

000 HARDTESTGEN: A HIGH-QUALITY RL VERIFIER GEN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HARDTESTGEN: A HIGH-QUALITY RL VERIFIER GEN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ERATION PIPELINE FOR LLM ALGORITHMIC CODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Verifiers provide important reward signals for reinforcement learning of large language models (LLMs). However, it is challenging to develop or create reliable verifiers, especially for code generation tasks. A well-disguised wrong solution program may only be detected by carefully human-written edge cases that are difficult to synthesize automatically. To address this issue, we propose HARDTESTGEN, an approach to synthesize high-quality test cases for algorithmic coding problems. We curate a comprehensive algorithmic programming dataset HARDTESTS with 26.6k problems and high-quality synthetic tests. Compared with existing tests, HARDTESTGEN tests demonstrate significantly higher accuracy in verifying LLM-generated code (+11.22 percentage points in precision, the percentage of actually correct code within the predicted correct ones). We also show that downstream post-training — including rejection sampling and reinforcement learning (RL) — using HARDTESTS verifier results in improved performance of LLM code generation.

1 INTRODUCTION

Post-training large language models (LLMs) with outcome verifiers¹ (Guo et al., 2025; Kimi Team et al., 2025) can greatly improve their reasoning ability. LLMs trained with these techniques are approaching the level of the best humans on challenging problems in math and programming olympiads (OpenAI et al., 2025). To properly assign outcome rewards in post-training, reliable verifiers are needed for both reinforcement learning and rejection sampling.

For coding, verifiers are often test cases (Le et al., 2022; Singh et al., 2023) that tell right algorithms from wrong ones. Algorithmic coding requires efficient solutions with advanced data structures and algorithms. The ability to solve these problems is essential for efficiency-critical domains such as high-performance computing, but its complex nature poses challenges for obtaining accurate verifiers and LLM reinforcement learning. A bad choice of algorithm can lead to a well-disguised wrong solution, which may easily pass random tests but still break on human-written special cases. Consider this example problem: *for a rooted tree with n nodes and weighted edges, calculate the sum of path lengths from every node to the root node*. A naive algorithm that enumerates all such paths and sums edge by edge has a time complexity of $\Theta(nd)$, where d is the depth of the tree. This can be decently efficient in many cases, as $\mathbb{E}[d] = \Theta(\log n)$ for randomly generated trees (Devroye et al., 2012). For such an algorithm to time out, the test case needs to be a valid tree that is large enough (so that n is large) and special enough (so that d is large). A chain (each non-leaf node has exactly one child), whose depth $d = n$ can cause the algorithm to be as slow as $\Theta(n^2)$. This example demonstrates the need for valid, comprehensive tests to accurately verify algorithmic coding and assign rewards.

Generating valid and comprehensive tests is hard. Existing test synthesis methods, such as CodeT (Chen et al., 2023) and TACO (Li et al., 2023) rely on LLMs to directly write test inputs. Consequently, existing datasets of coding problems and associated test cases are less than comprehensive. 60% of the programs that pass test cases in APPS (Hendrycks et al., 2021) are in fact, wrong. 46% of the programs that pass test cases in CodeContests (Li et al., 2022) are semantically correct, but too inefficient to pass human-written tests. More importantly, scraping human-written tests is unfeasible — according to our study, for most of the problems, human-written test cases are proprietary and impossible to scrape, demanding synthesized tests.

¹In this paper, “verifier” refers to rule-based systems that attempt to check the correctness of problem solutions. **“Verifiers” do not necessarily guarantee correctness.**

To alleviate these issues, we propose HARDTESTGEN, an LLM-based test synthesis pipeline. Our main insights are 1) test cases' validity is better preserved when generated from LLM-produced programs rather than directly from the LLMs themselves, and 2) each test generator has different hypotheses about the programs under test and creates tests from a different distribution. With these insights, HARDTESTGEN establishes a unified pipeline that synthesizes four types of test inputs. Among them, LLMGen is based on direct LLM generation, while the other three types — RPGen, SPGen, and HackGen — are produced by LLM-written generator programs. For outputs, HARDTESTGEN relies on multiple human-written oracle programs to compute expected results and applies consensus filtering to eliminate invalid cases. Such oracle programs are available for the vast majority of problems in online coding competitions.

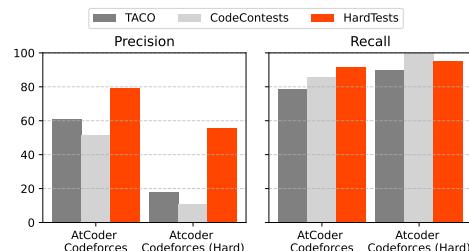


Figure 1: HARDTESTS test cases are significantly better than the baselines. The large improvement in precision indicates that our tests greatly reduce false positives and are indeed *harder*.

With HARDTESTGEN, we curate HARDTESTS, a comprehensive dataset for coding competitions with 26.6k problems and high-quality test cases. As shown in Figure 1, compared to existing test synthesizers, HARDTESTS tests are more reliable in terms of precision and recall when evaluating programs generated by Qwen2.5-Coder-7B (Yang et al., 2024). The gap in precision can be up to 40 percentage points for harder problems. Higher reliability of verification makes HARDTESTS the ideal playground for post-training research in the coding domain. To further demonstrate the benefits of high-quality tests, we conduct post-training experiments with HARDTESTS and baseline tests. Our experiments in 2 different scenarios show that test quality matters significantly for rejection sampling and reinforcement learning. Higher-quality tests can lead to improvements in downstream performance.

In summary, this work provides:

- HARDTESTGEN, an LLM-based test synthesis pipeline that generates high-quality test cases for coding problems, improving precision by 11.23 percentage points and recall by 11.03 percentage points on average.
- HARDTESTS, a comprehensive problem set for competition-level code generation, with 26.6k problems, each with high-quality test cases generated by HARDTESTGEN.
- Empirical analyses on how test quality affects LLM post-training. We show that test quality is of great importance for rejection sampling and reinforcement learning.

2 RELATED WORK

RLVR. Reinforcement learning has shown great potential in improving LLM reasoning abilities in various domains, such as math (Guo et al., 2025; Zeng et al., 2025b; Ren et al., 2025) and coding (OpenAI, 2025; Liu & Zhang, 2025; Luo et al.). The resulting long-reasoning LLMs, such as OpenAI-o3 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), largely outperform short-reasoning LLMs through simple RL training to improve outcome-based reward, i.e., whether the model-generated code solution passes all test cases. Although some previous works have explored heuristic rules for selecting training data to improve RL performance (Ye et al., 2025; Wang et al., 2025b; Li et al., 2025) or reward design (Hou et al., 2025; Kimi Team et al., 2025; Costello et al., 2025), the impact of test case quality on coding LLMs during RL training remains underexplored. In this work, we show that high-quality test cases, i.e., those better at detecting subtle bugs in code, can largely improve coding LLM performance after RL training.

LLM-based test synthesis. Test cases are crucial in evaluating the functional correctness and performance of LLM-generated code. Benchmarks such as HumanEval (Chen et al., 2021), and APPS (Hendrycks et al., 2021) provide hand-written test cases that serve as a proxy for code correctness. However, such human-authored test cases are often only publicly available for a limited set of problems. CodeContests (Li et al., 2022) generates additional test cases by mutating existing crawled inputs. Several efforts leverage LLMs by generating test inputs with LLMs and outputs with reference implementation (Li et al., 2023), providing the reference implementation to LLMs to

108 synthesize seed input (Liu et al., 2023), synthesizing test inputs and (pseudo)-oracle programs for
 109 test outputs (Chen et al., 2023; Zhang et al., 2023), or even generating coding questions, reference
 110 solutions, and tests all with LLMs (Xu et al., 2025; Zeng et al., 2025a). STGen (Peng et al., 2025)
 111 generates stressful test cases for evaluating the time efficiency of code. Although existing LLM test
 112 synthesis methods prove to be useful in many scenarios, their quality is far from perfect. Concurrently
 113 with our work, rStar-Coder (Liu et al., 2025) and HF-Codeforces (Penedo et al., 2025) also study
 114 more reliable test synthesis in the competition context. Compared to them, our work highlights a
 115 thorough analysis of test quality and a unique set of post-training experiments that demonstrate the
 116 downstream effects of high-quality tests. Concurrently with our work, CodeContests+ (Wang et al.,
 117 2025c) and Klear-CodeTest (Fu et al., 2025) also explore test-case generation for code reinforcement
 118 learning for 12k and 28k problems and study the impact on RL training, respectively. Compared to
 119 their work, we also discuss the implications in other training scenarios. We present a more thorough
 120 discussion of early test generation approaches, LLM-based test synthesis in the software testing field,
 121 quality issues in LLM synthetic tests, and their implication in Appendix A.1.
 122

123 **Datasets for competition code generation.** Existing datasets for competition code generation focus
 124 on scaling the number of problems and CoTs. Luo et al. filters a high-quality 24k problem set of
 125 TACO, LiveCodeBench, and other contest programming problems. CodeForces-CoTs, the dataset
 126 of 10k Codeforces problems created by Penedo et al. (2025), contains 100k reasoning traces and
 127 solutions generated by DeepSeek R1. OpenCodeReasoning (Ahmad et al., 2025) also compiles a
 128 dataset of 28k problems, generates 735k reasoning traces, and filters them for syntactic correctness.
 129 While these efforts have shown that better models can be trained with more data and more trajectories
 130 from teacher models, they are facing a “code verifiability crisis”, as described by Open-R1 (Face,
 131 2025), and programs that pass test cases in these problem sets are not necessarily correct. In our paper,
 132 we curate HARDTESTS, the large-scale algorithmic coding problem set with 26.6k problems. More
 133 importantly, we push the scaling of training data towards higher quality of test cases and evaluate
 134 how test quality affects model training.
 135

136 3 THE HARDTESTGEN METHOD

137 3.1 OVERVIEW

138 We aim to automatically synthesize test cases for algorithmic coding problems that can be used as
 139 verifying rewards in code LLM post-training (e.g., reinforcement learning). Given a natural language
 140 described algorithmic coding problem $x \in \mathcal{X}$ (\mathcal{X} indicates all possible problems) and a set of correct
 141 solution programs $\{y_1^*, y_2^*, \dots, y_k^*\}$, denoted as “oracle programs”, the task of test synthesis is to
 142 automatically generate a set of test cases to verify a candidate program y ’s functional correctness and
 143 efficiency. Each set of test cases consists of several inputs, their ground-truth outputs, and an output
 144 judging function, which checks the equivalence of candidate outputs and ground-truth outputs. For
 145 most cases, the output judging function is a simple string comparison (which is the default). In some
 146 rarer cases, we need a special judging function (e.g., set comparison).
 147

148 We collect a large-scale dataset of algorithmic coding problems from 13 coding competition platforms
 149 (e.g., Codeforces). Most of these problems (68%) are accompanied by one or more oracle programs.
 150 We filter out the problems without any oracle programs, and those do not read the input from and
 151 write the output to the standard I/O.
 152

153 Notice that we do not often have access to the golden set of test cases prepared by the creators of these
 154 coding problems. Therefore, we cannot directly compare our synthesized test cases against the golden
 155 ones. However, we can submit the LLM-generated or human-written candidate program to the source
 156 problem’s online judge platform to obtain a ground-truth verdict of the solutions’ correctness and
 157 efficiency. These verdicts can be used to check the correctness of synthesized tests, but they cannot
 158 directly be used as reward signals in reinforcement learning since it is extremely time-consuming.
 159

160 The purpose of our synthetic test cases is to verify the correctness and efficiency of a generated
 161 candidate program so that only the programs implementing the right algorithms and data structures
 162 would pass all tests. The key challenges are: 1) how can we ensure the input data of a test case is
 163 valid, in terms of both content and format? 2) how can we ensure the test case set are comprehensive,
 164 covering corner cases and computationally costly ones? 3) how can we obtain ground-truth output
 165 results of the problems?
 166

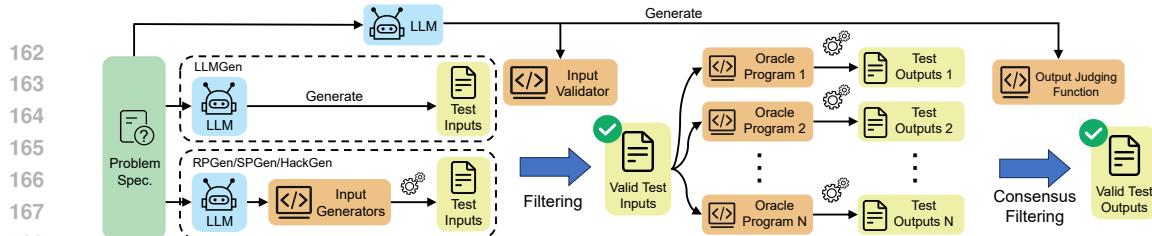


Figure 2: The procedure of generating test inputs and test outputs in HARDTESTGEN.

3.2 SYNTHESIZING TEST INPUTS FOR ALGORITHMIC CODING PROBLEMS

As illustrated in Figure 2, our HARDTESTGEN includes four techniques to synthesize test case input data: 1) LLMGen — direct LLM generation, 2) RPGen — range-based programmed test input generation where the synthesizer program itself is generated by LLM, 3) SPGen — stratified programmed test input generation according to output value categories, and 4) HackGen: hacking test input generation (i.e., hard cases or edge cases) through specially designed programs.

LLMGen: direct LLM generation. We prompt an LLM to directly generate $n_L = 10$ inputs by imitating the sample test cases provided in the problem specification. This type of input is typically small in scale, making it easy to generate and understand, and allowing for quick testing of the candidate program’s functional correctness. An example prompt snippet is:

```
Please generate 10 valid inputs according to the problem stated below. You may follow the examples given in the problem description and generate variations that are different. Please respect the constraints and data types in the description.
```

RPGen: range-based programmed test input synthesis using LLM-generated programs. It is hard for an LLM to generate large-scale, valid inputs. However, it is possible for LLM to identify input data types and ranges. Based on this observation, we prompt an LLM to generate a Python function with no arguments that returns random input data according to the problem’s data type, range, and inherent constraints (e.g., x-y coordinates forming a convex polygon). We execute the generator function $n_R = 20$ times to get random test case inputs. An example prompt snippet is:

```
Given the problem described below, please identify the input data types (e.g., int, string), ranges, and data constraints (e.g., x-y coordinates forming a convex polygon or number of items which should be nonnegative), and then generate a python function “gen_range_based_input” which will return one random input data for the problem with respecting to these types, ranges, and constraints.
```

SPGen: stratified programmed test input synthesis according to output value categories. Coding problems may expect a categorical output value (e.g., Yes or No). Random generation may produce imbalanced test cases — the test cases could always be associated with Yes as ground-truth output — that would not be sufficient to fully verify a candidate solution’s correctness. To mitigate such an imbalance, we first prompt the LLM to identify all the output value categories of a problem, and then, for each output value category, we instruct the LLM to write an input-generating function that only produces inputs associated with such an output category. We execute each input-generating function $n_S = 10$ times to obtain a total of $m_S \times n_S$ inputs, where m_S is the number of categories inferred from the problem by the LLM. An example prompt snippet is:

```
Given the problem described below, please identify how many categories there are in the output values, denoted as m_S. For each category, please generate one function “gen_stratified_input_for_category<category_label>” in Python, which can produce a random input data that will output one value in the given category. Please replace <category_label> with the inferred output value categories.
```

Note that SPGen can be considered a hierarchical case of RPGen, because we conduct the RPGen process for each output category. Therefore, these two input types are mutually exclusive. For problems that require SPGen, we do not apply RPGen.

HackGen: hacking test input generation. There are often candidate programs that are only correct for certain input data — there might be neglected corner scenarios or computationally inefficient for worst-case scenarios. A hacking test case contains the input that will cause a flawed candidate program to either produce an incorrect result or to exceed the running time limit. Previous methods could not generate hacking test cases explicitly. For a given problem, we first prompt the LLM to

216 describe multiple flawed candidate programs using brute-force or some simple classic algorithms
 217 such as depth-first search. We then prompt the LLM to think about scenarios where these programs
 218 will fail. Then, for each scenario, we prompt the LLM to design an input-generating function to
 219 generate inputs corresponding to that scenario. We execute each function $n_H = 10$ times and obtain
 220 $m_H \times n_H$ inputs, where m_H is the number of failing scenarios. An example prompt snippet is:

221 Given the problem described below, please first describe several flawed solution
 222 programs using brute-force enumeration or a classic algorithm (e.g., depth-first
 223 search), by explicitly ignoring some constraints, corner conditions, or data
 224 range. Secondly, please think about scenarios where these programs will fail or
 225 exceed the time limit (TLE). Thirdly, for each scenario, generate one function
 226 “gen_hacking_input_for_<scenario_type>” which will produce possibly random input
 227 data corresponding to such a failing scenario.

229 3.3 VALIDATING TEST CASE INPUT DATA USING SYNTHESIZED PROGRAMS

231 The above synthesized test inputs are not guaranteed to be valid. Instead of directly using LLMs
 232 to judge the validity of these test case inputs, we prompt an LLM to generate a function in Python,
 233 which takes a generated test case input string as an argument and returns a boolean answer indicating
 234 the test input’s validity. We specifically instruct the model to check the value types, range, numerical
 235 relations, and logical constraints. An example prompt snippet is:

236 Given the problem described below, please identify the value type and range,
 237 and list all constraints on the input data. Then please generate a Python
 238 function “validate_input(input_str: str) -> bool” that checks the input against
 239 all constraints and returns a boolean indicating whether the input is valid
 240 according to the problem description.

