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Abstract001

Selecting high-quality data can improve the002
pretraining efficiency of large language models003
(LLMs). Existing methods generally rely on004
heuristic techniques or single quality signals,005
limiting their ability to evaluate data quality006
comprehensively. In this work, we propose007
FIRE, a flexible and scalable framework for008
integrating multiple data quality raters, which009
allows for a comprehensive assessment of data010
quality across various dimensions. FIRE aligns011
multiple quality signals into a unified space,012
and integrates diverse data quality raters to pro-013
vide a comprehensive quality signal for each014
data point. Further, we introduce a progressive015
data selection scheme based on FIRE that it-016
eratively refines the selection of high-quality017
data points. Extensive experiments show that018
FIRE outperforms other data selection methods019
and significantly boosts pretrained model per-020
formance across a wide range of downstream021
tasks, while requiring less than 37.5% of the022
training data needed by the Random baseline023
to reach the target performance.024

1 Introduction025

Large language models (LLMs) have demonstrated026

remarkable performance by utilizing large-scale027

Transformers to pretrain on trillions of tokens.028

However, due to the constraints imposed by scal-029

ing laws (Kaplan et al., 2020), LLMs are quickly030

nearing their capacity and data limits. As a result,031

efforts to improve LLM performance have increas-032

ingly concentrated on optimizing the quality of033

pretraining data.034

Numerous studies indicate that effective data se-035

lection can significantly enhance the convergence036

speed and generalization capability of LLMs (En-037

gstrom et al., 2024; Wettig et al., 2024; Gao et al.,038

2025). Traditional methods predominantly rely on039

heuristic techniques, such as rule-based filtering040

(Rae et al., 2021; Raffel et al., 2020), deduplica-041

tion (Abbas et al., 2023; Tirumala et al., 2024),042
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Figure 1: Downstream accuracy with respect to pretrain-
ing tokens for Random, FIRE, and FIRE Progressive.

and assessing proximity to high-quality corpora 043

(Xie et al., 2023). Additionally, some work has 044

focused on improving the evaluation of pretrain- 045

ing data quality by querying authoritative LLMs to 046

determine whether the texts meet specific criteria 047

(Wettig et al., 2024; Sachdeva et al., 2024). 048

Intuitively, assessing the quality of a text in- 049

volves analyzing it across multiple dimensions. 050

Nevertheless, the methods mentioned above evalu- 051

ate data quality based on individual aspects, lacking 052

a comprehensive assessment of the data’s overall 053

quality. Building on this limitation, the success of 054

querying LLMs (Sachdeva et al., 2024) has inspired 055

the straightforward idea of merging various quality 056

rating criteria into a single prompt to collect com- 057

prehensive quality signals from authoritative LLMs. 058

However, experimental findings show that this ap- 059

proach considerably weakens the performance of 060

LLMs, as the excessive number of rules makes it 061

challenging for LLMs to follow (further details can 062

be found in Appendix E.2). The challenge of adher- 063

ing to multiple rules underscores the necessity for 064

a more sophisticated strategy to integrate various 065

quality signals effectively. 066

In this paper, we propose FIRE, a Flexible and 067
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scalable framework for Integrating multiple data068

quality Raters, designed to enable Effective pre-069

training of LLMs. Initially, we introduce an align-070

ment method to tackle the issue of inconsistent071

ratings from multiple raters. This method involves072

ranking the data based on the scores from the orig-073

inal raters and then partitioning it into quantiles.074

We assess the probability that the data within each075

quantile is of higher quality (win rate) compared076

to a reference subset, using this probability as the077

aligned rating. By fitting a win-rate-quantile curve078

for each rater, we effectively map the ratings from079

multiple raters into a unified rating space. Subse-080

quently, to derive a comprehensive signal repre-081

senting the overall data quality, we integrate the082

aligned ratings of multiple raters, considering both083

the intrinsic reliability and orthogonality of the084

raters. Further, we introduce a progressive data085

selection scheme based on FIRE that iteratively086

refines the selection of high-quality data points,087

balancing computational complexity with the re-088

finement of orthogonality.089

Extensive experiments demonstrate that by ap-090

plying integrated ratings from multiple raters, our091

method achieves superior results across a variety092

of downstream tasks. Figure 1 illustrates that FIRE093

significantly enhances the pretrained model. We094

summarize our main contributions as follows:095

(1) We propose FIRE, a flexible and scalable096

framework for integrating multiple data quality097

raters. FIRE aligns ratings from multiple raters098

into a unified space and integrates them to provide099

a comprehensive quality signal for each data point.100

(2) We introduce a progressive data selection101

scheme based on FIRE that iteratively refines the102

selection of high-quality data points. It achieves103

a balance between computational complexity and104

the refinement of orthogonality.105

(3) Extensive experiments demonstrate that106

FIRE enhances the pretrained model’s performance107

by an average of 2.9%, while requiring less than108

37.5% of the training data needed by the Random109

baseline to reach the target performance.110

2 FIRE: Flexible Integration of Quality111

Ratings112

2.1 Overview of the Method113

We propose FIRE, a method that flexibly integrates114

multiple raters to comprehensively evaluate data115

quality. It involves two key processes: (a) Rating116

Alignment and (b) Rater Integration. Figure 2117
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Figure 2: Overall framework of FIRE, which contains
two processes: (a) Rating Alignment and (b) Rater Inte-
gration.

illustrates the overall framework of FIRE. Many 118

off-the-shelf raters exist in practice. To be inte- 119

grated by FIRE, a rater must provide a scalar score 120

for each data point and be empirically validated for 121

effectiveness. 122

First, we propose an alignment method to map 123

ratings from multiple raters into a unified rating 124

space. Specifically, we involve the probability that 125

the data in each quantile is of higher quality (win 126

rate) compared to a reference subset as the aligned 127

rating. By fitting a win-rate-quantile curve for each 128

rater, we effectively map the ratings from multiple 129

raters into a unified rating space. It’s worth noting 130

that the alignment process allows us to quantify 131

the intrinsic reliability of each rater, defined by the 132

win rate of the best data subset selected by the rater 133

relative to the reference subset, thereby reflecting 134

the rater’s performance. 135

We then integrate the aligned ratings of multi- 136

ple raters, considering both the intrinsic reliability 137

and orthogonality of the raters. We construct an or- 138

thogonality graph and calculate centrality through 139

PageRank(Page et al., 1999) to quantify the inde- 140

pendence among raters. The integrated rating is 141

given by: 142

I(x) = A(x)T (o⊙ γ) (1) 143

where A(x) is the vector of aligned ratings for 144

data point x, o is the overall orthogonality vector, 145

γ represents the intrinsic reliability vector of the 146

raters, and ⊙ denotes the element-wise product. 147

2.2 Rating Alignment 148

Aligning ratings from multiple data quality raters 149

is crucial for achieving a credible integrated rater. 150

This process involves standardizing ratings to a 151

consistent scale and eliminating the significant dif- 152

ferences in raters’ high-quality thresholds, which 153
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are the score thresholds that distinguish data con-154

