
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARDTESTGEN: A HIGH-QUALITY RL VERIFIER GEN-
ERATION PIPELINE FOR LLM ALGORITHIMIC CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Verifiers provide important reward signals for reinforcement learning of large lan-
guage models (LLMs). However, it is challenging to develop or create reliable
verifiers, especially for code generation tasks. A well-disguised wrong solution pro-
gram may only be detected by carefully human-written edge cases that are difficult
to synthesize automatically. To address this issue, we propose HARDTESTGEN,
an approach to synthesize high-quality test cases for algorithmic coding problems.
We curate a comprehensive algorithmic programming dataset HARDTESTS with
26.6k problems and high-quality synthetic tests. Compared with existing tests,
HARDTESTGEN tests demonstrate significantly higher accuracy in verifying LLM-
generated code (+11.22 percentage points in precision, the percentage of actually
correct code within the predicted correct ones). We also show that downstream post-
training — including rejection sampling and reinforcement learning (RL) — using
HARDTESTS verifier results in improved performance of LLM code generation.

1 INTRODUCTION

Post-training large language models (LLMs) with outcome verifiers1 (Guo et al., 2025; Kimi Team
et al., 2025) can greatly improve their reasoning ability. LLMs trained with these techniques
are approaching the level of the best humans on challenging problems in math and programming
olympiads (OpenAI et al., 2025). To properly assign outcome rewards in post-training, reliable
verifiers are needed for both reinforcement learning and rejection sampling.

For coding, verifiers are often test cases (Le et al., 2022; Singh et al., 2023) that tell right algorithms
from wrong ones. Algorithmic coding requires efficient solutions with advanced data structures and
algorithms. The ability to solve these problems is essential for efficiency-critical domains such as
high-performance computing, but its complex nature poses challenges for obtaining accurate verifiers
and LLM reinforcement learning. A bad choice of algorithm can lead to a well-disguised wrong
solution, which may easily pass random tests but still break on human-written special cases. Consider
this example problem: for a rooted tree with n nodes and weighted edges, calculate the sum of path
lengths from every node to the root node. A naive algorithm that enumerates all such paths and sums
edge by edge has a time complexity of Θ(nd), where d is the depth of the tree. This can be decently
efficient in many cases, as E[d] = Θ(logn) for randomly generated trees (Devroye et al., 2012). For
such an algorithm to time out, the test case needs to be a valid tree that is large enough (so that n is
large) and special enough (so that d is large). A chain (each non-leaf node has exactly one child),
whose depth d = n can cause the algorithm to be as slow as Θ(n2). This example demonstrates the
need for valid, comprehensive tests to accurately verify algorithimc coding and assign rewards.

Generating valid and comprehensive tests is hard. Existing test synthesis methods, such as CodeT
(Chen et al., 2023) and TACO (Li et al., 2023) rely on LLMs to directly write test inputs. Consequently,
existing datasets of coding problems and associated test cases are less than comprehensive. 60%
of the programs that pass test cases in APPS (Hendrycks et al., 2021) are in fact, wrong. 46% of
the programs that pass test cases in CodeContests (Li et al., 2022) are semantically correct, but too
inefficient to pass human-written tests. More importantly, scraping human-written tests is unfeasible
— according to our study, for most of the problems, human-written test cases are proprietary and
impossible to scrape, demanding synthesized tests.

1In this paper, “verifier” refers to rule-based systems that attempt to check the correctness of problem
solutions. “Verifiers” do not necessarily guarantee correctness.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To alleviate these issues, we propose HARDTESTGEN, an LLM-based test synthesis pipeline. Our
main insights are 1) test cases’ validity is better preserved when generated from LLM-produced
programs rather than directly from the LLMs themselves, and 2) each test generator has different
hypotheses about the programs under test and creates tests from a different distribution. With
these insights, HARDTESTGEN establishes a unified pipeline that synthesizes four types of test
inputs. Among them, LLMGen is based on direct LLM generation, while the other three types —
RPGen, SPGen, and HackGen — are produced by LLM-written generator programs. For outputs,
HARDTESTGEN relies on multiple human-written oracle programs to compute expected results and
applies consensus filtering to eliminate invalid cases. Such oracle programs are available for the vast
majority of problems in online coding competitions.

AtCoder
Codeforces

Atcoder
Codeforces (Hard)

0

20

40

60

80

100
Precision

AtCoder
Codeforces

Atcoder
Codeforces (Hard)

Recall
TACO CodeContests HardTests

Figure 1: HARDTESTS test cases are significantly
better than the baselines. The large improvement
in precision indicates that our tests greatly reduce
false positives and are indeed harder.

With HARDTESTGEN, we curate HARDTESTS,
a comprehensive dataset for coding competi-
tions with 26.6k problems and high-quality test
cases. As shown in Figure 1, compared to
existing test synthesizers, HARDTESTS tests
are more reliable in terms of precision and re-
call when evaluating programs generated by
Qwen2.5-Coder-7B (Yang et al., 2024). The
gap in precision can be up to 40 percentage
points for harder problems. Higher reliability of
verification makes HARDTESTS the ideal play-
ground for post-training research in the coding
domain. To further demonstrate the benefits of
high-quality tests, we conduct post-training ex-

periments with HARDTESTS and baseline tests. Our experiments in 2 different scenarios show that
test quality matters significantly for rejection sampling and reinforcement learning. Higher-quality
tests can lead to improvements in downstream performance.

In summary, this work provides:

• HARDTESTGEN, an LLM-based test synthesis pipeline that generates high-quality test cases
for coding problems, improving precision by 11.23 percentage points and recall by 11.03
percentage points on average.

• HARDTESTS, a comprehensive problem set for competition-level code generation, with
26.6k problems, each with high-quality test cases generated by HARDTESTGEN.

• Empirical analyses on how test quality affects LLM post-training. We show that test quality
is of great importance for rejection sampling and reinforcement learning.

2 RELATED WORK

RLVR. Reinforcement learning has shown great potential in improving LLM reasoning abilities
in various domains, such as math (Guo et al., 2025; Zeng et al., 2025b; Ren et al., 2025) and
coding (OpenAI, 2025; Liu & Zhang, 2025; Luo et al.). The resulting long-reasoning LLMs, such
as OpenAI-o3 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), largely outperform short-
reasoning LLMs through simple RL training to improve outcome-based reward, i.e., whether the
model-generated code solution passes all test cases. Although some previous works have explored
heuristic rules for selecting training data to improve RL performance (Ye et al., 2025; Wang et al.,
2025b; Li et al., 2025) or reward design (Hou et al., 2025; Kimi Team et al., 2025; Costello et al.,
2025), the impact of test case quality on coding LLMs during RL training remains underexplored. In
this work, we show that high-quality test cases, i.e., those better at detecting subtle bugs in code, can
largely improve coding LLM performance after RL training.

LLM-based test synthesis. Test cases are crucial in evaluating the functional correctness and
performance of LLM-generated code. Benchmarks such as HumanEval (Chen et al., 2021), and
APPS (Hendrycks et al., 2021) provide hand-written test cases that serve as a proxy for code
correctness. However, such human-authored test cases are often only publicly available for a limited
set of problems. CodeContests (Li et al., 2022) generates additional test cases by mutating existing
crawled inputs. Several efforts leverage LLMs by generating test inputs with LLMs and outputs
with reference implementation (Li et al., 2023), providing the reference implementation to LLMs to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

synthesize seed input (Liu et al., 2023), synthesizing test inputs and (pseudo)-oracle programs for
test outputs (Chen et al., 2023; Zhang et al., 2023), or even generating coding questions, reference
solutions, and tests all with LLMs (Xu et al., 2025; Zeng et al., 2025a). STGen (Peng et al., 2025)
generates stressful test cases for evaluating the time efficiency of code. Although existing LLM test
synthesis methods prove to be useful in many scenarios, their quality is far from perfect. Concurrently
with our work, rStar-Coder (Liu et al., 2025) and HF-Codeforces (Penedo et al., 2025) also study
more reliable test synthesis in the competition context. Compared to them, our work highlights a
thorough analysis of test quality and a unique set of post-training experiments that demonstrate the
downstream effects of high-quality tests. Concurrently with our work, CodeContests+ (Wang et al.,
2025c) and Klear-CodeTest (Fu et al., 2025) also explore test-case generation for code reinforcement
learning for 12k and 28k problems and study the impact on RL training, respectively. Compared to
their work, we also discuss the implications in other training scenarios. We present a more thorough
discussion of early test generation approaches, LLM-based test synthesis in the software testing field,
quality issues in LLM synthetic tests, and their implication in Appendix A.1.

Datasets for competition code generation. Existing datasets for competition code generation focus
on scaling the number of problems and CoTs. Luo et al. filters a high-quality 24k problem set of
TACO, LiveCodeBench, and other contest programming problems. CodeForces-CoTs, the dataset
of 10k Codeforces problems created by Penedo et al. (2025), contains 100k reasoning traces and
solutions generated by DeepSeek R1. OpenCodeReasoning (Ahmad et al., 2025) also compiles a
dataset of 28k problems, generates 735k reasoning traces, and filters them for syntactic correctness.
While these efforts have shown that better models can be trained with more data and more trajectories
from teacher models, they are facing a “code verifiability crisis”, as described by Open-R1 (Face,
2025), and programs that pass test cases in these problem sets are not necessarily correct. In our paper,
we curate HARDTESTS, the large-scale algorithmic coding problem set with 26.6k problems. More
importantly, we push the scaling of training data towards higher quality of test cases and evaluate
how test quality affects model training.

3 THE HARDTESTGEN METHOD

3.1 OVERVIEW

We aim to automatically synthesize test cases for algorithmic coding problems that can be used as
verifying rewards in code LLM post-training (e.g., reinforcement learning). Given a natural language
described algorithmic coding problem x ∈ X (X indicates all possible problems) and a set of correct
solution programs {y∗1 , y∗2 , . . . , y∗k}, denoted as “oracle programs”, the task of test synthesis is to
automatically generate a set of test cases to verify a candidate program y’s functional correctness and
efficiency. Each set of test cases consists of several inputs, their ground-truth outputs, and an output
judging function, which checks the equivalence of candidate outputs and ground-truth outputs. For
most cases, the output judging function is a simple string comparison (which is the default). In some
rarer cases, we need a special judging function (e.g., set comparison).

We collect a large-scale dataset of algorithmic coding problems from 13 coding competition platforms
(e.g., Codeforces). Most of these problems (68%) are accompanied by one or more oracle programs.
We filter out the problems without any oracle programs, and those do not read the input from and
write the output to the standard I/O.

Notice that we do not often have access to the golden set of test cases prepared by the creators of these
coding problems. Therefore, we cannot directly compare our synthesized test cases against the golden
ones. However, we can submit the LLM-generated or human-written candidate program to the source
problem’s online judge platform to obtain a ground-truth verdict of the solutions’ correctness and
efficiency. These verdicts can be used to check the correctness of synthesized tests, but they cannot
directly be used as reward signals in reinforcement learning since it is extremely time-consuming.

The purpose of our synthetic test cases is to verify the correctness and efficiency of a generated
candidate program so that only the programs implementing the right algorithms and data structures
would pass all tests. The key challenges are: 1) how can we ensure the input data of a test case is
valid, in terms of both content and format? 2) how can we ensure the test case set are comprehensive,
covering corner cases and computationally costly ones? 3) how can we obtain ground-truth output
results of the problems?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

LLM

Input

Generators

LLM

Generate

RPGen/SPGen/HackGen

LLMGen

Filtering

?

Problem

Spec.

Input

Validator

LLM

Output Judging

Function

Generate

Oracle

Program 1

Test

Outputs 1

Oracle

Program 2

Test

Outputs 2

Oracle

Program N

Test

Outputs N

Valid Test

Inputs
Valid Test

Outputs
Consensus

Filtering

Test

Inputs

Test

Inputs

… …

Figure 2: The procedure of generating test inputs and test outputs in HARDTESTGEN.

3.2 SYNTHESIZING TEST INPUTS FOR ALGORITHMIC CODING PROBLEMS

As illustrated in Figure 2, our HARDTESTGEN includes four techniques to synthesize test case
input data: 1) LLMGen — direct LLM generation, 2) RPGen — range-based programmed test
input generation where the synthesizer program itself is generated by LLM, 3) SPGen — stratified
programmed test input generation according to output value categories, and 4) HackGen: hacking
test input generation (i.e., hard cases or edge cases) through specially designed programs.

LLMGen: direct LLM generation. We prompt an LLM to directly generate nL = 10 inputs by
imitating the sample test cases provided in the problem specification. This type of input is typically
small in scale, making it easy to generate and understand, and allowing for quick testing of the
candidate program’s functional correctness. An example prompt snippet is:
Please generate 10 valid inputs according to the problem stated below. You may
follow the examples given in the problem description and generate variations that
are different. Please respect the constraints and data types in the description.

RPGen: range-based programmed test input synthesis using LLM-generated programs. It is
hard for an LLM to generate large-scale, valid inputs. However, it is possible for LLM to identify
input data types and ranges. Based on this observation, we prompt an LLM to generate a Python
function with no arguments that returns random input data according to the problem’s data type,
range, and inherent constraints (e.g., x-y coordinates forming a convex polygon). We execute the
generator function nR = 20 times to get random test case inputs. An example prompt snippet is:
Given the problem described below, please identify the input data types (e.g.,
int, string), ranges, and data constraints (e.g., x-y coordinates forming a
convex polygon or number of items which should be nonnegative), and then generate
a python function “gen_range_based_input” which will return one random input data
for the problem with respecting to these types, ranges, and constraints.

SPGen: stratified programmed test input synthesis according to output value categories. Coding
problems may expect a categorical output value (e.g., Yes or No). Random generation may produce
imbalanced test cases — the test cases could always be associated with Yes as ground-truth output —
that would not be sufficient to fully verify a candidate solution’s correctness. To mitigate such an
imbalance, we first prompt the LLM to identify all the output value categories of a problem, and then,
for each output value category, we instruct the LLM to write an input-generating function that only
produces inputs associated with such an output category. We execute each input-generating function
nS = 10 times to obtain a total of mS × nS inputs, where mS is the number of categories inferred
from the problem by the LLM. An example prompt snippet is:
Given the problem described below, please identify how many categories there are
in the output values, denoted as m_S. For each category, please generate one
function “gen_stratified_input_for_category<category_label>” in Python, which
can produce a random input data that will output one value in the given category.
Please replace <category_label> with the inferred output value categories.

Note that SPGen can be considered a hierarchical case of RPGen, because we conduct the RPGen
process for each output category. Therefore, these two input types are mutually exclusive. For
problems that require SPGen, we do not apply RPGen.

