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ABSTRACT

Federated learning (FL) involves multiple heterogeneous clients collaboratively
training a global model via iterative local updates and model fusion. The generaliza-
tion of FL’s global model has a large gap compared with centralized training, which
is its bottleneck for broader applications. In this paper, we study and improve FL’s
generalization through a fundamental “connectivity” perspective, which means how
the local models are connected in the parameter region and fused into a generalized
global model. The term “connectivity” is derived from linear mode connectivity
(LMC), studying the interpolated loss landscape of two different solutions (e.g.,
modes) of neural networks. Bridging the gap between LMC and FL, in this paper,
we leverage fixed anchor models to empirically and theoretically study the transitiv-
ity property of connectivity from two models (LMC) to a group of models (model
fusion in FL). Based on the findings, we propose FedGuCci(+), improving group
connectivity for better generalization. It is shown that our methods can boost the
generalization of FL under client heterogeneity across various tasks (4 CV datasets
and 6 NLP datasets) and model architectures (e.g., ViTs and PLMs).

1 INTRODUCTION

Vanilla Training

Model w1 Model w1

Models Loss Barriers
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Loss

Connectivity Loss

with Anchor Model
Connectivity Loss

with Anchor Model
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where “↔” means improved LMC.

Figure 1: Illustration on transitivity of linear
mode connectivity. Left: vanilla training, where
models have high barriers in LMC. Right: transitiv-
ity of LMC. Models w1 and w2 are independently
trained, and they are all learned to have good LMC
with anchor model w∗

anc. At the end of the training,
models w1 and w2 have improved LMC, showing
the transitivity of LMC.

Federated learning (FL) is a privacy-preserving
and communication-efficient distributed training
paradigm that enables multiple data owners to collab-
oratively train a global model without sharing their
data (McMahan et al., 2017). However, clients al-
ways have heterogeneous data (Li et al., 2020a; Lin
et al., 2020), and in each round, they conduct local
training of multiple epochs based on the data, caus-
ing model drifts of local models (Karimireddy et al.,
2020; Wang et al., 2020), further resulting in gener-
alization degradation of the fused global model (Li
et al., 2023a; Acar et al., 2020). Previous works
improve the generalization by seeking flatter min-
ima (Caldarola et al., 2022; Qu et al., 2022) or using
local proximal regularization (Li et al., 2020a) to rem-
edy the model drifts. While in this paper, we take a
more fundamental perspective on how the local mod-
els are connected with each other under model drifts
(group connectivity) and how they are fused into a
generalized global model based on such connectivity.

The notion of group connectivity is inspired by linear mode connectivity (LMC), which studies the
interpolated loss landscape of two SGD solutions (e.g., modes) (Draxler et al., 2018; Zhang et al.,
2021; Entezari et al., 2022). It is found that two trained models with different random seeds of batch
orders (depicted by SGD noise), even if have the same initialization, may cause a barrier along their
linear interpolation path (i.e., the LMC path), indicating the two SGD solutions are not in the same
loss landscape basin (Draxler et al., 2018; Garipov et al., 2018; Ainsworth et al., 2022). This observa-
tion is quite analogous to model drift in FL, where multiple local models are initialized the same, but
due to SGD noise and bias (Li et al., 2020a; Karimireddy et al., 2020) caused by heterogeneous data
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and asynchronous training, local models drift from each other and have inferior generalization after
linear model fusion. This analogy inspires us to think about whether we can leverage the insights and
techniques from LMC to improve the generalization of FL through the lens of connectivity. Previous
works propose to learn neural network subspaces for increasing LMC between two models when
simultaneously training them (Wortsman et al., 2021; Garipov et al., 2018). They use the midpoints
of the improved LMC for ensembling. In this paper, we aim to leverage the idea of increasing LMC
to improve the connectivity among the local models in FL. However, there is a crucial gap between
LMC and FL. In Wortsman et al. (2021), they can retain and train two models simultaneously, while
in each round of FL, every local model is independently trained for several epochs. In addition, LMC
only considers two models, while FL requires the connectivity of multiple models.