tributing positively to pretraining. Appendix C.1155

offers further analysis on the importance of rating156

alignment.157

Given a pretraining dataset Dt and multiple158

raters R1, R2, . . . , Rn, we propose a method to159

consolidate these ratings into a unified rating space:160

Step 1: Sample reference subset. Uniformly161

sample a subset Dr from the pretraining data Dt. It162

is worth noting that the data quality distributions of163

Dr and Dt are consistent. This consistency allows164

us to use Dr as a representative reference set: if a165

subset of data is of higher quality than data in Dr,166

it can be considered to exceed the typical quality167

of Dt, and vice versa.168

Step 2: Sort and partition data. Sort Dt ac-169

cording to Ri, and partition the sorted data into k170

intervals.171

Step 3: Compare and calculate win rates. Ran-172

domly sample a subset Dij from each interval, en-173

suring that |Dij | = |Dr|. Use GPT-4o (Islam and174

Moushi, 2024) to evaluate how the Dij samples175

impact pretraining in comparison to the reference176

dataset Dr. Then, calculate the win rate wij for177

each interval j:178

wij =
|{x ∈ Dij | GPT-4o: x > y, y ∼ Dr}|

|Dij |
(2)179

where Dij signifies the subset sampled from the180

j-th rating interval for rater Ri. The win rate wij181

is the proportion of samples x in Dij that GPT-4o182

determines have higher quality than the comparison183

sample y fromDr. Calculating win rates relative to184

Dr makes ratings from multiple raters comparable.185

Moreover, since we sample only 1,000 data points186

per interval for comparison, the computational cost187

of this process remains low. The prompt for GPT-188

4o is detailed in Appendix C.2. We demonstrate the189

reliability of using GPT-4o for quality comparison190

in Appendix C.3.191

Step 4: Fitting a win-rate-percentile function.192

Employ wij as the aligned rating for the midpoint193

of j-th rating interval of Ri, denoted by (pj , wij).194

Construct a continuous win rate-percentile function195

from these coordinates using polynomial spline196

interpolation (detailed in Appendix C.4).197

For any data point, we can find the aligned rat-198

ing from a specific rater by applying the rater’s199

win-rate-percentile function to its original rating200

and percentile. We apply the alignment method to 201

the ratings of 4 raters on the SlimPajama dataset. 202

The win rates in different percentiles and the fitted 203

functions are provided in Appendix C.5. It is worth 204

noting that since wi0 represents the win rate of the 205

best data subset selected by rater i relative to the 206

reference subset, it reflects the performance of rater 207

i to a certain extent. Therefore, we can use wi0 as 208

the intrinsic reliability of rater i, i.e., γi = Wi0. 209

2.3 Rater Integration 210

Suppose for raters R1, R2, . . . , Rn, each rater cor- 211

responds to a standard basis vector v1,v2, . . . ,vn 212

in the quality space. The integrated quality vector 213

q(x) of data point x can be expressed as: 214

q(x) =
n∑

j=1

γjAj(x)vj (3) 215

where γj denotes the intrinsic reliability of rater j, 216

Ak(x) denotes the rating for data point x from rater 217

Rk after alignment. Ideally, if v1,v2, . . . ,vn form 218

an orthogonal basis, it is reasonable to measure the 219

overall quality of the data using the L1 norm of 220

q(x), as it represents the sum of the scores of data 221

point x across various orthogonal quality dimen- 222

sions. However, v1,v2, . . . ,vn are not necessarily 223

completely independent. There may be raters Ri 224

and Rj with a correlation coefficient ρ > 0 and 225

directly adding the corresponding aligned ratings 226

would increase the weight of a particular quality 227

dimension. To mitigate this issue, we define O(i, j) 228

to quantify the orthogonality of two raters i and j 229

(the formalization of O(i, j) can be found in Ap- 230

pendix C.6). For a rater Ri, we apply the sum of 231

its orthogonality with all other raters to weight its 232

rating. If a rater is highly correlated with others, 233

we use a lower orthogonality to penalize. So the 234

integrated rating for data point x can expressed as 235

I(x) =

n∑
j=1

γjojAj(x) (4) 236

where oj =
∑n

k=1
k ̸=j

O(j, k) is a quantification of the 237

overall orthogonality Rj with other raters. 238

Inspired by Equation (4), we find that integra- 239

tion of ratings weighted by orthogonality can be 240

formalized to the centrality problem of graph the- 241

ory. Formally, we define orthogonality graph of a 242

rater as follows: 243

Definition 1 (Orthogonality Graph). An orthogo- 244

nality graph is a complete graph where the vertices 245
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Vi represent the raters Ri. The weight of the edge246

between two vertices is the orthogonality O(i, j)247

between the two raters.248

Based on Definition 1, we provide the following249

theorem:250

Theorem 1. The overall orthogonality oi of a rater251

Ri with other raters can be quantified as weighted252

degree centrality of the corresponding vertex Vi in253

the orthogonality graph.254

We give Theorem 1’s proof in Appendix B. Let255

o = [o1, o2, . . . , on]
T denote the overall orthogo-256

nality vector, where oi represents the overall or-257

thogonality of rater Ri. Define M as the adja-258

cency matrix of the orthogonality graph, such that259

Mij = O(i, j). Additionally, let 1 be the all-ones260

vector. We can then derive the following:261

o(0) = M1 (5)262

Considering that in a multi-rater setting, the in-263

dependence of Ri might be affected by the orthog-264

onality between different raters Rj and Rk, we pro-265

pose an iterative formula, analogous to PageRank266

(Page et al., 1999):267

o(k+1) = dMo(k) + (1− d)1 (6)268

where d is the damping factor and k denotes the k-269

th iteration. In PageRank, node centrality depends270

on edge weights. Since FIRE defines edge weights271

via orthogonality, the resulting scores reflect each272

node’s overall independence. Since the introduc-273

tion of the damping factor aims to address the rank274

sinks problem, which is not present in our graph,275

we find it reasonable to set d = 1. Assuming the276

number of iterations is α, and normalizing the final277

result, our final formula becomes:278

oα = Mαo(0) (7)279
280

o =
oα
∥oα∥2

(8)281

where ∥ · ∥2 denotes the Euclidean Norm. In this282

paper we set α = 50 since oα tends to stabilize283

after 50 iterations. The justification for employing284

Equation (7) and (8) to quantify the overall orthog-285

onality is provided by Theorem 3 in Appendix B.1286

Final version of the integrated rating for data287

point x can be expressed as:288

I(x) = A(x)T (o⊙ γ) (9)289

1When there’s a complete correlation among some Raters,
the orthogonality drops to zero. In such a case, we don’t
proceed with the rater integration and consider these multiple
raters as one.

Algorithm 1 Progressive Data Selection Scheme

1: Input: The entire dataset Dt; Decay factor
η; Initial number of parts n; Part multiplica-
tion factor β; Maximum number of parts nmax;
Desired dataset size k

2: Output: Ds: Selected data subset
3: Calculate and sort integrated ratings for Dt

4: Reduce the data to η% of its original size using
decay factor η

5: while size of Dt ≥ k do
6: Divide the data into n parts based on the

quantiles of the integrated ratings
7: for each part Pi do
8: Calculate the overall orthogonality in Pi

9: Derive refined integrated ratings SPi

10: end for
11: Sort the data based on the new integrated

ratings SPi

12: Select the top η% data according to SPi

13: n← min(n× β, nmax)
14: end while
15: Ds← top k elements from Dt

where A(x) = [A1(x), A2(x), . . . , An(x)]
T is the 290

vector of aligned ratings for data point x from all 291

raters, o is the overall orthogonality vector, γ = 292

[γ1, γ2, . . . , γn]
T represents the intrinsic reliability 293

vector, and ⊙ denotes the Hadamard product. 294

3 Progressive Data Selection via FIRE 295

The most intuitive data selection method involves 296

ranking the integrated ratings based on FIRE for 297

the pretraining dataset, and then selecting the top 298

k highest-rated data points. Nonetheless, our anal- 299

ysis shows that after ranking Dt based on the in- 300

tegrated ratings, there is a change in the overall 301

orthogonality o calculated from data subsets in dif- 302

ferent quantiles (Figure 9). The phenomenon arises 303

because the top data better reflects the quality em- 304

phasized by the raters, while the tail data often 305

contains more noise and low-quality information, 306

leading to changed orthogonality among the raters. 307

To refine the data selection process and mitigate the 308

coarseness introduced by computing orthogonality 309

on the entire dataset, we propose a progressive data 310

selection scheme based on FIRE. 311

Specifically, as shown in Algorithm 1, we first 312

calculate the integrated ratings for the data points in 313

Dt based on FIRE, then sort the data points, but we 314

don’t select them right away based on these ratings. 315
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Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Baseline

Random 48.2 22.3 84.5 19.7 60.8 32.1 63.5 49.2 47.5
DSIR with Book 36.2 19.5 73.4 21.4 61.8 29.5 62.5 53.6 44.7
DSIR with Wiki 37.2 18.0 76.4 23.0 58.0 27.9 57.3 51.1 43.6
Density 47.2 20.0 81.7 20.3 61.5 31.4 66.3 51.4 47.5
ASK-LLM 52.6 24.8 80.2 22.1 62.2 28.9 59.5 50.2 47.6

Baseline
(1 Rater)

QuRating (W.S.) 47.5 21.4 81.8 21.3 61.3 31.3 62.7 52.5 47.5
QuRating (R.E.) 50.6 23.2 83.9 22.6 61.4 30.2 59.8 49.8 47.7
QuRating (F.T.) 54.1 23.0 83.5 22.0 60.9 30.4 59.5 51.7 48.1
QuRating (E.V.) 50.1 21.6 84.4 20.9 62.2 31.9 61.2 48.8 47.6

Baseline
(Integration
method,
4 Raters)

Comp. Rater 52.9 24.3 81.2 22.0 62.0 30.9 59.2 50.1 47.8
Max Criteria 54.1 22.6 83.3 22.7 61.3 30.8 59.8 48.9 47.9
Average 48.7 23.5 83.4 21.4 59.8 30.1 58.8 51.1 47.1
Mix Criteria† 49.6 22.1 83.6 25.7 61.8 29.7 58.6 50.4 47.7

Raters
Integration

FIRE (2 Raters) 55.4 24.9 83.6 21.3 60.0 31.6 60.1 50.4 48.4
FIRE (3 Raters) 58.4 25.7 85.1 23.1 59.8 32.3 61.2 51.2 49.6
FIRE (4 Raters) 59.1 26.4 86.0 21.0 61.8 32.9 59.7 52.8 50.0

FIRE (4 Raters) Prg. 59.2 27.0 86.9 23.0 60.2 33.0 62.4 51.6 50.4

Table 1: Downstream tasks results for different rating integration method. We report accuracy for each task, and the
best performances are marked in bold. For rater integration, we report the average score of all the combinations.
Detailed results can be found in the Appendix E.1. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande,
AVG. = Average, W.S. = Writing Style, R.E. = Required Expertise, F.T. = Facts and Trivia, E.V. = Educational Value,
Prg = Progressive, Comp. = Comprehensive. †: We implement the method from QuRating(Wettig et al., 2024).

