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A B S T R A C T   

Abnormal human activities play a significant role in triggering emergencies within vast nature reserves. The vast 
area, complex terrain, and insufficient electricity and high-bandwidth network infrastructure present significant 
challenges in effectively supervising nature reserves. Fortunately, intricate terrains often boast restricted access 
points, typically confined to just a few narrow pathways and the gait recognition technique utilizes only a small 
amount of binary-processed low-quality gait data and seamlessly integrates with low-resolution and low-power- 
consumption cameras making it particularly suitable for human activities supervision in nature reserves. How-
ever, extensive existing supervised along with a limited number of unsupervised methods are unable to be 
implemented in real-world application due to the reliance on the pre-labeled training set and the insufficient 
retrieval accuracies. Here, we present an electronic tracking system for safeguarding large-scale nature reserves 
in complex terrain based on the unsupervised gait recognition technique for the first time. 1) The proposed 
method doesn’t require any known matching relationships in the training set. 2) It consistently achieves 100% 
top-1 retrieval accuracies, with a distinct gap between the distances of top-1 and top-2 retrievals. This distinction 
allows us to detect abnormal behaviors, such as individuals who enter without exiting, exit without entering, or 
venture into restricted areas. It effectively mitigates the impact of human activities on the protected area at low 
cost offering an application case of gait recognition technology (GRT) in the field of nature conservation.   

1. Introduction 

Abnormal human activities play a significant role in triggering 
emergencies, such as fires, illegal hunting, incidents involving missing 
persons, etc., within expansive nature reserves characterized by intri-
cate terrains. The management, emergency response, and rescue oper-
ations of these nature reserves demand substantial annual investments. 
For instance, in the past decade, a conservative estimate suggests that 
human activities of non-regular visitors were responsible for over 85 % 
of fires in Cangshan Mountain, a famous mountain in China. These 
visitors, who often access the area through undeveloped tourist route, 
pose a greater risk of triggering emergencies, especially fires. The annual 
cost associated solely with fire prevention and emergency response have 
surpassed 10 million RMB. Hence, there is an urgent need for cost- 

effective and efficient solutions to effectively monitor and supervise 
human activities, especially those of non-regular visitors, within nature 
reserves. 

However, the extensive expanse and intricate topography of nature 
reserves pose challenges to traditional manual inspection methods when 
it comes to monitoring and managing individuals entering these areas. 
Although advanced biometric recognition technology utilizing artificial 
intelligence, such as the Eye-in-the-Sky system (Singh, Patil, & Omkar, 
2018), has matured and offers real-time tracking, observation, and 
recording of targeted activities and behaviors for comprehensive sur-
veillance, the absence of electricity and high-bandwidth network 
infrastructure within the reserves hampers the implementation of 
existing such techniques. For instance, they rely on high-definition and 
high-power-consumption equipment and high-bandwidth networks, 
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resulting in substantial costs for infrastructure development. Currently, 
there are some, but relatively fewer efforts, in search of more improved 
solutions (Isabelle & Westerlund, 2022; Liu et al., 2022; Pickering, Rossi, 
Hernando, & Barros, 2018). For instance, Liu et al. (2022) used GPS 
trajectory data to analyze patterns of tourist transfer behavior and 
spatio-temporal movement behavior. Nevertheless, the vast area, com-
plex terrain, and insufficient electricity and high-bandwidth network 
infrastructure present significant hurdles in effectively supervising na-
ture reserves. 

Gait recognition is a technology that utilizes human walking char-
acteristics to identify individual identities. Its advantages, including 
non-intrusiveness, long-range capability, and resistance to forgery, 
make it highly applicable in diverse areas such as security monitoring, 
medical diagnosis, and intelligent interaction (Sepas-Moghaddam & 
Etemad, 2022; Singh, Jain, Arora, & Singh, 2018). The academic com-
munity has shown substantial interest in this field, introducing various 
gait datasets and proposing different algorithms (Wan, Wang, & Phoha, 
2018; Wu, & Xu, 2019; Zhang et al., 2020; Su, Zhao, & Li, 2020; Arshad 
et al., 2020; Chao, Wang, He, Zhang, & Feng, 2021; Chen et al., 2021; 
Zhang, Wang, & Li, 2021; Marín-Jiménez, Castro, Delgado-Escaño, 
Kalogeiton, & Guil, 2021; Han, Li, Zhao, & Shen, 2022; Zheng et al., 
2022; Song, Huang, Wang, & Wang, 2022; Chai, Li, Zhang, Li, & Wang, 
2022; Khan, Farid, & Grzegorzek, 2022; Yu et al., 2022; Liang et al., 
2022; Ma, Fu, Zheng, Cao, Hu, & Huang, 2023a; Li & Zhao, 2023). The 
prevailing body of research predominantly centers on addressing the 
challenge of cross-view and cross-condition gait recognition, wherein 
the difficulty lies in establishing feature correlations across disparate 
viewpoints and walking conditions of the same individual. Within su-
pervised learning frameworks, a substantial portion of existing research 
begins by enhancing structural complexity to improve feature extraction 
(Arshad et al., 2020; Khan et al., 2022; Chai et al., 2022; Li & Zhao, 
2023; Ma et al., 2023), and researchers have also improved loss func-
tions and training methodologies (Liang et al., 2022; Su et al., 2020; 
Weichen, Hongyuan, Huang, & Wang, 2022; Zhang, Luo, Ma, Liu, & Li, 
2019), aiming to advance the state-of-the-art on public datasets. 

In practical application, a gait recognition-based tracking system 
needs to meet two essential requirements.  