HackGen: hacking test input generation. There are often candidate programs that are only correct
for certain input data — there might be neglected corner scenarios or computationally inefficient
for worst-case scenarios. A hacking test case contains the input that will cause a flawed candidate
program to either produce an incorrect result or to exceed the running time limit. Previous methods
could not generate hacking test cases explicitly. For a given problem, we first prompt the LLM to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

describe multiple flawed candidate programs using brute-force or some simple classic algorithms
such as depth-first search. We then prompt the LLM to think about scenarios where these programs
will fail. Then, for each scenario, we prompt the LLM to design an input-generating function to
generate inputs corresponding to that scenario. We execute each function nH = 10 times and obtain
mH × nH inputs, where mH is the number of failing scenarios. An example prompt snippet is:

Given the problem described below, please first describe several flawed solution
programs using brute-force enumeration or a classic algorithm (e.g., depth-first
search), by explicitly ignoring some constraints, corner conditions, or data
range. Secondly, please think about scenarios where these programs will fail or
exceed the time limit (TLE). Thirdly, for each scenario, generate one function
“gen_hacking_input_for_<scenario_type>” which will produce possibly random input
data corresponding to such a failing scenario.

3.3 VALIDATING TEST CASE INPUT DATA USING SYNTHESIZED PROGRAMS

The above synthesized test inputs are not guaranteed to be valid. Instead of directly using LLMs
to judge the validity of these test case inputs, we prompt an LLM to generate a function in Python,
which takes a generated test case input string as an argument and returns a boolean answer indicating
the test input’s validity. We specifically instruct the model to check the value types, range, numerical
relations, and logical constraints. An example prompt snippet is:

Given the problem described below, please identify the value type and range,
and list all constraints on the input data. Then please generate a Python
function “validate_input(input_str: str) -> bool” that checks the input against
all constraints and returns a boolean indicating whether the input is valid
according to the problem description.

In our implementation, HARDTESTGEN includes the generated input validator and an oracle solution
program together with the four techniques’ prompts to generate test inputs, as we find that doing so
increases the LLM’s likelihood of synthesizing valid inputs and input generators. After generating
initial test inputs, we apply the generated validator on these test inputs to eliminate all invalid ones.

3.4 COMPUTING EXPECTED OUTPUTS AND FILTERING TEST CASES

HARDTESTGEN generates test outputs using oracle solution programs and applies consensus filtering
to retain only reliable test cases. After synthesizing the inputs, we collect up to noracle = 8 human-
written oracle programs for each problem, prioritizing those from more reliable sources. Each oracle
program is executed on all synthesized inputs to produce outputs. If two oracle programs generate
outputs that are equivalent on more than 90% of the inputs (i.e., semantically the same rather than
strictly identical), we regard this agreement as valid. The synthesized inputs, together with these
consensus-equivalent outputs, form the final test cases for this problem.

For most problems, we use direct string comparison to check the equivalence between two programs’
outputs. However, for certain problems, this is insufficient. For example, expected output may be a
set, where element order does not matter, or a sequence of operations that achieves the desired effect.
For these problems, we prompt the LLM to generate a special output judging function, which takes
the test input and two outputs as arguments and returns a Boolean indicating whether the outputs are
equivalent. In our dataset, 25.4% of the problems require such a special output judging function. In
subsequent training and testing processes, this judging function will continue to be used to determine
whether the candidate output and the reference output match. An example prompt snippet is:

Given the problem described below, please generate an output judging function
in Python to compare the equivalence of two output results. The function takes
the input (can be a list of numbers or strings) and two results as arguments,
and returns a Boolean value. For example, you should use set comparison when
the order of results does not matter.

In our dataset, we use GPT-4o to generate all of the above contents if needed. On average, the OpenAI
API cost for generating test cases (including inputs and a possible special output judge function)
for each problem is 0.23 USD. For all functions that need to be generated, we include two to three
carefully crafted examples in the prompts. The implementation details of HARDTESTGEN (e.g.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

prompts), the number of generated test cases, the failure rate, and reasons for failure, as well as two
concrete examples, are provided in Appendix A.2.

3.5 HARDTESTS: 26.6K PROBLEMS WITH HIGH-QUALITY TEST CASES

We collect algorithmic coding problems and their oracle programs from five direct data sources:
Codeforces, AtCoder, Luogu, CodeContests (Li et al., 2022), and TACO (Li et al., 2023). In total,
these problems originate from 13 online judge platforms. The detailed statistics of these problems and
their oracle programs are in Appendix A.3. We then apply HARDTESTGEN to synthesize test cases
for them. After validation and filtering, we develop HARDTESTS, a large-scale dataset comprising
26.6k problems with high-quality test cases.

Cleaning, deduplication, and decontamination. For problems with only non-English descriptions,
we translated them into English using GPT-4o. To handle overlapping content among the five
direct data sources, we filtered out duplicated problems using problem IDs and n-gram overlaps
in description. For correct programs, we retained all available versions and annotated them with
their respective sources. We also conduct decontamination by removing the problems that are in
LiveCodeBench (Jain et al., 2025b) from our dataset.

Labelling problem difficulty. In the experiments presented in Section 4, we use the difficulty labels
from Luogu, as it provides consistent and fine-grained labels for problems from both AtCoder and
Codeforces. Luogu’s difficulty labels are divided into seven levels, with the first level representing
beginner-level problems and the seventh level corresponding to problems at the level of national
Informatics Olympiad competitions.

4 DIRECT EVALUATION OF TEST CASE QUALITY

4.1 EVALUATION CRITERIA

We regard the testing of candidate programs as a binary classification process: a program is classified
as positive if it passes all test cases, and negative otherwise. To directly assess the quality of test
cases, we evaluate how good they are as binary classifiers. Given a problem, we categorize the
candidate programs by their actual correctness (from oracle test cases or online judge platforms) and
their predicted correctness (from our generated tests). When a program is both actually correct and
predicted as correct, it’s a true positive (TP). When a program is actually wrong but is predicted as
correct, it’s a false positive (FP). Similarly, we can define true negatives (TN) and false negatives
(FN). With these categories defined, we use precision and recall to measure test quality:

Precision =
TP

TP + FP
=

of correct programs that are also predicted as correct by tests
of programs that are predicted as correct by the tests

,

Recall =
TP

TP + FN
=

of correct programs that are also predicted as correct by tests
of correct programs

.

Intuitively, a higher precision implies “harder tests” because fewer incorrect programs pass, while
a higher recall implies “more correct tests” because fewer correct programs fail the tests.

4.2 EVALUATION PROTOCOL

To evaluate the accuracy of rewards that our tests can give to model training, we evaluate the precision
and recall over candidate programs generated by LLMs and written by humans on subsets of problems
in HARDTESTS. We compare HARDTESTS with tests from CodeContests (Li et al., 2022) and TACO
(Li et al., 2023), and we also conduct ablation studies by only using a subset of the LLMGen, RPGen,
and SPGen to demonstrate the necessity for all test types in HARDTESTS. More details about the
evaluation protocol can be found in Appendix A.5.

To compare our tests with other synthesizers, we choose a test set of 1253 problems that exist in both
HARDTESTS and the baseline datasets whenever possible. For problems from Codeforces, we select
600 problems that exist in HARDTESTS, CodeContests, and TACO. For problems from AtCoder, we
select 653 problems that exist in both HARDTESTS and TACO. Because the CodeContests dataset

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

contains very few problems originating from AtCoder and the authors did not release the code used
for test case generation, we re-implemented the procedure described in their paper to construct the
corresponding test cases. In total, this gives 1253 problems in the combined evaluation set. In
addition, we make use of the MatrixStudio/Codeforces-Python-Submissions dataset, which
provides a large number of human-written submissions along with their official verdicts. Since not
all problems in the combined evaluation set are covered in this dataset, we randomly sample 800
Codeforces problems from it for our human-submission experiments.

We evaluate tests on candidate programs generated by LLMs and written by humans. For the
1253-problem combined evaluation set, we generate candidate programs from three LLMs: Qwen2.5-
Coder-7B-Instruct (Yang et al., 2024), Qwen2.5-Coder-14B-Instruct, and GPT-4o. For each problem,
we sample 10 programs from each LLM with a temperature of 0.7 and a top-p of 0.95. For human-
written programs, we rely on the 800 sampled Codeforces problems from the MatrixStudio dataset
and randomly select 10 submissions per problem.

We need ground-truth labels to compute precision and recall. For AtCoder, we run candidate programs
on official tests that have been previously made available. For Codeforces, LLM-generated programs
are submitted to the online judge platform to obtain official verdicts, while human submissions
directly come with official verdicts from the MatrixStudio dataset. We then use the synthetic test
cases to classify the correctness of these programs and compare the results against the ground-truth
labels, thereby evaluating test case quality.

Ablative Baselines. We further evaluate HARDTESTGEN under restricted test settings. In
HARDTESTS, there are 4 types of test cases: LLMGen, RPGen, SPGen, and HackGen. Because
RPGen and SPGen are mutually exclusive (each problem contains exactly one of them), we cannot
isolate one of them in ablation. Therefore, we report two meaningful ablation settings: 1) only
LLMGen, which very much resembles many existing test synthesis methods, such as KodCoder (Xu
et al., 2025), as all the inputs are directly generated by LLMs, denoted as “HT–L” in Table 1, and 2)
LLMGen + RPGen + SPGen, denoted as “HT–L+R+S” in Table 1.

4.3 RESULTS

Using test cases from TACO, CodeContests, and HARDTESTS, we evaluate the predicted correctness
of 1) programs generated by three LLMs on the combined set of 1253 problems from AtCoder and
Codeforces, and 2) programs written by human programmers on 800 Codeforces problems. By
comparing the predicted correctness with the ground-truth correctness of programs, we compute the
precision and recall of tests. The overall results are shown in Table 1. In Appendix A.4, we also
report results separately for the AtCoder subset and the Codeforces subset of the combined evaluation
set. We present qualitative analyses of synthetic tests in Appendix A.6.

We find that HARDTESTS significantly outperforms TACO and CodeContests in terms of both
precision and recall under most evaluation settings. Moreover, this advantage becomes more
pronounced as problem difficulty increases. For example, for the Qwen2.5-Coder-7B-Instruct model
on problems with difficulty level 4+, TACO achieves a precision of 17.83, whereas HARDTESTS
achieves a precision of 55.88, more than 3x that of TACO. This implies that using HARDTESTS during
RL training would yield more true positive rewards and fewer false positive rewards. Furthermore, we
observe the precision advantage of HARDTESTS becomes more pronounced as the source of programs
becomes less “intelligent” (ranging from human-written to 7B LLM-generated). We attribute this to
the fact that less skilled programmers are more likely to produce functionally correct but inefficient
programs. For instance, among incorrect human-written programs, 14.9% are due to TLE (Time
Limit Exceeded), whereas among the incorrect programs written by the three LLMs, 30.0% are due
to TLE. Consequently, the larger and more diverse test cases in HARDTESTS are more likely to catch
inefficient programs than the small-scale test cases in TACO and CodeContests.

Compared with the ablative baselines in Table 1, HARDTESTS that includes RPGen, SPGen, and
HackGen almost consistently leads to a precision improvement ranging from 0.2% to 40%, while the
decrease in recall is always within 1%. This demonstrates the necessity for having all types of tests.

For Table 1, we use GPT-4o to generate test cases, but we also discuss the use of other LLMs for test
case generation in Appendix A.9. Our results suggest that HARDTESTGEN can also perform well
with recent open-weight LLMs, demonstrating its generalizability.

7

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Precision and recall of the test cases of TACO, CodeContests, HARDTESTS, and ablative
baseline on the combined dataset of problems from AtCoder and Codeforces. HT–L refers to the
results using only the test cases of LLMGen from HARDTESTS. while HT–L+R+S refers to the
results using only the test cases of LLMGen, RPGen, and SPGen from HARDTESTS.

Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4+ Average
prec. recall prec. recall prec. recall prec. recall prec. recall

Qwen2.5-Coder-7B-Instruct

TACO 96.41 79.5 75.96 80.92 53.81 65.47 17.83 90 61 78.97
CodeContests 92.6 92.67 63.86 85.69 39.3 65.57 10.81 100 51.64 85.98

HT–L 88.28 98.66 44.42 99.29 29.02 76.18 7.97 95 42.42 92.28
HT–L+R+S 94.97 98.31 53.18 99.29 62.8 75.43 47.73 95 64.67 92.01
HARDTESTS 95.17 98.01 94.95 98.32 70.83 75.43 55.88 95 79.21 91.69

Qwen2.5-Coder-14B-Instruct

TACO 92.75 80.8 86.78 76.64 66.99 73.6 34.07 84.52 70.15 78.89
CodeContests 90.03 94.55 76.53 80 56.35 85.27 24.14 98.59 61.76 89.6

HT–L 88.58 99.4 55.99 100 50.6 90.87 17.12 98.59 53.07 97.22
HT–L+R+S 91.49 98.91 67.42 100 74.79 90.21 59 95.34 73.18 96.12
HARDTESTS 93.09 98.91 91.32 98.34 82.05 90.21 59.68 93.93 81.54 95.35

GPT-4o

TACO 99.81 76.02 97 76.46 90.86 74.53 63.31 74.76 87.75 75.44
CodeContests 99.49 94.4 94.84 85.71 86.66 84.17 57.66 91.56 84.66 88.96

HT–L 99.01 98.54 94.41 98.93 82.72 93.43 47.29 99.82 80.86 97.68
HT–L+R+S 99.22 99.05 97 98.31 91.99 92.53 76.57 97.75 91.2 96.91
HARDTESTS 99.22 98.76 97.18 98.24 94.12 92.53 82.37 96.35 93.22 96.47

Human Submission

TACO 96.28 88.89 91.48 81.59 75.9 78.84 62.23 73.77 81.47 80.77
CodeContests 94.15 90.06 87.47 89.99 73.11 85.1 56.8 79.88 77.88 86.26

HT–L 83.5 95.57 69.73 95.97 54.7 93.59 42.82 91.72 62.69 94.21
HT–L+R+S 91.73 94.22 83.79 95.17 70.95 93.89 60.81 89.35 76.82 93.16
HARDTESTS 93.29 94.13 85.15 95.05 73.71 93.59 64.16 89.35 79.08 93.03

5 DOWNSTREAM EFFECTS OF TEST CASE QUALITY IN LLM POST-TRAINING

In this section, we aim to answer two questions with HARDTESTS: 1) when does verifier/test quality
matter, and 2) how much does it matter in post-training? We run experiments in two different
post-training scenarios: rejection sampling, and reinforcement learning. We present the results below
and show that verifier quality impacts these two scenarios significantly.

5.1 EXPERIMENT SETUP

Rejection sampling. Fine-tuning a model with its own reasoning trajectories can also improve its
reasoning ability (Zelikman et al., 2022). Hence, determining which trajectories to use is a critical
issue. To examine the effects of test quality, we sampled 5 traces of Qwen3-4B and used the tests
generated by HARDTESTGEN for filtering. We selected 4989 questions where there is at least one
Qwen3-4B generated program that passes the tests and at least one that fails the tests. We create 3
datasets for rejection sampling, each containing one trajectory per question. The bad 5k randomly
samples one incorrect trajectory for each question. The good 5k randomly samples one correct
trajectory. The random 5k randomly samples one trajectory, regardless of its correctness, for each
question. We further fine-tune Qwen3-4B with these 3 datasets and compare the performance of the
resulting models. All our fine-tuning experiments were done with Llama-factory (Zheng et al., 2024).