241 In our implementation, HARDTESTGEN includes the generated input validator and an oracle solution
 242 program together with the four techniques’ prompts to generate test inputs, as we find that doing so
 243 increases the LLM’s likelihood of synthesizing valid inputs and input generators. After generating
 244 initial test inputs, we apply the generated validator on these test inputs to eliminate all invalid ones.

245 3.4 COMPUTING EXPECTED OUTPUTS AND FILTERING TEST CASES

247 HARDTESTGEN generates test outputs using oracle solution programs and applies consensus filtering
 248 to retain only reliable test cases. After synthesizing the inputs, we collect up to $n_{\text{oracle}} = 8$ human-
 249 written oracle programs for each problem, prioritizing those from more reliable sources. Each oracle
 250 program is executed on all synthesized inputs to produce outputs. If two oracle programs generate
 251 outputs that are equivalent on more than 90% of the inputs (i.e., semantically the same rather than
 252 strictly identical), we regard this agreement as valid. The synthesized inputs, together with these
 253 consensus-equivalent outputs, form the final test cases for this problem.

254 For most problems, we use direct string comparison to check the equivalence between two programs’
 255 outputs. However, for certain problems, this is insufficient. For example, expected output may be a
 256 set, where element order does not matter, or a sequence of operations that achieves the desired effect.
 257 For these problems, we prompt the LLM to generate a special output judging function, which takes
 258 the test input and two outputs as arguments and returns a Boolean indicating whether the outputs are
 259 equivalent. In our dataset, 25.4% of the problems require such a special output judging function. In
 260 subsequent training and testing processes, this judging function will continue to be used to determine
 261 whether the candidate output and the reference output match. An example prompt snippet is:

262 Given the problem described below, please generate an output judging function
 263 in Python to compare the equivalence of two output results. The function takes
 264 the input (can be a list of numbers or strings) and two results as arguments,
 265 and returns a Boolean value. For example, you should use set comparison when
 266 the order of results does not matter.

267 In our dataset, we use GPT-4o to generate all of the above contents if needed. On average, the OpenAI
 268 API cost for generating test cases (including inputs and a possible special output judge function)
 269 for each problem is 0.23 USD. For all functions that need to be generated, we include two to three
 carefully crafted examples in the prompts. The implementation details of HARDTESTGEN (e.g.,

270 prompts), the number of generated test cases, the failure rate, and reasons for failure, as well as two
 271 concrete examples, are provided in Appendix A.2.
 272

273 3.5 HARDTESTS: 26.6K PROBLEMS WITH HIGH-QUALITY TEST CASES 274

275 We collect algorithmic coding problems and their oracle programs from five direct data sources:
 276 Codeforces, AtCoder, Luogu, CodeContests (Li et al., 2022), and TACO (Li et al., 2023). In total,
 277 these problems originate from 13 online judge platforms. The detailed statistics of these problems and
 278 their oracle programs are in Appendix A.3. We then apply HARDTESTGEN to synthesize test cases
 279 for them. After validation and filtering, we develop HARDTESTS, a large-scale dataset comprising
 280 26.6k problems with high-quality test cases.

281 **Cleaning, deduplication, and decontamination.** For problems with only non-English descriptions,
 282 we translated them into English using GPT-4o. To handle overlapping content among the five
 283 direct data sources, we filtered out duplicated problems using problem IDs and n-gram overlaps
 284 in description. For correct programs, we retained all available versions and annotated them with
 285 their respective sources. We also conduct decontamination by removing the problems that are in
 286 LiveCodeBench (Jain et al., 2025b) from our dataset.

287 **Labelling problem difficulty.** In the experiments presented in Section 4, we use the difficulty labels
 288 from Luogu, as it provides consistent and fine-grained labels for problems from both AtCoder and
 289 Codeforces. Luogu’s difficulty labels are divided into seven levels, with the first level representing
 290 beginner-level problems and the seventh level corresponding to problems at the level of national
 291 Informatics Olympiad competitions.

293 4 DIRECT EVALUATION OF TEST CASE QUALITY 294

295 4.1 EVALUATION CRITERIA 296

297 We regard the testing of candidate programs as a binary classification process: a program is classified
 298 as positive if it passes all test cases, and negative otherwise. To directly assess the quality of test
 299 cases, we evaluate how good they are as binary classifiers. Given a problem, we categorize the
 300 candidate programs by their actual correctness (from oracle test cases or online judge platforms) and
 301 their predicted correctness (from our generated tests). When a program is both actually correct and
 302 predicted as correct, it’s a true positive (TP). When a program is actually wrong but is predicted as
 303 correct, it’s a false positive (FP). Similarly, we can define true negatives (TN) and false negatives
 304 (FN). With these categories defined, we use precision and recall to measure test quality:

$$305 \text{Precision} = \frac{TP}{TP + FP} = \frac{\# \text{ of correct programs that are also predicted as correct by tests}}{\# \text{ of programs that are predicted as correct by the tests}},$$

$$307 \text{Recall} = \frac{TP}{TP + FN} = \frac{\# \text{ of correct programs that are also predicted as correct by tests}}{\# \text{ of correct programs}}.$$

310 Intuitively, a **higher precision implies “harder tests”** because fewer incorrect programs pass, while
 311 a **higher recall implies “more correct tests”** because fewer correct programs fail the tests.
 312

313 4.2 EVALUATION PROTOCOL 314

315 To evaluate the accuracy of rewards that our tests can give to model training, we evaluate the precision
 316 and recall over candidate programs generated by LLMs and written by humans on subsets of problems
 317 in HARDTESTS. We compare HARDTESTS with tests from CodeContests (Li et al., 2022) and TACO
 318 (Li et al., 2023), and we also conduct ablation studies by only using a subset of the LLMGen, RPGen,
 319 and SPGen to demonstrate the necessity for all test types in HARDTESTS. More details about the
 320 evaluation protocol can be found in Appendix A.5.

321 To compare our tests with other synthesizers, we choose a test set of 1253 problems that exist in both
 322 HARDTESTS and the baseline datasets whenever possible. For problems from Codeforces, we select
 323 600 problems that exist in HARDTESTS, CodeContests, and TACO. For problems from AtCoder, we
 select 653 problems that exist in both HARDTESTS and TACO. Because the CodeContests dataset

324 contains very few problems originating from AtCoder and the authors did not release the code used
 325 for test case generation, we re-implemented the procedure described in their paper to construct the
 326 corresponding test cases. In total, this gives 1253 problems in the combined evaluation set. In
 327 addition, we make use of the MatrixStudio/Codeforces-Python-Submissions dataset, which
 328 provides a large number of human-written submissions along with their official verdicts. Since not
 329 all problems in the combined evaluation set are covered in this dataset, we randomly sample 800
 330 Codeforces problems from it for our human-submission experiments.

331 We evaluate tests on candidate programs generated by LLMs and written by humans. For the
 332 1253-problem combined evaluation set, we generate candidate programs from three LLMs: Qwen2.5-
 333 Coder-7B-Instruct (Yang et al., 2024), Qwen2.5-Coder-14B-Instruct, and GPT-4o. For each problem,
 334 we sample 10 programs from each LLM with a temperature of 0.7 and a top- p of 0.95. For human-
 335 written programs, we rely on the 800 sampled Codeforces problems from the MatrixStudio dataset
 336 and randomly select 10 submissions per problem.

337 We need ground-truth labels to compute precision and recall. For AtCoder, we run candidate programs
 338 on official tests that have been previously made available. For Codeforces, LLM-generated programs
 339 are submitted to the online judge platform to obtain official verdicts, while human submissions
 340 directly come with official verdicts from the MatrixStudio dataset. We then use the synthetic test
 341 cases to classify the correctness of these programs and compare the results against the ground-truth
 342 labels, thereby evaluating test case quality.

343 **Ablative Baselines.** We further evaluate HARDTESTGEN under restricted test settings. In
 344 HARDTESTS, there are 4 types of test cases: LLMGen, RPGen, SPGen, and HackGen. Because
 345 RPGen and SPGen are mutually exclusive (each problem contains exactly one of them), we cannot
 346 isolate one of them in ablation. Therefore, we report two meaningful ablation settings: 1) only
 347 LLMGen, which very much resembles many existing test synthesis methods, such as KodCoder (Xu
 348 et al., 2025), as all the inputs are directly generated by LLMs, denoted as “HT-L” in Table 1, and 2)
 349 LLMGen + RPGen + SPGen, denoted as “HT-L+R+S” in Table 1.

350 4.3 RESULTS

353 Using test cases from TACO, CodeContests, and HARDTESTS, we evaluate the predicted correctness
 354 of 1) programs generated by three LLMs on the combined set of 1253 problems from AtCoder and
 355 Codeforces, and 2) programs written by human programmers on 800 Codeforces problems. By
 356 comparing the predicted correctness with the ground-truth correctness of programs, we compute the
 357 precision and recall of tests. The overall results are shown in Table 1. In Appendix A.4, we also
 358 report results separately for the AtCoder subset and the Codeforces subset of the combined evaluation
 359 set. We present qualitative analyses of synthetic tests in Appendix A.6.

360 We find that **HARDTESTS significantly outperforms TACO and CodeContests in terms of both**
 361 **precision and recall under most evaluation settings.** Moreover, this advantage becomes more
 362 pronounced as problem difficulty increases. For example, for the Qwen2.5-Coder-7B-Instruct model
 363 on problems with difficulty level 4+, TACO achieves a precision of 17.83, whereas HARDTESTS
 364 achieves a precision of 55.88, more than 3x that of TACO. This implies that using HARDTESTS during
 365 RL training would yield more true positive rewards and fewer false positive rewards. Furthermore, we
 366 observe the precision advantage of HARDTESTS becomes more pronounced as the source of programs
 367 becomes less “intelligent” (ranging from human-written to 7B LLM-generated). We attribute this to
 368 the fact that less skilled programmers are more likely to produce functionally correct but inefficient
 369 programs. For instance, among incorrect human-written programs, 14.9% are due to TLE (Time
 370 Limit Exceeded), whereas among the incorrect programs written by the three LLMs, 30.0% are due
 371 to TLE. Consequently, the larger and more diverse test cases in HARDTESTS are more likely to catch
 372 inefficient programs than the small-scale test cases in TACO and CodeContests.

373 Compared with the ablative baselines in Table 1, HARDTESTS that includes RPGen, SPGen, and
 374 HackGen almost consistently leads to a precision improvement ranging from 0.2% to 40%, while the
 375 decrease in recall is always within 1%. This demonstrates the necessity for having all types of tests.

376 For Table 1, we use GPT-4o to generate test cases, but we also discuss the use of other LLMs for test
 377 case generation in Appendix A.9. Our results suggest that HARDTESTGEN can also perform well
 with recent open-weight LLMs, demonstrating its generalizability.

378
 379
 380
 381
 382
 383 Table 1: Precision and recall of the test cases of TACO, CodeContests, HARDTESTS, and ablative
 384 baseline on the combined dataset of problems from AtCoder and Codeforces. HT-L refers to the
 385 results using only the test cases of LLMGen from HARDTESTS. while HT-L+R+S refers to the
 386 results using only the test cases of LLMGen, RPGen, and SPGen from HARDTESTS.

	Difficulty 1		Difficulty 2		Difficulty 3		Difficulty 4+		Average	
	prec.	recall	prec.	recall	prec.	recall	prec.	recall	prec.	recall
<i>Qwen2.5-Coder-7B-Instruct</i>										
TACO	96.41	79.5	75.96	80.92	53.81	65.47	17.83	90	61	78.97
CodeContests	92.6	92.67	63.86	85.69	39.3	65.57	10.81	100	51.64	85.98
HT-L	88.28	98.66	44.42	99.29	29.02	76.18	7.97	95	42.42	92.28
HT-L+R+S	94.97	98.31	53.18	99.29	62.8	75.43	47.73	95	64.67	92.01
HARDTESTS	95.17	98.01	94.95	98.32	70.83	75.43	55.88	95	79.21	91.69
<i>Qwen2.5-Coder-14B-Instruct</i>										
TACO	92.75	80.8	86.78	76.64	66.99	73.6	34.07	84.52	70.15	78.89
CodeContests	90.03	94.55	76.53	80	56.35	85.27	24.14	98.59	61.76	89.6
HT-L	88.58	99.4	55.99	100	50.6	90.87	17.12	98.59	53.07	97.22
HT-L+R+S	91.49	98.91	67.42	100	74.79	90.21	59	95.34	73.18	96.12
HARDTESTS	93.09	98.91	91.32	98.34	82.05	90.21	59.68	93.93	81.54	95.35
<i>GPT-4o</i>										
TACO	99.81	76.02	97	76.46	90.86	74.53	63.31	74.76	87.75	75.44
CodeContests	99.49	94.4	94.84	85.71	86.66	84.17	57.66	91.56	84.66	88.96
HT-L	99.01	98.54	94.41	98.93	82.72	93.43	47.29	99.82	80.86	97.68
HT-L+R+S	99.22	99.05	97	98.31	91.99	92.53	76.57	97.75	91.2	96.91
HARDTESTS	99.22	98.76	97.18	98.24	94.12	92.53	82.37	96.35	93.22	96.47
<i>Human Submission</i>										
TACO	96.28	88.89	91.48	81.59	75.9	78.84	62.23	73.77	81.47	80.77
CodeContests	94.15	90.06	87.47	89.99	73.11	85.1	56.8	79.88	77.88	86.26
HT-L	83.5	95.57	69.73	95.97	54.7	93.59	42.82	91.72	62.69	94.21
HT-L+R+S	91.73	94.22	83.79	95.17	70.95	93.89	60.81	89.35	76.82	93.16
HARDTESTS	93.29	94.13	85.15	95.05	73.71	93.59	64.16	89.35	79.08	93.03

5 DOWNSTREAM EFFECTS OF TEST CASE QUALITY IN LLM POST-TRAINING

412
 413 In this section, we aim to answer two questions with HARDTESTS: 1) when does verifier/test quality
 414 matter, and 2) how much does it matter in post-training? We run experiments in two different
 415 post-training scenarios: *rejection sampling*, and *reinforcement learning*. We present the results below
 416 and show that verifier quality impacts these two scenarios significantly.

5.1 EXPERIMENT SETUP

417
 418
 419 **Rejection sampling.** Fine-tuning a model with its own reasoning trajectories can also improve its
 420 reasoning ability (Zelikman et al., 2022). Hence, determining which trajectories to use is a critical
 421 issue. To examine the effects of test quality, we sampled 5 traces of Qwen3-4B and used the tests
 422 generated by HARDTESTGEN for filtering. We selected 4989 questions where there is at least one
 423 Qwen3-4B generated program that passes the tests and at least one that fails the tests. We create 3
 424 datasets for rejection sampling, each containing one trajectory per question. The *bad 5k* randomly
 425 samples one incorrect trajectory for each question. The *good 5k* randomly samples one correct
 426 trajectory. The *random 5k* randomly samples one trajectory, regardless of its correctness, for each
 427 question. We further fine-tune Qwen3-4B with these 3 datasets and compare the performance of the
 428 resulting models. All our fine-tuning experiments were done with Llama-factory (Zheng et al., 2024).

429
 430 **Reinforcement learning.** Verifier feedback is an option for distillation, but it is a must for reinforce-
 431 ment learning. To investigate how verifier quality affects RL, we train Qwen3-4B with RL using the
 432 same problem set, the identical training setup, and different test cases. We select a problem set with
 433 ~5k problems that exist in both HARDTESTS and TACO for training. We use a modification of veRL

432 Table 2: pass@k (%) LLMs after re-
 433 jection sampling based on Qwen3-4B on
 434 LiveCodeBench-105.

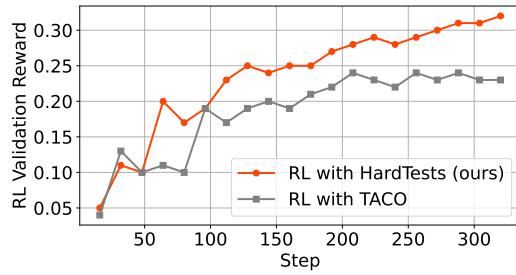
	pass@1	pass@10
Qwen3-4B	38.48	56.19
Qwen3-4B (with <i>bad</i> 5k)	34.00	54.92
Qwen3-4B (with <i>random</i> 5k)	32.75	57.14
Qwen3-4B (with <i>good</i> 5k)	36.00	60.00

(Sheng et al., 2024) inspired by Code-R1 (Liu & Zhang, 2025) for training with GRPO (Shao et al., 2024). When a program passes all tests, it gets a reward of 1, otherwise, it gets a reward of 0. We compare different verifiers by looking at the final performance and the validation curve.

Evaluation protocol. We use LiveCodeBench (Jain et al., 2025b) version 5 to evaluate the model performance. Since all the programs we use for tuning are in C++, we build an evaluation pipeline for evaluating C++ programs for LiveCodeBench and select a 105-problem subset where all problems require reading from and writing to standard I/O. We name this subset “LiveCodeBench-105”. Details about our training and evaluation procedure can be found in Appendix A.7, including the problems and hyperparameters we use for training and the sampling parameters we use for evaluation.