1) It should be capable of achieving unsupervised retrieval without 
relying on manually annotated training datasets. The importance of 
reducing reliance on manually annotated data is evident for 
following reasons. Firstly, manual annotation is time-consuming and 
labor-intensive. If applications of GRT in a new domain requires 
extensive data labeling, it will increase the cost of using the tech-
nology, hindering its widespread adoption and broader application 
(Ren et al., 2023; Ma et al., 2023). Secondly, using pre-existing an-
notated datasets to train supervised models can be unsatisfactory 
when there’s a discrepancy between the training data and real-world 
testing data (Zheng et al., 2021; Ren et al., 2023). For instance, if the 
training data was collected with cameras positioned low, but in 
actual application, cameras are mounted at higher positions, there 
will be a bias between the test and training data. There are researches 
investigating the unsupervised gait recognition which will be intro-
duced in the section of related work.  

2) The system must achieve a top-1 retrieval accuracy rate very close to 
100 %; otherwise, the path tracking of some individuals will be 
erroneous. Additionally, it should clearly distinguish between the 
distances of top-1 and top-2 retrievals for all samples. By setting a 
threshold, this ensures the system can accurately identify and 
respond, regardless of the target’s presence in the retrieval database. 

However, extensive existing supervised methods (Wan, Wang, & 
Phoha, 2018; Wu, & Xu, 2019; Zhang et al., 2020; Su et al., 2020; Arshad 
et al., 2020; Chao et al., 2021; Chen et al., 2021; Zhang et al., 2021; 
Marín-Jiménez et al., 2021; Han et al., 2022; Zheng et al., 2022; Song 
et al., 2022; Chai et al., 2022; Khan et al., 2022; Yu et al., 2022; Liang 

et al., 2022; Ma et al., 2023; Li & Zhao, 2023) along with the few un-
supervised approaches available (Zheng et al., 2021; Wang et al., 2022; 
Ma et al., 2023; Ren et al., 2023) are unable to be implemented in real- 
world application due to the reliance on the pre-labeled training set and 
the insufficient retrieval accuracies. This undertaking presents a 
challenge. 

Fortunately, within the realm of electronic tracking systems, chal-
lenges such as cross-view matching, which is a major focus in scholarly 
research, can be effectively mitigated by strategically positioning cam-
eras along narrow pathways. Nature reserves with intricate terrains 
often feature limited access points, typically through one or a few nar-
row paths. For instance, despite the vast expanse of Cangshan Mountain, 
which covers hundreds of square kilometers, entry is restricted to a few 
hundred narrow paths due to the complex terrain. Placing cameras 
above these constrained and level surfaces enables the capture of in-
dividuals’ frontal views at a same-degree angle, say 0-degree, see Fig. 1- 
b. Consequently, the primary focus of the tracking system revolves 
around matching individuals within the same viewpoint, eliminating the 
need for cross-view matching, which necessitates supervised methods. 
To achieve same-view gait recognition through unsupervised ap-
proaches is feasible. 

In this study, we introduce a novel and practical electronic tracking 
system specifically designed for large-scale nature reserves situated in 
complex terrains. This system is built upon a newly and simple proposed 
unsupervised gait recognition method. The core technique involves the 
utilization of a large-scale vision transformer (VIT) model (Han et al., 
2023), which is pretrained on the ImageNet dataset (Deng et al., 2009), 
coupled with a modified contrastive learning strategy, where the 
contrastive learning approach has transitioned from a semi-supervised 
(Schiappa, Rawat, & Shah, 2022) to a fully unsupervised method by 
altering the selection of positive samples. 

The pre-trained ViT adeptly extracts relevant features from individ-
ual gait data samples. Concurrently, contrastive learning enhances the 
model’s ability to differentiate between individuals entering the reserve, 
thus providing an ideal representation of each subsample where essen-
tial information is encapsulated and redundant information is discarded. 
Consequently, the proposed unsupervised gait recognition-based 
tracking system has the capability to track the paths of individuals by 
correctly retrieval the target from each camera, detecting instances 
when someone enters but does not exit, exits but does not enter, or 
enters a restricted area. Furthermore, the systems necessitate only a 
small amount of binary-processed, low-quality gait data transmission, 
reducing their reliance on network and resource capacity. This approach 
adeptly tackles the challenges of large-scale nature reserves with com-
plex terrains, limited power resources, and high bandwidth network 
infrastructure, all while minimizing maintenance costs. It enables pre-
cise control and effectively mitigates the impact of human activities on 
protected areas at a low cost. The contributions of this research can be 
summarized as follows:  

• The approach introduces a simple yet effective unsupervised gait 
recognition method that consistently achieves 100 % accuracy in 
top-1 retrieval for same-view matching, outperforming existing 
methods. It also ensures a distinct separation between the distances 
of top-1 and top-2 retrievals for all samples, demonstrating robust 
identification and response capabilities, even when the target’s 
presence in the retrieval database varies  

• In a groundbreaking endeavor, the gait recognition method is 
applied to the field of environmental conservation, providing an 
electronic tracking system solution for large-scale nature reserves 
with complex terrains. This innovative solution can significantly 
reduce the management costs of natural reserves and, more impor-
tantly, mitigates the risk of human interference in these protected 
areas. Yunnan, China, for instance, houses over 100 nature reserves, 
highlighting the practical relevance of our work. This research ad-
dresses a gap by applying the advanced gait recognition technology 
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to the urgent task of supervising human activity in expansive nature 
reserves. 

2. Review of related literature and initial considerations 

Gait, compared to other biometric features, has many advantages, 
making GRT a promising area with broad application prospects. This 

field has always been a research hotspot, with numerous studies 
exploring the topic (Sepas-Moghaddam & Etemad, 2022; Singh et al., 
2018). This chapter will review representative research in the field, 
showcasing the development GRT and highlighting the core contribu-
tion of our work: Unlike existing academic research, our study is the first 
to apply GRT to the conservation of natural reserves, providing a rare 
case for the practical application of GRT in real-world scenarios. Based 

Fig.1. The illustration of tracking system. Panel-a. The key idea is to divide the nature reserves into subregions and focus on the main path in and out this region. The 
tracking is done by retrieval the individuals from different cameras that record their gait data. Panel-b. Example of the gait images. By positioning the camera directly 
above the pathway, gait data of pedestrians can be captured from a same-angle view, here, 0-degree angle is taken as an example. 