Therefore, we utilize a fixed anchor model to study the transitivity property of LMC and hypothesize
that: if LMC between model w1 and anchor model w∗

anc, as well as between model w2 and anchor
model w∗

anc, is independently enhanced, then the LMC between models w1 and w2 will also improve
(an illustration of the transitivity is in Figure 1). Through theoretical and empirical analyses, we
verify the transitivity of LMC and then extend it to the group connectivity of multiple models.

Based on the above findings, we propose Federated Learning with Improved Group Connectivity
(FedGuCci), which leverage the global models as the anchor models for improving group connec-
tivity of local models. Further, due to data heterogeneity in FL, clients’ local loss landscapes are
different and shifted. Thus, we propose a strengthened version, FedGuCci+, by incorporating some
heterogeneity-resistant modules for aligning local loss landscapes. Our contributions are listed below.

• We study FL from the connectivity perspective, which is novel and fundamental to under-
standing the generalization of FL’s global model.

• We theoretically and empirically verify the transitivity of LMC and the group connectivity
of multiple models.

• We propose FedGuCci and FedGuCci+. Extensive experiments show that our methods can
improve the generalization of FL across various settings.

The rest of the paper is organized as follows. In section 2, we provide the preliminaries of FL and
LMC and the most related works. In section 3, we give the hypothesis about the transitivity of
connectivity and the theoretical and empirical analyses. Based on the findings, in section 4, we
propose FedGuCci(+) in FL, and then the experimental results are in section 5. Lastly, we conclude
the paper in section 6.

2 PRELIMINARIES AND RELATED WORKS

In this section, we present the preliminaries of FL and LMC and the most relevant works to this paper.

2.1 PRELIMINARY OF FEDERATED LEARNING

FL includes a server and M clients to collaboratively learn a global model without data shar-
ing (McMahan et al., 2017). Denote the set of clients by S, the local dataset of client i by
Di = {(xj , yj)}|Di|

j=1 , the sum of clients’ data by D =
⋃

i∈S Di. The IID data distributions of clients
refer to each client’s distribution Di is IID sampled from D. However, in practical FL scenarios,
heterogeneity exists among clients whose data are non-IID with each other, causing model drifts.
During FL training, clients iteratively conduct local updates and communicate with the server
for model fusion. In the local updates, the number of local epochs is E; when E is larger, the
communication is more efficient, but the updates are more asynchronous, also the model drifts are
more severe. The total number of communication rounds is T .

Denote the global model and the client i’s local model in communication round t ∈ [T ] by wt
g and

wt
i . In each round, clients’ local models are initialized as the global model that wt

i ← wt
g , and clients

conduct local training in parallel. In each local training epoch, clients conduct SGD update with a
local learning rate ηl, and each SGD iteration shows as

wt
i ← wt

i − ηl∇ℓ(Bb,w
t
i), for b = 1, 2, · · · , B, (1)

where ℓ is the batch-level loss function and Bb is the mini-batch sampled from Di at the b-th iteration.
After local updates, the server samples a set St of K clients and conducts linear model fusion to
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generate a new global model. The participation ratio is ρ = K
M . The model fusion process is as

wt+1
g =

∑
i∈St

µiwt
i, s.t. µi ≥ 0, (2)

where µ = [µi]i∈St is the fusion weights. For vanilla FedAvg, it adopts normalized weights
proportional to the data sizes, µi =

|Di|
|Dt| ,D =

⋃
i∈St Di. A recent study shows that the sum of fusion

weights can be smaller than 1 to improve generalization by global weight decay regularization (Li
et al., 2023a).

2.2 PRELIMINARY OF LINEAR MODE CONNECTIVITY

Linear mode connectivity (LMC). LMC refers to the loss landscape where two models w1 and
w2 are linearly interpolated by w = αw1 + (1 − α)w2, for α ∈ [0, 1]. Usually, there are three
forms of LMC regarding different w1 and w2. (1) LMC between two SGD solutions with the same
initialization but different random seeds (batch orders) (Ainsworth et al., 2022); (2) LMC between
two SGD solutions with different initializations (Entezari et al., 2022); (3) LMC from the initialization
and the trained model (Vlaar & Frankle, 2022). LMC is depicted by the barriers in the landscape, the
lower the barriers, the better the LMC. We present the definitions of loss and accuracy barriers below.