5.2 RESULTS

Rejection sampling performance is highly dependent on sample quality and needs a good verifier. We evaluated variants of Qwen3-4B models trained with rejection sampling from different 5k subsets on LiveCodeBench-105 and present the results in Table 2. Model trained from incorrect samples identified by HARDTESTGEN’s tests drops more significantly in pass@k. Rejection sampling with randomly selected data could harm pass@1 even more, despite the slight improvements in pass@10. In contrast, using a 5k subset verified by HARDTESTGEN’s test cases results in a smaller drop in pass@1 and a notable gain in pass@5 and pass@10, suggesting that verifiers are important to rejection sampling.



471 Figure 3: RL Validation Rewards Over Time. Reward
 472 from HARDTESTS makes the training better.

6 CONCLUSION AND FUTURE WORK

We present HARDTESTGEN, an LLM-based test synthesis pipeline, which is used to create HARDTESTS, a algorithmic coding dataset with 26.6k problems and significantly higher-quality tests. We examine when and how much test quality matters in LLM post-training, showing that harder tests generated by HARDTESTGEN can indeed help LLM post-training in many scenarios. While HARDTESTGEN assumes the existence of oracle solutions, we briefly discuss an initial idea for synthesizing tests without oracles in Appendix A.8. We envision two future directions: 1) to develop better methods for synthesizing tests without an oracle, and 2) to apply HARDTESTGEN to both stateless and stateful real-world coding problems. It is worth noting that stateful computations can often be transformed into equivalent stateless representations using design patterns such as monads (Wadler, 1995).

Table 3: pass@k (%) for LLMs RL-trained from Qwen3-4B on LiveCodeBench-105.

	pass@1	pass@10
Qwen3-4B	38.48	56.19
Qwen3-4B-TACO	36.95	57.14
Qwen3-4B-HT	39.42	64.76

Test quality matters significantly for reinforcement learning. As shown in Figure 3, the validation reward curve for HARDTESTS during RL training is generally higher than that for TACO. This indicates that for the same problems, HARDTESTS is giving better rewards. To evaluate on LiveCodeBench-105, we run the best checkpoints (according to valid reward) of both training jobs within 100 steps. As reported in Table 3, TACO tests hurt the model’s overall performance, while HARDTESTS improves the model’s overall performance.

486 7 REPRODUCIBILITY STATEMENT

488 Section 3 provides an overview of HARDTESTGEN. The implementation details of HARDTESTGEN
 489 (e.g., prompts), the number of generated test cases, the failure rate and reasons for failure, as well as
 490 two concrete examples, are provided in Appendix A.2. Furthermore, the statistics of the problems
 491 and their oracle solution programs are in Appendix A.3. We also provide the code used for generating
 492 all the test cases in HARDTESTS in the Supplementary Material.

494 REFERENCES

496 Wasi Uddin Ahmad, Sean Narendhiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
 497 celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
 498 for competitive coding, 2025. URL <https://arxiv.org/abs/2504.01943>.

499 Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-bench
 500 verified: Can llms generate tests for issues before they get resolved?, 2024. URL <https://arxiv.org/abs/2412.02883>.

502 Juan Altmayer Pizzorno and Emery D Berger. Coverup: Effective high coverage test generation for
 503 python. *Proceedings of the ACM on Software Engineering*, 2(FSE):2897–2919, 2025.

505 Xia Cai and Michael R Lyu. The effect of code coverage on fault detection under different testing
 506 profiles. In *Proceedings of the 1st International Workshop on Advances in Model-based Testing*,
 507 pp. 1–7, 2005.

508 Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
 509 Codet: Code generation with generated tests. In *ICLR*, 2023.

511 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
 512 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 513 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 514 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 515 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 516 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 517 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 518 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
 519 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 520 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 521 large language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

522 Caia Costello, Simon Guo, Anna Goldie, and Azalia Mirhoseini. Think, prune, train, improve:
 523 Scaling reasoning without scaling models. *arXiv preprint arXiv: 2504.18116*, 2025.

524 Luc Devroye, Omar Fawzi, and Nicolas Fraiman. Depth properties of scaled attachment random
 525 recursive trees. *Random Structures & Algorithms*, 41(1):66–98, 2012.

527 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

529 Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. {AFL++}: Combining incremen-
 530 tal steps of fuzzing research. In *14th USENIX workshop on offensive technologies (WOOT 20)*,
 531 2020.

532 Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
 533 software. In *Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
 534 on Foundations of Software Engineering*, ESEC/FSE ’11, pp. 416–419, New York, NY, USA, 2011.
 535 Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.2025179.
 536 URL <https://doi.org/10.1145/2025113.2025179>.

538 Jia Fu, Xinyu Yang, Hongzhi Zhang, Yahui Liu, Jingyuan Zhang, Qi Wang, Fuzheng Zhang, and
 539 Guorui Zhou. Klear-codetest: Scalable test case generation for code reinforcement learning. *arXiv
 preprint arXiv:2508.05710*, 2025.

540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 542 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543

544 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 545 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
 546 with apps. *arXiv preprint arXiv:2105.09938*, 2021.

547

548 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 549 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint
 549 arXiv: 2504.01296*, 2025.

550

551 Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
 552 and test completion benchmark, 2025a. URL <https://arxiv.org/abs/2410.00752>.

553

554 Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: Turning
 555 any github repository into a programming agent environment. In Ruslan Salakhutdinov, Zico
 556 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 557 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 558 *Proceedings of Machine Learning Research*, pp. 21196–21224. PMLR, 21–27 Jul 2024. URL
 559 <https://proceedings.mlr.press/v235/jain24c.html>.

560

561 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 562 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 563 evaluation of large language models for code. In *The Thirteenth International Conference on
 564 Learning Representations*, 2025b. URL <https://openreview.net/forum?id=chfJJYC3iL>.

565

566 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 567 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 568 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 569 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 570 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 571 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 572 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 573 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weinan Xiong,
 574 Weiran He, Weixiao Huang, Wenhai Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
 575 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 576 Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 577 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 578 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 579 reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.

580

581 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 582 Mastering code generation through pretrained models and deep reinforcement learning. *Advances
 583 in Neural Information Processing Systems*, 35:21314–21328, 2022.

584

585 Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
 586 Ge Li. Taco: Topics in algorithmic code generation dataset. *arXiv preprint arXiv:2312.14852*,
 587 2023.

588

589 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint arXiv:
 590 2502.11886*, 2025.

591

592 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweiser, Rémi Leblond, Tom
 593 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
 594 de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
 595 Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
 596 Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
 597 alphacode. *arXiv preprint arXiv:2203.07814*, 2022.

598

599 Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Yanchi Liu, Xujiang Zhao, Ziniu Hu, Haifeng
 600 Chen, and Wei Cheng. Scattered forest search: Smarter code space exploration with llms, 2025.
 601 URL <https://arxiv.org/abs/2411.05010>.

594 Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.
 595

596 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 597 chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
 598 URL <https://arxiv.org/abs/2305.01210>.

599 Kaibo Liu, Zhenpeng Chen, Yiyang Liu, Jie M Zhang, Mark Harman, Yudong Han, Yun Ma, Yihong
 600 Dong, Ge Li, and Gang Huang. Llm-powered test case generation for detecting bugs in plausible
 601 programs. *arXiv preprint arXiv:2404.10304*, 2024.

602 Yifei Liu, Li Lyra Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and Mao
 603 Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset, 2025.
 604 URL <https://arxiv.org/abs/2505.21297>.

605 Stephan Lukasczyk and Gordon Fraser. Pynguin: automated unit test generation for python. In
 606 *Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Com-
 607 panion Proceedings*, ICSE '22. ACM, May 2022. doi: 10.1145/3510454.3516829. URL
 608 <http://dx.doi.org/10.1145/3510454.3516829>.

609 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
 610 Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
 611 Deepcoder: A fully open-source 14b coder at o3-mini level.

612 Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
 613 validating real-world bug-fixes with code agents, 2025. URL <https://arxiv.org/abs/2406.12952>.

614 OpenAI. Openai o1 system card. *arXiv preprint arXiv: 2412.16720*, 2024.

615 OpenAI. Competitive programming with large reasoning models. *arXiv preprint arXiv: 2502.06807*,
 616 2025.

617 OpenAI, ;, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
 618 David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
 619 Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
 620 o3 contributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda
 621 Zhou. Competitive programming with large reasoning models, 2025. URL <https://arxiv.org/abs/2502.06807>.

622 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 623 Agustín Piquerol Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
 624 von Werra. Codeforces. <https://huggingface.co/datasets/open-r1/codeforces>, 2025.

625 Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. Coffe: A code efficiency benchmark for code
 626 generation, 2025. URL <https://arxiv.org/abs/2502.02827>.

627 Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
 628 Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
 629 Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
 630 reasoning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv: 2504.21801*,
 631 2025.

632 Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
 633 manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
 634 in regression setting using llm. *Proceedings of the ACM on Software Engineering*, 1(FSE):951–971,
 635 2024.

636 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
 637 and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
 638 models, 2024. URL <https://arxiv.org/abs/2402.03300>.

639 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 640 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlfh framework. *arXiv preprint
 641 arXiv: 2409.19256*, 2024.

648 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
649 Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
650 problem-solving with language models. *arXiv preprint arXiv:2312.06585*, 2023.

651

652 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
653 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
654 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
655 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
656 Guo, Hao Hu, Xiaorui Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
657 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
658 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
659 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
660 Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
661 Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
662 Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
663 Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
664 Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
665 Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
666 Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
667 Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao
668 Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu,
669 Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
670 Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
671 Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
672 Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
673 Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
674 Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
675 Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
676 <https://arxiv.org/abs/2507.20534>.

677 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

678 Philip Wadler. Monads for functional programming. In *International School on Advanced Functional
679 Programming*, pp. 24–52. Springer, 1995.

680 W enhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
681 Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
682 generation, 2025a. URL <https://arxiv.org/abs/2406.04531>.

683 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
684 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
685 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025b.

686 Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. Hits: High-coverage llm-based unit test generation via
687 method slicing. In *Proceedings of the 39th IEEE/ACM International Conference on Automated
688 Software Engineering*, pp. 1258–1268, 2024.

689 Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
690 case generation for competitive programming. *arXiv preprint arXiv:2506.05817*, 2025c.

691 Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
692 de Vries, Leandro Von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
693 for code generation. *arXiv preprint arXiv:2410.24198*, 2024.

694 Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
695 challenging, and verifiable synthetic dataset for coding, 2025. URL <https://arxiv.org/abs/2503.02951>.

696 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
697 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
698 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Kefin Bao, Kexin Yang,
699 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,

702 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 703 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 704 2024.

705 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 706 reasoning. *arXiv preprint arXiv: 2502.03387*, 2025.

708 Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
 709 No more manual tests? evaluating and improving chatgpt for unit test generation, 2024. URL
 710 <https://arxiv.org/abs/2305.04207>.

711 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 712 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

714 Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhui Chen. Acecoder:
 715 Acing coder rl via automated test-case synthesis, 2025a. URL <https://arxiv.org/abs/2502.01718>.

717 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 718 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 719 preprint arXiv: 2503.18892*, 2025b.

721 Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
 722 algorithmic programs with llm-generated oracle verifiers, 2023. URL <https://arxiv.org/abs/2305.14591>.

724 Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
 725 Evaluating class-level test case generation capability of large language models, 2024. URL
 726 <https://arxiv.org/abs/2409.17561>.

728 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 729 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 730 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
 731 System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
 732 URL <http://arxiv.org/abs/2403.13372>.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX
757758 A.1 MORE RELATED WORK DISCCUSION
759760 **Early approaches.** Early approaches in test generation employ search-based heuristics methods
761 (Fraser & Arcuri, 2011; Lukasczyk & Fraser, 2022), or fuzzing to expose software vulnerabilities
762 (Fioraldi et al., 2020). These methods often yield high code coverage, while high code coverage is
763 likely to improve fault detection, it is not guaranteed (Cai & Lyu, 2005).764 **LLM-based approaches in software testing.** Some LLM-based approaches have been introduced
765 to improve coverage (Ryan et al., 2024; Wang et al., 2024; Altmayer Pizzorno & Berger, 2025) or
766 uncover bugs in plausible programs using differential testing (Liu et al., 2024), respectively. However,
767 the target of these methods is different from using testing as a reward signal for RL. For instance,
768 there is not a single program under test or focal method. RL involves testing hundreds of programs
769 per problem, making coverage-based methods less tractable.770 **Synthetic test quality and its implications.** Although existing LLM test synthesis methods prove
771 to be useful in many scenarios, such as improving the quality of synthetic data (Wei et al., 2024)
772 and software engineering (Mündler et al., 2025; Jain et al., 2024), their quality is far from perfect
773 (Yuan et al., 2024) and are bounded in complexity, because direct generations of complicated data
774 structures often result in inconsistency (Zhang et al., 2023). Weak verifiers can harm downstream
775 code generation and search performance (Light et al., 2025). The quality of those synthetic tests
776 and their implications are less discussed. Existing benchmarks for LLM test case generation abilities
777 focus on code coverage and/or mutation scores (Wang et al., 2025a; Zhang et al., 2024; Jain et al.,
778 2025a; 2024), the success rate for reproducing issues (Mündler et al., 2025), and the code change
779 coverage for generated code patches (Ahmed et al., 2024; Mündler et al., 2025).780
781 A.2 DETAILS OF THE TEST CASES GENERATION PIPELINE OF HARDTESTGEN
782783 In this section, we first introduce the prompts used in HARDTESTGEN in Appendix A.2.1. We will
784 then provide the statistics of the test cases in HARDTESTS in Appendix A.2.2 and discuss the failure
785 rate and the major failure reasons of HARDTESTGEN in Appendix A.2.3. Finally, we will include
786 two examples of HARDTESTGEN in Appendix A.2.4.787
788 A.2.1 PROMPTS USED IN HARDTESTGEN
789790 **Prompt for the generation of the input validator and output judging function.** We use the
791 following LLM prompt to generate an input validator function, and an output judge function when
792 necessary. This prompt includes the problem specification and the oracle program to help the LLM
793 have a better understanding.794 1 I have a competitive programming problem. To test the correctness of candidate programs,
795 → I need to create many test cases.796 2
797 3 Each test case is an input-output pair. The input part will be fully provided as `stdin` to
798 → the candidate program, and then the candidate output will be collected from `stdout`.
799 → In most cases, we determine the correctness of the program by comparing the candidate
800 → output with the output part of the test case (i.e., the reference output), while
801 → sometimes, we need to use a custom function to judge the correctness of the candidate
802 → output, instead.803 4
804 5 Note: Sometimes, a problem may require a single test case to contain multiple sub-tasks.
805 → For example: the first line of the input contains an integer t ($1 \leq t \leq 1000$), followed by inputs of t independent sub-tasks. The problem statement may
806 → sometimes refer to a sub-task as a "test case", but this is merely a difference in
807 → terminology.808 6
809 7 **# Input Validator**
8

```

810 9 Suppose I have already written some input generator functions, and used them to generate
811 	→ many test case inputs. However, since they are randomly generated, they may not fully
812 	→ adhere to the constraints specified in the problem. I need you to filter out invalid
813 	→ test cases. Given the problem described below, please identify value type and range,
814 	→ and list all constraints input data. Please generate a Python function
815 	→ `validate_input(input_str: str) -> bool` that checks the input against all
816 	→ constraints and returns a boolean indicating whether the input is valid according to
817 	→ the problem description.
818 10 However, if a constraint cannot be verified within a reasonable time complexity (e.g.,
819 	→  $\$0(n)$  for  $n \leq 10^6$ , or  $\$0(n^2)$  for  $n \leq 10^3$ ), or if it makes the code too
820 	→ complex, then it can be skipped.
821 12 **Pay close attention**: If the problem says "It's guaranteed that...", then what follows
822 	→ is precisely something that must be verified. This is because the so-called
823 	→ "guarantee" in the problem is typically enforced through the Input Validator, so you
824 	→ must validate it in `validate_input`. Of course, only if it can be done in reasonable
825 	→ time complexity.
826 14 **Example 1**: Cicasso has  $n$  sticks of lengths  $l = (l_0, l_1, \dots, l_{n-1})$ . But
827 	→ these  $n$  sticks cannot form a convex polygon with non-zero area. You need to add one
828 	→ stick so that the resulting  $n+1$  sticks can form such a polygon. The input consists
829 	→ of two lines: the first line is an integer  $n$  ( $3 \leq n \leq 10^5$ ). The second
830 	→ line has  $n$  integers  $l_i$  ( $1 \leq l_i \leq 10^9$ ).
831 16 The `validate_input` function should not only check that  $n$  and  $l_i$  are within the
832 	→ correct range and that there are exactly  $n$  numbers in the second line, but also
833 	→ check that the  $n$  sticks cannot form a convex polygon with non-zero area, i.e., that
834 	→ the longest stick is greater than or equal to the sum of the rest.
835 18 **Example 2**: Suppose there is a permutation  $p = (p_0, p_1, \dots, p_{n-1})$  of numbers
836 	→ from 1 to  $n$  ( $1 \leq n \leq 2 \times 10^5$ ). But you do not know the permutation
837 	→  $p$ . Instead, you are given an array  $s = (s_0, s_1, \dots, s_{n-1})$ , where  $s_i$  is
838 	→ the sum of all  $p_j < p_i$  for  $j < i$ . Your task is to recover  $p$ .
839 20 In theory, we should verify whether the  $s_i$  values correspond to a valid permutation
840 	→  $p$ , but that requires solving for  $p_i$ , which is too complex. Moreover, when
841 	→ generating inputs, it's quite easy to ensure that the  $s_i$  comes from a valid
842 	→ permutation, so mistakes are unlikely. (Note: If verifying a constraint isn't too
843 	→ complex, you should still check it.) Therefore, we only need to check that  $n$  is
844 	→ within the range and that  $s$  has exactly  $n$  elements.
845 22 # Output Judging Function
846 23 Given the problem described below, please generate an output judging function in Python
847 	→ to compare the equivalence of two output results. The function takes an input (can be
848 	→ a list of numbers or strings) and two results as arguments, and returns a boolean
849 	→ value. For example, you should use set comparison when the order of results does not
850 	→ matter.
851 25 In most cases, we can determine whether the candidate program has passed the test case by
852 	→ comparing the `candidate_output` and `reference_output` as strings. The specific
853 	→ function is shown below.
854 27
855 28 ```python
856 29 def output_judging_function(input_str: str, candidate_output: str, reference_output:
857 30 	→ str) -> bool:
858 	→ normalized_candidate_output = '\n'.join(line.rstrip() for line in
859 	→ candidate_output.rstrip().splitlines())
860 31 normalized_reference_output = '\n'.join(line.rstrip() for line in
861 	→ reference_output.rstrip().splitlines())
862 32 return normalized_candidate_output == normalized_reference_output
863 33 ```
864 35 However, for a few problems, the above `output_judging_function` does not work.
865 36