C. Zhou et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 244 (2024) 122975

4

on the rich achievements in gait research and the exemplary role of our 
work, we believe that in the future, more research will apply advanced 
artificial intelligence technology to practical problems. 

The quintessential challenge in gait recognition is the precise 
extraction of individual-specific traits from raw gait data (Sepas-Mog-
haddam & Etemad, 2022; Singh et al., 2018). It involves discerning the 
unique aspects of a person’s walk, i.e., those idiosyncratic patterns that 
distinguish one individual from another. These distinguishing features, 
such as the particular manner in which a person’s toes strike the ground 
or the swing amplitude of their arms, are encapsulated within the gait 
silhouette or its temporal progression. The challenge for algorithms lies 
in the nature of the input data: a vast array of numerical values that, 
while rich with vital information, are also intermingled with superfluous 
data. Consequently, unlike humans, models do not innately recognize 
these pivotal features. Despite the extensive body of research on gait 
recognition, the focal point consistently circles back to feature extrac-
tion, that is, developing sophisticated algorithms capable of isolating the 
essential features from the gait data, filtering out the noise, and ensuring 
accurate identification of individuals. 

2.1. Algorithms designed based on prior knowledge 

Algorithms that extracted features manually based on prior knowl-
edge dominated the early stages of gait recognition. The core idea of 
these methods was to utilize the prior knowledge of the physical motion 
characteristics of the human body and extract gait features through 
manually designed algorithms. Representative methods are mainly 
divided into two categories: model-based and model-free approaches. 
Model-based approaches rely on a predefined human body model, 
typically skeletal or joint models, to capture the dynamic characteristics 
of gait. For instance, the stick figure model (Nixon, Carter, Cunado, 
Huang, & Stevenage, 1996) uses a simplified skeletal model to represent 
the human body and identifies gait by analyzing joint movements. In 
contrast, model-free methods extract features directly from video data 
without relying on a predefined human body model. For example, the 
gait energy image (Han & Bhanu, 2005) is a commonly used model-free 
method that captures the primary features of gait by creating an image 
through averaging the silhouette of a person walking. 

2.2. Supervised methods based on deep neural networks 

Early gait feature extraction methods, which relied on manually 
designed algorithms, did not require parameter updates through su-
pervised or unsupervised training. This approach made them less data- 
dependent and computationally economical. However, their effective-
ness was significantly limited by the algorithms’ design. In particular, 
they often lacked robustness under variable conditions, such as chang-
ing environments (Sepas-Moghaddam & Etemad, 2022; Singh et al., 
2018). 

The development of manually annotated gait datasets has catalyzed a 
shift in gait feature extraction towards data-driven approaches. Notable 
datasets include the CASIA series with various scales and conditions 
(Andrie, Basuki, & Arai, 2011), the large-scale OU-MVLP for experi-
mental settings (Takemura, Makihara, Muramatsu, Echigo, & Yagi, 
2018), and outdoor datasets like GREW (Zhu et al., 2021) and Gait 3D 
(Seely, Samangooei, Lee, Carter, & Nixon, 2008). These datasets have 
enabled the use of supervised learning methods, particularly convolu-
tional neural networks (CNNs), which leverage Gait Energy Images 
(GEI) to learn complex features from extensive labeled data (Yan, Zhang, 
& Coenen, 2015). With known pairings of individuals in the training set, 
CNNs excel at extracting features that identify the same person across 
various views and conditions, thus significantly improving cross-view 
matching in gait recognition (Shiraga, Makihara, Muramatsu, Echigo, 
& Yagi, 2016). 

Compared to manually designed algorithms, deep learning-based 
methods are more effective and robust in feature extraction. These 

methods significantly reduce the reliance on prior gait knowledge, 
thereby also reducing the complexity of implementation. As a result, 
deep learning has been widely applied in gait recognition research, 
especially in addressing complex cross-view and cross-condition recog-
nition challenges. These methods have further refined data processing, 
network structures, and training strategies. For instance, generative 
adversarial networks (GANs) have been introduced for gait feature 
extraction (Yu, Chen, Garcia Reyes, & Poh, 2017); Coupled patch 
alignment achieved cross-view gait matching by locally aligning gait 
images (Ben et al., 2019); and cross-view gait recognition methods based 
on classification loss and distance loss have been introduced (Han et al., 
2022). Over time, a plethora of classic supervised methods based on 
deep learning have emerged, such as GaitEdge (Liang et al., 2022), 
GaitStrip (Wang et al., 2022), and OpenGait (Fan, Liang, Shen, Hou, 
Huang, & Yu, 2023), progressively pushing the state-of-the-art on public 
datasets to new heights. 

2.3. Application-oriented and unsupervised methods 

To address challenges in real-world applications, academic research 
began to explore new challenges and corresponding solutions. For 
instance, the UGaitNet method was proposed to tackle missing gait data 
issues in practical scenarios (Marín-Jiménez et al., 2021). Beyond 
image-based data, the field has also seen the introduction of unsuper-
vised methods and sensor-based applications (Huitzil, Dranca, Bernad, 
& Bobillo, 2019). 

With deeper consideration of numerous potential application sce-
narios, it became evident that to truly implement GRT in real-world 
settings, there’s a need to move away from the supervised learning 
paradigm. Although supervised methods perform well, have low de-
pendency on prior knowledge, and are straightforward in algorithm 
design, they heavily rely on training datasets with labeled guidance for 
model learning. Manual annotation is both time-consuming and 
expensive, hindering the promotion and application of GRT in new fields 
(Ren et al., 2023; Ma, Fu, Zheng, Peng, Cao, & Huang, 2023b). On the 
other hand, using existing manually annotated datasets as training sets 
also poses challenges. For instance, if there’s a discrepancy between 
real-world test data and training set data, the performance of models 
derived from supervised methods can be affected (Zheng et al., 2021; 
Ren et al., 2023). 