It is reduced to η% of its original size by select-316

ing the top η% of data based on integrated ratings.317

Then, the data is partitioned into n segments based318

on integrated ratings’ quantiles. Orthogonality is319

computed within each segment to determine refined320

integrated ratings. After sorting the data according321

to new ratings, it’s further reduced to η% of its322

initial size. The number of segments is increased323

by a factor of β, unless it reaches the maximum324

threshold nmax, in which case the data is divided325

into nmax segments. The iterative process of calcu-326

lating orthogonality within progressively smaller327

subsets continues before the subsequent reduction328

leaves less than k data points for selection.329

4 Experiments330

4.1 Experimental setup331

Setup We use SlimPajama (Soboleva et al., 2023)332

as the selection pool, with a total scale of 627B.333

And we employ the Llama (Touvron et al., 2023)334

tokenizer to divide the entire dataset into sequences335

of length 1024. During the data selection process,336

we select the top portion of data with the highest337

rating. For integrating different raters, we carry338

out experiments based on the four single raters339

of QuRating (Wettig et al., 2024): Writing Style,340

Facts and Trivia, Educational Value, and Required341

Expertise. For progressive data selection (FIRE342

Progressive), we set η = 60, β = 20. For model 343

training, we train a model with 1.3B parameters 344

for 10,000 steps (equivalent to 20B tokens) and a 345

3B model for 200B tokens, with bfloat16 format 346

during both training and testing. 347

Evaluation We utilize lm-evaluation-harness 348

(Gao et al., 2021) to assess the models’ perfor- 349

mance across eight downstream tasks: ARC-E 350

(Clark et al., 2018), ARC-C (Clark et al., 2018), 351

SciQ (Welbl et al., 2017), LogiQA (Liu et al., 352

2020), BoolQ (Clark et al., 2019), HellaSwag 353

(Zellers et al., 2019), PIQA (Bisk et al., 2020), and 354

WinoGrande (Sakaguchi et al., 2021). We employ 355

in-context learning for the evaluation, selecting 356

enough examples to fill the window length of 1024 357

tokens for each task. Standard accuracy metrics are 358

reported for all tasks. 359

Baselines In addition to comparing FIRE with 360

four single raters from Qurating, we also compare 361

it with the following methods: (1) Random: ran- 362

domly selecting data from the original training cor- 363

pus. (2) DSIR (Xie et al., 2023): utilizing impor- 364

tance sampling for data selection, and we chose 365

Wikipedia and Books as target domains. (3) Den- 366

sity (Sachdeva et al., 2024): using KDE to estimate 367

data density in the training corpus and employing 368

inverse sampling. (4) ASK-LLM (Sachdeva et al., 369
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2024): using a comprehensive prompt to label high-370

quality data, and train a T5-based classifier.371

Furthermore, we compare several basic rating372

integration methods: (1) Comprehensive Rater: in-373

tegrating multiple single rater criteria into a single374

prompt to obtain annotations from GPT-4o, then375

training a comprehensive quality rater. (2) Max376

Criteria: aligning ratings and selecting the highest377

value in each dimension as the final rating. (3) Av-378

erage: arithmetic mean integration of normalized379

ratings from each rater. (4) Mix Criteria: we follow380

QuRating(Wettig et al., 2024) to merge and dedu-381

plicate the top data selected by each single rater,382

followed by random sampling. These four methods383

are applied to the integration of four raters. More384

details can be found in Appendix D.2.385

4.2 Main Results386

Table 1 show our main results. We find that:387

FIRE is superior to other integration methods.388

FIRE demonstrates greater effectiveness than exist-389

ing integration methods, while introducing minimal390

additional computational cost (see Appendix D.3391

for a detailed analysis of computational cost). As392

shown in Table 1, Comprehensive Rater with a393

multi-dimension prompt results in an average score394

that is even lower than the single-dimension rater395

Facts and Trivia. This suggests that GPT-4o still396

falls short in assessing data quality from a broad397

perspective. Both Mix Criteria and Max Criteria398

are inferior to FIRE, indicating that a comprehen-399

sive evaluation of FIRE is more beneficial. Aver-400

age simply calculates the mean of all ratings and401

the experimental results of FIRE demonstrate an402

improvement over Average. To demonstrate the403

robustness of FIRE, we conduct additional experi-404

ments integrating other raters. Detailed results are405

provided in Appendix D.4.406

FIRE outperforms the single raters and other407

data selection methods. Comparing FIRE to the408

individual raters, it demonstrates significant im-409

provements, with an average score increase of up410

to 1.9% over the best single rater and 2.9% over411

random selection. From a data efficiency perspec-412

tive, FIRE achieves comparable performance using413

less than 37.5% of the data required by the Ran-414

dom baseline. Additionally, our method outper-415

forms QuRating and other data selection methods,416

validating the high quality of the data selected by417

FIRE.418
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Figure 3: Ablation experiments on the impact of differ-
ent rating integration strategies in FIRE.

Adding more raters can lead to better perfor- 419

mance. We observe that as the number of inte- 420

grated raters increases, the overall effect gradu- 421

ally improves. The average score of FIRE with 422

three raters surpasses that of the integration of two 423

raters, and further increases when four raters are 424

integrated. This indicates that our rater integration 425

method is scalable: incorporating a broader range 426

of raters not only provides a more comprehensive 427

evaluation of the samples but also allows for a bet- 428

ter understanding of the importance of each metric. 429

Progressive selection further improves FIRE 430

After integrating progressive selection, we ob- 431

serve a notable improvement in the model’s perfor- 432

mance on downstream tasks. Compared to FIRE (4 433

Raters), the average score of FIRE (4 Raters) Prg. 434

increases by 0.4%. The most significant improve- 435

ment is seen in PIQA, with an absolute score boost 436

of 2.7%. These results validate the effectiveness 437

of the progressive selection method in choosing 438

high-quality data. 439

4.3 Analysis 440

Ablation Study We integrate four single raters, 441

and subsequently remove Rating Alignment 442

(Align.), Intrinsic Reliability (Rel.), and Orthog- 443

onality (Orth.), as well as remove all (directly aver- 444

aging on the rating post-normalization), in order to 445

investigate the impact of each component in FIRE. 446

From Figure 3, we can find that: (1) Rating 447

alignment is a crucial step. We note that without 448

rating alignment, the score drops by 3.3%, even 449

falling below the direct average. As we previously 450

detailed, the alignment allows for better compa- 451

rability between the ratings from different raters, 452

making their integration more reasonable. (2) Both 453

orthogonality and intrinsic reliability can further 454

enhance model performance, with the impact of 455

orthogonality being relatively significant (a drop of 456

2% w/o Orth.), while the improvement from Intrin- 457

sic Reliability is rather subtle (a drop of 0.2% w/o 458
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Figure 4: The in-context learning results with respect to
pretraining tokens on four downstream tasks: ARC-E,
ARC-C, SciQ, and HellaSwag.

Rel.) (3) The combination of all components yields459

the best results. This implies that these methods of460

integrating the ratings are complementary. By su-461

perimposing both methods, we can achieve a rating462

that more accurately reflects the actual contribution463

of the sample to the pretraining.464

Training Efficiency Figures 1 and 4 show how465

the model’s performance on downstream tasks466

evolves with the pretraining tokens. In terms of467

average score, our method outperforms the random468

baseline by 2.9%. From the training efficiency per-469

spective, our method reduces training tokens to470

achieve a certain performance level by more than471

half. In addition, our method shows a significant472

advantage in the ARC-E/C and SciQ tasks, con-473

sistently scoring higher than the random baseline.474

However, on the HellaSwag task, our method’s per-475

formance is similar to the random baseline and does476

not consistently surpass it. One possible explana-477

tion is that HellaSwag is an especially challenging478

dataset, which makes it difficult to discern perfor-479

mance differences on the 1.3B scale model.480

Larger datasets and models To validate our481

method on larger models and datasets, we con-482

duct several additional experiments: (1) Training483

a 1.3B parameter model for 40B tokens using ran-484

domly sampled data; (2) Training a 3B parameter485

model for 200B tokens for both random sampling486

and FIRE (four raters integration). As illustrated in487

Table 2, the results indicate that the FIRE method488

outperforms Random with fewer training FLOPS489

Method Pretraining FLOPS ARC-C HellaSwag AVG.