```

```

864 37  **Example 1**: The problem asks to output a list (`List[int]`), but the order of elements
865 38  ↳ in the list does not matter.
866 39
867 39  In this case, we should convert both `candidate_output: str` and `reference_output: str`
868 39  ↳ into `List[int]`, sort them, and then compare them.
869 40
870 41  **Example 2**: Given a graph with both directed and undirected edges, you must make all
871 41  ↳ undirected edges directed so that the resulting graph has no cycles. If it is
872 41  ↳ possible, output "YES" and the resulting graph (list of directed edges), otherwise
873 42  ↳ output "NO".
874 42
875 43  Here, in `output_judging_function`, we should first determine from `reference_output`
876 43  ↳ whether a solution is possible. If both `candidate_output` and `reference_output`
877 43  ↳ say "YES", then we should also validate whether the graph provided in
878 43  ↳ `candidate_output` is valid: check whether all edges exist in the input and whether
879 44  ↳ the graph is acyclic (e.g., via DFS).
880 44
881 45  **Example 3**: There are a total of  $T$  sub-tasks. Each sub-task gives a pair of integers
882 45  ↳  $l, r$  ( $1 \leq l \leq r \leq 998244353$ ), and the goal is to find a pair of integers
883 46  ↳  $x, y$  such that  $l \leq x, y \leq r$ ,  $x \neq y$ , and  $y$  is divisible by  $x$ . It is
884 46  ↳ guaranteed that every sub-task has a valid solution.
885 47
886 48  For each pair  $x, y$  provided in the `candidate_output`, simply check whether they
887 48  ↳ satisfy all the conditions mentioned in the problem statement. The
888 48  ↳ `output_judging_function` for this problem does not need to use the
889 48  ↳ `reference_output`; it only requires the `input_str`.
890 49
891 49  You need to first analyze whether this particular problem requires a custom
892 49  ↳ `output_judging_function` (different from the one given above). If yes, generate a
893 49  ↳ custom `output_judging_function`. If not, don't output it. Sometimes only
894 50  ↳ `input_str` is needed and `reference_output` is not required; other times only
895 50  ↳ `reference_output` is needed and `input_str` is not required; and in some cases,
896 50  ↳ both are needed. However, regardless of which ones are actually used, the function
897 50  ↳ signature must always be: `output_judging_function(input_str: str, candidate_output:
898 50  ↳ str, reference_output: str) -> bool`.
899 51
900 51  Generally speaking, if a problem states "there are multiple possible answers, any one is
901 51  ↳ acceptable," this implies that the problem requires a custom Output Judging Function.
902 51  ↳ However, even if this is not explicitly mentioned, the problem may still actually
903 51  ↳ require a custom Output Judging Function. You need to determine this yourself.
904 52
905 52  ---
906 53
907 54
908 55  Also, when generating the above two functions, some known tricks or conclusions may be
909 55  ↳ helpful, and you should derive them yourself if needed. I will give you the correct
910 55  ↳ solution to the problem, and you can use it to derive certain conclusions or tricks.
911 56
912 57  Your output format must strictly follow:
913 58
914 59  # Analysis
915 60
916 61  ... (Analyze the problem, constraints, how to generate the Input Validator and Output
917 61  ↳ Judging Function, etc.)
918 62
919 63  # Result
920 64
921 65  ````json
922 66  {
923 67      "input_validator": "A block of Python code containing the `validate_input`"
924 67  ↳ function. No other content.",
925 68  ↳ "needs_custom_output_judging_function": true or false,
926 69  ↳ "output_judging_function": "A block of Python code containing the"
927 69  ↳ `output_judging_function` function. No other content." or null
928 70  }
929 71  ````
```

```

918 72
919 73 --- 
920 74
921 75
922 76 Note:
923 77 * All your code should be in Python 3.
924 78 * Do not wrap the Python code in ```python```, just provide it plainly.
925 79 * The Python code block under each field should be independent. In other words, they
926 80 → should not call or reference each other. If one block imports a library, other blocks
927 81 → must re-import it as needed.
928 80 * In a Python block, you should first import the necessary libraries, and then start
929 81 → defining functions. Important: Do not place import statements inside the functions.
930 81 * Only Python's built-in libraries are permitted for import.
931 82
932 83 For example, a block of Python code for Input Validator should look like this:
933 84
934 85 import ... (some modules)
935 86
936 87 def validate_input(input_str: str) -> bool:
937 88     ... (some code)
938 89
939 90 A block of Python code for Output Judging Function (if needed) should look like this:
940 91
941 92 import ... (some modules)
942 93
943 94 def output_judging_function(input_str: str, candidate_output: str, reference_output:
944 95     str) -> bool:
945 96     ... (some code)
946 97 --- 
947 98
948 99 # Problem Statement
949 100
950 101 {{ problem_specification }}
951 102 --- 
952 103
953 104 # Correct Program
954 105
955 106 {{ oracle_program }}
956 107
957 108
958
959 1 I have a competitive programming problem. To test candidate programs' correctness, I need
960 2 → to create many test cases.
961 2
962 3 Each test case is an input-output pair. The input part will be fully provided as stdin to
963 4 → the candidate program, and then the candidate output will be collected from stdout.
964 5 → In most cases, we determine the correctness of the program by comparing the candidate
965 6 → output with the output part of the test case (i.e., the reference output), while
966 7 → sometimes, we need to use a custom function to judge the correctness of the candidate
967 8 → output, instead.
968 9 Note: Sometimes, a problem may require a single test case to contain multiple sub-tasks.
969 10 → For example: the first line of the input contains an integer  $t$  ( $1 \leq t \leq 1000$ ), followed by inputs of  $t$  independent sub-tasks. The problem statement may
970 11 → sometimes refer to a sub-task as a "test case", but this is merely a difference in
971 12 → terminology.
972 13
973 14

```

6

972 7 Since the output part can be obtained by running correct programs, I only need you to
 973 → help me generate the input part.
 974 8
 975 9 The input should comply with the constraints given in the problem statement. I will give
 976 → you an Input Validator that checks whether the input meets all the constraints
 977 → specified in the problem statement. However, some constraints may not be checked by
 978 → the Input Validator due to the difficulty of verification. Nevertheless, the input
 979 → you generate should still comply with all of these constraints.
 980 10
 981 11 **# LLMGen**
 982 12
 983 13 Please generate 10 valid inputs according to the problem stated below. You may follow the
 984 → examples given in the problem description and generate variations that are different.
 985 → Please respect the constraints and data types in the description.
 986 14
 987 15 Note: each input's length should be similar to the sample test cases' input, comply with
 988 → the constraints given in the problem, and must not exceed 300 characters under any
 989 → circumstances. If it is not possible to generate input under this length limit, give
 990 → up on generating them.
 991 16
 992 17 **# RPGen**
 993 18
 994 19 Given the problem described below, please identify the input data types (e.g., int,
 995 → string), ranges, and data constraints (e.g., x-y coordinates forming a convex
 996 → polygon or number of items which should be nonnegative), and then generate a python
 997 → function `'gen_range_based_input'` which will return one random input data for the
 998 → problem with respecting to these types, ranges, and constraints.
 999 20
 1000 21 You should ensure the generated input satisfies the constraints as much as possible, and
 1001 → may even sacrifice some degree of randomness to do so. But if trying to enforce a
 1002 → constraint leads to a function that cannot run within finite and reasonable time
 1003 → complexity (e.g., $\$0(n)$ for $n \leq 10^6$, or $\$0(n^2)$ for $n \leq 10^3$), then you
 1004 → may ignore that constraint.
 1005 22
 1006 23 ****Pay close attention**:** do not use `'while'` loops, especially ones that "keep generating
 1007 → until a constraint is satisfied." That can cause unlimited running time and make
 1008 → input generation fail.
 1009 24
 1010 25 Some problems may require certain test cases to satisfy specific constraints (for
 1011 → example, 10% of test cases satisfy $n \leq 100$, 10% of the test cases satisfy $n \leq 1000$, etc.). Ignore this requirement. All test cases should be generated
 1012 → according to the most general constraints.
 1013 26
 1014 27 Sometimes, generating input that satisfies the constraints requires some trick. You need
 1015 → to deduce it yourself (e.g., the example below about when n sticks cannot form a
 1016 → convex polygon). I will give you the correct solution for the problem, and you can
 1017 → analyze it to discover some tricks or conclusions.
 1018 28
 1019 29 ****Example 1**:** Cicasso has n sticks ($3 \leq n \leq 10^5$) of lengths l_i ($1 \leq l_i \leq 10^9$, for $i=0,1,\dots,n-1$). But these n sticks cannot form a convex polygon
 1020 → of non-zero area. You need to add one more stick, so that the $n+1$ sticks can form a
 1021 → convex polygon of non-zero area. Output the minimum length of the additional stick.
 1022 30
 1023 31 We can randomly generate $n \in [3, 10^5]$, but cannot randomly generate l_i , because
 1024 → such l_i will likely not satisfy the constraint that the n sticks cannot form a
 1025 → convex polygon of non-zero area. (It's not feasible to randomly generate and then
 1026 → filter, since it's too time-consuming.) We know that this constraint actually
 1027 → requires "the maximum l_i is greater than or equal to the sum of all the other
 1028 → l_i ." So we can first randomly sample a l_0 in $[n-1, 10^9]$ as the maximum
 1029 → l_i , then sample an integer $s \in [n-1, l_0]$ as the total sum of the other l_1, \dots, l_{n-1} ,
 1030 → and finally use a partitioning trick to sample l_1, \dots, l_{n-1} such that each element is at least 1 and the total sum is s . After that, we can
 1031 → shuffle the l_i list.
 1032

```

102633 **Example 2**: There is a permutation  $p = (p_0, p_1, \dots, p_{n-1})$  of numbers from 1 to
1027  $\rightarrow n$  ( $1 \leq n \leq 2 \cdot 10^5$ ). You do not know this permutation, but you are
1028  $\rightarrow$  given an array  $s = (s_0, \dots, s_{n-1})$ , where  $s_i$  is the sum of all  $p_j < p_i$ 
1029  $\rightarrow$  with  $j < i$ . Find  $s_i$ .
103034
103135 We can first randomly generate  $n \in [1, 2 \times 10^5]$ . But we cannot directly
1032  $\rightarrow$  generate an array  $s_i$  randomly, because it is very unlikely to satisfy the
1033  $\rightarrow$  constraints. Instead, we should reverse the process: first generate a random
1034  $\rightarrow$  permutation  $p_i$ , and then compute the corresponding  $s_i$ .
103536
103637 **Example 3**: This problem has  $t \in [1, 1000]$  groups of independent sub-tasks. Each
1037  $\rightarrow$  sub-task has an integer  $n \in [1, 10^5]$  and an array  $a$  of length  $n$ , where  $a_i$ 
1038  $\rightarrow$   $\in [1, 10^5]$ . The problem guarantees that the total sum of all  $n$  across all  $t$ 
1039  $\rightarrow$  sub-tasks does not exceed  $2 \times 10^5$ .
104038
104139 We can first randomly generate  $t \in [1, 1000]$ . But at this point we cannot directly
1042  $\rightarrow$  sample  $t$  values of  $n$  from  $[1, 10^5]$ , because their sum is likely to exceed  $2 \times 10^5$ .
1043  $\rightarrow$  So instead, we randomly sample  $s \in [t, 2 \times 10^5]$ , and then
1044  $\rightarrow$  partition  $s$  into  $n_0, n_1, \dots, n_{t-1}$  such that each value is at least 1 and
1045  $\rightarrow$  their sum is  $s$ .
104640
104741 The following Python function demonstrates how, given positive integers  $m$  and  $s$ , with
1048  $\rightarrow$   $m \leq s$ , one can randomly select  $m$  positive integers such that their sum equals
1049  $\rightarrow$   $s$ . This is just for your reference.
105042
105143 import random
105244
105345 assert m <= s
105446 if m >= 2:
105547     breaks = random.sample(range(1, s), m - 1)
105648     breaks.sort()
105749     results = [breaks[0]] + [breaks[i] - breaks[i - 1] for i in range(1,
105850         len(breaks))] + [s - breaks[-1]]
105951 else:
106052     results = [s]
106153
106254 # SPGen
106355
106456 Given the problem described below, please identify how many categories are there in the
1065  $\rightarrow$  output values, denote as  $m_S$ ? For each category, please generate one function
1066  $\rightarrow$  `gen_stratified_input_for_category<category_label>` in python which will produce a
1067  $\rightarrow$  random input data that will output one value in the given category. Please replace
1068  $\rightarrow$  <category_label> with the inferred output value categories.
106957
107058 For most problems, there is only one type of output. But there are some problems where
1071  $\rightarrow$  outputs fall into multiple categories. These are called Multi-Category Output
1072  $\rightarrow$  Problems. For example, some problems require the output to be "Yes" or "No", while
1073  $\rightarrow$  others ask you to output the solution if it exists, otherwise output -1. In such
1074  $\rightarrow$  cases, if we treat it as a regular problem and only write a single
1075  $\rightarrow$  `gen_range_based_input` function to generate inputs randomly, the resulting outputs
1076  $\rightarrow$  will be very imbalanced. For example, the "Yes" outputs may require special
1077  $\rightarrow$  construction, so nearly all generated inputs produce "No" as the answer. Thus, even a
1078  $\rightarrow$  candidate program that always prints "No" would pass all test cases.
107959
108060 Each time the function is called, it should be able to generate--within reasonable time
1081  $\rightarrow$  complexity--one random input that satisfies the constraints and whose corresponding
1082  $\rightarrow$  output belongs to the corresponding category. If it is difficult to write a function
1083  $\rightarrow$  that randomly generates some category, you can:
108461
108562 1. Sacrifice randomness and perform special construction, even returning a fixed value
1086  $\rightarrow$  each time
108763 or 2. Construct completely random data, similar to `gen_range_based_input`
```

1080⁶⁴ Sometimes, a problem may require a single test case to contain multiple independent
 1081⁶⁵ → sub-tasks. In this case, each sub-task in each input generated by
 1082⁶⁶ → `gen_stratified_input_for_category<category_label>` should have the corresponding
 1083⁶⁷ → output category, e.g., all corresponding outputs should be "No".

1084⁶⁸ ****Example 1**:** Given two $n \times m$ binary matrices A, B . You can take the following
 1085⁶⁹ → operation: select a rectangle in matrix A with height and width both at least 2,
 1086⁷⁰ → and flip the values at the four corner positions. You are to answer whether it's
 1087⁷¹ → possible to make A equal to B using this operation. If possible, output "Yes" and
 1088⁷² → the resulting matrix; otherwise, output "No".

1089⁷³ There are two outputs here: "Yes" and "No", corresponding to two categories of inputs. For
 1090⁷⁴ → the first category, we create `gen_stratified_input_for_category_yes`, such that A
 1091⁷⁵ → can be transformed into B . We can randomly construct matrix A , then perform t
 1092⁷⁶ → operations (you can decide t yourself, but it should not be too small or too large
 1093⁷⁷ → to avoid long generation time), where each operation selects a rectangle and flips
 1094⁷⁸ → the corners. Then the result becomes matrix B . For the second category, we write
 1095⁷⁹ → `gen_stratified_input_for_category_no`, where A cannot be transformed into B .
 1096⁸⁰ → One way is to randomly flip a position in matrix B from the previous construction,
 1097⁸¹ → which makes it impossible. This sacrifices randomness, but is simple and acceptable.

1098⁸² ****Example 2**:** Given two numbers n, m ($1 \leq n \leq m \leq 5 \times 10^8$), you are to
 1099⁸³ → determine whether it is possible to transform n into m by multiplying by 2 and 3,
 1100⁸⁴ → and if so, output the minimum number of operations. Otherwise, output -1.

1101⁸⁵ There are two outputs: the minimum operation count, and -1. Correspondingly, we have two
 1102⁸⁶ → input generators. For the first case, where n can be transformed into m , we can
 1103⁸⁷ → randomly generate $n \in [1, 5 \times 10^8]$, then perform t operations (multiply by
 1104⁸⁸ → 2 or 3) until t steps are complete or further multiplication would exceed
 1105⁸⁹ → 5×10^8 . The result becomes m . For the second case, where n cannot be
 1106⁹⁰ → transformed into m , we can firstly randomly generate $m > n$, and then if n can
 1107⁹¹ → be transformed into m , simply set $m = m - 1$.