In contrast, unsupervised learning methods, which don’t rely on la-
bels, have been proven to achieve feature extraction results and 
robustness comparable to, or even surpassing, supervised methods (Dai 
et al., 2023; Fang et al., 2023; Gao et al., 2023; Zhou, Gu, Fang, & Lin, 
2022). Thus, unsupervised identity retrieval techniques based on deep 
learning have gradually become a new research hotspot. For instance, 
there’s a plethora of research on unsupervised re-identification based on 
single full-body picture (Lin, Wang, & Liu, 2021; Lv, Chen, Li, & Yang, 
2018; Xuan & Zhang, 2021). However, unsupervised gait recognition 
research based on deep learning is still in its infancy (Ren et al., 2023), 
with existing unsupervised methods primarily focusing on domain 
adaptation studies (Zheng et al., 2021). Examples include adapting 
labeled gait identifiers from indoor scenarios to outdoor and wilderness 
settings (Wang et al., 2022; Ma et al., 2023) or exploring how pretrained 
gait recognition models can adapt to unlabeled datasets (Ren et al., 
2023). 

2.4. The gap between practical applications and academic research 

GRT has seen significant progress, with extensive research into data 
processing and both supervised and unsupervised methods. Its potential 
to enhance forensic, security, immigration, and surveillance systems is 
vast. Yet, there’s a disconnect between academic focus and practical 
application challenges. This misalignment hinders the real-world 
deployment of gait recognition, causing a lag in practical use 
compared to academic advancements (Makihara, Nixon, & Yagi, 2020). 

C. Zhou et al.                                                                                                                                                                                                                                    



Expert Systems With Applications 244 (2024) 122975

5

For instance, this study, aimed at natural conservation applications, 
reveals three key mismatches between academic pursuits and field 
necessities.  

1) Academic efforts are heavily geared towards solving cross-view 
matching in gait recognition (Ben et al., 2019; Fan et al., 2023; 
Han et al., 2022; Liang et al., 2022; Wang et al., 2022; Yu et al., 
2017). However, in real-world conservation scenarios, cross-view 
may not be as critical. Practical solutions, such as specialized hard-
ware setups, can effectively bypass the need for complex cross-view 
algorithms.  

2) For practical deployment, the tracking algorithm must consistently 
deliver a retrieval accuracy rate very close to 100 % for top-1 
matches and clearly differentiate between top-1 and top-2 matches. 
This precision is crucial for correctly identifying targets, whether 
they are present in the database or not. Yet, even with their advanced 
accuracy, both supervised and current unsupervised algorithms (Yu 
et al., 2017; Ben et al., 2019; Han et al., 2022; Liang et al., 2022; 
Wang et al., 2022; Fan et al., 2023; Ren et al., 2023) fall short of this 
rigorous standard.  

3) In practical applications within nature reserves, establishing a 
database containing all potential individuals entering the reserve is 
challenging, making real-time retrieval infeasible. Instead, offline 
retrieval is a more suitable choice. This means that after collecting a 
certain amount of data, a unified search can be conducted for a 
specific individual using data collected from each camera, rather 
than immediately searching every time new data is collected. How-
ever, current academic research has not highlighted the significant 
advantage of offline retrieval for unsupervised methods compared to 
supervised methods. For instance, unsupervised methods can fully 
incorporate test data into encoding training. This strategic use of 
available data can significantly improve accuracy in applications and 
is essential. Yet, existing unsupervised methods mainly focus on 
comparing with supervised methods under the same standards, such 
as, like supervised methods, only using a portion of the data for 
encoding training and not incorporating test data into encoding 
training (Ren et al., 2023). Although for online retrieval tasks, it’s 
challenging to involve the test set in encoding training, for offline 
retrieval tasks, such a strategy results in generally low accuracy for 
unsupervised methods, leading to the misconception that unsuper-
vised methods are not suitable for practical applications. 

Lastly, it’s worth noting that existing academic research primarily 
focuses on optimizing metrics on public datasets. Many studies overlook 
the introduction of the methodology and principles, meaning they don’t 
emphasize explaining to readers why the proposed method works 
effectively. This trend makes neural networks easily perceived as an 
opaque “black box,” with their actual working mechanisms not 
receiving adequate attention. If researchers could approach from a 
practical application perspective, elucidate the key challenges, and 
focus on introducing the core ideas to address these critical issues, 
providing detailed technical constructions based on these ideas, it would 
be more enlightening for future explorations that bridge academia and 
practical applications. 

2.5. Initial considerations of our work 

This study revolves around the specific issue of personnel monitoring 
in natural reserves. The key challenge is to consistently achieve a top-1 
retrieval accuracy very close to 100 % and to have a clear demarcation 
between top-1 and top-2 retrievals. 

Our approach to address this challenge is as follows:  

1) We leverage the unique terrain of natural reserves. By strategically 
placing cameras, we obtain gait data from the same viewpoint, 
thereby avoiding the challenge of cross-view matching.  

2) We ingeniously take advantage of the benefits of offline retrieval. We 
make full use of all collected data and adopt a two-step feature 
extraction technique for gait data. This involves using a pre-trained 
large model on images to extract features from individual gait 
data, followed by a differentiated comparison of all gait data to 
further eliminate redundant information and enhance differentiated 
information. Under this approach, we simply use the out-of-box 
method to achieve our goal, see method section. 

Our work is a typical example of implementing a specific application 
based on unsupervised GRT. We believe it can initiate a new research 
trend of applying the vast array of developed AI technologies to practical 
applications. 