Model Size = 1.3B

Random 32.2× 1019 23.6 34.4 48.6
FIRE 16.1× 1019 26.4 32.9 50.0

Model Size = 3B

Random 377.5× 1019 26.8 49.4 54.1
FIRE 377.5× 1019 28.8 51.7 55.7

Table 2: Experimental results on larger models and
datasets.
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Figure 5: The impact of the partition multiplier factor β
on FIRE Progressive performance. The red and orange
dashed lines respectively represent the scores of FIRE
and Random.

in the 1.3B parameter model setting. Furthermore, 490

in the 3B parameter model setting, FIRE exceeds 491

Random by an average of 1.6%, demonstrating the 492

robustness and scalability of our method with larger 493

models and training datasets. 494

Ablation Study for Progressive Selection We 495

conduct an ablation study on the partition multiplier 496

factor β for the FIRE Progressive approach, with 497

the outcomes shown in Figure 5. The results show 498

that for a majority of β values, FIRE Progressive 499

scores surpass those of FIRE and Random, sug- 500

gesting that the progressive selection method con- 501

tributes to a consistent enhancement of the FIRE 502

framework. 503

Case study We extract 1M samples from the cor- 504

pus and compute the pairwise Pearson correlation 505

of the ratings across all dimensions. As illustrated 506

in Figure 6a, the FIRE rating exhibits a strong cor- 507

relation with all other ratings, confirming the effec- 508

tiveness of the FIRE framework in consolidating 509

ratings across multiple dimensions. By employing 510

the FIRE framework, we can effectively select data 511

that exhibits high ratings across all dimensions. 512

Moreover, we analyze the data properties that 513

FIRE focuses on compared to other raters. Based 514

on the four dimensions in QuRating and a compre- 515
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Figure 6: (a) The Pearson correlation between differ-
ent raters. (b) Illustration of top samples rated by each
method. We use Sentence-T5 to encode texts, and em-
ploy t-SNE to perform dimensionality reduction.

Rater/Dimension W.S. R.E. F.T. E.V. Comp.

W.S. 94.0 53.5 62.9 25.6 84.1
R.E. 39.0 85.8 93.8 97.1 98.0
F.T. 46.0 97.3 88.7 42.2 98.3
E.V. 50.8 76.3 96.5 47.1 99.1
FIRE 58.2 90.5 97.3 54.1 99.5

Table 3: The percentage of high-quality data across
various dimensions, for top data selected by each rater.
Underlined scores indicate the second highest. Comp.
= Comprehensive.

hensive dimension, we determine the percentage of516

high-quality data selected by each rater in each di-517

mension. We pick 1000 data points at random from518

the top 20B data that are selected by each method.519

Then we use GPT-4o to assess each dimension six520

times, taking the average as the final evaluation521

result. Refer to the Appendix D.5 for more details.522

As shown in Table 3: (1) From a comprehensive523

perspective, FIRE shows the best results, as evi-524

denced by our performance in downstream tasks.525

(2) In terms of each dimension, FIRE consistently526

achieves relatively high accuracy, demonstrating527

that the data selected by this method maintains high528

quality across all dimensions.529

To assess whether FIRE selects more diverse530

samples than single raters, we extract the top 1000531

texts from each method and encode them using532

Sentence-T5 (Ni et al., 2022). We then apply t-SNE533

(Van der Maaten and Hinton, 2008) for dimension-534

ality reduction and visualize the results in Figure 6b.535

In the latent semantic space, samples selected by536

single raters appear more clustered, while those537

selected by FIRE are more broadly distributed, in-538

dicating higher diversity. Combined with prior case539

studies showing high quality, FIRE demonstrates a540

strong balance between diversity and quality.541

5 Related Works 542

When pretraining language models, a large amount 543

of text corpus is often crawled from the internet. 544

However, several studies (Li et al., 2023; Zhou 545

et al., 2024; Duan et al., 2025) suggest that high- 546

quality data is more beneficial to the model’s per- 547

formance. To select high-quality data, a common 548

strategy involves utilizing rules crafted by experts 549

(Raffel et al., 2020; Rae et al., 2021; Laurençon 550

et al., 2022; Computer, 2023; Penedo et al., 2024) 551

and removing duplicate sentences (Lee et al., 2022; 552

Sorscher et al., 2022; Abbas et al., 2023; Soboleva 553

et al., 2023; Tirumala et al., 2024). However, they 554

often fall short in effectively selecting high-quality 555

data based on semantic content. An alternative ap- 556

proach involves utilizing a target data source or 557

proxy model (Wenzek et al., 2020; Xie et al., 2023; 558

Marion et al., 2023; Thakkar et al., 2023; Engstrom 559

et al., 2024; Yu et al., 2024). 560

Training a classifier is a more straightforward 561

method (Du et al., 2022; Gururangan et al., 2022; 562

Zhang et al., 2024; Wettig et al., 2024; Sachdeva 563

et al., 2024). Du et al. (2022) implemented a logis- 564

tic regression binary classifier to score the data, 565

while some studies train more complex scorers 566

(Zhang et al., 2024; Sachdeva et al., 2024). Ad- 567

ditionally, QuRating (Wettig et al., 2024) trains 568

multiple raters with a finer-grained approach to ana- 569

lyze the contribution of data to model performance 570

improvement from different dimensions. Other 571

studies(Zhang et al., 2025b,a) explore methods to 572

boost pretraining efficiency by curriculum learning. 573

Prior methods mainly select data from a single 574

perspective. Although QuRating introduces mul- 575

tidimensional raters, it does not systematically ad- 576

dress their integration—a challenge our work ex- 577

plicitly tackles. 578

6 Conclusion 579

We propose FIRE, a flexible and scalable frame- 580

work that integrates multiple data quality raters 581

for comprehensive, multi-dimensional data assess- 582

ment. First, ratings from different dimensions are 583

aligned into a unified space. Then, orthogonality 584

is introduced to adjust rater weights. To handle or- 585

thogonality variations across rating ranks, we adopt 586

a progressive approach for fine-grained data selec- 587

tion. Experiments on the SlimPajama dataset show 588

that FIRE outperforms other selection methods, 589

substantially improving pretrained model perfor- 590

mance across diverse downstream tasks. 591
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7 Limitations and Future Works592

Linear assumption for orthogonality integration593

We hypothesize our integration on a linear addi-594

tive relation. While this assumption simplifies the595

computations, it might limit our ability to capture596

complex interactions between different dimensions.597

Future research could explore incorporating non-598

linear systems to adjust rater weights, potentially599

boosting performance.600

Number of raters We’ve tested our method with601

four different raters and the results have been602

promising. To make our integration method more603

robust and reliable, future tests could include more604

raters from diverse dimensions, which would ulti-605

mately help us build a more resilient and versatile606

rating integration system.607
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A Ethical Considerations 818

Training large language models (LLMs) demands 819

a substantial amount of electrical power, resulting 820

in significant carbon emissions. To address this 821

issue, we aim to develop efficient data selection 822

methods that reduce the computational resources 823

required for model training, thereby mitigating en- 824

vironmental impact. Furthermore, by meticulously 825

curating high-quality data, we can enhance model 826

performance and minimize the occurrence of hal- 827

lucinations. This not only improves the reliability 828

of the models but also helps curb the spread of 829

fake news and misinformation, addressing critical 830

societal concerns. 831

B Proof of theorems 832

In this section, we present the proofs for the two 833

previously mentioned theorems. Theorem 2 facil- 834

itates the transformation of orthogonality calcu- 835

lations into a centrality problem within a graph. 836

Meanwhile, Theorem 3 rigorously demonstrates 837

the convergence of our framework. Specifically, it 838

establishes that after several iterations, the vector 839
o

||o||2 will assuredly converge to a fixed vector, thus 840

precluding divergence. 841

Theorem 2. The overall orthogonality oi of a rater 842

Ri with other raters can be quantified as weighted 843

degree centrality of the corresponding vertex Vi in 844

the orthogonality graph. 845

Proof. Consider that the weighted degree centrality 846

of vertex Vi is the sum of the weights of the edges 847

connecting Vi to all vertices in the set of adjacent 848

vertices Ai. Since the graph of orthogonality is a 849

complete graph, we have 850

C(Vi) =
∑

Vj∈Ai

O(i, j) =
n∑

j=1
j ̸=i

O(i, j) 851

This is consistent with the definition of the 852

overall orthogonality in Equation (4) of the main 853

text. 854

Theorem 3. As α → +∞, o will eventually con- 855

verge to a fixed unit vector. 856

Proof. Since the Graph of orthogonality is an undi- 857

rected graph, the adjacency matrix M is a sym- 858

metric matrix. According to the Spectral Theorem 859

for Symmetric Matrices, M can be diagonalized, 860

and all corresponding eigenvectors can form an 861

orthogonal basis. 862
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Since for any i, j, O(i, j) ≥ 0, we can de-863