1108⁹² ****Example 3**:** Player A and B are playing tic-tac-toe. Player A goes first. You are given
 1109⁹³ → a 3×3 board, where each cell is ".", "X", or "0". Output the current state,
 1110⁹⁴ → one of: "first" (next move is A), "second" (next is B), "illegal" (not possible in a
 1111⁹⁵ → legal game), "the first player won", "the second player won", or "draw".

1112⁹⁶ There are 6 output categories, corresponding to 6 input categories. For the first output
 1113⁹⁷ → category, we need to create `gen_stratified_input_for_category_first` where the next
 1114⁹⁸ → move is A's. We can randomly select $t \in [0, 4]$, then randomly place t X's and t
 1115⁹⁹ → 0's. This may lead to a win or illegal state, but we should NOT filter those during
 1116¹⁰⁰ → generation, because doing so would make the code too complex and slow. We only need
 1117¹⁰¹ → most of the generated inputs to match this category. For the second category, place
 1118¹⁰² → $t+1$ X's and t 0's ($t \in [1, 3]$). For the third category, it must be illegal,
 1119¹⁰³ → e.g., X and 0 count difference is too large, or both players have already won. We can
 1120¹⁰⁴ → create `gen_stratified_input_for_category_illegal_mark_num` and
 1121¹⁰⁵ → `gen_stratified_input_for_category_illegal_both_win`, etc. Do the same for the
 1122¹⁰⁶ → remaining categories.

1123¹⁰⁷ **# HackGen**

1124¹⁰⁸ Given the problem described below, please first describe several flawed solution
 1125¹⁰⁹ → programs using brute-force enumeration or a classic algorithm (e.g., depth-first
 1126¹¹⁰ → search), by explicitly ignoring some constraints, corner conditions, or data range.
 1127¹¹¹ → Secondly, please think about scenarios where these programs will fail or exceed the
 1128¹¹² → time limit (TLE). Thirdly, for each scenario, generate one function
 1129¹¹³ → `gen_hacking_input_for_<scenario_type>` which will produce possibly random input
 1130¹¹⁴ → data corresponding to such a failing scenario.

1131¹¹⁵ Note: for some problems, even though the brute-force algorithm's worst-case complexity
 1132¹¹⁶ → is $O(n^2)$, due to rare worst-case inputs, the actual runtime is closer to $O(n)$.
 1133¹¹⁷ In these cases, you need to specially construct the data to repeatedly trigger the
 1134¹¹⁸ → worst-case scenario for those brute-force algorithms.

1134⁸⁴ For some problems, we also need some types of inputs to expose bugs caused by failure to
 1135 → handle edge cases. So you should think about whether there are any special edge cases
 1136 → (e.g., input $n=0$, or tree root is None, etc.). Note that the randomness of the
 1137 → input data itself at this time is not important. The key point is to expose the
 1138 → errors of the candidate programs.

1139⁸⁵ Of course, if the problem doesn't require any hacking input, then do not generate them.
 1140 → Especially if a hacking input is simply large-scale data, then you shouldn't bother.
 1141 → Hacking input must be specially constructed--range-based or stratified programmed
 1142 → test input should almost never produce them.

1143⁸⁷
 1144⁸⁸ ****Example 1**:** Given two numbers n and m ($1 \leq n \leq m \leq 5 \times 10^8$), the
 1145 → task is to determine whether it is possible to transform n into m by repeatedly
 1146 → multiplying n by 2 or by 3. If possible, output the minimum number of operations
 1147 → required; otherwise, output -1.

1148⁸⁹ A brute-force approach that a candidate program might take is to use DFS, recursively
 1149 → trying to multiply n by 2 or 3 until it becomes greater than or equal to m . If we
 1150 → randomly choose n and m , the ratio between them is usually small, so this
 1151 → approach might still pass. One kind of effective hacking input is to set $n \in [1,$
 1152 → $5] \text{ and } m \in [4 \times 10^8, 5 \times 10^8]$. This creates a large gap between n
 1153 → and m , making the brute-force DFS approach inefficient. We can name the
 1154 → corresponding function `'gen_hacking_input_for_small_n_big_m'`. You should consider
 1155 → other types of HIs yourself.

1156⁹¹
 1157⁹² ****Example 2**:** Given a string S of length $n \in [1, 10^5]$, we repeatedly perform the
 1158 → following operation: find two identical adjacent characters and delete them. This
 1159 → continues until there are no more identical adjacent characters in S .

1160⁹³
 1161⁹⁴ This problem should be solved using a stack to achieve an $O(n)$ time complexity.
 1162 → However, some candidate programs might use a brute-force simulation approach --
 1163 → repeatedly scanning the string and removing adjacent equal characters -- which can
 1164 → result in a worst-case time complexity of $O(n^2)$. If we generate S completely at
 1165 → random, it's likely that there will only be a few pairs of identical adjacent
 1166 → characters. One kind of hacking input is to construct a string S of a long even
 1167 → length (e.g., in $[5 \times 10^4, 10^5]$) and set `'S[2*k] == S[2*k+1]'`, thereby
 1168 → introducing a large number of adjacent equal character pairs. However, if the
 1169 → candidate program deletes all adjacent equal pairs in each round, the time complexity
 1170 → remains $O(n)$. Another hacking input is to construct a string S of a long even
 1171 → length (e.g., in $[5 \times 10^4, 10^5]$) such that `'S[:n//2] == S[n//2:][::-1]'`,
 1172 → which forces the program to go through n rounds to completely remove all
 1173 → characters, resulting in the true worst-case time complexity of $O(n^2)$. These two
 1174 → functions can be named `'gen_hacking_input_for_pairwise_equal'` and
 1175 → `'gen_hacking_input_for_mirrored_halves'`, respectively.

1176⁹⁵
 1177⁹⁶ ****Example 3**:** Given integer $w \in [1, 100]$, determine whether it can be written as the
 1178 → sum of two positive even integers.

1179⁹⁷
 1180⁹⁸ Candidate programs may output "Yes" when w is even, and "No" when w is odd. But a
 1181 → special case is $w=2$, which should be "No". So we can create
 1182 → `'gen_hacking_input_for_two'`, which always returns the string `"2"`.

1183⁹⁹
 1184¹⁰⁰ Important: if a type of hacking input is just setting data to their largest scale, then
 1185 → it is unnecessary.

1186¹⁰¹
 1187¹⁰² ---

1188¹⁰³
 1189¹⁰⁴ Your output format must strictly be

1190¹⁰⁵
 1191¹⁰⁶ **# Analysis**

1192¹⁰⁷
 1193¹⁰⁸ ...

```

1188
1189 (generally, you should first analyze the problem and data constraints, and then analyze
1190 → how to generate LLMGen Input, how to generate RPGen Input, and whether the problem is
1191 → a Multi-Category Output Problem (In that case, generate SPGen generation functions
1192 → for each output category. Make sure you mentioned the corresponding function names in
1193 → the Analysis part). Then you should list some naive candidate programs and analyze
1194 → how to generate HackGen Input.)
1195
1196 # Result
1197
1198 ```json
1199 {
1200     "LLMGen_input": ["LLMGen_input_1", "LLMGen_input_2", ...],
1201     "is_multi_category_output_problem": true or false,
1202     "RPGen_SPGen_input_generator": "a block of Python code containing a function
1203         → gen_range_based_input (for Regular Problem), or multiple functions
1204         → gen_stratified_input_for_category<category_label> (for Multi-Category Output
1205             → Problem)",
1206     "HackGen_input_generator": "a block of Python code containing multiple
1207         → gen_hacking_input_for_<scenario_type> functions" or null (if no Hacking
1208         → Input is needed)
1209 }
1210 ```
1211
1212 ---
1213
1214
1215 Note:
1216 * All your code should be in Python 3.
1217 * Do not wrap the Python code in ```python```, just provide it plainly.
1218 * The Python code block under each field should be independent. In other words, they
1219     → should not call or reference each other. If one block imports a library, other blocks
1220     → must re-import it as needed.
1221 * In a Python block, you should first import the necessary libraries, and then start
1222     → defining functions. Important: Do not place import statements inside the functions.
1223 * Only Python's built-in libraries are permitted for import.
1224
1225 For example, a block of Python code for range-based programmed test inputs of Regular
1226 → Problems should look like this:
1227
1228 import ... (some modules)
1229
1230 def gen_range_based_input(input_str: str) -> bool:
1231     ... (some code)
1232
1233 A block of Python code for stratified programmed test inputs of Multi-Category Output
1234 → Problem may look like this:
1235
1236 import ... (some modules)
1237
1238 def gen_stratified_input_for_category<category_label>(input_str: str) -> bool:
1239     ... (some code)
1240
1241 def gen_stratified_input_for_category<category_label>(input_str: str) -> bool:
1242     ... (some code)
1243
1244 ...
1245
1246 And the Hacking Input block is similar.
1247
1248 ---
1249
1250 # Problem Statement
1251
1252 {{ problem_specification }}
1253
1254 ---
1255
1256
1257
1258

```

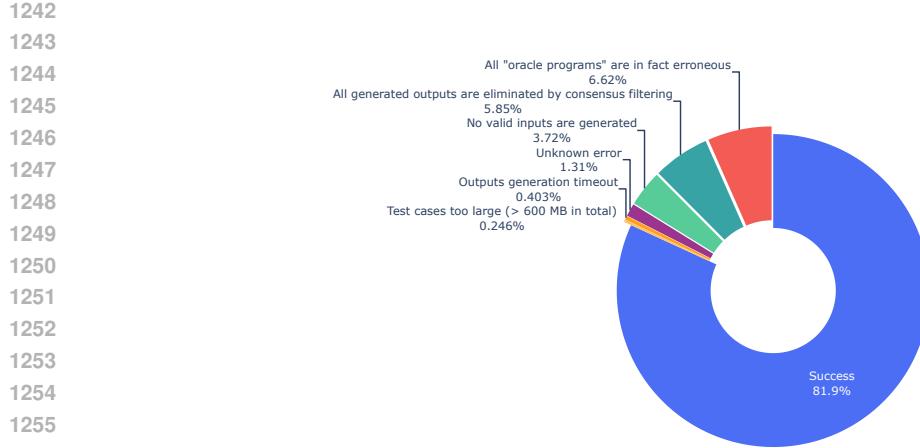


Figure 4: The result status distribution of our test case generation pipeline HARDTESTGEN.

```

159
160 # Correct Program
161 {{ oracle_program }}
162 ---
163
164
165
166 # Input Validator
167
168 {{ input_validator }}
169

```

Note that in the prompts above, we provide two to three carefully crafted examples for each function that we ask the LLM to generate, enabling in-context learning. Additionally, we prompt the LLM to perform chain-of-thought reasoning. These two requirements help the LLM understand the task better and improve the data synthesis.

A.2.2 STATISTICS OF TEST CASES IN HARDTESTS

We collect a total of 47.1k problems from five direct data sources: Codeforces, AtCoder, Luogu, CodeContests, and TACO. After removing the problems that lack oracle programs and the problems that do not read the input from and write the output to standard I/O, we retain 32.5k problems.

We try to generate test cases for these 32.5k problems. Although we carefully design the test case generation prompt, we are not able to achieve 100% coverage. **In the end, we successfully generate test cases for 26.6k problems, forming the HARDTESTS dataset.**

A.2.3 FAILURE RATE AND FAILURE REASONS OF HARDTESTGEN

The status distribution of test case generation across the 32.5k problems is shown in Figure 4. Overall, we successfully generated test cases for 81.9% of the problems. The main failure reasons include: 1) all "oracle programs" are in fact erroneous (6.62%), 2) all generated outputs are eliminated by consensus filtering (5.85%), and 3) no valid inputs are generated (3.72%).

A.2.4 HARDTESTS EXAMPLES

Example 1

This example demonstrates the input validator, LLMGen and RGen test cases, as well as a custom judging function. Here's the problem description:

1296 *Codeforces 1096A: There are a total of T ($1 \leq T \leq 1000$) sub-tasks. Each sub-task gives a pair of integers l, r ($1 \leq l \leq r \leq 998244353$), and the goal is to find a pair of integers x, y such that $l \leq x, y \leq r$, $x \neq y$, and y is divisible by x . It is guaranteed that every sub-task has a valid solution.*

1297
1298
1299
1300 *Note: It can be mathematically proven that a sub-task has a solution if and only if $2l < r$.*

1301 The input validator is as follows. It checks whether `input_str` conforms to the required format
1302 specified in the problem specification, whether all data falls within the required ranges, and whether
1303 other constraints are satisfied (e.g., whether each sub-task has a solution).

```
1304     import sys
1305     1
1306     def validate_input(input_str: str) -> bool:
1307         2
1308         lines = input_str.strip().split('\n')
1309         3
1310         if not lines:
1311             4
1312             return False
1313         5
1314         try:
1315             6
1316             T = int(lines[0])
1317         except:
1318             7
1319             return False
1320         if not (1 <= T <= 1000):
1321             8
1322             return False
1323         if len(lines) != T + 1:
1324             9
1325             return False
1326         10
1327         for i in range(1, T + 1):
1328             11
1329             parts = lines[i].strip().split()
1330             12
1331             if len(parts) != 2:
1332                 13
1333                 return False
1334             try:
1335                 14
1336                 l, r = map(int, parts)
1337             except:
1338                 15
1339                 return False
1340             if not (1 <= l <= r <= 998244353):
1341                 16
1342                 return False
1343             if 2 * l > r:
1344                 17
1345                 return False # No valid pair possible
1346         18
1347         return True
1348     19
```

1349 Since this problem allows multiple correct solutions, simple string comparison is not sufficient. We
1350 need a special, customized output judging function. The output judging function is as follows.

```
1351     def output_judging_function(input_str: str, candidate_output: str, reference_output:
1352         1
1353         -> str) -> bool:
1354         2
1355         try:
1356             1
1357             input_lines = input_str.strip().split('\n')
1358             2
1359             T = int(input_lines[0])
1360             3
1361             queries = [tuple(map(int, line.strip().split())) for line in input_lines[1:T+1]]
1362             4
1363             output_lines = candidate_output.strip().split('\n')
1364             5
1365             if len(output_lines) != T:
1366                 6
1367                 return False
1368             7
1369             for (l, r), line in zip(queries, output_lines):
1370                 8
1371                 parts = line.strip().split()
1372                 9
1373                 if len(parts) != 2:
1374                     10
1375                     return False
1376                 x, y = map(int, parts)
1377                 11
1378                 if not (l <= x <= r and l <= y <= r):
1379                     12
1380                     return False
1381             13
1382             return True
1383         14
1384     15
```

```

1350           return False
1351     if x == y:
1352       return False
1353     if y % x != 0:
1354       return False
1355
1356     return True
1357 except:
1358   return False

```

The LLMGen inputs are as follows.

```

1360 [
1361   "3\n1 10\n2 8\n3 10",
1362   "2\n5 20\n10 25",
1363   "3\n7 30\n1 5\n2 6",
1364   "1\n100 300",
1365   "2\n999 2000\n1000 3000"
1366 ]

```

The RPGen input generator is as follows. To ensure a solution always exists, the LLM sets $r \geq 2l$.

```

1368 import random
1369
1370 def gen_range_based_input() -> str:
1371   T = random.randint(1, 1000)
1372   queries = []
1373   for _ in range(T):
1374     l = random.randint(1, 499122176)
1375     r = random.randint(2 * l, 998244353)
1376     queries.append(f"{l} {r}")
1377   return f"{T}\n" + "\n".join(queries)

```

The LLM believes that there is no need to generate a SPGen input generator or HackGen input generator for this problem.

Example 2

This example demonstrates the input validator, as well as the LLMGen, SPGen, and HackGen test cases. Here's the problem description:

Codeforces 1141 A: Given two numbers n, m ($1 \leq n \leq m \leq 5 \times 10^8$), you are to determine whether it is possible to transform n into m by multiplying by 2 and 3, and if so, output the minimum number of operations. Otherwise, output -1.

The input validator is as follows. It checks whether `input_str` conforms to various format requirements and constraints.

```

1389 import re
1390
1391 def validate_input(input_str: str) -> bool:
1392   try:
1393     # Split the input string into two parts
1394     parts = input_str.strip().split()
1395     if len(parts) != 2:
1396       return False
1397     # Convert parts to integers
1398     n, m = map(int, parts)
1399     # Check the constraints
1400     if not (1 <= n <= m <= 5 * 10**8):
1401       return False
1402     return True
1403   except:
1404     return False

```

The LLMGen inputs are as follows.

```

14041 [
14052   "120 51840",
14063   "42 42",
14074   "48 72",
14085   "1 1",
14096   "2 6",
14107   "3 9",
14118   "5 10",
14129   "7 21",
141310  "8 24",
141311  "10 30"
141412 ]

```

1415
1416 The SPGen generator is as follows. The output of this problem has two categories (i.e., possible and
1417 impossible), so the LLM generates two regular input-generating functions, corresponding to these
1418 two categories, respectively.