3. The main method 

3.1. Problem description: The idea of the track system 

The proposed tracking system ingeniously leverages the challenges 
posed by complex terrains and converts them into advantageous op-
portunities. As mentioned, nature reserves with intricate terrains often 
boast restricted access points, one subregion typically confined to one or 
just a few narrow pathways. Taking advantage of this characteristic, one 
can divide the whole conservation area into sub-regions, with each sub- 
region having only one or two small paths for entry and exit. Then, one 
can strategically install our low-resolution and low-power-consumption 
cameras at critical intersections where 4G signal and solar panels are 
available (refer to Fig. 1-a-1 and 1-a-2). This strategic positioning allows 
us to track the movements of individuals as they enter the corresponding 
sub-regions of the natural reserves, serving multiple purposes. For 
example, it enables us to detect abnormal individuals who enter but fail 
to exit, exit but do not enter, or enter restricted areas, see Fig. 1-a-3. 
Ultimately, this approach effectively mitigates the impact of human 
activities on the protected area. For instance, if an individual is identi-
fied as not having left, an emergency rescue can be launched at night, 
targeting their last recorded location. 

An example of the gait data from one camera installed in the Can-
gshan Mountain is given in Fig. 1-b. It reflects the typical characteristics 
of entry paths into a natural reserve with complex terrains. By strate-
gically selecting camera placement locations, one can capture gait video 
of individuals from a same-degree angle, here 0-degree angle is pre-
sented. Therefore, the cross-view matching is not the major concern 
here. By applying the simple image processing algorithm, such as frame 
differencing (Jia, Wang, & Li, 2015), one can obtain binary gait image 
sequences. which occupy only a small amount of space after compres-
sion. For instance, this process transforms original 640x480 resolution 
color images from approximately 130 KB to nearly 5 KB after binar-
ization and cropping, reducing network bandwidth demands. Alterna-
tively, transmitting low-resolution mp4 videos proves efficient, e.g., a 
640x480 resolution video at 10 fps and 10 s long amounts to a mere 650 
KB. 

3.2. The proposed unsupervised gait recognition method 

In traditional supervised learning, models are guided to learn 
essential features within sample data by means of pre-annotated label 
information. However, the previous work discovered that beyond su-
pervised learning methods, unsupervised learning methods can also 
steer models to comprehend crucial information within sample data 
(Zhou et al., 2022). Moreover, unsupervised methods circumvent biases 
induced by labeled training sets, often outperforming supervised 
methods across diverse tasks (Dai et al., 2023; Fang et al., 2023; Gao 
et al., 2023; Zhou et al., 2022). 

Our proposed method distinguishes itself from existing unsupervised 
GRT (Wang et al., 2022; Ma et al., 2023; Ren et al., 2023), primarily in 
following aspects: it employs an offline matching strategy. Take 
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Cangshan as an example: the chilly nights deter tourists from staying 
overnight. As such, our data collection begins at 5 a.m. and wraps up by 
6p.m. Once collected, the strategy involves using all the data from the 
test set for encoding training incorporating an effective two-step feature 
extraction process. 1) Extracting latent features from individual gait 
data to filter out noise and redundancy within individual samples; 2) 
Leveraging differences among various gait data in the contrastive 
dataset to retain and enhance significant features within these latent 
features while discarding less important ones. Through these two steps 
(see Fig. 2-a), efficient encoding of each sample is attained, resulting in a 
closer proximity of gait data from the same individual in the feature 
space, ultimately leading to efficient retrieval (see Fig. 2-b). The specific 
method is implemented by using out-of-box method, as shown in 
follows: 

1-I) The individual’s video is converted into gait images through a 
simple procedure, yielding usually more than 40 binary gait images per 
person. For a person A, we randomly select 40 images as the individual’s 
data, characterized {xA

1 ,xA
2 ,⋯,xA

40}. 
1-II) The pretrained (VIT) without any fine-tune is employed to 

encode each gait image, resulting in a collection of 768-dimensional 
vectors, denoted by {eA

1 ,eA
2 ,⋯, eA

40} with eA
i = VIT(xA

i ). 
1-III) Next, by setting learnable weights wA

i , weighted summation is 
performed on the 40 vectors, {e1,e2,⋯,e40}, to obtain a 768-dimensional 
vector dA, that is 

dA =
∑40

i=1
wA

i eA
i (1) 

1-IV) A single-layer multilayer perceptron (MLP) is applied to map 
the 768-dimensional vector dA to a 1,000-dimensional vector fA. The 
hidden layer size is 1280 and the activation function is Rectified Linear 
Unit (Relu). 

2-I) Within a separate random selection of 40 gait images, denoted as 
{x′A1 ,x′A2 ,⋯,x′A40}, obtained through the same process for the same indi-
vidual under the same camera, the resulting feature vectors fA

p are 
considered as positive samples, while treating all other samples, denoted 
as fB, as negative samples. For example, if 600 samples are collected, 
corresponding to 100 individuals, each person may appear in a varying 
number of cameras. For sample A, the other 599 samples are considered 
as its negative samples. 

2-II) A fully unsupervised-learning based contrastive loss is con-
structed as 

loss = −
∑

A
log

⎡

⎣
exp(dis(f A, f A

p )/τ)
∑

A∕=Bexp(dis(f A, f B)/τ) + exp(dis(f A, f A
p )/τ)

⎤

⎦ (2)  

where τ is a hyper parameter, dis(fA, fB) is the cosine distance between 
negative sub-samples of A and B, and dis(fA, fA

p ) is the distance between 
A and its positive sub-samples. By adjusting the weights wA

i and the 

Fig. 2. Panel-a. The illustration of the unsupervised gait recognition method. Panel-b. The retrieval process of the tracking system.  
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parameters in MLP, the contrastive loss is minimized. 
The fA serves as the ultimate representation for each individual, as 

shown in Fig. 2-a. It is the key in the downstream retrieval task. For the 
sake of clarity, f is the named as the final encoding vector. Based on the 
final encoding vector f of each sub-sample, the system can retrieval the 
given probe from the galleries, see Fig. 2-b. 