Reinforcement learning. Verifier feedback is an option for distillation, but it is a must for reinforce-
ment learning. To investigate how verifier quality affects RL, we train Qwen3-4B with RL using the
same problem set, the identical training setup, and different test cases. We select a problem set with
∼5k problems that exist in both HARDTESTS and TACO for training. We use a modification of veRL

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: pass@k (%) LLMs after re-
jection sampling based on Qwen3-4B on
LiveCodeBench-105.

pass@1 pass@10

Qwen3-4B 38.48 56.19
Qwen3-4B (with bad 5k) 34.00 54.92
Qwen3-4B (with random 5k) 32.75 57.14
Qwen3-4B (with good 5k) 36.00 60.00

Table 3: pass@k (%) for LLMs RL-trained
from Qwen3-4B on LiveCodeBench-105.

pass@1 pass@10

Qwen3-4B 38.48 56.19
Qwen3-4B-TACO 36.95 57.14
Qwen3-4B-HT 39.42 64.76

(Sheng et al., 2024) inspired by Code-R1 (Liu & Zhang, 2025) for training with GRPO (Shao et al.,
2024). When a program passes all tests, it gets a reward of 1, otherwise, it gets a reward of 0. We
compare different verifiers by looking at the final performance and the validation curve.

Evaluation protocol. We use LiveCodeBench (Jain et al., 2025b) version 5 to evaluate the model
performance. Since all the programs we use for tuning are in C++, we build an evaluation pipeline for
evaluating C++ programs for LiveCodeBench and select a 105-problem subset where all problems
require reading from and writing to standard I/O. We name this subset “LiveCodeBench-105”. Details
about our training and evaluation procedure can be found in Appendix A.7, including the problems
and hyperparameters we use for training and the sampling parameters we use for evaluation.

5.2 RESULTS

Rejection sampling performance is highly dependent on sample quality and needs a good verifier.
We evaluated variants of Qwen3-4B models trained with rejection sampling from different 5k subsets
on LiveCodeBench-105 and present the results in Table 2. Model trained from incorrect samples
identified by HARDTESTGEN’s tests drops more significantly in pass@k. Rejection sampling with
randomly selected data could harm pass@1 even more, despite the slight improvements in pass@10.
In contrast, using a 5k subset verified by HARDTESTGEN’s test cases results in a smaller drop
in pass@1 and a notable gain in pass@5 and pass@10, suggesting that verifiers are important to
rejection sampling.

50 100 150 200 250 300
Step

0.05
0.10
0.15
0.20
0.25
0.30

RL
 V

al
id

at
io

n
Re

wa
rd

RL with HardTests (ours)
RL with TACO

Figure 3: RL Validation Rewards Over Time. Reward
from HARDTESTS makes the training better.

Test quality matters significantly for re-
inforcement learning. As shown in Fig-
ure 3, the validation reward curve for
HARDTESTS during RL training is gen-
erally higher than that for TACO. This
indicates that for the same problems,
HARDTESTS is giving better rewards. To
evaluate on LiveCodeBench-105, we run
the best checkpoints (according to valid re-
ward) of both training jobs within 100 steps.
As reported in Table 3, TACO tests hurt
the model’s overall performance, while
HARDTESTS improves the model’s overall
performance.

6 CONCLUSION AND FUTURE WORK

We present HARDTESTGEN, an LLM-based test synthesis pipeline, which is used to create
HARDTESTS, a algorithmic coding dataset with 26.6k problems and significantly higher-quality tests.
We examine when and how much test quality matters in LLM post-training, showing that harder
tests generated by HARDTESTGEN can indeed help LLM post-training in many scenarios. While
HARDTESTGEN assumes the existence of oracle solutions, we briefly discuss an initial idea for
synthesizing tests without oracles in Appendix A.8. We envision two future directions: 1) to develop
better methods for synthesizing tests without an oracle, and 2) to apply HARDTESTGEN to both
stateless and stateful real-world coding problems. It is worth noting that stateful computations can
often be transformed into equivalent stateless representations using design patterns such as monads
(Wadler, 1995).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Section 3 provides an overview of HARDTESTGEN. The implementation details of HARDTESTGEN
(e.g., prompts), the number of generated test cases, the failure rate and reasons for failure, as well as
two concrete examples, are provided in Appendix A.2. Furthermore, the statistics of the problems
and their oracle solution programs are in Appendix A.3. We also provide the code used for generating
all the test cases in HARDTESTS in the Supplementary Material.

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943.

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-bench
verified: Can llms generate tests for issues before they get resolved?, 2024. URL https://arxiv.
org/abs/2412.02883.

Juan Altmayer Pizzorno and Emery D Berger. Coverup: Effective high coverage test generation for
python. Proceedings of the ACM on Software Engineering, 2(FSE):2897–2919, 2025.

Xia Cai and Michael R Lyu. The effect of code coverage on fault detection under different testing
profiles. In Proceedings of the 1st International Workshop on Advances in Model-based Testing,
pp. 1–7, 2005.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. In ICLR, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Caia Costello, Simon Guo, Anna Goldie, and Azalia Mirhoseini. Think, prune, train, improve:
Scaling reasoning without scaling models. arXiv preprint arXiv: 2504.18116, 2025.

Luc Devroye, Omar Fawzi, and Nicolas Fraiman. Depth properties of scaled attachment random
recursive trees. Random Structures & Algorithms, 41(1):66–98, 2012.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. {AFL++}: Combining incremen-
tal steps of fuzzing research. In 14th USENIX workshop on offensive technologies (WOOT 20),
2020.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, pp. 416–419, New York, NY, USA, 2011.
Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.2025179.
URL https://doi.org/10.1145/2025113.2025179.

Jia Fu, Xinyu Yang, Hongzhi Zhang, Yahui Liu, Jingyuan Zhang, Qi Wang, Fuzheng Zhang, and
Guorui Zhou. Klear-codetest: Scalable test case generation for code reinforcement learning. arXiv
preprint arXiv:2508.05710, 2025.

10

https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2107.03374
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://doi.org/10.1145/2025113.2025179

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv: 2504.01296, 2025.

Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
and test completion benchmark, 2025a. URL https://arxiv.org/abs/2410.00752.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: Turning
any github repository into a programming agent environment. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 21196–21224. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/jain24c.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025b. URL https://openreview.net/forum?id=chfJJYC3iL.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. arXiv preprint arXiv:
2502.11886, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Yanchi liu, Xujiang Zhao, Ziniu Hu, Haifeng
Chen, and Wei Cheng. Scattered forest search: Smarter code space exploration with llms, 2025.
URL https://arxiv.org/abs/2411.05010.

11

https://arxiv.org/abs/2410.00752
https://proceedings.mlr.press/v235/jain24c.html
https://openreview.net/forum?id=chfJJYC3iL
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2411.05010

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Kaibo Liu, Zhenpeng Chen, Yiyang Liu, Jie M Zhang, Mark Harman, Yudong Han, Yun Ma, Yihong
Dong, Ge Li, and Gang Huang. Llm-powered test case generation for detecting bugs in plausible
programs. arXiv preprint arXiv:2404.10304, 2024.

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and Mao
Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset, 2025.
URL https://arxiv.org/abs/2505.21297.

Stephan Lukasczyk and Gordon Fraser. Pynguin: automated unit test generation for python. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Com-
panion Proceedings, ICSE ’22. ACM, May 2022. doi: 10.1145/3510454.3516829. URL
http://dx.doi.org/10.1145/3510454.3516829.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents, 2025. URL https://arxiv.org/abs/2406.
12952.

OpenAI. Openai o1 system card. arXiv preprint arXiv: 2412.16720, 2024.

OpenAI. Competitive programming with large reasoning models. arXiv preprint arXiv: 2502.06807,
2025.

OpenAI, :, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
o3 contributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda
Zhou. Competitive programming with large reasoning models, 2025. URL https://arxiv.org/
abs/2502.06807.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
von Werra. Codeforces. https://huggingface.co/datasets/open-r1/codeforces, 2025.

Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. Coffe: A code efficiency benchmark for code
generation, 2025. URL https://arxiv.org/abs/2502.02827.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv: 2504.21801,
2025.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Murali Krishna Ra-
manathan, and Baishakhi Ray. Code-aware prompting: A study of coverage-guided test generation
in regression setting using llm. Proceedings of the ACM on Software Engineering, 1(FSE):951–971,
2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models, 2024. URL https://arxiv.org/abs/2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

12

https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2505.21297
http://dx.doi.org/10.1145/3510454.3516829
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://huggingface.co/datasets/open-r1/codeforces
https://arxiv.org/abs/2502.02827
https://arxiv.org/abs/2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao
Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu,
Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Philip Wadler. Monads for functional programming. In International School on Advanced Functional
Programming, pp. 24–52. Springer, 1995.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation, 2025a. URL https://arxiv.org/abs/2406.04531.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025b.

Zejun Wang, Kaibo Liu, Ge Li, and Zhi Jin. Hits: High-coverage llm-based unit test generation via
method slicing. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, pp. 1258–1268, 2024.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
case generation for competitive programming. arXiv preprint arXiv:2506.05817, 2025c.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
for code generation. arXiv preprint arXiv:2410.24198, 2024.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/abs/
2503.02951.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,

13

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv: 2502.03387, 2025.

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation, 2024. URL
https://arxiv.org/abs/2305.04207.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis, 2025a. URL https://arxiv.org/abs/2502.
01718.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv: 2503.18892, 2025b.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with llm-generated oracle verifiers, 2023. URL https://arxiv.org/abs/
2305.14591.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models, 2024. URL
https://arxiv.org/abs/2409.17561.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

14

https://arxiv.org/abs/2305.04207
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2305.14591
https://arxiv.org/abs/2305.14591
https://arxiv.org/abs/2409.17561
http://arxiv.org/abs/2403.13372

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MORE RELATED WORK DISCCUSION

Early approches. Early approaches in test generation employ search-based heuristics methods
(Fraser & Arcuri, 2011; Lukasczyk & Fraser, 2022), or fuzzing to expose software vulnerabilities
(Fioraldi et al., 2020). These methods often yield high code coverage, while high code coverage is
likely to improve fault detection, it is not guaranteed (Cai & Lyu, 2005).

LLM-based approches in software testing. Some LLM-based approaches have been introduced
to improve coverage (Ryan et al., 2024; Wang et al., 2024; Altmayer Pizzorno & Berger, 2025) or
uncover bugs in plausible programs using differential testing (Liu et al., 2024), respectively. However,
the target of these methods is different from using testing as a reward signal for RL.For instance,
there is not a single program under test or focal method. RL involves testing hundreds of programs
per problem, making coverage-based methods less tractable.

Synthetic test quality and its implications. Although existing LLM test synthesis methods prove
to be useful in many scenarios, such as improving the quality of synthetic data (Wei et al., 2024)
and software engineering(Mündler et al., 2025; Jain et al., 2024), their quality is far from perfect
(Yuan et al., 2024) and are bounded in complexity, because direct generations of complicated data
structures often result in inconsistency (Zhang et al., 2023). Weak verifiers can harm downstream
code generation and search performance (Light et al., 2025). The quality of those synthetic tests
and their implications are less discussed. Existing benchmarks for LLM test case generation abilities
focus on code coverage and/or mutation scores (Wang et al., 2025a; Zhang et al., 2024; Jain et al.,
2025a; 2024), the success rate for reproducing issues (Mündler et al., 2025), and the code change
coverage for generated code patches (Ahmed et al., 2024; Mündler et al., 2025).

A.2 DETAILS OF THE TEST CASES GENERATION PIPELINE OF HARDTESTGEN

In this section, we first introduce the prompts used in HARDTESTGEN in Appendix A.2.1. We will
then provide the statistics of the test cases in HARDTESTS in Appendix A.2.2 and discuss the failure
rate and the major failure reasons of HARDTESTGEN in Appendix A.2.3. Finally, we will include
two examples of HARDTESTGEN in Appendix A.2.4.

A.2.1 PROMPTS USED IN HARDTESTGEN

Prompt for the generation of the input validator and output judging function. We use the
following LLM prompt to generate an input validator function, and an output judge function when
necessary. This prompt includes the problem specification and the oracle program to help the LLM
have a better understanding.

1 I have a competitive programming problem. To test the correctness of candidate programs,
I need to create many test cases.↪→

2

3 Each test case is an input-output pair. The input part will be fully provided as stdin to
the candidate program, and then the candidate output will be collected from stdout.
In most cases, we determine the correctness of the program by comparing the candidate
output with the output part of the test case (i.e., the reference output), while
sometimes, we need to use a custom function to judge the correctness of the candidate
output, instead.

↪→
↪→
↪→
↪→
↪→

4

5 Note: Sometimes, a problem may require a single test case to contain multiple sub-tasks.
For example: the first line of the input contains an integer $t\ (1 \leq t \leq
1000)$, followed by inputs of t independent sub-tasks. The problem statement may
sometimes refer to a sub-task as a "test case", but this is merely a difference in
terminology.

↪→
↪→
↪→
↪→

6

7 # Input Validator
8

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

9 Suppose I have already written some input generator functions, and used them to generate
many test case inputs. However, since they are randomly generated, they may not fully
adhere to the constraints specified in the problem. I need you to filter out invalid
test cases. Given the problem described below, please identify value type and range,
and list all constraints input data. Please generate a Python function
`validate_input(input_str: str) -> bool` that checks the input against all
constraints and returns a boolean indicating whether the input is valid according to
the problem description.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

10

11 However, if a constraint cannot be verified within a reasonable time complexity (e.g.,
$O(n)$ for $n \leq 10^6$, or $O(n^2)$ for $n \leq 10^3$), or if it makes the code too
complex, then it can be skipped.

↪→
↪→

12

13 **Pay close attention**: If the problem says "It's guaranteed that...", then what follows
is precisely something that must be verified. This is because the so-called
"guarantee" in the problem is typically enforced through the Input Validator, so you
must validate it in `validate_input`. Of course, only if it can be done in reasonable
time complexity.

↪→
↪→
↪→
↪→

14

15 **Example 1**: Cicasso has n sticks of lengths $l = (l_0, l_1, \dots, l_{n-1})$. But
these n sticks cannot form a convex polygon with non-zero area. You need to add one
stick so that the resulting $n+1$ sticks can form such a polygon. The input consists
of two lines: the first line is an integer n ($3 \leq n \leq 10^5$). The second
line has n integers l_i ($1 \leq l_i \leq 10^9$).

↪→
↪→
↪→
↪→

16

17 The `validate_input` function should not only check that n and l_i are within the
correct range and that there are exactly n numbers in the second line, but also
check that the n sticks cannot form a convex polygon with non-zero area, i.e., that
the longest stick is greater than or equal to the sum of the rest.

↪→
↪→
↪→

18

19 **Example 2**: Suppose there is a permutation $p = (p_0, p_1, \dots, p_{n-1})$ of numbers
from 1 to n ($1 \leq n \leq 2 \times 10^5$). But you do not know the permutation
p. Instead, you are given an array $s = (s_0, s_1, \dots, s_{n-1})$, where s_i is
the sum of all $p_j < p_i$ for $j < i$. Your task is to recover p_i.

↪→
↪→
↪→

20

21 In theory, we should verify whether the s_i values correspond to a valid permutation
p_i, but that requires solving for p_i, which is too complex. Moreover, when
generating inputs, it's quite easy to ensure that the s_i comes from a valid
permutation, so mistakes are unlikely. (Note: If verifying a constraint isn't too
complex, you should still check it.) Therefore, we only need to check that n is
within the range and that s has exactly n elements.