1419 Since this problem requires SPGen, the LLM does not generate any RPGen input generators following
1420 the instructions given in the prompt.

```

1421
14221 import random
14232
14243 def gen_stratified_input_for_category_possible() -> str:
14254     n = random.randint(1, 10**8)
14265     m = n
14276     for _ in range(random.randint(1, 20)):
14287         if random.choice([True, False]):
14298             m *= 2
14309         else:
143110             m *= 3
143211         if m > 5 * 10**8:
143312             break
143413     return f"{n} {m}"
143514
143615 def gen_stratified_input_for_category_impossible() -> str:
143716     n = random.randint(1, 10**8)
143817     m = random.randint(n + 1, 5 * 10**8)
143918     while m % n == 0:
144019         m += 1
144120     return f"{n} {m}"

```

1442 The HackGen generator is as follows. The LLM generates two hacking input generating functions.
1443 The first function sets a small n and a large m . This is because a brute-force approach that a candidate
1444 program might take is to use DFS, recursively trying to multiply n by 2 or 3 until it becomes greater
1445 than or equal to m . If we randomly choose n and m , the ratio between them is usually small, so this
1446 approach might still pass. Setting n to be small and m to be big creates a large gap between n and m ,
1447 making the brute-force DFS approach inefficient. The second function sets $m = n$, which serves as
1448 an edge case.

```

14491 import random
14502
14513 def gen_hacking_input_for_small_n_big_m() -> str:
14524     n = random.randint(1, 5)
14535     m = random.randint(4 * 10**8, 5 * 10**8)
14546     return f"{n} {m}"
14557
14568 def gen_hacking_input_for_edge_case() -> str:
14579     n = random.randint(1, 5 * 10**8)
145810    return f"{n} {n}"

```

1459 For this problem, the LLM believes that a string comparison function would be enough for output
1460 judging.

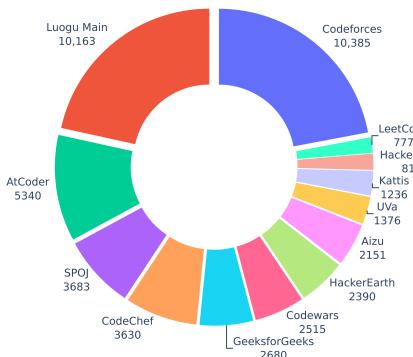
1458 **A.3 DETAILS OF THE COLLECTION OF PROBLEM SPECIFICATIONS AND ORACLE PROGRAMS**
 1459 **IN HARDTESTS**
 1460

1461 We collect 47,136 algorithmic coding problems from five direct data sources: AtCoder, Codeforces,
 1462 Luogu, CodeContests, and TACO, and these problems are originated from 13 online judge platforms,
 1463 including Codeforces, AtCoder, and SPOJ.

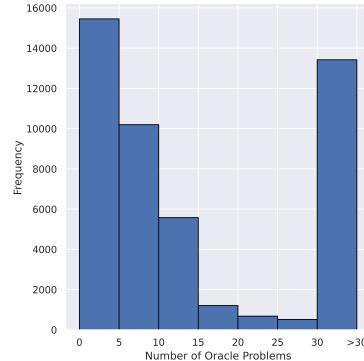
1464 **Data sources.** *Codeforces* (<https://codeforces.com/>) is one of the largest English online judge
 1465 platforms. We collected all publicly available problem specifications up to September 2024 from
 1466 Codeforces. *AtCoder*: (<https://atcoder.jp/>) is a large online judge platform offering problems in
 1467 both Japanese and English. We scraped all problem specifications available up to September 2024,
 1468 along with three correct user-submitted C++ programs for each problem. We used those directly for
 1469 problems with official English versions. *Luogu* (<https://www.luogu.com.cn/>) is a large Chinese
 1470 online judge platform consisting of a main section (Luogu-Main) and four mirror sections. The main
 1471 section hosts original problems authored by users and administrators, as well as problems sourced
 1472 from real-world contests (e.g., USACO). The mirror sections contain problems from other platforms,
 1473 including AtCoder, SPOJ, Codeforces, and UVa. We collected all available problem specifications
 1474 and community-authored tutorials, which often include both correct C++ programs and corresponding
 1475 natural language explanations, from Luogu. *CodeContests* (Li et al., 2022) is a dataset comprising
 1476 13,493 problems collected from five platforms. Each entry includes a problem specification and
 1477 several correct programs in C++, Python 2, Python 3, and Java. Only Codeforces problems in
 1478 CodeContests were used in our dataset, as only their problem IDs were explicitly provided. *TACO* (Li
 1479 et al., 2023) is a large-scale English dataset containing 25.4k problems sourced from ten platforms.
 1480 Each entry includes a problem specification and multiple correct Python programs. We collect all
 1481 problems from TACO.

1481 The distribution of problem counts across each online judge platform is shown in Figure 5. The
 1482 URLs of each platform, along with the direct data sources of their problem specifications and oracle
 1483 programs, are listed in Table 4.

1484 Note that since some problems have multiple oracle program sources, we prioritize programs from
 1485 more reliable sources when generating test cases. The reliability, supported languages, and notes
 1486 regarding each direct source of oracle programs are presented in Table 5. The distribution of the
 1487 number of oracle programs per problem is shown in Figure 6.



1502 Figure 5: Number of problems from each online judge
 1503 platform.



1502 Figure 6: Distribution of the
 1503 number of oracle programs in
 1504 HARDTESTS.

1507 **A.4 EVALUATION RESULT ON ATCODER AND CODEFORCES SEPARATELY**
 1508

1509 For completeness, we report the evaluation results separately on the AtCoder and Codeforces subsets
 1510 of the combined evaluation set. Table 10 and Table 11 show the precision and recall of test cases
 1511 from TACO, CodeContests, and HARDTESTS on LLM-generated programs. Overall, our dataset
 1512 HARDTESTS consistently improves both precision and recall across both platforms.

1512 Table 4: Problem specification sources and oracle solution sources of each online judge platform.
1513

1515 platform	1516 URL	1517 Problem Specification Sources	1518 Oracle Program Sources
1518 Codeforces	1519 https://codeforces.com/	1520 Codeforces	1521 TACO, CodeContests, Luogu
1520 AtCoder	1521 https://atcoder.jp/contests/	1522 AtCoder	1523 AtCoder, TACO, Luogu
1521 Luogu	1522 https://www.luogu.com.cn/	1523 Luogu	1524 Luogu
1522 UVa	1523 https://onlinejudge.org/	1524 Luogu	1525 Luogu
1523 SPOJ	1524 https://www.spoj.com/	1525 Luogu	1526 Luogu
1524 Aizu	1525 https://onlinejudge.u-aizu.ac.jp/	1526 TACO	1527 TACO
1525 GeeksforGeeks	1526 https://www.geeksforgeeks.org/	1527 TACO	1528 TACO
1526 Codewars	1527 https://www.codewars.com/	1528 TACO	1529 TACO
1527 Kattis	1528 https://open.kattis.com/	1529 TACO	1530 TACO
1528 CodeChef	1529 https://www.codechef.com/	1530 TACO	1531 TACO
1529 HackerEarth	1530 https://www.hackerearth.com/	1531 TACO	1532 TACO
1530 LeetCode	1531 https://leetcode.com/	1532 TACO	1533 TACO
1531 HackerRank	1532 https://www.hackerrank.com/	1533 TACO	1534 TACO

1531 Table 5: Oracle program sources with reliability, languages, and notes
1532

1534 Oracle Program Source	1535 Reliability	1536 Languages	1537 Notes
1535 User-submitted and accepted programs from AtCoder	1536 High	1537 Python, C++	1538 Some code (either Python or C++) may use AtCoder’s custom library.
1536 Code solutions from CodeContests	1537 High	1538 Python C++, Java 2/3,	1539 —
1537 Community-authored editorials from Luogu	1538 Medium	1539 C++	1540 Some editorials may lack complete, directly executable code. But if the code has no compilation or runtime errors, it is very likely to be completely correct.
1538 Verified programs from TACO, i.e., programs that can pass all TACO’s own test cases	1539 Medium	1540 Python	1541 There’s some false positives in TACO’s test cases.
1539 Other programs from TACO	1540 Low	1541 Python	1542 Reliability is not zero due to some false negatives in TACO’s test cases.

1551 **A.5 DETAILED PROTOCOL OF THE DIRECT EVALUATION OF TEST CASES’ QUALITY**
15521553 **Evaluation details for LLM-generated programs on AtCoder.** AtCoder previously made its
1554 official test cases publicly available. Although this is no longer the case, we obtained a partial archive
1555 from the Github repository [conlacda/atcoder-testcases](https://github.com/conlacda/atcoder-testcases). We selected problems that are both in
1556 TACO and HARDTESTS, resulting in a total of 653 problems. Since there are almost no AtCoder
1557 problems in CodeContests, we generate test cases for these problems by implementing the test case
1558 generation procedure described in the CodeContests’ paper.1559 **Evaluation details for LLM-generated programs on Codeforces.** Codeforces does not make its
1560 test cases publicly available. Therefore, we manually submit LLM-generated candidate programs
1561 to the Codeforces platform to obtain ground-truth verdicts. For each difficulty level from 1 to 4,
1562 we randomly select 150 problems that are in TACO, CodeContests, and HARDTESTS at the same
1563 time, yielding a total of 600 problems. For problems where the results of all three datasets agree, we
1564 randomly select 5% of them for submission. For problems where the datasets produce conflicting
1565 results, we submit 50% of the candidate programs. We compute precision and recall based on the
combined submission outcomes.

1566 **Evaluation details for human-written programs on Codeforces.** A dataset at Huggingface titled
 1567 MatrixStudio/Codeforces-Python-Submissions collects 690k human-submitted programs on
 1568 Codeforces along with their official verdicts. We use the verdicts as the ground-truth labels. All other
 1569 settings are the same as those of evaluation using LLM-generated programs.
 1570

1571 A.6 QUALITATIVE ANALYSIS OF GENERATED TESTS
 1572

1573 A.6.1 EXAMPLE 1: FALSE POSITIVE OF TACO AND HARDTESTS LLMGEN

1574 In this example we show how TACO and HARDTESTS LLMGen tests cannot break a wrong program
 1575 and result in a false positive, while HARDTESTS RPGen tests succeeds in making the program fail.
 1576 Here's the problem description:
 1577

1578 *AtCoder ABC117C: Given an integer N ($2 \leq N \leq 2 \times 10^5$) and an integer array A of length N
 1579 ($0 \leq A_i \leq 10^9$), compute the value of $\sum_{i=1}^{N-1} \sum_{j=i+1}^N A_i A_j$ modulo $10^9 + 7$.*

1580 Since $2 \leq N \leq 2 \times 10^5$, the solution to the problem needs to be relatively efficient. The correct solu-
 1581 tion employs mathematical techniques to simplify the equation into: $\frac{1}{2} \left(\left(\sum_{i=1}^N A_i \right)^2 - \sum_{i=1}^N A_i^2 \right)$,
 1582 which yields an $O(N)$ algorithm.
 1583

1584 However, a candidate program generated by Qwen2.5-Coder-7B-Instruct uses a brute-force algorithm
 1585 with a time complexity of $O(N^2)$. The candidate program is as follows:
 1586

```
15881 #include <iostream>
15892 #include <vector>
15903
15914 int main() {
15925     std::ios::sync_with_stdio(false);
15936     std::cin.tie(nullptr);
15947
15958     int N;
15969     std::cin >> N;
159710
159811     std::vector<long long> A(N);
159912     for (int i = 0; i < N; ++i) {
160013         std::cin >> A[i];
160114     }
160215
160316     const int MOD = 1000000007;
160417     long long sum = 0;
160518
160619     for (int i = 0; i < N; ++i) {
160720         for (int j = i + 1; j < N; ++j) {
160821             sum = (sum + A[i] * A[j]) % MOD;
160922         }
161023     }
161124
161225     std::cout << sum << std::endl;
161326
161427     return 0;
161528 }
```

1612 Due to its inefficiency, this candidate program failed to pass the official test cases. Nevertheless,
 1613 because the test cases in TACO and HARDTESTS LLMGen were relatively small (with small N), the
 1614 candidate program successfully passed these cases.

1615 Furthermore, the HARDTESTS RPGen input for this problem is generated using the following Python
 1616 function:
 1617

```
16181 import random
16192
16203 def gen_range_based_input() -> str:
```

```

16204     n = random.randint(2, 200000)
16215     a = [random.randint(0, 1000000000) for _ in range(n)]
16226     return f'{n}\n" + " ".join(map(str, a))
1623

```

1624 Due to the larger scale of HARDTESTS RPGen inputs, the candidate program failed to pass these test
1625 cases and we have a true negative.

1626 A.6.2 EXAMPLE 2: FALSE POSITIVE OF TACO AND HARDTESTS LLMGEN + RPGEN

1628 In this example we show how TACO and HARDTESTS type LLMGen and RPGen tests cannot break
1629 a wrong program and result in a false positive, while HARDTESTS HackGen tests succeeds in making
1630 the program fail. Here's the problem description:

1631 *AtCoder ABC139C: There are N ($1 \leq N \leq 10^5$) squares arranged from left to right, with the height
1632 of the i -th square from the left being H_i ($1 \leq H_i \leq 10^9$). Starting from any square, you can move
1633 one step to the right as long as the next square's height is not greater than the current one. Find the
1634 maximum number of moves possible.*

1635 Given that $1 \leq N \leq 10^5$, the solution needs to be relatively efficient. The correct solution uses an
1636 $O(N)$ greedy algorithm. Specifically, it traverses the array from left to right, counting how many
1637 consecutive heights satisfy $H_i \geq H_{i+1}$. Each time a condition fails, the counter is reset, and the
1638 maximum value is maintained throughout the traversal as the answer.

1639 A candidate program generated by Qwen-Coder-14B-Instruct uses a brute-force approach, iterating
1640 over each starting position and simulating the moves. Although functionally correct, its complexity is
1641 $O(N^2)$ and too inefficient to work. The code is as follows:

```

1643
16441 #include <iostream>
16452 #include <vector>
16463 using namespace std;
16474
16485 int main() {
16496     int N;
16507     cin >> N;
16518     vector<int> H(N);
16529     for(int i = 0; i < N; i++) {
165310         cin >> H[i];
165411     }
165512
165613     int max_moves = 0;
165714     for(int i = 0; i < N; i++) {
165815         int current_moves = 0;
165916         for(int j = i + 1; j < N; j++) {
166017             if(H[j] <= H[j - 1]) {
166118                 current_moves++;
166219             } else {
166320                 break;
166421             }
166522         }
166623         if(current_moves > max_moves) {
166724             max_moves = current_moves;
166825         }
166926     }
167027
167128     cout << max_moves << endl;
167229     return 0;
167330 }

```

1670 Because of its inefficiency, this candidate program failed the official test cases. Nevertheless, due
1671 to the relatively small scale of the test cases in TACO and HARDTESTS LLMGen, the candidate
1672 program passed these tests.

1673 Additionally, the HARDTESTS RPGen input for this problem is generated using the following Python
function:

```

16741 import random
16752
16763 def gen_range_based_input() -> str:
16774     N = random.randint(1, 100000)
16785     heights = [random.randint(1, 1000000000) for _ in range(N)]
16796     return f'{N}\n' + '\n'.join(map(str, heights))

```

1680 We observe that since the H_i sequence is randomly generated, it fluctuates significantly, reducing the complexity of the “simulate moving from a certain square” procedure from $O(N)$ to approximately $O(1)$. Thus, the tests generated do not lead to the worst case complexity of the inefficient program and its overall time complexity effectively becomes $O(N)$, enabling the candidate program to pass 1684 HARDTESTS RPGen test cases.

1685 The HARDTESTS HackGen inputs for this problem are generated using the following Python functions:

```

1687
16881 import random
16892
16903 # Monotonically decreasing sequence
16914 def gen_hacking_input_for_monotonic_decreasing() -> str:
16925     N = 100000
16936     heights = list(range(1000000000, 1000000000 - N, -1))
16947     return f'{N}\n' + '\n'.join(map(str, heights))
16958
16969 # Monotonically increasing sequence
169710 def gen_hacking_input_for_monotonic_increasing() -> str:
169811     N = 100000
169912     heights = list(range(1, N + 1))
170013     return f'{N}\n' + '\n'.join(map(str, heights))
170114
170215 # Alternating heights
170316 def gen_hacking_input_for_alternating() -> str:
170417     N = 100000
170518     heights = [1000000000 if i % 2 == 0 else 1 for i in range(N)]
170619     return f'{N}\n' + '\n'.join(map(str, heights))

```

1704 There are three hacking input generation functions: monotonically decreasing, monotonically increasing, and alternating sequences. The first generated input (monotonically decreasing) successfully increased the actual runtime complexity of the candidate program to $O(N^2)$, causing a timeout and 1705 consequently a failure on this test case.