4. The results 

4.1. The explanation of the experiment and criteria of the evaluation 

The dataset. To assess the effectiveness of our method, we con-
ducted experiments using the publicly available CASIA-B dataset 
(Andrie, Basuki, & Arai, 2011). This dataset consists of gait data 
collected from 124 individuals under various conditions, such as car-
rying backpacks. Gait data was captured from 11 different perspectives 
for each individual, with each perspective recorded independently six 
times. In typical scenarios, the daily influx of non-tourist personnel 
entering the protected area through non-tourism routes is approximately 
a hundred individuals. Therefore, the CASIA-B dataset provides a 
comprehensive validation of the efficacy of our method and enables 
meaningful comparisons with other existing approaches. 

Exclude cross-view and cross-condition matching. As mentioned 
in the introduction and method sections that challenges like cross-view 
matching can be effectively addressed through the strategic placement 
of cameras along narrow pathways. Therefore, our primary focus re-
volves around matching individuals within the same viewpoint, thereby 
excluding cross-view matching. While it is possible for individuals to 
exhibit varying conditions while traversing the area, our initial data 
collection indicates that the majority of individuals do not alter their 
clothing or change their methods of carrying backpacks. As a result, 
matching across different conditions is not currently considered. How-
ever, this aspect will be further explored by integrating gait analysis 
with other recognition methods based on biosignatures, such as full- 
body images and obscured facial images. 

Off line 1v1 matching. To evaluate the accuracy of matching a 
specified probe in databases of other cameras, experiments involving 
124 individuals walking from a 0-degree angle (other 10 different per-
spectives were evaluated similarly) are conducted. In this evaluation, six 
different cameras are utilized to capture a total of 744 gait samples from 
these individuals. After performing the proposed unsupervised encoding 
on all the 744 gait samples. Our evaluation process involves selecting 
individuals from one camera as the probe and matching them against 
individuals in the other one camera. This matching pattern is referred to 
as off line 1v1 matching. There are also other matching modes, such as 
2v4 matching refers to a scenario where the system uses gait data from 
the same individual captured by two different cameras as probes, while 
it searches through the gallery comprising of four other cameras. 
Compared with other matching modes, 1v1 matching poses the highest 
level of complexity and is also the required matching mode in real-world 
applications. 

As a result, there are 3,665 individual matches. These matches 
involve six probe cameras being compared respectively against five 
gallery cameras, with each match consisting of no more than 124 indi-
vidual comparisons (note that some cameras had fewer individuals than 
the total of 124 due to insufficient gait images). 

Interpretation of correct retrieval. The algorithm’s performance is 
determined based on whether the correct match for the probe (e.g., in-
dividual A) is identified as the first candidate by the algorithm in the 
other cameras, i.e., the top-1 candidate. In other words, a match is 
considered accurate if the algorithm correctly identified the probe by the 
top-1 candidate, while an incorrect identification was considered if it 
failed to match the probe. Additionally, in cases where the gallery did 
not include the target person, the algorithm is considered correct if it 
provided no candidates. This is achieved by setting a threshold: only 
candidate with distances between themselves and the probe lower than 

this threshold will be recommended. 
The code and computer setups. The code is given in Code Ocean 

(https://codeocean.com/capsule/9670283/tree/v1), where details of 
the experiment setups can be found. The experiment is run on computer 
with CPU i9-13900 k and single NVIDIA GPU 4080. 

4.2. The main result 

The overall accuracy is evaluated by calculating the number of cor-
rect retrievals among the 3,665 individual matches. In order to show the 
effectiveness of the proposed method, the top-1 and top-2 distances of 
each retrieval are plotted in Fig. 3-a. It shows that, there is a clear 
boundary between the top-1 and top-2 distances. Therefore, the exper-
imental results revealed that the top-1 matching accuracy is 100.00 %. 
The effectiveness of the encoding procedure is illustrated in Fig. 3-b, 
where the t-SNE visualization of 30 randomly selected individuals each 
with 6 camera views before and after encoding is given. It shows that, 
the proposed method successfully identifies the key features of each 
individual pulling the same individuals together in the feature space. 

It demonstrates the effectiveness of our algorithm and supports its 
application in implementing an electronic tracking system. Notably, it is 
important to highlight that the method’s performance is not contingent 
on the number of cameras used. Each camera’s matching process is in-
dependent, enabling the method to achieve close to 100 % matching 
accuracy even with a larger number of cameras. This observation is 
illustrated and analyzed in Fig. 3. 

4.3. The comparison with existing approaches and further analysis 

Comparison with existing approaches. To demonstrate the supe-
riority of our method, a comparison with existing approaches is con-
ducted. Most studies focus on cross-view and cross-condition matching, 
but our work is dedicated to same-view matching. To our knowledge, 
only countable supervised methods detail same-view matching results 
for specific angles (Liao et al., 2020, 2021; Zhang et al., 2019), others 
report average accuracies, like 98.9 % in normal mode for supervised 
(Marín-Jiménez et al., 2021) and 90.3 % for unsupervised (Ren et al., 
2023) method. We benchmark our results against those studies that 
provide detailed same-view matching results for particular angles. 

The existing supervised learning necessitates prior knowledge of the 
correspondence between 62 out of the 124 individuals across different 
cameras to train the models. The testing phase involves a dataset of 62 
individuals, with two cameras serving as probes and data from four 
cameras used as the gallery, i.e., 2v4 matching mode (Zhang et al., 
2019;). Here, we adopt the same testing standards using the 2v4 mode 
with a test set of 62 subjects for our method. This is easier than the 1v1 
matching proposed in the main result section. 

The results, depicted in Fig. 4, illustrate that our method achieves a 
100 % top-1 matching accuracy under the same conditions at the view of 
all 11 angles, surpassing the performance of existing supervised methods 
(Liao et al., 2020, 2021; Zhang et al., 2019). 