↪→
↪→
↪→
↪→
↪→

22

23 # Output Judging Function
24 Given the problem described below, please generate an output judging function in Python

to compare the equivalence of two output results. The function takes an input (can be
a list of numbers or strings) and two results as arguments, and returns a boolean
value. For example, you should use set comparison when the order of results does not
matter.

↪→
↪→
↪→
↪→

25

26 In most cases, we can determine whether the candidate program has passed the test case by
comparing the `candidate_output` and `reference_output` as strings. The specific
function is shown below.

↪→
↪→

27

28 ```python
29 def output_judging_function(input_str: str, candidate_output: str, reference_output:

str) -> bool:↪→
30 normalized_candidate_output = '\n'.join(line.rstrip() for line in

candidate_output.rstrip().splitlines())↪→
31 normalized_reference_output = '\n'.join(line.rstrip() for line in

reference_output.rstrip().splitlines())↪→
32 return normalized_candidate_output == normalized_reference_output
33 ```
34

35 However, for a few problems, the above `output_judging_function` does not work.
36

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

37 **Example 1**: The problem asks to output a list (`List[int]`), but the order of elements
in the list does not matter.↪→

38

39 In this case, we should convert both `candidate_output: str` and `reference_output: str`
into `List[int]`, sort them, and then compare them.↪→

40

41 **Example 2**: Given a graph with both directed and undirected edges, you must make all
undirected edges directed so that the resulting graph has no cycles. If it is
possible, output "YES" and the resulting graph (list of directed edges), otherwise
output "NO".

↪→
↪→
↪→

42

43 Here, in `output_judging_function`, we should first determine from `reference_output`
whether a solution is possible. If both `candidate_output` and `reference_output`
say "YES", then we should also validate whether the graph provided in
`candidate_output` is valid: check whether all edges exist in the input and whether
the graph is acyclic (e.g., via DFS).

↪→
↪→
↪→
↪→

44

45 **Example 3**: There are a total of T sub-tasks. Each sub-task gives a pair of integers
l, r ($1 \leq l \leq r \leq 998244353$), and the goal is to find a pair of integers
x, y such that $l \leq x, y \leq r$, $x \ne y$, and y is divisible by x. It is
guaranteed that every sub-task has a valid solution.

↪→
↪→
↪→

46

47 For each pair x, y provided in the `candidate_output`, simply check whether they
satisfy all the conditions mentioned in the problem statement. The
`output_judging_function` for this problem does not need to use the
`reference_output`; it only requires the `input_str`.

↪→
↪→
↪→

48

49 You need to first analyze whether this particular problem requires a custom
`output_judging_function` (different from the one given above). If yes, generate a
custom `output_judging_function`. If not, don't output it. Sometimes only
`input_str` is needed and `reference_output` is not required; other times only
`reference_output` is needed and `input_str` is not required; and in some cases,
both are needed. However, regardless of which ones are actually used, the function
signature must always be: `output_judging_function(input_str: str, candidate_output:
str, reference_output: str) -> bool`.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

50

51 Generally speaking, if a problem states "there are multiple possible answers, any one is
acceptable," this implies that the problem requires a custom Output Judging Function.
However, even if this is not explicitly mentioned, the problem may still actually
require a custom Output Judging Function. You need to determine this yourself.

↪→
↪→
↪→

52

53 ---
54

55 Also, when generating the above two functions, some known tricks or conclusions may be
helpful, and you should derive them yourself if needed. I will give you the correct
solution to the problem, and you can use it to derive certain conclusions or tricks.

↪→
↪→

56

57 Your output format must strictly follow:
58

59 # Analysis
60

61 ... (Analyze the problem, constraints, how to generate the Input Validator and Output
Judging Function, etc.)↪→

62

63 # Result
64

65 ```json
66 {
67 "input_validator": "A block of Python code containing the `validate_input`

function. No other content.",↪→
68 "needs_custom_output_judging_function": true or false,
69 "output_judging_function": "A block of Python code containing the

`output_judging_function` function. No other content." or null↪→
70 }
71 ```

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

72

73 ---
74

75

76 Note:
77 * All your code should be in Python 3.
78 * Do not wrap the Python code in ```python```, just provide it plainly.
79 * The Python code block under each field should be independent. In other words, they

should not call or reference each other. If one block imports a library, other blocks
must re-import it as needed.

↪→
↪→

80 * In a Python block, you should first import the necessary libraries, and then start
defining functions. Important: Do not place import statements inside the functions.↪→

81 * Only Python's built-in libraries are permitted for import.
82

83 For example, a block of Python code for Input Validator should look like this:
84

85 import ... (some modules)
86

87 def validate_input(input_str: str) -> bool:
88 ... (some code)
89

90 A block of Python code for Output Judging Function (if needed) should look like this:
91

92 import ... (some modules)
93

94 def output_judging_function(input_str: str, candidate_output: str, reference_output:
str) -> bool:↪→

95 ... (some code)
96

97 ---
98

99 # Problem Statement
100

101 {{ problem_specification }}
102

103 ---
104

105 # Correct Program
106

107 {{ oracle_program }}
108

Prompt for the generation of input-generating functions. We use the following prompt to have
the LLM directly generate small-scale test inputs (LLMGen), and functions that can produce test
inputs (RPGen, SPGen, and HackGen). This prompt makes use of the problem specification, oracle
program, and input validator to help the LLM better understand the problem requirements.

1 I have a competitive programming problem. To test candidate programs' correctness, I need
to create many test cases.↪→

2

3 Each test case is an input-output pair. The input part will be fully provided as stdin to
the candidate program, and then the candidate output will be collected from stdout.
In most cases, we determine the correctness of the program by comparing the candidate
output with the output part of the test case (i.e., the reference output), while
sometimes, we need to use a custom function to judge the correctness of the candidate
output, instead.

↪→
↪→
↪→
↪→
↪→

4

5 Note: Sometimes, a problem may require a single test case to contain multiple sub-tasks.
For example: the first line of the input contains an integer $t\ (1 \leq t \leq
1000)$, followed by inputs of t independent sub-tasks. The problem statement may
sometimes refer to a sub-task as a "test case", but this is merely a difference in
terminology.

↪→
↪→
↪→
↪→

6

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

7 Since the output part can be obtained by running correct programs, I only need you to
help me generate the input part.↪→

8

9 The input should comply with the constraints given in the problem statement. I will give
you an Input Validator that checks whether the input meets all the constraints
specified in the problem statement. However, some constraints may not be checked by
the Input Validator due to the difficulty of verification. Nevertheless, the input
you generate should still comply with all of these constraints.

↪→
↪→
↪→
↪→

10

11 # LLMGen
12

13 Please generate 10 valid inputs according to the problem stated below. You may follow the
examples given in the problem description and generate variations that are different.
Please respect the constraints and data types in the description.

↪→
↪→

14

15 Note: each input's length should be similar to the sample test cases' input, comply with
the constraints given in the problem, and must not exceed 300 characters under any
circumstances. If it is not possible to generate input under this length limit, give
up on generating them.

↪→
↪→
↪→

16

17 # RPGen
18

19 Given the problem described below, please identify the input data types (e.g., int,
string), ranges, and data constraints (e.g., x-y coordinates forming a convex
polygon or number of items which should be nonnegative), and then generate a python
function `gen_range_based_input` which will return one random input data for the
problem with respecting to these types, ranges, and constraints.

↪→
↪→
↪→
↪→

20

21 You should ensure the generated input satisfies the constraints as much as possible, and
may even sacrifice some degree of randomness to do so. But if trying to enforce a
constraint leads to a function that cannot run within finite and reasonable time
complexity (e.g., $O(n)$ for $n \leq 10^6$, or $O(n^2)$ for $n \leq 10^3$), then you
may ignore that constraint.

↪→
↪→
↪→
↪→

22

23 **Pay close attention**: do not use `while` loops, especially ones that "keep generating
until a constraint is satisfied." That can cause unlimited running time and make
input generation fail.

↪→
↪→

24

25 Some problems may require certain test cases to satisfy specific constraints (for
example, 10% of test cases satisfy $n \leq 100$, 10% of the test cases satisfy $n
\leq 1000$, etc.). Ignore this requirement. All test cases should be generated
according to the most general constraints.

↪→
↪→
↪→

26

27 Sometimes, generating input that satisfies the constraints requires some trick. You need
to deduce it yourself (e.g., the example below about when n sticks cannot form a
convex polygon). I will give you the correct solution for the problem, and you can
analyze it to discover some tricks or conclusions.

↪→
↪→
↪→

28

29 **Example 1**: Cicasso has n sticks ($3 \leq n \leq 10^5$) of lengths l_i ($1 \leq l_i
\leq 10^9$, for $i=0,1,\dots,n-1$). But these n sticks cannot form a convex polygon
of non-zero area. You need to add one more stick, so that the $n+1$ sticks can form a
convex polygon of non-zero area. Output the minimum length of the additional stick.

↪→
↪→
↪→

30

31 We can randomly generate $n \in [3, 10^5]$, but cannot randomly generate l_i, because
such l_i will likely not satisfy the constraint that the n sticks cannot form a
convex polygon of non-zero area. (It's not feasible to randomly generate and then
filter, since it's too time-consuming.) We know that this constraint actually
requires "the maximum l_i is greater than or equal to the sum of all the other
l_i." So we can first randomly sample a l_0 in $[n-1, 10^9]$ as the maximum
l_i, then sample an integer $s \in [n-1, l_0]$ as the total sum of the other $l_1,
\dots, l_{n-1}$, and finally use a partitioning trick to sample l_1, \dots, l_{n-1}
such that each element is at least 1 and the total sum is s. After that, we can
shuffle the l_i list.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

32

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

33 **Example 2**: There is a permutation $p = (p_0, p_1, ..., p_{n-1})$ of numbers from 1 to
n ($1 \leq n \leq 2\cdot 10^5$). You do not know this permutation, but you are
given an array $s = (s_0,\dots,s_{n-1})$, where s_i is the sum of all $p_j < p_i$
with $j < i$. Find p_i.

↪→
↪→
↪→

34

35 We can first randomly generate $n \in [1, 2 \times 10^5]$. But we cannot directly
generate an array s_i randomly, because it is very unlikely to satisfy the
constraints. Instead, we should reverse the process: first generate a random
permutation p_i, and then compute the corresponding s_i.

↪→
↪→
↪→

36

37 **Example 3**: This problem has $t \in [1, 1000]$ groups of independent sub-tasks. Each
sub-task has an integer $n \in [1, 10^5]$ and an array a of length n, where $a_i
\in [1,10^5]$. The problem guarantees that the total sum of all n across all t
sub-tasks does not exceed 2×10^5.

↪→
↪→
↪→

38

39 We can first randomly generate $t \in [1, 1000]$. But at this point we cannot directly
sample t values of n from $[1, 10^5]$, because their sum is likely to exceed $2
\times 10^5$. So instead, we randomly sample $s \in [t, 2\times 10^5]$, and then
partition s into n_0, n_1, \dots, n_{t-1} such that each value is at least 1 and
their sum is s.

↪→
↪→
↪→
↪→

40

41 The following Python function demonstrates how, given positive integers m and s, with
$m \leq s$, one can randomly select m positive integers such that their sum equals
s. This is just for your reference.

↪→
↪→

42

43 import random
44

45 assert m <= s
46 if m >= 2:
47 breaks = random.sample(range(1, s), m - 1)
48 breaks.sort()
49 results = [breaks[0]] + [breaks[i] - breaks[i - 1] for i in range(1,

len(breaks))] + [s - breaks[-1]]↪→
50 else:
51 results = [s]
52

53 # SPGen
54

55 Given the problem described below, please identify how many categories are there in the
output values, denote as m_S? For each categoy, please generate one function
`gen_stratified_input_for_category<category_label>` in python which will produce a
random input data that will output one value in the given category. Please replace
<category_label> with the inferred output value categories.

↪→
↪→
↪→
↪→

56

57 For most problems, there is only one type of output. But there are some problems where
outputs fall into multiple categories. These are called Multi-Category Output
Problems. For example, some problems require the output to be "Yes" or "No", while
others ask you to output the solution if it exists, otherwise output -1. In such
cases, if we treat it as a regular problem and only write a single
`gen_range_based_input` function to generate inputs randomly, the resulting outputs
will be very imbalanced. For example, the "Yes" outputs may require special
construction, so nearly all generated inputs produce "No" as the answer. Thus, even a
candidate program that always prints "No" would pass all test cases.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

58

59 Each time the function is called, it should be able to generate--within reasonable time
complexity--one random input that satisfies the constraints and whose corresponding
output belongs to the corresponding category. If it is difficult to write a function
that randomly generates some category, you can:

↪→
↪→
↪→

60

61 1. Sacrifice randomness and perform special construction, even returning a fixed value
each time↪→

62 or 2. Construct completely random data, similar to `gen_range_based_input`
63

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

64 Sometimes, a problem may require a single test case to contain multiple independent
sub-tasks. In this case, each sub-task in each input generated by
`gen_stratified_input_for_category<category_label>` should have the corresponding
output category, e.g., all corresponding outputs should be "No".

↪→
↪→
↪→

65

66 **Example 1**: Given two $n \times m$ binary matrices A, B. You can take the following
operation: select a rectangle in matrix A with height and width both at least 2,
and flip the values at the four corner positions. You are to answer whether it's
possible to make A equal to B using this operation. If possible, output "Yes" and
the resulting matrix; otherwise, output "No".

↪→
↪→
↪→
↪→

67

68 There are two outputs here: "Yes" and "No", corresponding to two categories of inputs. For
the first category, we create `gen_stratified_input_for_category_yes`, such that A
can be transformed into B. We can randomly construct matrix A, then perform t
operations (you can decide t yourself, but it should not be too small or too large
to avoid long generation time), where each operation selects a rectangle and flips
the corners. Then the result becomes matrix B. For the second category, we write
`gen_stratified_input_for_category_no`, where A cannot be transformed into B.
One way is to randomly flip a position in matrix B from the previous construction,
which makes it impossible. This sacrifices randomness, but is simple and acceptable.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

69

70 **Example 2**: Given two numbers n, m ($1\leq n \leq m\leq 5\times10^8$), you are to
determine whether it is possible to transform n into m by multiplying by 2 and 3,
and if so, output the minimum number of operations. Otherwise, output -1.

↪→
↪→

71

72 There are two outputs: the minimum operation count, and -1. Correspondingly, we have two
input generators. For the first case, where n can be transformed into m, we can
randomly generate $n\in [1, 5\times 10^8]$, then perform t operations (multiply by
2 or 3) until t steps are complete or further multiplication would exceed
5×10^8. The result becomes m. For the second case, where n cannot be
transformed into m, we can firstly randomly generate $m > n$, and then if n can
be transformed into m, simply set $m = m-1$.

↪→
↪→
↪→
↪→
↪→
↪→

73

74 **Example 3**: Player A and B are playing tic-tac-toe. Player A goes first. You are given
a 3×3 board, where each cell is ".", "X", or "0". Output the current state,
one of: "first" (next move is A), "second" (next is B), "illegal" (not possible in a
legal game), "the first player won", "the second player won", or "draw".