1706

A.6.3 EXAMPLE 3: FALSE NEGATIVE OF TACO

1707

1708 In this example, we show an example of false negative caused by the lack of output judge function in 1709 TACO tests. We also show how HARDTESTS can correctly evaluate the candidate program. Here’s 1710 the problem description:

1711

1712 *AtCoder ABC117A: Given an integer T and an integer X ($1 \leq T \leq 100$, $1 \leq X \leq 100$). Compute 1713 the value of T/X with an error tolerance within 10^{-3} .*

1714

1715 A candidate program generated by Qwen2.5-Coder-14B-Instruct is:

```

1716
1717
17181 #include <iostream>
17192 #include <iomanip>
17203
17214 int main() {
17225     int T, X;
17236     std::cin >> T >> X;
17247
17258     double timeInWorldA = static_cast<double>(T) / X;
17269
172710     std::cout << std::fixed << std::setprecision(10) << timeInWorldA << std::endl;
172811
172912     return 0;
13    }

```

1728 This is clearly correct and passes all official test cases. It also passes all test cases from HARDTESTS,
 1729 but it fails on TACO's test cases. This is because using a simple string comparison function is
 1730 insufficient due to potential differences in precision between the candidate output and the reference
 1731 output. TACO does not provide a special output judging function for problems, which leads to false
 1732 negatives. HARDTESTS provides a special output judging function, shown below:
 1733

```
1734 1 def output_judging_function(input_str: str, candidate_output: str, reference_output:
1735 2     str) -> bool:
1736 3     # Parse the input
1737 4     T, X = map(int, input_str.split())
1738 5     # Calculate the expected output
1739 6     expected_output = T / X
1740 7     # Parse the candidate output
1741 8     try:
1742 9         candidate_value = float(candidate_output.strip())
174310     except ValueError:
174411         return False
174512     # Check the absolute and relative error
174613     absolute_error = abs(candidate_value - expected_output)
174714     relative_error = absolute_error / abs(expected_output) if expected_output != 0 else
174815         float('inf')
174916     # The output is correct if either error is within the tolerance
175017     return absolute_error <= 1e-3 or relative_error <= 1e-3
175118
```

1752 A.7 DOWNSTREAM TRAINING AND EVALUATION DETAILS

1753 A.7.1 REJECTION SAMPLING TRAINING AND EVALUATION DETAILS.

1754 In the rejection sampling experiments, our model is trained with the following training parameters
 1755 (epochs=20, learning_rate=4e-5, batch_size=128, cosine learning rate schedule with a decay to 10%
 1756 of the peak learning rate and 32,768 max length). The evaluations are sampled with temperature=0.6,
 1757 top_p=0.95, top_k=20, min_p=0, max_new_tokens=32768 as recommended by Qwen.

1758 A.7.2 RL TRAINING AND EVALUATION DETAILS.

1759 We use verl for RL training and firejail for sandboxing code execution. The rollouts are generated
 1760 with temperature=1, top_p=0.95, top_k=20, min_p=0, response_length=24000, initial learning rate
 1761 5e-7. We use a global batch size of 32 and generate 32 samples per rollout. All our experiments are
 1762 run on 8 NVIDIA H100 GPUs. We do not use KL divergence in our RL loss.

1763 A.8 TEST CASE GENERATION WITHOUT AN ORACLE MODEL

1764 In the case that an oracle program y^* , or an oracle test suite V^* does not exist for a problem x , such
 1765 as when problems are synthetically generated, we propose a method, based on ALGO (Zhang et al.,
 1766 2023) that synthesizes both the oracle and tests. To start, we prompt an LLM, such as Anthropic
 1767 Claude 3.5 Sonnet, to generate a brute-force solution y_{bf} to the problem. Specifically, we encourage
 1768 it to use inefficient methods such as exhaustive search and enumeration of the possible output space.
 1769 This is founded on the observation that it is relatively easy to generate a solution that exhaustively
 1770 searches the correct output, but more difficult to optimize it within a time complexity bound.

1771 Then, an LLM is prompted to create a validator program and 10 edge test input generators, which
 1772 are used to generate one test input each, $\{a_1, \dots, a_{10}\}$. To prevent the y_{bf} from timing out when
 1773 computing their respective outputs, we explicitly prompt the LLM to keep input values small. Once
 1774 these test inputs are verified for correctness using the validator, the brute-force solution is used to
 1775 generate the corresponding outputs $c_i = y_{bf}(a_i)$ for each input, resulting in a total of 10 input-output
 1776 pairs as test cases. Finally, the LLM is prompted to create one maximum-length test case a_{max}
 1777 with inputs at the upper bounds of the problem's constraints, designed to catch solutions that are

functionally correct but inefficient. This test case is considered to be passed as long as the program produces an output before timing out. Crucially, all 11 of the generated test cases $\{a_1, \dots, a_{10}, a_{max}\}$ are designed to cause seemingly correct programs to fail, and none are generated using random inputs.

We compare this method to the baseline method outlined in AceCoder (Zeng et al., 2025a), which uses a direct prompt to generate 20 full test cases (inputs and corresponding outputs), also using Claude 3.5. Then, after prompting a stronger model such as Qwen2.5-Coder-32B-Instruct to generate a solution, the test cases that cause the solution to fail are considered hallucinated and are filtered out. Problems with fewer than 5 test cases after filtering are discarded.

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the precision and recall over candidate programs generated by LLMs and written by humans on subsets of problems in HARDTESTS.

The quality of the test cases are verified using 165 Atcoder problems, each with 50 sample solutions. It is clear from these experiments (shown in Table 6) that our method can also work much better than the baseline even when oracle programs are not available. The false positive rate of HARDTESTGEN is only half as high as AceCoder, showing that deliberately crafting high-quality, hard test cases is crucial for effective program verifiers.

We will show some examples of the test generation process in the following sections.

Table 6: Performance comparison of oracle-free test generation algorithms based on error rates.

	False Positive Rate (FPR)	False Negative Rate (FNR)
AceCoder	32.49	2.59
HARDTESTGEN	17.67	2.19

A.8.1 EXAMPLE 1: BRUTE-FORCE ORACLE SOLUTION GENERATED BY ALGO

In this example, we show a brute-force oracle solution y_{bf} that ALGO generates. The problem is challenging, and while the LLM is unable to correctly solve it directly, its brute-force solution works. Here's the problem description:

AtCoder ABC301C: A single-player card game is popular in AtCoder Inc.

Each card in the game has a lowercase English letter or the symbol written on it. There is plenty number of cards for each kind. The game goes as follows.

- Arrange the same number of cards in two rows.
- Replace each card with one of the following cards: a, t, c, o, d, e, r.
- If the two rows of cards coincide, you win. Otherwise, you lose.

To win this game, you will do the following cheat.

- Freely rearrange the cards within a row whenever you want after step 1.

You are given two strings S and T ($1 \leq |S|, |T| \leq 2 \times 10^5$), representing the two rows you have after step 1. Determine whether it is possible to win with cheating allowed. If it is possible to win with cheating allowed, print Yes; otherwise, print No.

The solution generated by Claude 3.5 Sonnet is:

```
from itertools import product
def solve():
    S = input().strip()
    T = input().strip()
    # Find positions of @ in both strings
    s_at_pos = [i for i, c in enumerate(S) if c == '@']
```

```

18369     t_at_pos = [i for i, c in enumerate(T) if c == '@']
183710
183811     # Possible characters to replace @
183912     possible = ['a', 't', 'c', 'o', 'd', 'e', 'r']
184013
184114     # Try all possible combinations
184215     for s_comb in product(possible, repeat=len(s_at_pos)):
184316         # Create new S string with replacements
184417         s_new = list(S)
184518         for pos, char in zip(s_at_pos, s_comb):
184619             s_new[pos] = char
184720         s_new = ''.join(s_new)
184821
184922         for t_comb in product(possible, repeat=len(t_at_pos)):
185023             # Create new T string with replacements
185124             t_new = list(T)
185225             for pos, char in zip(t_at_pos, t_comb):
185326                 t_new[pos] = char
185427             t_new = ''.join(t_new)
185528
185629             # Sort both strings (since we can rearrange)
185730             if sorted(s_new) == sorted(t_new):
185831                 print("Yes")
185932             return
186033
186134         print("No")
186235
186336     solve()

```

1861 This solution is evidently inefficient. A full analysis yields runtime in the bound of $O(n \log n 7^n)$,
 1862 where $n = |S| = |T|$, but the exponential complexity is clear from the Cartesian product function in
 1863 the implementation. For inputs $n > 10$, this algorithm quickly becomes intractable. However, for
 1864 inputs $n \leq 10$ it is able to generate valid test outputs, allowing it to correctly evaluate the validity
 1865 of submitted solutions. The test outputs it generates achieve a 100% accuracy, compared to actual
 1866 execution results from the online judge platform.

1867
 1868 **A.8.2 EXAMPLE 2: TEST CASES GENERATED BY ALGO**

1869 In this example we show a contest coding problem for which ALGO effectively generates a testing
 1870 suite. Here's the problem description:

1871 *AtCoder cafeteria sells meals consisting of a main dish and a side dish. There are N types of main
 1872 dishes, called main dish 1, main dish 2, ..., main dish N . Main dish i costs a_i yen. There are M
 1873 types of side dishes, called side dish 1, side dish 2, ..., side dish M . Side dish i costs b_i yen.*

1874 *A set meal is composed by choosing one main dish and one side dish. The price of a set
 1875 meal is the sum of the prices of the chosen main dish and side dish.*

1876 *However, for L distinct pairs $(c_1, d_1), \dots, (c_L, d_L)$, the set meal consisting of main dish c_i
 1877 and side dish d_i is not offered because they do not go well together. That is, $NM - L$ set meals are
 1878 offered. (The constraints guarantee that at least one set meal is offered.)*

1879 *Find the price of the most expensive set meal offered.*

1880 *The input is given from Standard Input in the following format:*

1881 $N \ M \ L$
 1882 $a_1 \ a_2 \ \dots \ a_N$
 1883 $b_1 \ b_2 \ \dots \ b_M$
 1884 $c_1 \ d_1$
 1885 $c_2 \ d_2$
 1886 \vdots

```

1890  $c_L$   $d_L$ 
1891
1892 Constraints:
1893 -  $1 \leq N, M \leq 10^5$ 
1894 -  $0 \leq L \leq \min(10^5, NM - 1)$ 
1895 -  $1 \leq a_i, b_i \leq 10^9$ 
1896 The first 3 edge test input generators created by ALGO are shown below, corresponding to the
1897 following test inputs. Note that the values are at the boundaries of the input bounds and follow clearly
1898 defined structures.
1899
1900 [
1901 "1 1 0\n1000000000\n1000000000",
1902 "10 10 1\n1000 2000 3000 4000 5000 6000 7000 8000 9000 10000\n1000 2000 3000 4000 5000
1903 "50 50 100\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1904 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1905 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1906 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1907 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1908 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1909 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1910 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1911 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1912 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1913 "1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1914 "1000000000 1000000000\nn33 36\nn5 1\nn18 44\nn43 12\nn5 37\nn50 36\nn15 14\nn10 27\nn34 3\nn16
1915 "40\nn47 18\nn28 14\nn9 10\nn20 40\nn41 8\nn4 41\nn10 20\nn7 21\nn37 1\nn49 39\nn9 3\nn14 26\nn42
1916 "18\nn41 28\nn26 9\nn13 21\nn39 3\nn16 17\nn24 30\nn17 46\nn33 42\nn9 42\nn34 7\nn36 13\nn6 36\nn33
1917 "8\nn26 2\nn43 18\nn4 45\nn35 23\nn39 5\nn33 35\nn8 45\nn34 18\nn43 48\nn14 12\nn17 11\nn26 41\nn4
1918 "47\nn44 28\nn9 9\nn50 19\nn2 15\nn20 5\nn9 39\nn20 14\nn24 39\nn5 13\nn4 15\nn10 39\nn48 23\nn43
1919 "36\nn21 33\nn4 35\nn11 13\nn46 10\nn11 31\nn8 44\nn2 37\nn46 37\nn16 39\nn39 43\nn34 38\nn3 50\nn7
1920 "20\nn34 13\nn34 31\nn28 33\nn31 4\nn22 1\nn38 19\nn12 9\nn6 23\nn27 18\nn9 4\nn11 10\nn28 26\nn2
1921 "7\nn45 42\nn31 43\nn39 1\nn15 1\nn11 19\nn12 48\nn15 10\nn4 7\nn45 26\nn2 18\nn35 15\nn33 27"]
1922
1923 def gen_edge_case_input_1():
1924     # Minimum case: N=M=1, L=0
1925     return "1 1 0\n1000000000\n1000000000"
1926
1927 def gen_edge_case_input_2():
1928     # Maximum values case
1929     N = M = 100 # Using smaller values for practicality
1930     L = N*M - 1
1931     a = [10**9] * N
1932     b = [10**9] * M
1933     pairs = [(i, j) for i in range(1, N+1) for j in range(1, M+1)]
1934     pairs.pop() # Leave one combination possible
1935
1936     result = f"{N} {M} {L}\n"
1937     result += " ".join(map(str, a)) + "\n"
1938     result += " ".join(map(str, b)) + "\n"
1939     for c, d in pairs:
1940         result += f"{c} {d}\n"
1941     return result.strip()
1942
1943 def gen_edge_case_input_3():
1944     # Only one forbidden pair
1945     N = M = 10
1946     a = [i*1000 for i in range(1, N+1)]
1947     b = [i*1000 for i in range(1, M+1)]
1948     result = f"{N} {M} 1\n"
1949     result += " ".join(map(str, a)) + "\n"

```

```

194428     result += " ".join(map(str, b)) + "\n"
194529     result += "1 1"
194630     return result
1947
1948 Also, the generator for the maximum-length test input  $a_{max}$  is shown here. It produces a test input
1949 where  $N = M = 10^5$ , which is the upper bound of the problem.
1950
1951 import random
1952
1953 def gen_maximum_edge_case_input():
1954     N = 100000
1955     M = 100000
1956     L = 100000
1957
1958     # Generate main dish prices close to max value
1959     main_prices = [random.randint(999999000, 1000000000) for _ in range(N)]
1960
1961     # Generate side dish prices close to max value
1962     side_prices = [random.randint(999999000, 1000000000) for _ in range(M)]
1963
1964     # Generate L unique forbidden pairs
1965     used_pairs = set()
1966     forbidden_pairs = []
1967
1968     # Start with some specific high-value combinations
1969     for i in range(L):
1970         while True:
1971             c = random.randint(1, N)
1972             d = random.randint(1, M)
1973             if (c, d) not in used_pairs:
1974                 used_pairs.add((c, d))
1975                 forbidden_pairs.append((c, d))
1976                 break
1977
1978     # Build the input string
1979     result = []
1980     result.append(f"{N} {M} {L}")
1981     result.append(" ".join(map(str, main_prices)))
1982     result.append(" ".join(map(str, side_prices)))
1983
1984     for c, d in forbidden_pairs:
1985         result.append(f"{c} {d}")
1986
1987     return "\n".join(result)

```

1982 This test suite effectively achieves 100% accuracy on evaluating submissions, demonstrating that
1983 precise test inputs are crucial for oracle-free verifiers.

1984 A.8.3 EXAMPLE 3: TEST CASES GENERATED BY ACECODER

1985 For the same Atcoder problem as Example A.8.2, AceCoder generates the following 16 test cases
1986 with inputs and outputs after filtering. While the LLM implicitly knows to generate edge test cases,
1987 shown in the maximal values of c_i, d_i , all of the test cases have relatively similar and low values of
1988 M and N .

```

1991 [{"input": "2 3 3\\n2 1\\n10 30 20\\n1 2\\n2 1\\n2 3", "output": "31"},  

1992 {"input": "2 1 0\\n100000000 1\\n100000000", "output": "200000000"},  

1993 {"input": "1 1 0\\n5\\n7", "output": "12"},  

1994 {"input": "3 3 4\\n10 20 30\\n5 15 25\\n1 1\\n2 2\\n3 1\\n1 3", "output": "55"},  

1995 {"input": "5 3 7\\n100 200 300 400 500\\n100 200 300\\n1 1\\n1 2\\n1 3\\n2 1\\n2 2\\n3 1\\n4 1",  

1996 ↳ "output": "800"},  

1997 {"input": "2 2 1\\n999999999 999999998\\n999999997 999999996\\n1 1", "output":  

1998 ↳ "199999995"},  

1999 {"input": "3 2 2\\n5 4 3\\n2 1\\n1 1\\n2 2", "output": "6"},  


```

```

19988 {"input": "4 3 5\n10 9 8 7\n6 5 4\n1 2\n3\n4 1\n4 2", "output": "15"},  

19999 {"input": "2 4 3\n100 200\n300 400 500 600\n1 1\n1 2\n2 3", "output": "800"},  

200010 {"input": "3 3 0\n1 2 3\n4 5 6", "output": "9"},  

200111 {"input": "4 2 3\n10 20 30 40\n50 60\n1 1\n2 2\n3 1", "output": "100"},  

200212 {"input": "5 2 4\n1 2 3 4 5\n6 7\n1 1\n2 1\n3 1\n4 1", "output": "12"},  

200313 {"input": "3 4 6\n100 200 300\n400 500 600 700\n1 1\n1 2\n1 3\n2 1\n2 2\n3 1\n3 2\n4 3", "output":  

→ "1000"},  

200414 {"input": "2 2 0\n1000000000 999999999\n1000000000 999999999", "output": "2000000000"},  

200515 {"input": "3 3 3\n100 200 300\n100 200 300\n1 1\n2 2\n3 3", "output": "500"},  

200616 {"input": "5 5 12\n1 2 3 4 5\n1 2 3 4 5\n1 1\n1 2\n1 3\n2 1\n2 2\n3 1\n3 2\n4 3\n4",  

→ "1\n4 2\n5 1", "output": "10"}]
```

2008

2009 These test cases fail to correctly categorize solutions that exceed the problem’s time limit. One such
2010 example is shown below, which AceCoder falsely categorizes as a positive solution. Compared to
2011 Example A.8.2, in which ALGO generated test inputs as large as $N = M = 10^5$, the test cases
2012 from AceCoder are no larger than $N = M = 5$, making them unable to break inefficient programs.
2013 Without a brute-force reference oracle, and constrained by the requirement of generating input-output
2014 pairs simultaneously, the LLM used by AceCoder sticks to simple test cases that it can be confident
2015 are correct. Moreover, longer test cases are likelier to contain hallucinations, and get removed by
2016 their filtering process. As a result, their test cases are relatively weaker and result in less effective
2017 verifiers.