The ablation experiments. Furthermore, our experiments demon-
strated the critical roles played by both large-scale model encoding and 
contrastive learning in our proposed method, as shown in Fig. 5-a. The 
large-scale model encoding improves the matching accuracy by 
approximately 71.20 % (from 22.80 % to 92.00 %), while contrastive 
learning contributes an additional 8.00 % improvement to the final 
matching accuracy. 

Further analysis. The relationship between accuracy and the 
numbers of gait images selected for each sample is investigated, as 
shown in Fig. 6-a. It shows that the method needs enough number of gait 
images to identify individuals correctly. Although, the method achieves 
top-1 retrieval accuracy of 99.81 % by using 20 gait images, it needs 
more time to train. To strike a balance between effectiveness and effi-
ciency, 40 gait images is selected. For instance, processing 40 gait im-
ages for each sub-sample, our method requires around 4,000 s, just over 
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an hour, to report the movement paths of over 100 individuals captured 
by 6 cameras within the reserve for the day. Further discussion of the 
algorithm’s running time is given in the conclusion section. 

The relationship between accuracy and the dimensions of the final 
encoding vector f , the output of MLP, is investigated, as depicted in 
Fig. 6-b. It indicates that our method consistently achieves consistently 
100.00 % matching accuracy under different dimensions of the encoding 
vectors f . However, the 1,000-dimensional f contains information about 
the viewing angle. Fig. 6-b-2 illustrates the accuracy of MLP trained 
using supervised methods based on f as input when predicting gait an-
gles (it takes the final encoded vector f as input and outputs 11 gait 
angles). The results show that the accuracy of the 1,000-dimensional f is 
100 % when predicting the viewing angle, while the accuracy of other 
dimensions of f rapidly decreases as the dimensionality decreases. In this 
study, the 1,000-dimensional f is chosen as the final encoding vector, 
because it comprehensively captures the gait viewing angle information 
of the samples, enabling us to address certain minor angle cross-view 
recognition tasks in subsequent applications. 

The robustness of the proposed method across dataset with different 
numbers of individuals is evaluated, see Fig. 6-c. It indicates that our 
method consistently achieves consistently 100.00 % matching accuracy 
with a dataset involving up to one hundred individuals. 

The robustness of the proposed method under different matching 

patterns, e.g., matching modes of 1 V1, 1 V2, 1 V3, and 2 V4 are eval-
uated, see Fig. 6-d. It indicates that our method consistently achieves 
consistently 100.00 % matching accuracy under different matching 
patterns. 

4.4. Extra experiments on the OU-MVLP dataset 

In this section, we delve deeper into the performance of our proposed 
method by conducting additional experiments on the OU-MVLP dataset 
(Takemura et al., 2018). 

Similar to the CASIA-B dataset, the OU-MVLP dataset is also among 
the most frequently used datasets for gait verification. Compared to the 
CASIA-B dataset, it encompasses gait data of over 10,000 subjects, each 
captured from 14 different angles, with two independent collections for 
each angle. Given the larger number of individuals in this dataset and its 
distinct data collection method compared to CASIA-B, it further vali-
dates the robustness of our approach in terms of dataset size and varied 
gait data collection scenarios. Given that our method necessitates more 
than 40 gait sequence images for each individual under every camera, 
we filtered out samples from the complete OU-MVLP dataset that didn’t 
meet this criterion. From these filtered samples, we randomly selected 
datasets containing 100, 200, 300, and 500 individuals. We didn’t test 
on dataset with more individuals because, in practical applications, the 

Fig. 3. The illustration and analysis of the result, taking 0-angle view as an example. Panel-a. The top-1 and top-2 distances of each matching. It shows that there is a 
clear threshold between the top-1 and top-2 distances, making the top-1 retrieval accuracy 100%. Panel-b. The t-SNE visualization of 30 randomly selected in-
dividuals each with 6 camera views before and after encoding. 
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daily number of people entering each sub-area of the nature reserve 
through these regulated small paths is around 100. We used the 0-degree 
angle as a representative. 

The final results indicate that our method consistently achieved a 
100 % matching accuracy rate in various tests. A notable observation 
was the clear distinction between the top-1 and top-2 distances across all 
matching scenarios. This indicates that the proposed electronic tracking 
system can pinpoint targets in the cameras accurately, and also in sce-
narios where the target object isn’t visible in the camera. This capability 
ensures precise path tracking, as depicted in Fig. 7. 

Furthermore, it’s worth noting that, unlike the CASIA-B dataset, the 
OU-MVLP dataset has instances of incomplete gait data. This incomplete 
data has a pronounced impact on the accuracy of our method’s match-
ing. For instance, if the gait data of individual A, captured under a 
specific camera, is incomplete, it can adversely affect the retrieval ac-
curacy for A under that camera. As a result, the system might fail to 
correctly match A’s gait, leading to an inability to log the exact path of 
A. Given this, it underscores the importance of carefully selecting 
camera installation locations. Further discussion on the improvement of 
robustness of the system is given in the discussion section. 