↪→
↪→
↪→

75

76 There are 6 output categories, corresponding to 6 input categories. For the first output
category, we need to create `gen_stratified_input_for_category_first` where the next
move is A's. We can randomly select $t\in[0, 4]$, then randomly place t X's and t
0's. This may lead to a win or illegal state, but we should NOT filter those during
generation, because doing so would make the code too complex and slow. We only need
most of the generated inputs to match this category. For the second category, place
$t+1$ X's and t 0's ($t\in [1,3]$). For the third category, it must be illegal,
e.g., X and 0 count difference is too large, or both players have already won. We can
create `gen_stratified_input_for_category_illegal_mark_num` and
`gen_stratified_input_for_category_illegal_both_win`, etc. Do the same for the
remaining categories.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

77

78 # HackGen
79

80 Given the problem described below, please first describe several flawed solution
programs using brute-force enumeration or a classic algorithm (e.g., depth-first
search), by explicitly ignoring some constraints, corner conditions, or data range.
Secondly, please think about scenarios where these programs will fail or exceed the
time limit (TLE). Thirdly, for each scenario, generate one function
`gen_hacking_input_for_<scenario_type>` which will produce possibly random input
data corresponding to such a failing scenario.

↪→
↪→
↪→
↪→
↪→
↪→

81

82 Note: for some problems, even though the brute-force algorithm's worst-case complexity
is $O(n^2)$, due to rare worst-case inputs, the actual runtime is closer to $O(n)$.
In these cases, you need to specially construct the data to repeatedly trigger the
worst-case scenario for those brute-force algorithms.

↪→
↪→
↪→

83

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

84 For some problems, we also need some types of inputs to expose bugs caused by failure to
handle edge cases. So you should think about whether there are any special edge cases
(e.g., input $n=0$, or tree root is None, etc.). Note that the randomness of the
input data itself at this time is not important. The key point is to expose the
errors of the candidate programs.

↪→
↪→
↪→
↪→

85

86 Of course, if the problem doesn't require any hacking input, then do not generate them.
Especially if a hacking input is simply large-scale data, then you shouldn't bother.
Hacking input must be specially constructed--range-based or stratified programmed
test input should almost never produce them.

↪→
↪→
↪→

87

88 **Example 1**: Given two numbers n and m ($1 \leq n \leq m \leq 5 \times 10^8$), the
task is to determine whether it is possible to transform n into m by repeatedly
multiplying n by 2 or by 3. If possible, output the minimum number of operations
required; otherwise, output -1.

↪→
↪→
↪→

89

90 A brute-force approach that a candidate program might take is to use DFS, recursively
trying to multiply n by 2 or 3 until it becomes greater than or equal to m. If we
randomly choose n and m, the ratio between them is usually small, so this
approach might still pass. One kind of effective hacking input is to set $n \in [1,
5]$ and $m \in [4 \times 10^8, 5 \times 10^8]$. This creates a large gap between n
and m, making the brute-force DFS approach inefficient. We can name the
corresponding function `gen_hacking_input_for_small_n_big_m`. You should consider
other types of HIs yourself.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

91

92 **Example 2**: Given a string S of length $n \in [1, 10^5]$, we repeatedly perform the
following operation: find two identical adjacent characters and delete them. This
continues until there are no more identical adjacent characters in S.

↪→
↪→

93

94 This problem should be solved using a stack to achieve an $O(n)$ time complexity.
However, some candidate programs might use a brute-force simulation approach --
repeatedly scanning the string and removing adjacent equal characters -- which can
result in a worst-case time complexity of $O(n^2)$. If we generate S completely at
random, it's likely that there will only be a few pairs of identical adjacent
characters. One kind of hacking input is to construct a string S of a long even
length (e.g., in $[5 \times 10^4, 10^5]$) and set `S[2*k] == S[2*k+1]`, thereby
introducing a large number of adjacent equal character pairs. However, if the
candidate program deletes all adjacent equal pairs in each round, the time complexity
remains $O(n)$. Another hacking input is to construct a string S of a long even
length (e.g., in $[5 \times 10^4, 10^5]$) such that `S[:n//2] == S[n//2:][::-1]`,
which forces the program to go through n rounds to completely remove all
characters, resulting in the true worst-case time complexity of $O(n^2)`. These two
functions can be named `gen_hacking_input_for_pairwise_equal` and
`gen_hacking_input_for_mirrored_halves`, respectively.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

95

96 **Example 3**: Given integer $w\in[1, 100]$, determine whether it can be written as the
sum of two positive even integers.↪→

97

98 Candidate programs may output "Yes" when w is even, and "No" when w is odd. But a
special case is $w=2$, which should be "No". So we can create
`gen_hacking_input_for_two`, which always returns the string `"2"`.

↪→
↪→

99

100 Important: if a type of hacking input is just setting data to their largest scale, then
it is unnecessary.↪→

101

102 ---
103

104 Your output format must strictly be
105

106 # Analysis
107

108 ...

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

109 (generally, you should first analyze the problem and data constraints, and then analyze
how to generate LLMGen Input, how to generate RPGen Input, and whether the problem is
a Multi-Category Output Problem (In that case, generate SPGen generation functions
for each output category. Make sure you mentioned the corresponding function names in
the Analysis part). Then you should list some naive candidate programs and analyze
how to generate HackGen Input.)

↪→
↪→
↪→
↪→
↪→

110

111 # Result
112

113 ```json
114 {
115 "LLMGen_input": ["LLMGen_input_1", "LLMGen_input_2", ...],
116 "is_multi_category_output_problem": true or false,
117 "RPGen_SPGen_input_generator": "a block of Python code containing a function

gen_range_based_input (for Regular Problem), or multiple functions
gen_stratified_input_for_category<category_label> (for Multi-Category Output
Problem)",

↪→
↪→
↪→

118 "HackGen_input_generator": "a block of Python code containing multiple
gen_hacking_input_for_<scenario_type> functions" or null (if no Hacking
Input is needed)

↪→
↪→

119 }
120 ```
121

122 ---
123

124 Note:
125 * All your code should be in Python 3.
126 * Do not wrap the Python code in ```python```, just provide it plainly.
127 * The Python code block under each field should be independent. In other words, they

should not call or reference each other. If one block imports a library, other blocks
must re-import it as needed.

↪→
↪→

128 * In a Python block, you should first import the necessary libraries, and then start
defining functions. Important: Do not place import statements inside the functions.↪→

129 * Only Python's built-in libraries are permitted for import.
130

131 For example, a block of Python code for range-based programmed test inputs of Regular
Problems should look like this:↪→

132

133 import ... (some modules)
134

135 def gen_range_based_input(input_str: str) -> bool:
136 ... (some code)
137

138 A block of Python code for stratified programmed test inputs of Multi-Category Output
Problem may look like this:↪→

139

140 import ... (some modules)
141

142 def gen_stratified_input_for_category<category_label>(input_str: str) -> bool:
143 ... (some code)
144

145 def gen_stratified_input_for_category<category_label>(input_str: str) -> bool:
146 ... (some code)
147

148 ...
149

150 And the Hacking Input block is similar.
151

152 ---
153

154 # Problem Statement
155

156 {{ problem_specification }}
157

158 ---

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Success
81.9%

All "oracle programs" are in fact erroneous
6.62%

All generated outputs are eliminated by consensus filtering
5.85%

No valid inputs are generated
3.72%
Unknown error

1.31%
Outputs generation timeout

0.403%
Test cases too large (> 600 MB in total)

0.246%

Figure 4: The result status distribution of our test case generation pipeline HARDTESTGEN.

159

160 # Correct Program
161

162 {{ oracle_program }}
163

164 ---
165

166 # Input Validator
167

168 {{ input_validator }}
169

Note that in the prompts above, we provide two to three carefully crafted examples for each function
that we ask the LLM to generate, enabling in-context learning. Additionally, we prompt the LLM
to perform chain-of-thought reasoning. These two requirements help the LLM understand the task
better and improve the data synthesis.

A.2.2 STATISTICS OF TEST CASES IN HARDTESTS

We collect a total of 47.1k problems from five direct data sources: Codeforces, AtCoder, Luogu,
CodeContests, and TACO. After removing the problems that lack oracle programs and the problems
that do not read the input from and write the output to standard I/O, we retain 32.5k problems.

We try to generate test cases for these 32.5k problems. Although we carefully design the test case
generation prompt, we are not able to achieve 100% coverage. In the end, we successfully generate
test cases for 26.6k problems, forming the HARDTESTS dataset.

A.2.3 FAILURE RATE AND FAILURE REASONS OF HARDTESTGEN

The status distribution of test case generation across the 32.5k problems is shown in Figure 4. Overall,
we successfully generated test cases for 81.9% of the problems. The main failure reasons include:
1) all “oracle programs” are in fact erroneous (6.62%), 2) all generated outputs are eliminated by
consensus filtering (5.85%), and 3) no valid inputs are generated (3.72%).

A.2.4 HARDTESTS EXAMPLES

Example 1

This example demonstrates the input validator, LLMGen and RPGen test cases, as well as a custom
judging function. Here’s the problem description:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Codeforces 1096A: There are a total of T (1 ≤ T ≤ 1000) sub-tasks. Each sub-task gives a pair
of integers l, r (1 ≤ l ≤ r ≤ 998244353), and the goal is to find a pair of integers x, y such that
l ≤ x, y ≤ r, x ̸= y, and y is divisible by x. It is guaranteed that every sub-task has a valid solution.

Note: It can be mathematically proven that a sub-task has a solution if and only if 2l < r.

The input validator is as follows. It checks whether input_str conforms to the required format
specified in the problem specification, whether all data falls within the required ranges, and whether
other constraints are satisfied (e.g., whether each sub-task has a solution).

1 import sys
2

3 def validate_input(input_str: str) -> bool:
4 lines = input_str.strip().split('\n')
5 if not lines:
6 return False
7

8 try:
9 T = int(lines[0])

10 except:
11 return False
12

13 if not (1 <= T <= 1000):
14 return False
15

16 if len(lines) != T + 1:
17 return False
18

19 for i in range(1, T + 1):
20 parts = lines[i].strip().split()
21 if len(parts) != 2:
22 return False
23 try:
24 l, r = map(int, parts)
25 except:
26 return False
27

28 if not (1 <= l <= r <= 998244353):
29 return False
30

31 if 2 * l > r:
32 return False # No valid pair possible
33

34 return True

Since this problem allows multiple correct solutions, simple string comparison is not sufficient. We
need a special, customized output judging function. The output judging function is as follows.

1 def output_judging_function(input_str: str, candidate_output: str, reference_output:
str) -> bool:↪→

2 try:
3 input_lines = input_str.strip().split('\n')
4 T = int(input_lines[0])
5 queries = [tuple(map(int, line.strip().split())) for line in input_lines[1:T+1]]
6

7 output_lines = candidate_output.strip().split('\n')
8 if len(output_lines) != T:
9 return False

10

11 for (l, r), line in zip(queries, output_lines):
12 parts = line.strip().split()
13 if len(parts) != 2:
14 return False
15 x, y = map(int, parts)
16 if not (l <= x <= r and l <= y <= r):

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

17 return False
18 if x == y:
19 return False
20 if y % x != 0:
21 return False
22

23 return True
24 except:
25 return False

The LLMGen inputs are as follows.

1 [
2 "3\n1 10\n2 8\n3 10",
3 "2\n5 20\n10 25",
4 "3\n7 30\n1 5\n2 6",
5 "1\n100 300",
6 "2\n999 2000\n1000 3000"
7]

The RPGen input generator is as follows. To ensure a solution always exists, the LLM sets r ≥ 2l.

1 import random
2

3 def gen_range_based_input() -> str:
4 T = random.randint(1, 1000)
5 queries = []
6 for _ in range(T):
7 l = random.randint(1, 499122176)
8 r = random.randint(2 * l, 998244353)
9 queries.append(f"{l} {r}")

10 return f"{T}\n" + "\n".join(queries)

The LLM believes that there is no need to generate a SPGen input generator or HackGen input
generator for this problem.

Example 2

This example demonstrates the input validator, as well as the LLMGen, SPGen, and HackGen test
cases. Here’s the problem description:

Codeforces 1141 A: Given two numbers n,m (1 ≤ n ≤ m ≤ 5× 108), you are to determine whether
it is possible to transform n into m by multiplying by 2 and 3, and if so, output the minimum number
of operations. Otherwise, output -1.

The input validator is as follows. It checks whether input_str conforms to various format require-
ments and constraints.

1 import re
2

3 def validate_input(input_str: str) -> bool:
4 try:
5 # Split the input string into two parts
6 parts = input_str.strip().split()
7 if len(parts) != 2:
8 return False
9 # Convert parts to integers

10 n, m = map(int, parts)
11 # Check the constraints
12 if not (1 <= n <= m <= 5 * 10**8):
13 return False
14 return True
15 except:
16 return False

The LLMGen inputs are as follows.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 [
2 "120 51840",
3 "42 42",
4 "48 72",
5 "1 1",
6 "2 6",
7 "3 9",
8 "5 10",
9 "7 21",

10 "8 24",
11 "10 30"
12]

The SPGen generator is as follows. The output of this problem has two categories (i.e., possible and
impossible), so the LLM generates two regular input-generating functions, corresponding to these
two categories, respectively.

Since this problem requires SPGen, the LLM does not generate any RPGen input generators following
the instructions given in the prompt.

1 import random
2

3 def gen_stratified_input_for_category_possible() -> str:
4 n = random.randint(1, 10**8)
5 m = n
6 for _ in range(random.randint(1, 20)):
7 if random.choice([True, False]):
8 m *= 2
9 else:

10 m *= 3
11 if m > 5 * 10**8:
12 break
13 return f"{n} {m}"
14

15 def gen_stratified_input_for_category_impossible() -> str:
16 n = random.randint(1, 10**8)
17 m = random.randint(n + 1, 5 * 10**8)
18 while m % n == 0:
19 m += 1
20 return f"{n} {m}"

The HackGen generator is as follows. The LLM generates two hacking input generating functions.
The first function sets a small n and a large m. This is because a brute-force approach that a candidate
program might take is to use DFS, recursively trying to multiply n by 2 or 3 until it becomes greater
than or equal to m. If we randomly choose n and m, the ratio between them is usually small, so this
approach might still pass. Setting n to be small and m to be big creates a large gap between n and m,
making the brute-force DFS approach inefficient. The second function sets m = n, which serves as
an edge case.

1 import random
2

3 def gen_hacking_input_for_small_n_big_m() -> str:
4 n = random.randint(1, 5)
5 m = random.randint(4 * 10**8, 5 * 10**8)
6 return f"{n} {m}"
7

8 def gen_hacking_input_for_edge_case() -> str:
9 n = random.randint(1, 5 * 10**8)

10 return f"{n} {n}"

For this problem, the LLM believes that a string comparison function would be enough for output
judging.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.3 DETAILS OF THE COLLECTION OF PROBLEM SPECIFICATIONS AND ORACLE PROGRAMS
IN HARDTESTS

We collect 47,136 algorithmic coding problems from five direct data sources: AtCoder, Codeforces,
Luogu, CodeContests, and TACO, and these problems are originated from 13 online judge platforms,
including Codeforces, AtCoder, and SPOJ.