duce that M is a non-negative matrix. Addition-864

ally, since the Orthogonality Graph is a complete865

graph, M is an irreducible matrix. By the Perron-866

Frobenius Theorem, we obtain that:867

∃λ ∈ R, λ > 0

s.t. λ = max {µ | µ ∈ σ(M)},
868

where σ(M) denotes the set of eigenvalues of869

M. Assume M has m eigenvalues λ1, λ2, ..., λm870

arranged in descending order, where λ1 > 0.871

Each eigenvalue λi corresponds to the eigenvec-872

tors vi1, ...,vipi , where pi is the algebraic multi-873

plicity of λi. We can decompose o(0) into each874

eigenvector875

o(0) =

m∑
i=1

pi∑
j=1

cijvij876

Therefore, we have877

Mαo(0) = Mα
m∑
i=1

pi∑
j=1

cijvij

=

m∑
i=1

pi∑
j=1

cijM
αvij

=

m∑
i=1

pi∑
j=1

cijλi
αvij

= λ1
α

m∑
i=1

pi∑
j=1

cij(
λi

λ1
)αvij

878

Given that ∀i ̸= 1, | λi
λ1
| < 1, thus879

lim
α→+∞

(
λi

λ1

)α

= 0880

We obtain881

o = lim
α→+∞

Mαo(0) = λ1
α

p1∑
j=1

c1jv1j882

Thus883

o

||o||2
=

λ1
α∑p1

j=1 c1jv1j

||λ1
α∑p1

j=1 c1jv1j ||2

=

∑p1
j=1 c1jv1j

||
∑p1

j=1 c1jv1j ||2

884

The right-hand side of the formula is a fixed unit885

vector. Therefore, the theorem is proven.886

C FIRE Analysis 887

C.1 Analysis of the necessity of rating 888

alignment 889

Multiple raters may employ different scales and 890

criteria for assessing data quality, which can cause 891

substantial problems if their ratings are integrated 892

without appropriate standardization. For example, 893

some raters may prioritize grammatical accuracy 894

using a numerical scale, while others might assess 895

semantic relevance using a percentage scale. More- 896

over, the rating thresholds distinguishing data that 897

positively contribute to pretraining can significantly 898

differ among raters. Without rating alignment, the 899

integrated ratings can be misleading, inaccurately 900

reflecting the actual quality of the data point. The 901

subsequent examples and analyses underscore the 902

importance of rating alignment for a reasonable 903

data quality evaluation: 904

• Different Scales. Suppose we have Rater A, 905

who assesses data quality on a 1 to 10 scale 906

based on grammatical accuracy, and Rater B, 907

who evaluates semantic relevance on a 0% to 908

100% scale. Let’s say a particular data point 909

receives an 8 from Rater A and 85% from 910

Rater B. If we naively average these ratings, 911

we get: 8+85
2 = 46.5. This score does not 912

genuinely reflect the data quality as the scales 913

used are inherently different. Hence, it is cru- 914

cial to standardize the ratings onto a common 915

scale to facilitate meaningful comparisons. 916

• Different Quality Thresholds. Even with rat- 917

ings standardized to a common scale, we face 918

the problem of varying quality thresholds dis- 919

tinguishing data that positively contribute to 920

pretraining. For example, Rater A may deem 921

ratings above 5 as high-quality, whereas Rater 922

B may view ratings above 80% as high-quality. 923

Suppose we standardize both ratings to a 0- 924

1 scale, turning an 8 from Rater A into 0.8 925

and 85% from Rater B into 0.85. Despite this 926

standardization, direct comparison of the two 927

raters’ scores remains impractical due to their 928

differing threshold values for differentiating 929

data quality. 930
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C.2 Prompt for GPT-4o to compare data931

quality932

Prompt for GPT-4o to compare data quality

Compare two text excerpts and choose the
text which contain more informative
signal for pretraining a large−language
model.

An informative datapoint should be well−
formatted, contain some usable knowledge
of the world, and strictly NOT have any
harmful, racist, sexist, etc. content.
Aspects that should NOT influence your
judgement:
1. The length of the text
2. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts. The texts might
have similar quality, but you should still
make a relative judgement and choose the
label of the preferred text.

[Option A]
... {text a} ...
[Option B]
... {text b} ...

Now you have to choose between either A
or B. Respond only with a single word.

933

C.3 Reliability Analysis of GPT-4o934

QuRating(Wettig et al., 2024) points out that GPT935

is more effective at comparing the relative quality936

between two data samples than performing abso-937

lute quality evaluation. To further assess the reli-938

ability of GPT-4o, we use QuRating (Educational939

Value) as a case study and conduct a win-rate eval-940

uation involving human experts. Specifically, we941

compare the win rates assigned by human annota-942

tors and GPT-4o across different rating percentiles,943

with results presented in descending order of per-944

centile rating in Table 4. The two sets of win rates945

exhibit a Pearson correlation of 0.99, indicating946

strong agreement and suggesting that GPT-4o does947

not introduce significant bias in the annotation pro-948

cess. This high consistency supports the reliability949

of using GPT-4o for quality assessment. Further-950

more, GPT-4o is used only to estimate win rates 951

between rater-selected samples and random sub- 952

sets, rather than to assign absolute scores, which 953

further reduces bias. 954

C.4 Polynomial spline interpolation for 955

win-rate-percentile function 956

To obtain the aligned rating for each data point, 957

we consider the win rate wij of rater i in the j-th 958

rating interval as the rating of the midpoint of that 959

interval, denoted by coordinates (pj , wij). We then 960

complete the rater’s win-rate-percentile function 961

using polynomial spline interpolation to derive a 962

continuous and smooth win-rate-percentile func- 963

tion. The polynomial spline interpolation function 964

S(p) is defined as follows: 965

S(p) =ak(p− pk)
n + bk(p− pk)

n−1 + · · ·
+ yk(p− pk)

2 + zk(p− pk) + dk,

pk ≤ p < pk+1

(10) 966

where p denotes the percentile, pk and pk+1 are 967

the boundaries of the k-th interval, n is the degree 968

of the polynomial, and ak, bk, · · ·, yk, zk, and dk 969

are the coefficients determined through the spline 970

interpolation process. 971

C.5 Ratings distribution illustration 972

Figure 7 shows the win rates of samples in different 973

percentile intervals and the fitted Rating-Percentile 974

curves for 4 raters. The original ratings provided 975

by the four raters exhibit significant differences, as 976

illustrated in Figure 4 of QuRating(Wettig et al., 977

2024). The alignment introduces a random sub- 978

set for comparison, which makes the ratings from 979

different raters comparable, mapping the ratings 980

into a similar range. This forms the foundation for 981

the subsequent weighted integration of the raters, 982

which explains the poor performance without align- 983

ment. However, even after alignment, there are still 984

noticeable differences in the rating distributions 985

of different raters. For instance, in Figure 7a and 986

7c, there are significant differences in the win rate 987

of the first quartile and the middle section of the 988

curve. 989

C.6 Formalization of Orthogonality. 990

Empirical determination of the boundary condi- 991

tions. For convenience and without losing ratio- 992

nality, we use the initial version of the integrated 993
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Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GPT-4o 0.773 0.705 0.625 0.600 0.545 0.513 0.480 0.425 0.340 0.273
Human Expert 0.797 0.698 0.657 0.616 0.533 0.501 0.469 0.433 0.317 0.300

Table 4: Win-rate comparison between GPT-4o and human experts for QuRating (Educational Value) across different
rating percentiles.

(a) Writing Style (b) Required Expertise

(c) Facts and Trivia (d) Educational Value

Figure 7: The win rates of samples in different per-
centile intervals and the fitted Rating-Percentile curves
for 4 raters.

rating calculation formula (without PageRank op-994

timization) to determine the boundary values of995

orthogonality. The integrated rating of data point i996

can be expressed as997

I(i) =

n∑
j=1

γjojAj(i)998

where oj =
∑n

k=1
k ̸=j

O(j, k) is a quantification of the999

overall orthogonality Rj with other raters. We ig-1000

nore the impact of raters’ reliability and set γj = 1.1001

By substituting the definition of the overall orthog-1002

onality, we obtain1003

I(i) =
n∑

j=1

 n∑
k=1
k ̸=j

O(j, k)

Aj(i)

=
1

2

n∑
j=1

n∑
k=1
k ̸=j

O(j, k) (Aj (i) +Ak (i))

