLaMA13b (bad): Illustration of the proof of Theorem 2.7. The image
displays a tree with blue and orange labels on a white background. The
tree has a unique structure, with branches that don’t follow a typical
tree layout. The labels seem to be representing a formula or a set of
instructions, and the tree is accompanied by several equations in the
surrounding area.
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GPT-4 (good): Expression graph for algebraic expression 𝑥2+2𝑥𝑦+𝑦2.
The image shows a tree with a symbol at its root, representing a
mathematical concept. The tree has a series of logical connections, and
there are variables and mathematical symbols throughout the structure.
The image conveys a sense of order and organization in the presentation
of the mathematical concept.
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GPT-4 (bad): Average Relative loss in bi-encoder recall accuracy on
NQ by recall set size depth on the baseline, Pretrained Alignment (PT),
Data Augmentation (DA), and Contrastive Alignment Post Training
(CAPOT) on noisy queries.

Figure 6: Examples of model-generated scientific figures that received high ratings (good) and low
ratings (bad) according to the perception of our expert annotators for caption similarity. The sections
of the captions that have been augmented (cf. §3.2) are emphasized.
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GPT-4
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In R2, optimal transports are defined by 𝑉1 and 𝑉2
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In the Wasserstein space, 𝑇1 and 𝑇2 are added and scalar multiplied
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(a) Motivating the definition of the addition ⊕ and scalar multiplication ⊙ operations for 0 < 𝛼 < 1 in the
Wasserstein optimal transport space for transports 𝑇1, 𝑇2 (right), while in R2 optimal transports are defined by
vectors 𝑉1, 𝑉2 (left).
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(b) The influence of pre-training scale on the downstream performance. The value of each method is the average
metric values across all datasets in the privacy protection setting with LightGBM.

GPT-4

An overlay TikZ picture below the
ordinary text, with the colored
layer appearing below the text
rather than above it. Achieving

this requires adjusting the z-order
of the TikZ picture and the text.

CLiMA13b

2 + 2 = 4

(c) An overlay TikZ picture below the ordinary text, with the colored layer appearing below the text rather than
above it. Achieving this requires adjusting the z-order of the TikZ picture and the text.

Figure 7: Additional examples of GPT-4 that suffer from caption copying. For reference, we also
provide the output of CLiMA13b for the same captions. The underlying TikZ code of Figure 7c can
be found in Figure 8.
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1 \documentclass{article}
2 \usepackage{tikz}
3 \pagestyle{empty}
4
5 \begin{document}
6 \sffamily\Huge
7 \begin{tikzpicture}[overlay, remember picture]
8 \node at (current page.center)
9 {

10 \begin{tikzpicture}
11 \fill[red] (0,0) -- (5,7) -- (10,0) -- cycle;
12 \end{tikzpicture}
13 };
14 \end{tikzpicture}
15
16 \begin{center}
17 An overlay TikZ picture below the ordinary text, with the colored layer appearing below

the text rather than above it. Achieving this requires adjusting the z-order of the
TikZ picture and the text.

18 \end{center}
19 \end{document}

GPT-4: An overlay TikZ picture below the ordinary text, with the colored layer appearing below the text rather
than above it. Achieving this requires adjusting the z-order of the TikZ picture and the text.

1 \documentclass{article}
2 \usepackage{tikz}
3 \usepackage{amsmath}
4 \usetikzlibrary{tikzmark}
5 \begin{document}
6 \newcommand{\sep}[1]{\hfill#1\hfill\relax}
7 \begin{minipage}[t]{.5\linewidth}
8 \begin{align*}
9 \sep{2+2=4}

10 \end{align*}
11 \end{minipage}%
12 \begin{minipage}[t]{.5\linewidth}
13 \tikzmarknode{2}{\rule{3cm}{3cm}}
14
15 \tikzmarknode{+}{\rule{3cm}{3cm}}
16
17 \tikzmarknode{3}{\rule{3cm}{3cm}}
18 \end{minipage}
19 \begin{tikzpicture}[overlay,remember picture]
20 \draw[red] (-1,-3) -- (5,-3) (-1,-2) -- (5,-2) (-1,-1) -- (5,-1)
21 (-1,0) -- (0,0) (1,0) -- (2,0) (3,0) -- (5,0)
22 (-1,1) -- (0,1) (1,1) -- (2,1) (3,1) -- (4,1) (5,1) -- (5.5,1)
23 (-1,2) -- (0,2) (1,2) -- (2,2) (3,2) -- (3.5,2) (4,2) -- (5,2)
24 (-1,3) -- (0,3) (1,3) -- (1.5,3) (2,3) -- (2.5,3) (3,3) -- (4,3)
25 (5,3) -- (5.5,3);
26 \end{tikzpicture}
27 \end{document}

CLiMA13b: An overlay TikZ picture below the ordinary text, with the colored layer appearing below the text
rather than above it. Achieving this requires adjusting the z-order of the TikZ picture and the text.

Figure 8: The generated code of GPT-4 (top) and CLiMA13b (bottom) from Figure 7c. Both models
correctly use the overlay option, but they are not devoid of issues. In particular, GPT-4 utilizes
nested tikzpicture environments which is generally discouraged and the output of CLiMA13b
seems particularly verbose.
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