Data sources. Codeforces (https://codeforces.com/) is one of the largest English online judge
platforms. We collected all publicly available problem specifications up to September 2024 from
Codeforces. AtCoder. (https://atcoder.jp/) is a large online judge platform offering problems in
both Japanese and English. We scraped all problem specifications available up to September 2024,
along with three correct user-submitted C++ programs for each problem. We used those directly for
problems with official English versions. Luogu (https://www.luogu.com.cn/) is a large Chinese
online judge platform consisting of a main section (Luogu-Main) and four mirror sections. The main
section hosts original problems authored by users and administrators, as well as problems sourced
from real-world contests (e.g., USACO). The mirror sections contain problems from other platforms,
including AtCoder, SPOJ, Codeforces, and UVa. We collected all available problem specifications
and community-authored tutorials, which often include both correct C++ programs and corresponding
natural language explanations, from Luogu. CodeContests (Li et al., 2022) is a dataset comprising
13,493 problems collected from five platforms. Each entry includes a problem specification and
several correct programs in C++, Python 2, Python 3, and Java. Only Codeforces problems in
CodeContests were used in our dataset, as only their problem IDs were explicitly provided. TACO (Li
et al., 2023) is a large-scale English dataset containing 25.4k problems sourced from ten platforms.
Each entry includes a problem specification and multiple correct Python programs. We collect all
problems from TACO.

The distribution of problem counts across each online judge platform is shown in Figure 5. The
URLs of each platform, along with the direct data sources of their problem specifications and oracle
programs, are listed in Table 4.

Note that since some problems have multiple oracle program sources, we prioritize programs from
more reliable sources when generating test cases. The reliability, supported languages, and notes
regarding each direct source of oracle programs are presented in Table 5. The distribution of the
number of oracle programs per problem is shown in Figure 6.

Figure 5: Number of problems from each online judge
platform.

Figure 6: Distribution of the
number of oracle programs in
HARDTESTS.

A.4 EVALUATION RESULT ON ATCODER AND CODEFORCES SEPARATELY

For completeness, we report the evaluation results separately on the AtCoder and Codeforces subsets
of the combined evaluation set. Table 10 and Table 11 show the precision and recall of test cases
from TACO, CodeContests, and HARDTESTS on LLM-generated programs. Overall, our dataset
HARDTESTS consistently improves both precision and recall across both platforms.

28

https://codeforces.com/
https://atcoder.jp/
https://www.luogu.com.cn/

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 4: Problem specification sources and oracle solution sources of each online judge platform.

platform URL
Problem
Specification
Sources

Oracle Program
Sources

Codeforces https://codeforces.com/ Codeforces TACO, CodeContests,
Luogu

AtCoder https://atcoder.jp/contests/ AtCoder AtCoder, TACO,
Luogu

Luogu https://www.luogu.com.cn/ Luogu Luogu
UVa https://onlinejudge.org/ Luogu Luogu
SPOJ https://www.spoj.com/ Luogu Luogu
Aizu https://onlinejudge.u-aizu.ac.jp/ TACO TACO
GeeksforGeeks https://www.geeksforgeeks.org/ TACO TACO
Codewars https://www.codewars.com/ TACO TACO
Kattis https://open.kattis.com/ TACO TACO
CodeChef https://www.codechef.com/ TACO TACO
HackerEarth https://www.hackerearth.com/ TACO TACO
LeetCode https://leetcode.com/ TACO TACO
HackerRank https://www.hackerrank.com/ TACO TACO

Table 5: Oracle program sources with reliability, languages, and notes

Oracle Program Source Reliability Languages Notes

User-submitted and accepted
programs from AtCoder

High Python, C++ Some code (either Python or
C++) may use AtCoder’s cus-
tom library.

Code solutions from CodeCon-
tests

High Python 2/3,
C++, Java

—

Community-authored editorials
from Luogu

Medium C++ Some editorials may lack com-
plete, directly executable code.
But if the code has no compila-
tion or runtime errors, it is very
likely to be completely correct.

Verified programs from TACO,
i.e., programs that can pass all
TACO’s own test cases

Medium Python There’s some false positives in
TACO’s test cases.

Other programs from TACO Low Python Reliability is not zero due to
some false negatives in TACO’s
test cases.

A.5 DETAILED PROTOCOL OF THE DIRECT EVALUATION OF TEST CASES’ QUALITY

Evaluation details for LLM-generated programs on AtCoder. AtCoder previously made its
official test cases publicly available. Although this is no longer the case, we obtained a partial archive
from the Github repository conlacda/atcoder-testcases. We selected problems that are both in
TACO and HARDTESTS, resulting in a total of 653 problems. Since there are almost no AtCoder
problems in CodeContests, we generate test cases for these problems by implementing the test case
generation procedure described in the CodeContests’ paper.

Evaluation details for LLM-generated programs on Codeforces. Codeforces does not make its
test cases publicly available. Therefore, we manually submit LLM-generated candidate programs
to the Codeforces platform to obtain ground-truth verdicts. For each difficulty level from 1 to 4,
we randomly select 150 problems that are in TACO, CodeContests, and HARDTESTS at the same
time, yielding a total of 600 problems. For problems where the results of all three datasets agree, we
randomly select 5% of them for submission. For problems where the datasets produce conflicting
results, we submit 50% of the candidate programs. We compute precision and recall based on the
combined submission outcomes.

29

https://codeforces.com/
https://atcoder.jp/contests/
https://www.luogu.com.cn/
https://onlinejudge.org/
https://www.spoj.com/
https://onlinejudge.u-aizu.ac.jp/
https://www.geeksforgeeks.org/
https://www.codewars.com/
https://open.kattis.com/
https://www.codechef.com/
https://www.hackerearth.com/
https://leetcode.com/
https://www.hackerrank.com/
https://github.com/atcoder/ac-library
https://github.com/atcoder/ac-library
https://huggingface.co/datasets/likaixin/TACO-verified
https://github.com/conlacda/atcoder-testcases

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Evaluation details for human-written programs on Codeforces. A dataset at Huggingface titled
MatrixStudio/Codeforces-Python-Submissions collects 690k human-submitted programs on
Codeforces along with their official verdicts. We use the verdicts as the ground-truth labels. All other
settings are the same as those of evaluation using LLM-generated programs.

A.6 QUALITATIVE ANALYSIS OF GENERATED TESTS

A.6.1 EXAMPLE 1: FALSE POSITIVE OF TACO AND HARDTESTS LLMGEN

In this example we show how TACO and HARDTESTS LLMGen tests cannot break a wrong program
and result in a false positive, while HARDTESTS RPGen tests succeeds in making the program fail.
Here’s the problem description:

AtCoder ABC117C: Given an integer N (2 ≤ N ≤ 2 × 105) and an integer array A of length N

(0 ≤ Ai ≤ 109), compute the value of
∑N−1

i=1

∑N
j=i+1 AiAj modulo 109 + 7.

Since 2 ≤ N ≤ 2× 105, the solution to the problem needs to be relatively efficient. The correct solu-

tion employs mathematical techniques to simplify the equation into: 1
2

((∑N
i=1 Ai

)2

−
∑N

i=1 A
2
i

)
,

which yields an O(N) algorithm.

However, a candidate program generated by Qwen2.5-Coder-7B-Instruct uses a brute-force algorithm
with a time complexity of O(N2). The candidate program is as follows:

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 std::ios::sync_with_stdio(false);
6 std::cin.tie(nullptr);
7

8 int N;
9 std::cin >> N;

10

11 std::vector<long long> A(N);
12 for (int i = 0; i < N; ++i) {
13 std::cin >> A[i];
14 }
15

16 const int MOD = 1000000007;
17 long long sum = 0;
18

19 for (int i = 0; i < N; ++i) {
20 for (int j = i + 1; j < N; ++j) {
21 sum = (sum + A[i] * A[j]) % MOD;
22 }
23 }
24

25 std::cout << sum << std::endl;
26

27 return 0;
28 }

Due to its inefficiency, this candidate program failed to pass the official test cases. Nevertheless,
because the test cases in TACO and HARDTESTS LLMGen were relatively small (with small N), the
candidate program successfully passed these cases.

Furthermore, the HARDTESTS RPGen input for this problem is generated using the following Python
function:

1 import random
2

3 def gen_range_based_input() -> str:

30

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

4 n = random.randint(2, 200000)
5 a = [random.randint(0, 1000000000) for _ in range(n)]
6 return f"{n}\n" + " ".join(map(str, a))

Due to the larger scale of HARDTESTS RPGen inputs, the candidate program failed to pass these test
cases and we have a true negative.

A.6.2 EXAMPLE 2: FALSE POSITIVE OF TACO AND HARDTESTS LLMGEN + RPGEN

In this example we show how TACO and HARDTESTS type LLMGen and RPGen tests cannot break
a wrong program and result in a false positive, while HARDTESTS HackGen tests succeeds in making
the program fail. Here’s the problem description:

AtCoder ABC139C: There are N (1 ≤ N ≤ 105) squares arranged from left to right, with the height
of the i-th square from the left being Hi (1 ≤ Hi ≤ 109). Starting from any square, you can move
one step to the right as long as the next square’s height is not greater than the current one. Find the
maximum number of moves possible.

Given that 1 ≤ N ≤ 105, the solution needs to be relatively efficient. The correct solution uses an
O(N) greedy algorithm. Specifically, it traverses the array from left to right, counting how many
consecutive heights satisfy Hi ≥ Hi+1. Each time a condition fails, the counter is reset, and the
maximum value is maintained throughout the traversal as the answer.

A candidate program generated by Qwen-Coder-14B-Instruct uses a brute-force approach, iterating
over each starting position and simulating the moves. Although functionally correct, its complexity is
O(N2) and too inefficient to work. The code is as follows:

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4

5 int main() {
6 int N;
7 cin >> N;
8 vector<int> H(N);
9 for(int i = 0; i < N; i++) {

10 cin >> H[i];
11 }
12

13 int max_moves = 0;
14 for(int i = 0; i < N; i++) {
15 int current_moves = 0;
16 for(int j = i + 1; j < N; j++) {
17 if(H[j] <= H[j - 1]) {
18 current_moves++;
19 } else {
20 break;
21 }
22 }
23 if(current_moves > max_moves) {
24 max_moves = current_moves;
25 }
26 }
27

28 cout << max_moves << endl;
29 return 0;
30 }

Because of its inefficiency, this candidate program failed the official test cases. Nevertheless, due
to the relatively small scale of the test cases in TACO and HARDTESTS LLMGen, the candidate
program passed these tests.

Additionally, the HARDTESTS RPGen input for this problem is generated using the following Python
function:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1 import random
2

3 def gen_range_based_input() -> str:
4 N = random.randint(1, 100000)
5 heights = [random.randint(1, 1000000000) for _ in range(N)]
6 return f'{N}\n' + ' '.join(map(str, heights))

We observe that since the Hi sequence is randomly generated, it fluctuates significantly, reducing the
complexity of the “simulate moving from a certain square” procedure from O(N) to approximately
O(1). Thus, the tests generated do not lead to the worst case complexity of the inefficient program
and its overall time complexity effectively becomes O(N), enabling the candidate program to pass
HARDTESTS RPGen test cases.

The HARDTESTS HackGen inputs for this problem are generated using the following Python func-
tions:

1 import random
2

3 # Monotonically decreasing sequence
4 def gen_hacking_input_for_monotonic_decreasing() -> str:
5 N = 100000
6 heights = list(range(1000000000, 1000000000 - N, -1))
7 return f'{N}\n' + ' '.join(map(str, heights))
8

9 # Monotonically increasing sequence
10 def gen_hacking_input_for_monotonic_increasing() -> str:
11 N = 100000
12 heights = list(range(1, N + 1))
13 return f'{N}\n' + ' '.join(map(str, heights))
14

15 # Alternating heights
16 def gen_hacking_input_for_alternating() -> str:
17 N = 100000
18 heights = [1000000000 if i % 2 == 0 else 1 for i in range(N)]
19 return f'{N}\n' + ' '.join(map(str, heights))

There are three hacking input generation functions: monotonically decreasing, monotonically increas-
ing, and alternating sequences. The first generated input (monotonically decreasing) successfully
increased the actual runtime complexity of the candidate program to O(N2), causing a timeout and
consequently a failure on this test case.

A.6.3 EXAMPLE 3: FALSE NEGATIVE OF TACO

In this example, we show an example of false negative caused by the lack of output judge function in
TACO tests. We also show how HARDTESTS can correctly evaluate the candidate program. Here’s
the problem description:

AtCoder ABC117A: Given an integer T and an integer X (1 ≤ T ≤ 100, 1 ≤ X ≤ 100). Compute
the value of T/X with an error tolerance within 10−3.

A candidate program generated by Qwen2.5-Coder-14B-Instruct is:

1 #include <iostream>
2 #include <iomanip>
3

4 int main() {
5 int T, X;
6 std::cin >> T >> X;
7

8 double timeInWorldA = static_cast<double>(T) / X;
9

10 std::cout << std::fixed << std::setprecision(10) << timeInWorldA << std::endl;
11

12 return 0;
13 }

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

This is clearly correct and passes all official test cases. It also passes all test cases from HARDTESTS,
but it fails on TACO’s test cases. This is because using a simple string comparison function is
insufficient due to potential differences in precision between the candidate output and the reference
output. TACO does not provide a special output judging function for problems, which leads to false
negatives. HARDTESTS provides a special output judging function, shown below:

1 def output_judging_function(input_str: str, candidate_output: str, reference_output:
str) -> bool:↪→

2 # Parse the input
3 T, X = map(int, input_str.split())
4

5 # Calculate the expected output
6 expected_output = T / X
7

8 # Parse the candidate output
9 try:

10 candidate_value = float(candidate_output.strip())
11 except ValueError:
12 return False
13

14 # Check the absolute and relative error
15 absolute_error = abs(candidate_value - expected_output)
16 relative_error = absolute_error / abs(expected_output) if expected_output != 0 else

float('inf')↪→
17

18 # The output is correct if either error is within the tolerance
19 return absolute_error <= 1e-3 or relative_error <= 1e-3

A.7 DOWNSTREAM TRAINING AND EVALUATION DETAILS

A.7.1 REJECTION SAMPLING TRAINING AND EVALUATION DETAILS.

In the rejection sampling experiments, our model is trained with the following training parameters
(epochs=20, learning_rate=4e-5, batch_size=128, cosine learning rate schedule with a decay to 10%
of the peak learning rate and 32,768 max length). The evaluations are sampled with temperature=0.6,
top_p=0.95, top_k=20, min_p=0, max_new_tokens=32768 as recommended by Qwen.

A.7.2 RL TRAINING AND EVALUATION DETAILS.

We use verl for RL training and firejail for sandboxing code execution. The rollouts are generated
with temperature=1, top_p=0.95, top_k=20, min_p=0, response_length=24000, initial learning rate
5e-7. We use a global batch size of 32 and generate 32 samples per rollout. All our experiments are
run on 8 NVIDIA H100 GPUs. We do not use KL divergence in our RL loss.