(11)1004

The final expression, after rearrangement, can be1005

seen as pairwise addition of raters, with their in-1006

tegrated ratings weighted by the orthogonality of1007

the two raters. When two raters are perfectly cor- 1008

related, it means their ratings are identical across 1009

all data points. In this scenario, the information 1010

provided by one rater is entirely redundant with 1011

respect to the other. Therefore, the orthogonality 1012

between these raters should be set to 0, indicating 1013

no additional information is gained by consider- 1014

ing both ratings. Conversely, when two raters are 1015

perfectly orthogonal, it signifies that their ratings 1016

are completely independent of each other. Each 1017

rater offers unique and complementary perspec- 1018

tives, leading to a comprehensive evaluation when 1019

combined. In such cases, the orthogonality should 1020

be set to 0.5, reflecting that each rater contributes 1021

equally distinct information to the overall rating. 1022

Orthogonality function. The most intuitive ap- 1023

proach to determine the orthogonality between two 1024

raters is to use the correlation coefficient between 1025

their rating distributions on a pretraining dataset. 1026

The orthogonality-correlation function needs to sat- 1027

isfy two key conditions: 1028

• Monotonicity: The stronger the correlation, 1029

the lower the orthogonality. 1030

• Boundary Conditions: Empirically, when 1031

two raters are completely uncorrelated, the or- 1032

thogonality between them is 0.5; when they 1033

are fully correlated, the orthogonality is 0. 1034

And the empirical value has been described 1035

above. 1036

In fact, we choose the orthogonality between 1037

two raters to be 0 when they are completely cor- 1038

related, as we want to avoid duplication issues 1039

during rater integration. For instance, consider 1040

three raters, where Rater 1 and Rater 2 are com- 1041

pletely correlated (correlation coefficient of 1) and 1042

are completely uncorrelated with Rater 3 (correla- 1043

tion coefficient of 0). Considering only one itera- 1044

tion, the integration result of the three raters is R = 1045

O12(R1+R2)+O13(R1+R3)+O23(R2+R3) = 1046

(Ol + Oh)R1 + (Ol + Oh)R2 + 2OhR3, where 1047

Ol = O12, Oh = O13 = O23. Given that Rater 1 1048

14



and Rater 2 are completely correlated, which means1049

R1 = R2, we obtain R = 2(Ol+Oh)R1+2OhR3.1050

If Ol ̸= 0, R1 will be assigned an additional weight.1051

However, one would naturally assume that R1 and1052

R3 should carry the same weight when they are1053

completely uncorrelated.1054

Considering the scenario where the correlation1055

coefficients among all raters are zero, the calcula-1056

tion of orthogonality would completely degenerate1057

to zero. Therefore, in such extreme cases, we treat1058

all perfectly correlated raters as a single rater and1059

do not proceed with orthogonality-related integra-1060

tion.1061

Based on the conditions, we explored three func-1062

tional forms that satisfy the criteria: a linear func-1063

tion, a Gaussian function, and a symmetrically pro-1064

cessed Gaussian function. The three functional1065

forms explored for orthogonality are as follows:1066

(1) Linear Function:1067

OL(i, j) =
1

2
· (1− |r(i, j)|) (12)1068

(2) Gaussian Function:1069

OG(i, j) = exp

(
−r(i, j)2

2c2

)
− 1

2
(13)1070

(3) Symmetrically Processed Gaussian Func-1071

tion:1072

OS.G(i, j) =

(
3

2
− |r(i, j)|

)
−exp

(
−r(i, j)2

2c2

)
(14)1073

where r(i, j) represents the correlation measure1074

between raters i and j. Specifically, it is quantified1075

using the Pearson correlation coefficient between1076

the score distributions of the two raters over a com-1077

mon dataset. In both Gaussian-based functions, the1078

constant c =
√

1
2 ln 2 is determined by the bound-1079

ary conditions. Figure 8 illustrates the 3 forms of1080

orthogonality functions with respect to correlation1081

coefficient.1082

It’s worth noting that the experiments in Ap-1083

pendix E.3 demonstrate that the symmetrically pro-1084

cessed gaussian function exhibits the best perfor-1085

mance. Therefore, in the main experiments of1086

this paper, we use the symmetrically processed1087

gaussian function, i.e., Equation (14). Addition-1088

ally, when integrating the ratings from two raters,1089

their weights based on orthogonality are the same.1090

Therefore, we only use the intrinsic reliability of1091

the raters to weight their ratings.1092

Figure 8: Trends of 3 forms of orthogonality functions
with the change in the correlation coefficient.

Hyperparameter Value Hyperparameter Value

Attention heads 16 Precision bfloat16

Layers 24 Vocab size 32,000

Hidden size 2048 Window length 1024

Intermediate size 5504 Tied embedding False

Position embedding ROPE Activation SwiGLU

Table 5: The hyperparameters of model structure.

C.7 Orthogonality-Percentile curve 1093

Figure 9 shows the orthogonality calculated based 1094

on data subsets from different quantiles. It is evi- 1095

dent that the orthogonality calculated from data in 1096

different quantiles varies. 1097

D Experimental Details 1098

D.1 Model and training 1099

We train a model with 1.3B parameters similar to 1100

the Llama architecture, the model structure is de- 1101

tailed in the Table 5. We train the language model 1102

from scratch and randomly initialize the model 1103

parameters. We set the batch size to 2048 and 1104

the learning rate to 5e-4, using a cosine learning 1105

schedule. To accelerate the training and inference 1106

processes, we use the bfloat16 format during both 1107

training and testing. The training is based on the 1108

Megatron framework and utilizes flash attention. 1109

The entire model is trained on 16 A100 GPUs for 1110

a total of 10,000 steps. For FIRE orthogonality 1111

calculation, we use the symmetrically processed 1112

gaussian function. 1113

D.2 Integration Baselines 1114

We compare our rating integration method with 1115

other baseline methods. Here we give more details 1116

about the baselines. 1117
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Figure 9: Trends of orthogonality functions with the
change in percentile of different pairs of raters.

Prompts for Comprehensive Rater

Compare two text excerpts and choose the
text which
1. has a more polished and beautiful
writing style.
2. contains more facts and trivia. Prefer
specific facts and obscure trivia over more
common knowledge.
3. requires greater expertise and
prerequisite knowledge to understand it.
4. has more educational value, e.g., it
includes clear explanations, step−by−step
reasoning, or questions and answers.
Aspects that should NOT influence your
judgement:
1. Which language the text is written in
2. The length of the text
3. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts. The texts might
have similar quality, but you should still
make a relative judgement and choose the
label of the preferred text.

[Option A]
{text1}
[Option B]
{text2}

Now you have to choose between either A
or B. Respond only with a single word.

1118

Comprehensive Rater Following QuRating 1119

(Wettig et al., 2024), we collect pairwise com- 1120

parison data and train a reward model based on 1121

Sheared-Llama 1.3B (Xia et al., 2023). We merge 1122

all the evaluation criteria into a single prompt to 1123

guide GPT-4o comparison. Above is an illustration 1124

of the prompt. 1125

Mix Criteria We utilize each rater to select the 1126

top 20B tokens, which are then merged and dupli- 1127

cates removed. Following this, we randomly pick 1128

out another 20B tokens from this merged set. As 1129

each sample only requires to excel in one rater’s 1130

evaluation to be considered for selection, this ap- 1131

proach emphasizes the dimension in which the sam- 1132

ple performs best amongst all dimensions. 1133

Max Criteria Once the scores are aligned, we 1134

directly select the dimension with the highest rat- 1135

ing to represent the integration result. This method 1136

is analogous to performing max-pooling across all 1137

dimensions, straightforwardly highlighting the di- 1138

mension within the sample that has the highest 1139

rating. 1140

Average For multi-rater integration, the most 1141

straightforward approach is to assume that each 1142

rater contributes equally to the overall quality of 1143

the data. Accordingly, we normalize the ratings 1144

provided by each rater for the samples. Follow- 1145

ing normalization, the average of these ratings is 1146

computed to obtain the final integrated rating. 1147

D.3 Analysis of Computational Cost 1148

This section analyzes the computational cost (mea- 1149

sured in FLOPs) for various data rating and integra- 1150

tion methods. The focus is on the cost introduced 1151

by applying raters to the pre-training data, exclud- 1152

ing the main model’s training cost. FIRE achieves 1153

more effective integration without introducing sig- 1154

nificant extra cost beyond the base raters. The 1155

FLOPs comparison is summarized in Table 6. 1156

The analysis includes: 1157

1. Rater training (if applicable), 1158

2. Rater inference over the entire dataset, 1159

3. Additional computation for FIRE’s win-rate- 1160

based integration. 1161

QuRating (Single Rater). Each QuRating model 1162

is a 1.3B-parameter transformer. It is first fine- 1163

tuned on 500K examples (512 tokens each). The 1164
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Method FLOPs

QuRating (single rater) ≈ 8.17× 1020

QuRating (mix of criteria, 4 raters) ≈ 3.26× 1021

FIRE (mix of criteria, 4 raters) ≈ 3.26× 1021

Table 6: Comparison of computational cost (FLOPs)
across different rating methods.