2018

```

20191 import sys
20202
20213 def main():
20224     input = sys.stdin.readline
20235     N, M, L = map(int, input().split())
20246     a = list(map(int, input().split()))
20257     b = list(map(int, input().split()))
20268     incompatible_pairs = set()
20279     for _ in range(L):
202810         c, d = map(int, input().split())
202911         incompatible_pairs.add((c - 1, d - 1)) # Adjusting indices to be zero-based
203012
203113     max_price = 0
203214     for i in range(N):
203315         for j in range(M):
203416             if (i, j) not in incompatible_pairs:
203517                 max_price = max(max_price, a[i] + b[j])
203618
203719     print(max_price)
203820
203921 if __name__ == "__main__":
204022     main()
```

A.9 ABLATION STUDY ON LLMs FOR TEST CASE GENERATION

2041 In this work, we primarily used GPT-4o to generate test cases for problems in the HARDTESTS
2042 dataset. However, our HARDTESTGEN method is compatible with other LLMs, including open-
2043 weight models. We experimented with GPT-4o, Claude-4-Sonnet, Kimi-K2 (Team et al., 2025), and
2044 Qwen3-Coder (Team, 2025) as test case generators on 500 randomly selected AtCoder problems.
2045 The results are shown in Table 7. We observe that using newer LLMs tends to yield better precision
2046 and recall.

2047 We also compared HARDTESTGEN with Qwen3-Coder against prior work TACO and SymPrompt
2048 with GPT-4 on the same set of problems. The results are presented in Table 8. Although HARDTEST-
2049 GEN was paired with Qwen3-Coder, an open-weight model that is considered weaker, it still achieved
2050 overall higher precision and recall than TACO and SymPrompt. This indicates that HARDTESTGEN
2051 is less dependent on strong proprietary LLMs and maintains reasonable performance even under
constrained model conditions.

2052 Table 7: Precision and recall of HARDTESTGEN when using different LLMs as test case generators.
 2053 * denotes open-weight models, and HT denotes HARDTESTGEN.

	Difficulty 1		Difficulty 2		Difficulty 3		Difficulty 4	
	Precision	Recall	Precision	Recall	Precision	Recall	Precision	Recall
HT+GPT-4o	99.53	99.18	100.0	97.43	96.04	98.45	84.18	98.03
HT+Claude-4-Sonnet	99.48	99.86	100.0	95.70	98.28	99.35	93.21	96.86
HT+Kimi-K2*	99.41	99.87	98.30	97.01	98.06	99.13	87.11	98.04
HT+Qwen3-Coder*	99.47	99.14	99.62	98.88	95.20	99.13	76.83	98.82

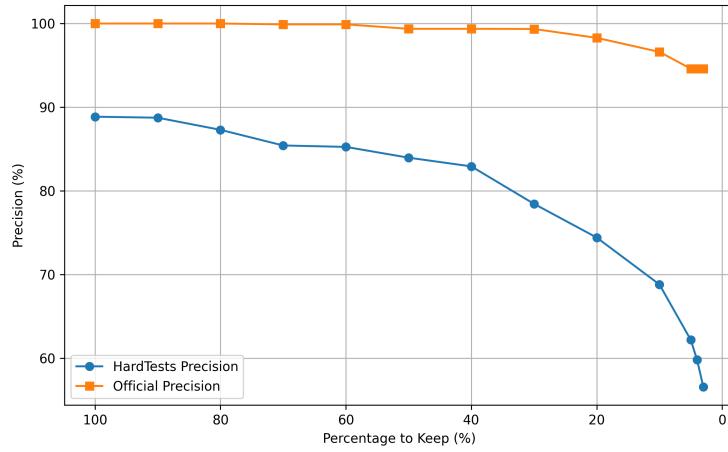
2061
 2062 Table 8: Comparison between HARDTESTGEN with Qwen3-Coder and TACO/SymPrompt with
 2063 GPT-4. HT denotes HARDTESTGEN.

	Difficulty 1		Difficulty 2		Difficulty 3		Difficulty 4	
	Precision	Recall	Precision	Recall	Precision	Recall	Precision	Recall
SymPrompt+GPT-4	98.74	98.95	92.64	90.91	81.72	90.99	28.13	93.18
TACO+GPT-4	100.0	73.06	99.75	67.29	92.74	74.08	62.07	71.05
HT+Qwen3-Coder*	99.47	99.14	99.62	98.88	95.20	99.13	76.83	98.82

2074 A.10 REDUNDANCY ANALYSIS OF TEST CASES

2075
 2076 In this section, we analyze the redundancy of test cases. We conducted experiments on 500 randomly
 2077 selected AtCoder problems. By randomly removing a portion of test cases from both HARDTESTS
 2078 and the official test sets, we measured the precision of the remaining test cases. The results are shown
 2079 in Figure 7. We found that HARDTESTS exhibits significantly lower redundancy compared to official
 2080 test cases. For example, when 60% of the test cases were removed, the precision of official test cases
 2081 decreased by only 0.63%, whereas the precision of HARDTESTS dropped by 5.94%.

2082 We also argue that a certain degree of redundancy is acceptable. On average, each problem in
 2083 HARDTESTS contains 39 test cases. During reinforcement learning training, we adopt the setting that
 2084 once a candidate program fails on any test case, evaluation is terminated, and the program is marked
 2085 incorrect. In practice, we found that evaluating a candidate program on a CPU takes only 5.1 seconds
 2086 on average, which is negligible compared to the time required for LLM rollout and weight updates.
 2087 Furthermore, in practical settings, multiple CPUs are usually available.



2105 Figure 7: Percentage of retained test cases vs precision.

Table 9: Comparison between HARDTESTGEN and software testing test generation methods.				
(a) Comparison between HARDTESTGEN and AFL++.	(b) Comparison between HARDTESTGEN and TrickCatcher (both using the same model, GPT-4o).			
Precision	Recall			
AFL++	70.00			
HARDTESTGEN	100.00			
Precision	Recall			
TrickCatcher	75.76			
HARDTESTGEN	96.43			
(c) Comparison between HARDTESTGEN and SymPrompt (both using the same model, GPT-4o).				
Precision	Recall	F1	Line Coverage	Branch Coverage
SymPrompt	62.28	94.67	75.13	81.59
HARDTESTGEN	95.77	90.67	93.15	92.83
				93.36

A.11 HARDTESTGEN COMPARISON WITH SOFTWARE TESTING METHODS

AFL++ Traditional fuzzing methods like AFL++ aim to generate random and unexpected input to programs to detect vulnerabilities. However, in algorithmic programming, the input is expected to follow the specification, and the goal for the test cases is to identify a correct and efficient program, not to find a safe program. That said, we still use AFL++ to get the fuzzed inputs for comparison with HARDTESTGEN.

As shown in Table 9a, HARDTESTGEN achieves higher precision and recall for the 53 programs we evaluated. We find that the low precision and recall are due to AFL++ generating a large number of invalid inputs. Problem specification is necessary for generating valid inputs. As such, classical fuzzers would not be suitable in our setting unless paired with custom input mutators. HARDTESTGEN could be slightly modified to generate input mutators similarly to how we generate input generators. We have not yet explored using HARDTESTGEN to provide custom mutators to classical fuzzers, but this is an interesting direction that we could explore in the future.

SymPrompt Although our problem setting is not coverage-guided test generation, because there is not a single program under test. We still adopt and compare HARDTESTGEN with SymPrompt, one of the coverage-guided methods. We use the Oracle program as the focal method for SymPrompt and measure precision, recall, and coverage on 163 GPT-4o-generated candidate programs.

As shown in Table 9c, HardTestGen achieves a slight lower recall but much better coverage and precision than SymPrompt.

This is because SymPrompt focuses on providing approximate execution paths to LLMs to maximize coverage, while HardTestGen utilizes the LLMs' algorithmic knowledge to generate difficult test cases that make bad algorithms slow.

For example, for the following function that calculates the greatest common divisor with the Euclidean algorithm:

```
1 def gcd(a, b):
2     if a % b == 0:
3         return b
4     return gcd(b, a % b)
```

SymPrompt easily generates test cases that reach 100% coverage, but the test cases it generates often get solved in very few recursions. However, HardTestGen recognizes from the problem description and generates a hacking input generator that assigns a and b to be consecutive Fibonacci numbers, which causes the algorithm's worst-case efficiency of $2 \log_2 b + 1$ steps.

While SymPrompt achieves a higher recall, this performance is potentially superficial, arising not from strong test coverage, but from weak and non-discriminative test cases, as suggested by the low F1 value.

2160 To explain this with an extreme case: a test suite that judges any program as correct will have no false
 2161 negatives, because it won't have any negatives at all. Consequently, its recall will be 100
 2162

2163 To concretely illustrate this point and address the reviewer's request for an example, we provide a
 2164 detailed case study on Codeforces Problem 191C – Fools and Roads.

2165 The input specifications for this problem are in natural language:

2166 *The first line contains a single integer n ($2 \leq n \leq 10^5$) Each of the next $n - 1$ lines contains two
 2167 space-separated integers u_i, v_i ($1 \leq u_i, v_i \leq n, u_i \neq v_i$), that means that there is a road connecting
 2168 cities u_i and v_i The next line contains integer k ($0 \leq k \leq 10^5$) ...*

2169 In short, this problem involves processing a tree with up to 10^5 nodes and answering up to 10^5
 2170 pairwise path queries. Efficient solutions require tree traversal preprocessing, and naive or brute-force
 2171 solutions quickly become infeasible at scale.

2172 We observe that SymPrompt-generated test cases for this problem are small across all generations;
 2173 the maximum observed values are $n = 8$ and $k = 3$. These sizes are far below the problem's limits
 2174 and do not stress the performance characteristics of candidate programs. In contrast, HardTestGen
 2175 deliberately generates test cases with n and k values approaching the specification limit (10^5),
 2176 effectively stress-testing the scalability and efficiency of candidate programs. The comparison
 2177 between the two test suites is as follows:

2178 Both methods can reject a buggy program with an incorrect answer. SymPrompt correctly accepts the
 2179 1 correct solution, but incorrectly accepts all 3 inefficient programs (correct answer but not within
 2180 time limit). On the other hand, HardTestGen correctly rejects all 3 inefficient programs, though it
 2181 incorrectly rejects the 1 correct solution due to tight time constraints. This could be easily resolved
 2182 by slightly lessening the input scale or better matching the CPUs used by the online judge platform.
 2183 This leads to the observed recall gap: SymPrompt has higher recall because it accepts the correct
 2184 programs that HardTestGen wrongly rejects (performance limit being too harsh). However, it does so
 2185 at the cost of substantially lower precision, accepting several clearly incorrect programs.

2186 In fact, none of the SymPrompt-generated test cases induce any timeout error for brute-force programs.
 2187 HardTests correctly identifies all 36 slow programs among the 163 candidate programs spanning 38
 2188 problems, each of which has at least two candidate implementations.

2189 **TrickCatcher** We adapt TrickCatcher to our setting by:

- 2190 • Selecting one oracle solution as the program under test (PUT) and following TrickCatcher's
 2191 approach to generate the program variants and the input generator
- 2192 • Retaining only variants that pass the public test cases (which serve as the "Existing Test
 2193 Suite" in TrickCatcher Figure 2).
- 2194 • Evaluating the generated tests on 209 LLM-generated programs, with precision and recall
 2195 calculated by comparing the TrickCatcher's test cases' judgment with the CodeForces Online
 2196 Judge Platform's judgment of the program correctness.

2197 As shown in Table 9b, HardTestGen performs better than TrickCatcher in both precision and recall.
 2198 The gap between the two is as big as 20.67 percentage points for precision and 28.38 percentage
 2199 points for recall.

2200 We attribute this improvement to our input validator and multiple types of tests, especially HackGen
 2201 tests.

2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227

2228 Table 10: Precision and recall of the test cases of TACO, CodeContests*, HARDTESTS, and abla-
 2229 tive baseline on AtCoder. HT-L refers to the results using only the test cases of LLMGen from
 2230 HARDTESTS. while HT-L+R+S refers to the results using only the test cases of LLMGen, RPGen,
 2231 and SPGen from HARDTESTS. The asterisk next to CodeContests indicates that this dataset does not
 2232 provide test cases for AtCoder problems. We implemented the method described in their paper to
 2233 generate the test cases.

	Difficulty 1		Difficulty 2		Difficulty 3		Difficulty 4+		Average	
	prec.	recall	prec.	recall	prec.	recall	prec.	recall	prec.	recall
<i>Qwen2.5-Coder-7B-Instruct</i>										
TACO	99.48	77.09	89.66	62.9	69.07	81.71	26	86.67	71.05	77.09
CodeContests*	95.24	93.93	64.12	67.74	52.5	76.83	13.64	100	56.38	84.63
HT-L	94.63	99.84	74.7	100	42.2	89.02	9.79	93.33	55.33	95.55
HT-L+R+S	97.85	99.35	97.64	100	74.23	87.8	56	93.33	81.43	95.12
HARDTESTS	98.15	98.95	97.58	97.58	86.75	87.8	58.33	93.33	85.2	94.42
<i>Qwen2.5-Coder-14B-Instruct</i>										
TACO	99.82	78	93.24	69	80.23	73.4	44.3	76.09	79.4	74.12
CodeContests*	95.32	94.11	71.28	69.5	67.26	80.85	28.85	97.83	65.68	85.57
HT-L	96.21	99.72	77.22	100	58.9	96.81	20.18	97.83	63.13	98.59
HT-L+R+S	97.31	99.02	94.79	100	87.5	96.81	68.18	97.83	86.95	98.42
HARDTESTS	97.99	99.02	96.95	95.5	93.33	96.81	69.84	95.65	89.53	96.75
<i>GPT-4o</i>										
TACO	100	73.06	99.75	67.3	92.74	74.08	63.9	72	89.1	71.61
CodeContests*	99.51	94.1	94.04	78.42	86.4	79.88	57.14	89.33	84.27	85.43
HT-L	99.42	99.47	94.31	99.32	86.39	99.42	48.86	99.67	82.25	99.47
HT-L+R+S	99.53	99.18	99.82	97.6	96.04	98.45	79.62	99	93.75	98.56
HARDTESTS	99.53	99.18	100	97.43	96.04	98.45	84.48	98	95.01	98.27

2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279

2280 Table 11: Precision and recall of the test cases of TACO, CodeContests, HARDTESTS, and ablative
 2281 baseline on Codeforces. HT-L refers to the results using only the test cases of LLMGen from
 2282 HARDTESTS, while HT-L+R+S refers to the results using only the test cases of LLMGen, RPGen,
 2283 and SPGen from HARDTESTS.

2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292

	Difficulty 1		Difficulty 2		Difficulty 3		Difficulty 4+		Average	
	prec.	recall	prec.	recall	prec.	recall	prec.	recall	prec.	recall
<i>Qwen2.5-Coder-7B-Instruct</i>										
TACO	89.64	86.13	71.07	92.91	31.06	39.47	9.82	100	50.4	79.63
CodeContests	85.74	89.24	63.73	97.64	23.8	47.54	6.67	100	44.99	83.61
HT-L	74.03	95.45	34.9	98.82	16.12	55.61	5.24	100	32.57	87.47
HT-L+R+S	87.61	95.45	40.7	98.82	45.2	55.61	33.75	100	51.82	87.47
HARDTESTS	87.61	95.45	93.3	98.82	48.38	55.61	50	100	69.82	87.47
<i>Qwen2.5-Coder-14B-Instruct</i>										
TACO	80.67	87.45	83.88	81.13	53.87	73.88	25.76	100	61.05	85.62
CodeContests	79.7	95.59	79.29	86.16	46.49	91.84	18.68	100	56.04	93.4
HT-L	74.43	98.64	48.21	100	40.57	82.04	13.45	100	44.17	95.17
HT-L+R+S	80.08	98.64	57.65	100	59.37	80.41	46.58	90.8	60.92	92.46
HARDTESTS	83.19	98.64	88.44	100	67.47	80.41	46.58	90.8	71.42	92.46
<i>GPT-4o</i>										
TACO	99.58	80.02	95.76	81.72	89.64	74.83	62.64	78.17	86.91	78.69
CodeContests	99.47	94.8	95.25	89.89	86.83	87.08	58.28	94.31	84.96	91.52
HT-L	98.45	97.28	94.48	98.71	80.14	89.36	45.49	100	79.64	96.34
HT-L+R+S	98.81	98.88	95.46	98.71	89.15	88.5	73.01	96.2	89.11	95.57
HARDTESTS	98.8	98.2	95.66	98.71	92.73	88.5	79.82	94.31	91.75	94.93
<i>Human Submission</i>										
TACO	96.28	88.89	91.48	81.59	75.9	78.84	62.23	73.77	81.47	80.77
CodeContests	94.15	90.06	87.47	89.99	73.11	85.1	56.8	79.88	77.88	86.26
HT-L	83.5	95.57	69.73	95.97	54.7	93.59	42.82	91.72	62.69	94.21
HT-L+R+S	91.73	94.22	83.79	95.17	70.95	93.89	60.81	89.35	76.82	93.16
HARDTESTS	93.29	94.13	85.15	95.05	73.71	93.59	64.16	89.35	79.08	93.03

2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321