A.8 TEST CASE GENERATION WITHOUT AN ORACLE MODEL

In the case that an oracle program y∗, or an oracle test suite V ∗ does not exist for a problem x, such
as when problems are synthetically generated, we propose a method, based on ALGO (Zhang et al.,
2023) that synthesizes both the oracle and tests. To start, we prompt an LLM, such as Anthropic
Claude 3.5 Sonnet, to generate a brute-force solution ybf to the problem. Specifically, we encourage
it to use inefficient methods such as exhaustive search and enumeration of the possible output space.
This is founded on the observation that it is relatively easy to generate a solution that exhaustively
searches the correct output, but more difficult to optimize it within a time complexity bound.

Then, an LLM is prompted to create a validator program and 10 edge test input generators, which
are used to generate one test input each, {a1, . . . , a10}. To prevent the ybf from timing out when
computing their respective outputs, we explicitly prompt the LLM to keep input values small. Once
these test inputs are verified for correctness using the validator, the brute-force solution is used to
generate the corresponding outputs ci = ybf (ai) for each input, resulting in a total of 10 input-output
pairs as test cases. Finally, the LLM is prompted to create one maximum-length test case amax

with inputs at the upper bounds of the problem’s constraints, designed to catch solutions that are

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

functionally correct but inefficient. This test case is considered to be passsed as long as the program
produces an output before timing out. Crucially, all 11 of the generated test cases {a1, . . . , a10, amax}
are designed to cause seemingly correct programs to fail, and none are generated using random inputs.

We compare this method to the baseline method outlined in AceCoder (Zeng et al., 2025a), which
uses a direct prompt to generate 20 full test cases (inputs and corresponding outputs), also using
Claude 3.5. Then, after prompting a stronger model such as Qwen2.5- Coder-32B-Instruct to generate
a solution, the test cases that cause the solution to fail are considered hallucinated and are filtered out.
Problems with fewer than 5 test cases after filtering are discarded.

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the
precision and recall over candidate programs generated by LLMs and written by humans on subsets
of problems in HARDTESTS.

The quality of the test cases are verified using 165 Atcoder problems, each with 50 sample solutions.
It is clear from these experiments (shown in Table 6) that our method can also work much better than
the baseline even when oracle programs are not available. The false positive rate of HARDTESTGEN
is only half as high as AceCoder, showing that deliberately crafting high-quality, hard test cases is
crucial for effective program verifiers.

We will show some examples of the test generation process in the following sections.

Table 6: Performance comparison of oracle-free test generation algorithms based on error rates.

False Positive Rate (FPR) False Negative Rate (FNR)
AceCoder 32.49 2.59

HARDTESTGEN 17.67 2.19

A.8.1 EXAMPLE 1: BRUTE-FORCE ORACLE SOLUTION GENERATED BY ALGO

In this example, we show a brute-force oracle solution ybf that ALGO generates. The problem is
challenging, and while the LLM is unable to correctly solve it directly, its brute-force solution works.
Here’s the problem description:

AtCoder ABC301C: A single-player card game is popular in AtCoder Inc.
Each card in the game has a lowercase English letter or the symbol written on it. There is plenty
number of cards for each kind. The game goes as follows.

- Arrange the same number of cards in two rows.
- Replace each card with with one of the following cards: a, t, c, o, d, e, r.
- If the two rows of cards coincide, you win. Otherwise, you lose.

To win this game, you will do the following cheat.

- Freely rearrange the cards within a row whenever you want after step 1.

You are given two strings S and T (1 ≤ |S|, |T | ≤ 2 × 105), representing the two rows you
have after step 1. Determine whether it is possible to win with cheating allowed. If it is possible to
win with cheating allowed, print Yes; otherwise, print No.

The solution generated by Claude 3.5 Sonnet is:

1 from itertools import product
2

3 def solve():
4 S = input().strip()
5 T = input().strip()
6

7 # Find positions of @ in both strings
8 s_at_pos = [i for i, c in enumerate(S) if c == '@']

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

9 t_at_pos = [i for i, c in enumerate(T) if c == '@']
10

11 # Possible characters to replace @
12 possible = ['a', 't', 'c', 'o', 'd', 'e', 'r']
13

14 # Try all possible combinations
15 for s_comb in product(possible, repeat=len(s_at_pos)):
16 # Create new S string with replacements
17 s_new = list(S)
18 for pos, char in zip(s_at_pos, s_comb):
19 s_new[pos] = char
20 s_new = ''.join(s_new)
21

22 for t_comb in product(possible, repeat=len(t_at_pos)):
23 # Create new T string with replacements
24 t_new = list(T)
25 for pos, char in zip(t_at_pos, t_comb):
26 t_new[pos] = char
27 t_new = ''.join(t_new)
28

29 # Sort both strings (since we can rearrange)
30 if sorted(s_new) == sorted(t_new):
31 print("Yes")
32 return
33

34 print("No")
35

36 solve()

This solution is evidently inefficient. A full analysis yields runtime in the bound of O(n log n7n),
where n = |S| = |T |, but the exponential complexity is clear from the Cartesian product function in
the implementation. For inputs n > 10, this algorithm quickly becomes intractable. However, for
inputs n ≤ 10 it is able to generate valid test outputs, allowing it to correctly evaluate the validity
of submitted solutions. The test outputs it generates achieve a 100% accuracy, compared to actual
execution results from the online judge platform.

A.8.2 EXAMPLE 2: TEST CASES GENERATED BY ALGO

In this example we show a contest coding problem for which ALGO effectively generates a testing
suite. Here’s the problem description:

AtCoder cafeteria sells meals consisting of a main dish and a side dish. There are N types of main
dishes, called main dish 1, main dish 2, . . . , main dish N . Main dish i costs ai yen. There are M
types of side dishes, called side dish 1, side dish 2, . . . , side dish M . Side dish i costs bi yen.

A set meal is composed by choosing one main dish and one side dish. The price of a set
meal is the sum of the prices of the chosen main dish and side dish.

However, for L distinct pairs (c1, d1), . . . , (cL, dL), the set meal consisting of main dish ci
and side dish di is not offered because they do not go well together. That is, NM − L set meals are
offered. (The constraints guarantee that at least one set meal is offered.)

Find the price of the most expensive set meal offered.

The input is given from Standard Input in the following format:
N M L
a1 a2 . . . aN
b1 b2 . . . bM
c1 d1
c2 d2
...

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

cL dL

Constraints:
- 1 ≤ N,M ≤ 105

- 0 ≤ L ≤ min(105, NM − 1)
- 1 ≤ ai, bi ≤ 109

The first 3 edge test input generators created by ALGO are shown below, corresponding to the
following test inputs. Note that the values are at the boundaries of the input bounds and follow clearly
defined structures.

1 ["1 1 0\n1000000000\n1000000000",
2 "10 10 1\n1000 2000 3000 4000 5000 6000 7000 8000 9000 10000\n1000 2000 3000 4000 5000

6000 7000 8000 9000 10000\n1 1",↪→
3 "50 50 100\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000

1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000\n33 36\n5 1\n18 44\n43 12\n5 37\n50 36\n15 14\n10 27\n34 3\n16
40\n47 18\n28 14\n9 10\n20 40\n41 8\n4 41\n10 20\n7 21\n37 1\n49 39\n9 3\n14 26\n42
18\n41 28\n26 9\n13 21\n39 3\n16 17\n24 30\n17 46\n33 42\n9 42\n34 7\n36 13\n6 36\n33
8\n26 2\n43 18\n4 45\n35 23\n39 5\n33 35\n8 45\n34 18\n43 48\n14 12\n17 11\n26 41\n4
47\n44 28\n9 9\n50 19\n2 15\n20 5\n9 39\n20 14\n24 39\n5 13\n4 15\n10 39\n48 23\n43
36\n21 33\n4 35\n11 13\n46 10\n11 31\n8 44\n2 37\n46 37\n16 39\n39 43\n34 38\n3 50\n7
20\n34 13\n34 31\n28 33\n31 4\n22 1\n38 19\n12 9\n6 23\n27 18\n9 4\n11 10\n28 26\n2
7\n45 42\n31 43\n39 1\n15 1\n11 19\n12 48\n15 10\n4 7\n45 26\n2 18\n35 15\n33 27"]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

1 def gen_edge_case_input_1():
2 # Minimum case: N=M=1, L=0
3 return "1 1 0\n1000000000\n1000000000"
4

5 def gen_edge_case_input_2():
6 # Maximum values case
7 N = M = 100 # Using smaller values for practicality
8 L = N*M - 1
9 a = [10**9] * N

10 b = [10**9] * M
11 pairs = [(i, j) for i in range(1, N+1) for j in range(1, M+1)]
12 pairs.pop() # Leave one combination possible
13

14 result = f"{N} {M} {L}\n"
15 result += " ".join(map(str, a)) + "\n"
16 result += " ".join(map(str, b)) + "\n"
17 for c, d in pairs:
18 result += f"{c} {d}\n"
19 return result.strip()
20

21 def gen_edge_case_input_3():
22 # Only one forbidden pair
23 N = M = 10
24 a = [i*1000 for i in range(1, N+1)]
25 b = [i*1000 for i in range(1, M+1)]
26 result = f"{N} {M} 1\n"
27 result += " ".join(map(str, a)) + "\n"

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

28 result += " ".join(map(str, b)) + "\n"
29 result += "1 1"
30 return result

Also, the generator for the maximum-length test input amax is shown here. It produces a test input
where N = M = 105, which is the upper bound of the problem.

1 import random
2

3 def gen_maximum_edge_case_input():
4 N = 100000
5 M = 100000
6 L = 100000
7

8 # Generate main dish prices close to max value
9 main_prices = [random.randint(999999000, 1000000000) for _ in range(N)]

10

11 # Generate side dish prices close to max value
12 side_prices = [random.randint(999999000, 1000000000) for _ in range(M)]
13

14 # Generate L unique forbidden pairs
15 used_pairs = set()
16 forbidden_pairs = []
17

18 # Start with some specific high-value combinations
19 for i in range(L):
20 while True:
21 c = random.randint(1, N)
22 d = random.randint(1, M)
23 if (c, d) not in used_pairs:
24 used_pairs.add((c, d))
25 forbidden_pairs.append((c, d))
26 break
27

28 # Build the input string
29 result = []
30 result.append(f"{N} {M} {L}")
31 result.append(" ".join(map(str, main_prices)))
32 result.append(" ".join(map(str, side_prices)))
33

34 for c, d in forbidden_pairs:
35 result.append(f"{c} {d}")
36

37 return "\n".join(result)

This test suite effectively achieves 100% accuracy on evaluating submissions, demonstrating that
precise test inputs are crucial for oracle-free verifiers.

A.8.3 EXAMPLE 3: TEST CASES GENERATED BY ACECODER

For the same Atcoder problem as Example A.8.2, AceCoder generates the following 16 test cases
with inputs and outputs after filtering. While the LLM implicitly knows to generate edge test cases,
shown in the maximal values of ci, di, all of the test cases have relatively similar and low values of
M and N .

1 [{"input": "2 3 3\n2 1\n10 30 20\n1 2\n2 1\n2 3", "output": "31"},
2 {"input": "2 1 0\n1000000000 1\n1000000000", "output": "2000000000"},
3 {"input": "1 1 0\n5\n7", "output": "12"},
4 {"input": "3 3 4\n10 20 30\n5 15 25\n1 1\n2 2\n3 1\n1 3", "output": "55"},
5 {"input": "5 3 7\n100 200 300 400 500\n100 200 300\n1 1\n1 2\n1 3\n2 1\n2 2\n3 1\n4 1",

"output": "800"},↪→
6 {"input": "2 2 1\n999999999 999999998\n999999997 999999996\n1 1", "output":

"1999999995"},↪→
7 {"input": "3 2 2\n5 4 3\n2 1\n1 1\n2 2", "output": "6"},

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

8 {"input": "4 3 5\n10 9 8 7\n6 5 4\n1 1\n2 2\n3 3\n4 1\n4 2", "output": "15"},
9 {"input": "2 4 3\n100 200\n300 400 500 600\n1 1\n1 2\n2 3", "output": "800"},

10 {"input": "3 3 0\n1 2 3\n4 5 6", "output": "9"},
11 {"input": "4 2 3\n10 20 30 40\n50 60\n1 1\n2 2\n3 1", "output": "100"},
12 {"input": "5 2 4\n1 2 3 4 5\n6 7\n1 1\n2 1\n3 1\n4 1", "output": "12"},
13 {"input": "3 4 6\n100 200 300\n400 500 600 700\n1 1\n1 2\n1 3\n2 1\n2 2\n3 3", "output":

"1000"},↪→
14 {"input": "2 2 0\n1000000000 999999999\n1000000000 999999999", "output": "2000000000"},
15 {"input": "3 3 3\n100 200 300\n100 200 300\n1 1\n2 2\n3 3", "output": "500"},
16 {"input": "5 5 12\n1 2 3 4 5\n1 2 3 4 5\n1 1\n1 2\n1 3\n2 1\n2 2\n2 3\n3 1\n3 2\n3 3\n4

1\n4 2\n5 1", "output": "10"}]↪→

These test cases fail to correctly categorize solutions that exceed the problem’s time limit. One such
example is shown below, which AceCoder falsely categorizes as a positive solution. Compared to
Example A.8.2, in which ALGO generated test inputs as large as N = M = 105, the test cases
from AceCoder are no larger than N = M = 5, making them unable to break inefficient programs.
Without a brute-force reference oracle, and constrained by the requirement of generating input-output
pairs simultaneously, the LLM used by AceCoder sticks to simple test cases that it can be confident
are correct. Moreover, longer test cases are likelier to contain hallucinations, and get removed by
their filtering process. As a result, their test cases are relatively weaker and result in less effective
verifiers.

1 import sys
2

3 def main():
4 input = sys.stdin.readline
5 N, M, L = map(int, input().split())
6 a = list(map(int, input().split()))
7 b = list(map(int, input().split()))
8 incompatible_pairs = set()
9 for _ in range(L):

10 c, d = map(int, input().split())
11 incompatible_pairs.add((c - 1, d - 1)) # Adjusting indices to be zero-based
12

13 max_price = 0
14 for i in range(N):
15 for j in range(M):
16 if (i, j) not in incompatible_pairs:
17 max_price = max(max_price, a[i] + b[j])
18

19 print(max_price)
20

21 if __name__ == "__main__":
22 main()

A.9 ABLATION STUDY ON LLMS FOR TEST CASE GENERATION

In this work, we primarily used GPT-4o to generate test cases for problems in the HARDTESTS
dataset. However, our HARDTESTGEN method is compatible with other LLMs, including open-
weight models. We experimented with GPT-4o, Claude-4-Sonnet, Kimi-K2 (Team et al., 2025), and
Qwen3-Coder (Team, 2025) as test case generators on 500 randomly selected AtCoder problems.
The results are shown in Table 7. We observe that using newer LLMs tends to yield better precision
and recall.