total FLOPs for training this rater is approximately:1165

FLOPstrain ≈ 6 ·N · d2 · L · T ≈ 4.2× 10191166

Rater inference over the entire 627B-token dataset1167

consumes:1168

FLOPsinfer ≈ 6 · 627× 109 · d2 ·L ≈ 8.13× 10201169

1170

FLOPstotal ≈ 8.17× 10201171

QuRating (Mix of Criteria). Integrating four1172

QuRating raters (each covering a distinct aspect)1173

requires four forward passes across the full dataset.1174

Since retraining is not needed, total cost is:1175

FLOPsmix ≈ 4× FLOPsinfer ≈ 3.26× 10211176

FIRE. FIRE uses the same four QuRating raters1177

as input, and hence shares the same inference cost.1178

In addition, it estimates the win-rate-percentile1179

mapping using only 20K pairwise comparisons per1180

rater. The additional cost of this step is negligible1181

compared to inference over 627B tokens.1182

D.4 Integration of Other Raters1183

FIRE has extremely high scalability: our approach1184

is not directly related to the specific attributes of1185

the raters. Therefore, as long as the raters can1186

provide ratings for the samples and are not com-1187

pletely related to each other, they can be integrated1188

using the FIRE method. We also attempt to in-1189

tegrate another raters: QuRating(Required Exper-1190

tise), QuRating(Facts and Trivia), DSIR-Book, and1191

DSIR-Wiki. Tabel 7 shows that the average perfor-1192

mance of FIRE, after integrating these four raters,1193

is better than each individual rater and the Random1194

baseline, indicating that our integration method is1195

still effective on other raters.1196

D.5 Prompt for Multi-dimension Analysis 1197

Prompts for GPT-4o evaluation

You are a data annotation expert. You
should judge that {condition}

Aspects that should NOT influence your
judgement:
1. Which language the text is written in
2. The length of the text
3. The order in which the texts are
presented

Note that the texts are cut off, so you have
to infer their contexts.
Here is the text:
[TEXT BEGIN]
{text}
[TEXT END]

Please follow the question order to
respond. For answer, only respond yes or
no.
Return the results for each question in the
following json format:
[{
"quesion": "Is this text has a polished and
beautiful writing style ?",
"reason": "Fill in the reason for the
judgment here",
"answer": "yes/no"
},
...]

1198

We instruct the GPT-4o to evaluate the data se- 1199

lected through the raters, and here we show the 1200

prompts. For dimension, we consider four individ- 1201

ual dimensions, the same as QuRating Wettig et al. 1202

(2024); and a comprehensive dimension: 1203

• Does this text have a polished and beautiful 1204

writing style? 1205

• Does this text contain many facts and trivia? 1206

Prefer specific facts and obscure trivia over 1207

more common knowledge. 1208

• Does this text have much educational value? 1209

E.g., it includes clear explanations, step-by- 1210

step reasoning, or questions and answers. 1211

17



Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Random 48.2 22.3 84.5 19.7 60.8 32.1 63.5 49.2 47.5
DSIR with Book 36.2 19.5 73.4 21.4 61.8 29.5 62.5 53.6 44.7
DSIR with Wiki 37.2 18.0 76.4 23.0 58.0 27.9 57.3 51.1 43.6
QuRating (R.E.) 50.6 23.2 83.9 22.6 61.4 30.2 59.8 49.8 47.7
QuRating (F.T.) 54.1 23.0 83.5 22.0 60.9 30.4 59.5 51.7 48.1
FIRE 57.1 25.9 84.9 20.8 61.5 31.5 60.1 50.3 49.0

Table 7: Performance comparison by applying FIRE to integrate four raters: QuRating (Required Expertise),
QuRating (Facts and Trivia), DSIR-Book, and DSIR-Wiki.

• Does this text require a lot of expertise and1212

prerequisite knowledge to understand it?1213

• Does this text contain an informative signal1214

for pretraining a large-language model? An in-1215

formative data point should be well-formatted,1216

contain some usable knowledge of the world,1217

and strictly NOT have any harmful, racist, sex-1218

ist, etc. content.1219

E Further Analysis of Experiments1220

E.1 Results of different combinations1221

We present the results of different rater combi-1222

nations in Table 8. The average scores of FIRE1223

(W.S.+R.E.+F.T.) and FIRE (W.S.+R.E.+E.V.) both1224

surpass the results obtained from combining any1225

two of their individual raters. Furthermore, FIRE1226

(W.S.+R.E.+F.T.+E.V.) achieves even better perfor-1227

mance.1228

E.2 Prompt merge effect1229

We investigate whether combining multiple rules1230

within a single prompt can effectively meet the1231

evaluation standards of each rule. We randomly1232

selected 3,000 data points and guided GPT-4’s eval-1233

uation using a prompt that integrates multiple rules,1234

alongside conducting individual rule-guided eval-1235

uations and separate human annotator evaluations1236

for each criterion. To understand how GPT-4’s1237

holistic evaluation aligns with each individual di-1238

mension, we employed CoT (Wei et al., 2022) ap-1239

proach: the model first evaluates each rule sep-1240

arately, and then provides an overall evaluation.1241

Each rule is assessed with a binary yes/no question,1242

and after six evaluations, we average the results to1243

obtain the final score (for human evaluations, this1244

entails averaging the scores given by six annota-1245

tors).1246

Table 9 displays the percentage of data with a rel-1247

atively high degree in each dimension, along with1248

40 42 44 46 48 50 52 54
AVG. score

Linear

Gaussian

Gaussian Reverse 50.0

49.7

49.5

Ablation Study

Figure 10: Ablation experiments evaluating the impact
of different orthogonality functions on model perfor-
mance.

the correlation coefficients between GPT-4’s and 1249

human evaluations. From the proportions of high- 1250

quality data in each dimension, it is evident that 1251

GPT-4’s scores approximate human scores more 1252

closely when evaluated individually, with differ- 1253

ences within a margin of 0.2 at most. However, 1254

GPT-4’s scores exhibit greater variability when 1255

multiple rules are integrated. In terms of correlation 1256

coefficients, there is a strong correlation between 1257

GPT-4’s individual scoring and human scoring, but 1258

this correlation significantly diminishes when it 1259

comes to comprehensive scoring. Particularly, in 1260

the ’Require Expertise’ aspect, the correlation is 1261

only 0.32. This suggests that GPT-4’s current ca- 1262

pability to adhere to all rules in a single prompt is 1263

still inadequate. 1264

E.3 Orthogonality Function 1265

There are various methods to calculate orthogonal- 1266

ity, and we aim to identify the most effective one. 1267

We compare three functions for orthogonality cal- 1268

culation: linear, gaussian, and sym. gaussian (the 1269

symmetrically processed gaussian function). As 1270

illustrated in Figure 10, the three functions achieve 1271

comparable results, all surpassing the configuration 1272

without orthogonality, which demonstrates the ef- 1273

fectiveness of incorporating orthogonality. Besides, 1274

the sym. gaussian function outperforms the other 1275

two. The gaussian function smooths the correla- 1276
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Method ARC-E ARC-C SciQ LogiQA BoolQ HellaSw. PIQA W.G. AVG.

Two Raters Integration

FIRE (W.S.+R.E.) 54.5 24.6 85.6 19.7 61.3 31.3 60.4 51.8 48.7
FIRE (W.S.+F.T.) 56.1 25.0 81.5 22.7 55.1 31.7 61.2 49.7 47.9
FIRE (R.E.+F.T.) 56.9 26.1 84.7 20.7 62.0 30.5 59.4 50.0 48.8
FIRE (W.S.+E.V.) 56.7 24.2 82.2 21.0 60.3 33.0 61.0 51.0 48.7
FIRE (R.E.+E.V.) 53.0 24.7 84.1 22.4 61.2 31.3 58.7 49.7 48.1

Three Raters Integration

FIRE (W.S.+R.E.+F.T.) 59.0 25.4 85.6 25.5 57.5 31.9 61.8 51.1 49.7
FIRE (W.S.+R.E.+E.V.) 57.8 25.9 84.5 20.6 62.0 32.7 60.5 51.3 49.4

Four Raters Integration

FIRE (W.S.+R.E.+F.T.+E.V.) 59.1 26.4 86.0 21.0 61.8 32.9 59.7 52.8 50.0

Table 8: Downstream tasks results for different rater combinations. We report accuracy for each task, and the best
performances are marked in bold. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande, AVG. = Average,
W.S. = Writing Style, R.E. = Required Expertise, F.T. = Facts and Trivia, E.V. = Educational Value

W.S. F.T. E.V. R.E.