5. Conclusions and discussions 

5.1. Conclusions 

Contrary to the extensive GRT research primarily aimed at 
enhancing cross-view matching accuracy through complex supervised 
methods, our proposed approach offers a straightforward, unsupervised 
method tailored for real-world applications where cross-view matching 
is not a primary concern. It has following advantages, making it highly 
suitable as the underlying core algorithm for an electronic tracking 
system in large-scale nature reserves with complex terrains. 1) It needs 
not any known matching relationships in the training set which is crucial 
in the application of the tracking system as new individuals enter the 
area on a daily basis. Moreover, it enables us to track individuals 
entering the area without relying on a large pre-existing personnel 
database, thereby reducing expenses associated with maintaining such a 
database (the only trade-off being the disregard for true individual 
identities). 2) It achieves consistent 100 % top-1 retrieval accuracies on 
datasets involving up to over hundreds of individuals, which is the daily 
influx of non-tourist personnel entering the protected area. Additionally, 
for all samples, it gives a clear distinction between the distances of top-1 
and top-2 retrievals. That is, the method robustly identifies and reacts, 
regardless of whether the target is present in the retrieval database. As a 
result, the proposed method leverages the challenges posed by complex 
terrains and converts them into advantageous opportunities by strate-
gically install cameras at critical intersections. It utilizes only a small 
amount of binary processed low-quality gait data of each individual and 
seamlessly integrates with low-resolution and low-power-consumption 
cameras. These cameras can remain dormant for extended periods and 
only capture 2–3 s of data when individuals pass by. Instead of trans-
mitting high-quality colorful images, we transmit extremely low- 
resolution binary gait images, significantly reducing power consump-
tion for data collection and transmission, as well as the demand for 
network bandwidth. 

5.2. Discussions on the limitation 

The current tracking system has following limitations. Firstly, due to 
the use of low-resolution devices, it cannot provide further detailed in-
formation about individuals, such as their names. Secondly, it operates 
as an offline retrieval strategy, generating reports on individuals 
entering the nature reserve each evening rather than providing real-time 
tracking. Additionally, the method requires hours to complete the data 
encoding and retrieval. For example, to give the required final report of 
the paths of over 100 individuals under 6 cameras into the reserves takes 
about 4,000 s. 

Despite these limitations, we still consider the proposed approach to 
strike the best balance in terms of cost-effectiveness currently. For 
example, the proposed method can promptly track and report the paths 
of non-regular visitors entering Cangshan within a day. Even though 
there are over 100 entry paths to Cangshan, potentially requiring more 
than 100 cameras, we’ve observed that due to the vast terrain, these 
areas covered by cameras are isolated from each other. These 100 
cameras can be further categorized into over 10 distinct zones, with 
visitors typically only moving within these specific zones. Hence, for 100 
visitors, a search time of 1 to 2 h using approximately 10 cameras is 
deemed acceptable. 

We are continuously refining our approach to address the afore-
mentioned limitations. From an algorithmic perspective, we are making 
the algorithm applicable to the path tracking of more individuals and 
exploring the creation of large datasets and models specific to gait 
recognition, and integrating gait analysis with other recognition 
methods based on biosignatures, such as full-body images and obscured 
facial images, aiming to achieve a more versatile and stable unsuper-
vised gait recognition technique. On the hardware front, we’re investi-
gating the relationship between the algorithm’s runtime and hardware 

Fig. 4. The result of the same-view matching of our proposed method and that 
of the existing supervised VN-GAN from (Zhang et al., 2019), Posegait from 
(Liao, Yu, An, & Huang, 2020), and DV-GEIs from (Liao, An, Li, & Bhatta-
charyya, 2021). The gait data under normal walking is considered. 

Fig. 5. The results of ablation experiments. It takes 0-angle view as an example.  
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configurations, seeking an efficient hardware setup that can cater to the 
conservation needs of other nature reserves. 

5.3. Discussions on the significance 

Through comprehensive verification, we have demonstrated the 
effectiveness and stability of this new retrieval technique, establishing 
its feasibility for cost-effective and efficient personnel supervision in 
large-scale nature reserves with complex terrains. Looking ahead, we are 
actively advancing the development of low-cost hardware devices that 
integrate this new technology. The potential for widespread adoption is 

significant. Our system offers substantial benefits with minimal con-
struction costs (approximately 1 million RMB, including over 100 low- 
resolution cameras and associated equipment) and low maintenance 
costs. By significantly reducing the management and protection ex-
penses of each nature reserve, it effectively addresses the considerable 
demand, e.g., within and beyond Yunnan Province (which boasts over a 
hundred natural reserves). The system not only provides significant 
economic advantages but also contributes to the social well-being of the 
region. We remain dedicated to its implementation and continuous 
improvement. 

This work is an exemplary case of combining artificial intelligence 

Fig. 6. The results of further analysis. Panel-a. The effectiveness and efficiency of the proposed method over different selections of numbers of gait images. Panel-b. 
The discussion on the selection of the dimension of the final encoding vector f . Panels-c and -d. The robustness of the proposed method over dataset with different 
number of individuals and different retrieval patterns. 
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technology with practical applications in the field of environmental 
conservation (Chan et al., 2016). It is dedicated to promoting the inte-
gration of academic research in artificial intelligence with other areas, 
such as environmental conservation. 
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M. Cissé, G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV, ECCV 2022 
Lecture Notes in Computer Science. Cham: Springer.  

Lin, Z., Wang, X., & Liu, J. (2021). Cross-domain person re-identification with adversarial 
alignment and instance mining. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 43(1), 122–136. 

Liu, W., Wang, B., Yang, Y., Mou, N., Zheng, Y., Zhang, L., & Yang, T. (2022). Cluster 
analysis of microscopic spatio-temporal patterns of tourists’ movement behaviors in 
mountainous scenic areas using open GPS-trajectory data. Tourism Management, 93, 
Article 104614. 

Lv, J., Chen, W., Li, Q., & Yang, C. (2018). Unsupervised cross-dataset person re- 
identification by transfer learning of spatial-temporal patterns. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition (pp. 7948-7956). 

Ma, K., Fu, Y., Zheng, D., Cao, C., Hu, X., & Huang, Y. (2023a). Dynamic Aggregated 
Network for Gait Recognition. Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 22076-22085. 

Ma, K., Fu, Y., Zheng, D., Peng, Y., Cao, C., & Huang, Y. (2023b). Fine-grained 
Unsupervised Domain Adaptation for Gait Recognition. In Proceedings of the IEEE/ 
CVF International Conference on Computer Vision (pp. 11313-11322). 
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