We also compared HARDTESTGEN with Qwen3-Coder against prior work TACO and SymPrompt
with GPT-4 on the same set of problems. The results are presented in Table 8. Although HARDTEST-
GEN was paired with Qwen3-Coder, an open-weight model that is considered weaker, it still achieved
overall higher precision and recall than TACO and SymPrompt. This indicates that HARDTESTGEN
is less dependent on strong proprietary LLMs and maintains reasonable performance even under
constrained model conditions.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 7: Precision and recall of HARDTESTGEN when using different LLMs as test case generators.
* denotes open-weight models, and HT denotes HARDTESTGEN.

Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4

Precision Recall Precision Recall Precision Recall Precision Recall

HT+GPT-4o 99.53 99.18 100.0 97.43 96.04 98.45 84.18 98.03
HT+Claude-4-Sonnet 99.48 99.86 100.0 95.70 98.28 99.35 93.21 96.86
HT+Kimi-K2* 99.41 99.87 98.30 97.01 98.06 99.13 87.11 98.04
HT+Qwen3-Coder* 99.47 99.14 99.62 98.88 95.20 99.13 76.83 98.82

Table 8: Comparison between HARDTESTGEN with Qwen3-Coder and TACO/SymPrompt with
GPT-4. HT denotes HARDTESTGEN.

Diffculty 1 Diffculty 2 Diffculty 3 Diffculty 4

Precision Recall Precision Recall Precision Recall Precision Recall

SymPrompt+GPT-4 98.74 98.95 92.64 90.91 81.72 90.99 28.13 93.18
TACO+GPT-4 100.0 73.06 99.75 67.29 92.74 74.08 62.07 71.05
HT+Qwen3-Coder* 99.47 99.14 99.62 98.88 95.20 99.13 76.83 98.82

A.10 REDUNDANCY ANALYSIS OF TEST CASES

In this section, we analyze the redundancy of test cases. We conducted experiments on 500 randomly
selected AtCoder problems. By randomly removing a portion of test cases from both HARDTESTS
and the official test sets, we measured the precision of the remaining test cases. The results are shown
in Figure 7. We found that HARDTESTS exhibits significantly lower redundancy compared to official
test cases. For example, when 60% of the test cases were removed, the precision of official test cases
decreased by only 0.63%, whereas the precision of HARDTESTS dropped by 5.94%.

We also argue that a certain degree of redundancy is acceptable. On average, each problem in
HARDTESTS contains 39 test cases. During reinforcement learning training, we adopt the setting that
once a candidate program fails on any test case, evaluation is terminated, and the program is marked
incorrect. In practice, we found that evaluating a candidate program on a CPU takes only 5.1 seconds
on average, which is negligible compared to the time required for LLM rollout and weight updates.
Furthermore, in practical settings, multiple CPUs are usually available.

Figure 7: Percentage of retained test cases vs precision.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 9: Comparison between HARDTESTGEN and software testing test generation methods.

(a) Comparison between HARDTESTGEN and
AFL++.

Precision Recall
AFL++ 70.00 30.43

HARDTESTGEN 100.00 86.96

(b) Comparison between HARDTESTGEN and
TrickCatcher (both using the same model, GPT-
4o).

Precision Recall
TrickCatcher 75.76 49.50

HARDTESTGEN 96.43 77.88

(c) Comparison between HARDTESTGEN and SymPrompt (both using the same model, GPT-4o).

Precision Recall F1 Line Coverage Branch Coverage
SymPrompt 62.28 94.67 75.13 81.59 82.84

HARDTESTGEN 95.77 90.67 93.15 92.83 93.36

A.11 HARDTESTGEN COMPARISON WITH SOFTWARE TESTING METHODS

AFL++ Traditional fuzzing methods like AFL++ aim to generate random and unexpected input to
programs to detect vulnerabilities. However, in algorithmic programming, the input is expected to
follow the specification, and the goal for the test cases is to identify a correct and efficient program,
not to find a safe program. That said, we still use AFL++ to get the fuzzed inputs for comparison
with HARDTESTGEN.

As shown in Table 9a, HARDTESTGEN achieves higher precision and recall for the 53 programs
we evaluated. We find that the low precision and recall are due to AFL++ generating a large
number of invalid inputs. Problem specification is necessary for generating valid inputs. As such,
classical fuzzers would not be suitable in our setting unless paired with custom input mutators.
HARDTESTGEN could be slightly modified to generate input mutators similarly to how we generate
input generators. We have not yet explored using HARDTESTGEN to provide custom mutators to
classical fuzzers, but this is an interesting direction that we could explore in the future.

SymPrompt Although our problem setting is not coverage-guided test generation, because there is
not a single program under test. We still adopt and compare HARDTESTGEN with SymPrompt, one
of the coverage-guided methods. We use the Oracle program as the focal method for SymPrompt and
measure precision, recall, and coverage on 163 GPT-4o-generated candidate programs.

As shown in Table 9c, HardTestGen achieves a slight lower recall but much better coverage and
precision than SymPrompt.

This is because SymPrompt focuses on providing approximate execution paths to LLMs to maximize
coverage, while HardTestGen utilizes the LLMs’ algorithmic knowledge to generate difficult test
cases that make bad algorithms slow.

For example, for the following function that calculates the greatest common divisor with the Euclidean
algorithm:

1 def gcd(a, b):
2 if a % b == 0:
3 return b
4 return gcd(b, a % b)

SymPrompt easily generates test cases that reach 100% coverage, but the test cases it generates often
get solved in very few recursions. However, HardTestGen recognizes from the problem description
and generates a hacking input generator that assigns a and b to be consecutive Fibonacci numbers,
which causes the algorithm’s worst-case efficiency of 2 log2 b+ 1 steps.

While SymPrompt achieves a higher recall, this performance is potentially superficial, arising not
from strong test coverage, but from weak and non-discriminative test cases, as suggested by the low
F1 value.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

To explain this with an extreme case: a test suite that judges any program as correct will have no false
negatives, because it won’t have any negatives at all. Consequently, its recall will be 100

To concretely illustrate this point and address the reviewer’s request for an example, we provide a
detailed case study on Codeforces Problem 191C – Fools and Roads.

The input specifications for this problem are in natural language:

The first line contains a single integer n (2 ≤ n ≤ 105) Each of the next n− 1 lines contains two
space-separated integers ui, vi(1 ≤ ui, vi ≤ n, ui ̸= vi), that means that there is a road connecting
cities ui and vi. ... The next line contains integer k (0 ≤ k ≤ 105) ...

In short, this problem involves processing a tree with up to 105 nodes and answering up to 105

pairwise path queries. Efficient solutions require tree traversal preprocessing, and naive or brute-force
solutions quickly become infeasible at scale.

We observe that SymPrompt-generated test cases for this problem are small across all generations;
the maximum observed values are n = 8 and k = 3. These sizes are far below the problem’s limits
and do not stress the performance characteristics of candidate programs. In contrast, HardTestGen
deliberately generates test cases with n and k values approaching the specification limit (105),
effectively stress-testing the scalability and efficiency of candidate programs. The comparison
between the two test suites is as follows:

Both methods can reject a buggy program with an incorrect answer. SymPrompt correctly accepts the
1 correct solution, but incorrectly accepts all 3 inefficient programs (correct answer but not within
time limit). On the other hand, HardTestGen correctly rejects all 3 inefficient programs, though it
incorrectly rejects the 1 correct solution due to tight time constraints. This could be easily resolved
by slightly lessening the input scale or better matching the CPUs used by the online judge platform.
This leads to the observed recall gap: SymPrompt has higher recall because it accepts the correct
programs that HardTestGen wrongly rejects (performance limit being too harsh). However, it does so
at the cost of substantially lower precision, accepting several clearly incorrect programs.

In fact, none of the SymPrompt-generated test cases induce any timeout error for brute-force programs.
HardTests correctly identifies all 36 slow programs among the 163 candidate programs spanning 38
problems, each of which has at least two candidate implementations.

TrickCatcher We adapt TrickCatcher to our setting by:

• Selecting one oracle solution as the program under test (PUT) and following TrickCatcher’s
approach to generate the program variants and the input generator

• Retaining only variants that pass the public test cases (which serve as the "Existing Test
Suite" in TrickCatcher Figure 2).

• Evaluating the generated tests on 209 LLM-generated programs, with precision and recall
calculated by comparing the TrickCatcher’s test cases’ judgment with the CodeForces Online
Judge Platform’s judgment of the program correctness.

As shown in Table 9b, HardTestGen performs better than TrickCatcher in both precision and recall.
The gap between the two is as big as 20.67 percentage points for precision and 28.38 percentage
points for recall.

We attribute this improvement to our input validator and multiple types of tests, especially HackGen
tests.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 10: Precision and recall of the test cases of TACO, CodeContests*, HARDTESTS, and abla-
tive baseline on AtCoder. HT–L refers to the results using only the test cases of LLMGen from
HARDTESTS. while HT–L+R+S refers to the results using only the test cases of LLMGen, RPGen,
and SPGen from HARDTESTS. The asterisk next to CodeContests indicates that this dataset does not
provide test cases for AtCoder problems. We implemented the method described in their paper to
generate the test cases.

Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4+ Average
prec. recall prec. recall prec. recall prec. recall prec. recall

Qwen2.5-Coder-7B-Instruct

TACO 99.48 77.09 89.66 62.9 69.07 81.71 26 86.67 71.05 77.09
CodeContests* 95.24 93.93 64.12 67.74 52.5 76.83 13.64 100 56.38 84.63

HT–L 94.63 99.84 74.7 100 42.2 89.02 9.79 93.33 55.33 95.55
HT–L+R+S 97.85 99.35 97.64 100 74.23 87.8 56 93.33 81.43 95.12
HARDTESTS 98.15 98.95 97.58 97.58 86.75 87.8 58.33 93.33 85.2 94.42

Qwen2.5-Coder-14B-Instruct

TACO 99.82 78 93.24 69 80.23 73.4 44.3 76.09 79.4 74.12
CodeContests* 95.32 94.11 71.28 69.5 67.26 80.85 28.85 97.83 65.68 85.57

HT–L 96.21 99.72 77.22 100 58.9 96.81 20.18 97.83 63.13 98.59
HT–L+R+S 97.31 99.02 94.79 100 87.5 96.81 68.18 97.83 86.95 98.42
HARDTESTS 97.99 99.02 96.95 95.5 93.33 96.81 69.84 95.65 89.53 96.75

GPT-4o

TACO 100 73.06 99.75 67.3 92.74 74.08 63.9 72 89.1 71.61
CodeContests* 99.51 94.1 94.04 78.42 86.4 79.88 57.14 89.33 84.27 85.43

HT–L 99.42 99.47 94.31 99.32 86.39 99.42 48.86 99.67 82.25 99.47
HT–L+R+S 99.53 99.18 99.82 97.6 96.04 98.45 79.62 99 93.75 98.56
HARDTESTS 99.53 99.18 100 97.43 96.04 98.45 84.48 98 95.01 98.27

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 11: Precision and recall of the test cases of TACO, CodeContests, HARDTESTS, and ablative
baseline on Codeforces. HT–L refers to the results using only the test cases of LLMGen from
HARDTESTS. while HT–L+R+S refers to the results using only the test cases of LLMGen, RPGen,
and SPGen from HARDTESTS.

Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4+ Average
prec. recall prec. recall prec. recall prec. recall prec. recall

Qwen2.5-Coder-7B-Instruct

TACO 89.64 86.13 71.07 92.91 31.06 39.47 9.82 100 50.4 79.63
CodeContests 85.74 89.24 63.73 97.64 23.8 47.54 6.67 100 44.99 83.61

HT–L 74.03 95.45 34.9 98.82 16.12 55.61 5.24 100 32.57 87.47
HT–L+R+S 87.61 95.45 40.7 98.82 45.2 55.61 33.75 100 51.82 87.47
HARDTESTS 87.61 95.45 93.3 98.82 48.38 55.61 50 100 69.82 87.47

Qwen2.5-Coder-14B-Instruct

TACO 80.67 87.45 83.88 81.13 53.87 73.88 25.76 100 61.05 85.62
CodeContests 79.7 95.59 79.29 86.16 46.49 91.84 18.68 100 56.04 93.4

HT–L 74.43 98.64 48.21 100 40.57 82.04 13.45 100 44.17 95.17
HT–L+R+S 80.08 98.64 57.65 100 59.37 80.41 46.58 90.8 60.92 92.46
HARDTESTS 83.19 98.64 88.44 100 67.47 80.41 46.58 90.8 71.42 92.46

GPT-4o

TACO 99.58 80.02 95.76 81.72 89.64 74.83 62.64 78.17 86.91 78.69
CodeContests 99.47 94.8 95.25 89.89 86.83 87.08 58.28 94.31 84.96 91.52

HT–L 98.45 97.28 94.48 98.71 80.14 89.36 45.49 100 79.64 96.34
HT–L+R+S 98.81 98.88 95.46 98.71 89.15 88.5 73.01 96.2 89.11 95.57
HARDTESTS 98.8 98.2 95.66 98.71 92.73 88.5 79.82 94.31 91.75 94.93

Human Submission

TACO 96.28 88.89 91.48 81.59 75.9 78.84 62.23 73.77 81.47 80.77
CodeContests 94.15 90.06 87.47 89.99 73.11 85.1 56.8 79.88 77.88 86.26

HT–L 83.5 95.57 69.73 95.97 54.7 93.59 42.82 91.72 62.69 94.21
HT–L+R+S 91.73 94.22 83.79 95.17 70.95 93.89 60.81 89.35 76.82 93.16
HARDTESTS 93.29 94.13 85.15 95.05 73.71 93.59 64.16 89.35 79.08 93.03

43

	Introduction
	Related work
	The HardTestGen Method
	Overview
	Synthesizing Test Inputs for Algorithmic Coding Problems
	Validating Test Case Input Data Using Synthesized Programs
	Computing Expected Outputs and Filtering Test Cases
	HardTests: 26.6k Problems with High-Quality Test Cases

	Direct Evaluation of Test Case Quality
	Evaluation Criteria
	Evaluation Protocol
	Results

	Downstream Effects of Test Case Quality in LLM Post-Training
	Experiment Setup
	Results

	Conclusion and Future Work
	Reproducibility Statement
	Appendix
	More Related Work Disccusion
	Details of the Test Cases Generation Pipeline of HardTestGen
	Prompts Used in HardTestGen
	Statistics of test cases in HardTests
	Failure Rate and Failure Reasons of HardTestGen
	HardTests Examples

	Details of the Collection of Problem Specifications and Oracle Programs in HardTests
	Evaluation Result on AtCoder and Codeforces Separately
	Detailed Protocol of the Direct Evaluation of Test Cases' Quality
	Qualitative Analysis of Generated Tests
	Example 1: False Positive of TACO and HardTests LLMGen
	Example 2: False Positive of TACO and HardTests LLMGen + RPGen
	Example 3: False Negative of TACO

	Downstream Training and Evaluation Details
	rejection sampling training and evaluation details.
	RL training and evaluation details.

	Test Case Generation Without an Oracle Model
	Example 1: Brute-force oracle solution generated by ALGO
	Example 2: Test cases generated by ALGO
	Example 3: Test cases generated by AceCoder

	Ablation study on LLMs for test case generation
	Redundancy Analysis of Test Cases
	HardTestGen Comparison with Software Testing Methods