Sing.(Human) 53.3 69.7 85.1 92.2
Sing.(GPT4) 52.1 69.7 85.5 91.8
Comp.(GPT4) 57.8 80.5 86.9 50.3

ρHuman−Sin.(GPT4) 0.81 0.85 0.86 0.77
ρHuman−Com.(GPT4) 0.72 0.64 0.72 0.32

Table 9: Results of GPT-4 and human annotation for
3,000 samples. Sing. = Single, Comp. = Comprehen-
sive.

tion coefficient around zero, while the sym. gaus-1277

sian function amplifies changes in orthogonality1278

near zero. The linear function, however, strikes1279

a balance between these two. Our experimental1280

results confirm that enhancing the rate of change1281

around zero is more efficient, emphasizing the role1282

of highly orthogonal raters, and intensifying the1283

penalties for raters with high correlation.1284

E.4 Effect of Sample/top-K1285

Qurating (Wettig et al., 2024) suggest that sampling1286

is more effective than directly selecting the top-K1287

data. In this experiment, we integrate four differ-1288

ent raters to rigorously investigate the impact of1289

sampling on the model’s final performance. Specif-1290

ically, we calculate the sampling probability for all1291

rated samples using the following softmax formula:1292

P (x) =
exp(I(x)/τ)∑
exp(I(x)/τ)

(15)1293

where τ is the temperature parameter. We train1294

a model of the same size as in the previous exper-1295

iments. From the results presented in Figure 11,1296
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Figure 11: The impact of the sample temperature co-
efficient on model performance. τ is the temperature
coefficient, and when τ = 0, it refers to top-K selection.

several key observations can be made: 1297

(1) Our findings reveal that direct top-K selec- 1298

tion outperforms sampling, further affirming the 1299

efficacy of our integration method. Additionally, 1300

Wettig et al. (2024) posits that sampling enhances 1301

data diversity, which is beneficial for model learn- 1302

ing. Our results indicate that the top-K scores are 1303

higher than the sampling scores, demonstrating that 1304

the top-ranked data according to our integration rat- 1305

ing exhibit a broader distribution rather than being 1306

concentrated in a single domain. 1307

(2) Contrary to the optimal value of 2 suggested 1308

by Wettig et al. (2024), our analysis indicates that 1309

a relatively smaller τ value yields optimal results. 1310

A smaller τ accentuates the impact of ratings, sug- 1311

gesting that our method effectively selects higher- 1312

quality data. Furthermore, our multi-dimensional 1313

approach also accounts for the diversity of data 1314
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types, ensuring a more comprehensive evaluation.1315

F Selected Data Cases1316

We show the document cases rated by the single1317

raters and FIRE in the Table 10. For each method,1318

we show the best/middle/worst sample.1319
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Method Best Middle Worst

Writing Style

... is the very thing that makes each person inim-

itable, the thing that allows us finally to see and

celebrate one another’s distinct natures. Once it

is understood that this expanse must always exist,

each person is free to become whatever it is they

will become, unburdened by the need to shape

themselves to fit their partner. And this individ-

uation need not be a growing apart. For if each

partner can remember the beauty and necessity

of the expanse, then they can come to appreciate

fully the ...

... him some of that history," she said. Near the

beginning of the session panelist Don Lemon of

CNN played video of his story on what he called

"a picture of racial unity," Sherrod’s reunion with

the elderly white farmers whose farm she helped

save, after first not making a full effort at a non-

profit where she worked 24 years ago. The author

of legislation that would require natural-gas com-

panies to disclose hydraulic-fracturing fluids says

she feels betrayed by industry groups that have

spoken ...

... - 2006 Y-T-D Stat Scoring Average (Actual) -

2006 Stat Scoring Average (Actual) - 2006 Y-T-D

Stat Scoring Average (Actual) - 2006 Stat Scor-

ing Average (Actual) - 2006 Y-T-D Stat Scoring

Average (Actual) - 2006 Stat Scoring Average

(Actual) - 2006 Y-T-D Stat Scoring Average (Ac-

tual) - 2006 Stat Scoring Average (Actual) - 2006

Y-T-D Stat Scoring Average (Actual) - 2006 Stat

Scoring Average (Actual) - 2006 Y-T-D Stat Scor-

ing Average (Actual) - 2006 Stat Scoring Average

(Actual) - 2006 Y-T-D St ...

Required Expertise

... induced climate change have used instrumental

records to study how quickly climate is warming

across different parts of the world. Our study uses

a collection of natural archives that preserve in-

formation about past temperatures over a much

longer period, spanning the last 500 years, to ask

the question: "When did the sustained warming

trends that we’ve seen in the 20th and 21st Cen-

turies first begin?" ...

... (by R.M. Butler?) in ’Folder 20’ seen by Nick

Sheaff, 1970s; Liam Swords, Achonry and its

churches (Strasbourg: Éditions du Signe, 2007),

78(illus.). Nature: Additions, for Lady Fitzger-

ald Arnott. contractor: Michael O’Brien, Dun

Laoghaire. Refs: IB 59, 27 Oct 1917, 551; MS

letter in IAA (Acc. 88/118) from Rev.P. Kilkenny

to Butler, 6 Jun 1919, states that he cannot resist

’revolutionary, ...

... more. Awesome. : 1138 This is one awesome

article.Thanks Again. Really Cool. : 1136 Appre-

ciate you sharing, great article. : 1135 I cannot

thank you enough for the blog post.Much thanks

again. Great. : 1134 I think this is a real great

post.Much thanks again. Cool.: 1133 A big thank

you for your blog article.Really looking forward

to read more. Great. : 1132 Great, thanks for

sharing this blog post.Much thanks again. ...

Facts and Trivia

... Native American to carry the United States

flag at the opening ceremony of the Olympic

Games: Clarence "Taffy" Abel (Chippewa). 1926

First Native American in the NHL New York

Rangers November 16, 1926: Clarence "Taffy"

Abel (Chippewa). First Native American woman

to hold state office in Oklahoma: Jessie Eliza-

beth Randolph Moore (Chickasaw). First national

reform group with only Native American mem-

bership: National Congress of American Indians

(NCAI) by Zitkala-Sa ...

... I probably only understand two-thirds of what’s

going on, honestly, but it’s still damn good stuff.

(Audiobook) Being Mortal by Atul Gawande:

Heard raves about this non-fiction about elder

and end-of-life care from many a Rioter, and it’s

ringing all my Books That Make Me Want To

Change the World buttons. (audiobook) Half-

Resurrection Blues by Daniel José Older: Loved

Older’s Salsa Nocturna, so I speedily picked up

this novel about a half-alive, half-dead sort-of-

secret-agent who works for ...

... T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME JE T’AIME

JE T’AIME JE T’AIME JE T’AIME ...

Educational Value

... Learn what "big history" is and how scholars

apply this approach to the story of humanity. Gain

new understanding of the complete sweep of hu-

man history, across all civilizations and around

the world. Use the lens of history to find out what

makes us human, why the world exists as it does

today, and where we might be going in the future.

See how the environment, population growth, so-

cial complexity, and more have driven the rise and

fall of civilizations over ...

... a similar set of models as Fig. 2, this time

displaying the C-star fractions for models with

varying fCE between 0.008 and 0.4 at the base

of the convective envelope. In this instance, there

is a far more straightforward interpretation, with

an increase in fCE producing an increased C-

star fraction, in almost all cases. Furthermore,

there is more readily acceptable agreement with

the observed C-star fractions than was the case

for the ...

... 05:17:33 https://cse.google.com.bo/url?sa=t

url=https://toppornsites.mobi 2023-01-27

05:17:33 https://cse.google.com.br/url?sa=t

url=https://toppornsites.mobi 2023-01-27

05:17:33 https://cse.google.com.by/url?sa=t

url=https://toppornsites.mobi 2023-01-27

05:17:33 https://cse.google.com.bz/url?sa=t

url=https://toppornsites.mobi ...

FIRE

In mathematics, the differential geometry of sur-

faces deals with the differential geometry of

smooth surfaces with various additional struc-

tures, most often, a Riemannian metric. Surfaces

have been extensively studied from various per-

spectives: extrinsically, relating to their embed-

ding in Euclidean space and intrinsically, reflect-

ing their properties determined solely by the dis-

tance within the surface as measured along curves

on the surface. One of the fundamental concepts

investigated is ...

... Everett, Washington: Charlotte Murray, 2010.

Second Edition of 10. 7.5 x 5.25"; 56 pages.

Images captured using three digital cameras, a

Nikon Coolpix 5700, a Nikon D70, and a Nikon

D80. Printed with Epson Photo Stylus R2880

printer with UltraChrome K3 pigment inks on

Epson Premium Presentation Paper Matte. Pa-

pyrus font. Coil binding with green see through

cover and lightweight cardboard back. Colophon:

"The Dead Tree Scrolls first edition was created

in 2005. This second edition was ...

... HBP - MILLER; MORALES. SF - WILKER-

SON(2). SB - EPPS(9); HORAN(3); PINDER(4).

CS - EPPS(3). Clemson IP H R ER BB SO AB

BF Justin Sarratt...... 6.1 6 3 3 1 8 24 26 Alex

Frederick...... 0.1 0 0 0 0 0 1 1 Joseph Moore-

field... 0.1 0 0 0 0 1 1 1 Matt Campbell....... 2.0 0

0 0 3 3 6 9 Virginia Tech IP H R ER BB SO AB

BF Marc Zecchino....... 7.1 7 5 4 1 7 27 29 Jake

Atwell......... 0.2 3 3 3 0 0 5 5 Sean McDermott ...

Table 10: Data cases are randomly selected from the top, middle, and bottom 0.01% of training samples, representing
the best, middle, and worst cases for each method.
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