Definition 2.1 Loss and accuracy barriers. Let fw(·) be a function represented by a neural network
with parameter vector w that includes all parameters. L(w) is the given loss (e.g., train or test
error) of fw(·) and A(w) is its accuracy function. Given two independently trained networks w1

and w2, let L(αw1 + (1 − α)w2) be the averaged loss of the linearly interpolated network and
A(αw1 + (1− α)w2) be its accuracy, for α ∈ [0, 1]. The loss barrier Bloss(w1,w2) and accuracy
barrier Bacc(w1,w2) along the linear path between w1 and w2 are defined as:

Bloss(w1,w2) = sup
α

{[L(αw1 + (1− α)w2)] −[αL(w1) + (1− α)L(w2)]} . (3)

Bacc(w1,w2) = sup
α

[
1− A(αw1 + (1− α)w2)

αA(w1) + (1− α)A(w2)

]
. (4)

The loss barrier is not bounded, while the accuracy barrier is bounded within [0, 1].

Reducing the barriers in LMC. In Wortsman et al. (2021), the authors train two SGD solutions
simultaneously while also learning a line of connected subspace between the two models. It also adds
a regularization loss to make the two solutions orthogonal so that the midpoints of the LMC path
can have diversity for ensembling. While in our paper, we also use similar techniques for improving
LMC, but we do not require orthogonality. Also, instead of simultaneously training two models,
we individually train models, improve their LMC with a fixed anchor model, and verify the LMC’s
transitivity.

2.3 MOST RELATED WORKS

LMC and FL. In Hahn et al. (2022), the authors propose to train two models (one for personalization
and another for generalization) at clients and learn a connected subspace between the two models for
better personalization. Recently, a concurrent work (Zhou et al., 2023) empirically and theoretically
verifies that when clients’ data are more heterogeneous, the local loss landscapes will be more shifted,
causing worse LMC. However, they haven’t proposed an effective algorithm in FL based on LMC
insights, where our contributions lie. To the best of our knowledge, our paper may be the first paper
to study and improve the generalization of FL from the connectivity perspective.

Comparison with FedProx. FedProx (Li et al., 2020a) adopts the current round’s global model as
a regularization term for tackling heterogeneity. Instead, we utilize the historical global models as
the anchor models and learn to improve the connectivity between the local model with these anchor
models. Thus, our methods and FedProx have fundamental differences in leveraging the global
models regarding motivation and implementations. Due to space limits, we include more related
works in Appendix D, e.g., generalization of FL and LMC basics.

3 TOWARDS THE TRANSITIVITY OF CONNECTIVITY

In this section, we verify the transitivity of LMC and group connectivity by leveraging fixed anchor
models, paving the way for improving generalization in FL.

3
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3.1 TRANSITIVITY OF LINEAR MODE CONNECTIVITY

We first give the hypothesis on the transitivity of LMC.

Hypothesis 3.1 Transitivity of linear mode connectivity (informal). There are three models
{w1,w2,w

∗
anc}. If the linear mode connectivity between w1 and w∗

anc, as well as the one be-
tween w2 and w∗

anc, are independently improved, then, the linear mode connectivity between w1 and
w2 is also improved.

We make a theoretical analysis to prove the transitivity of LMC. We make the assumption below,
following Assumption 7 in Ferbach et al. (2023) and Assumption 1 in Li et al. (2019).

Assumption 3.2 ∀y ∈ Y, the loss function L(·, y) is convex and 1-Lipschitz for each y and the loss
L(·) is γ-smooth, where L(w) = E[L(fw(x), y)] and the expectation E is taken over the dataset.

Lemma 3.3 Set the uniform and bounded domain for network w as Eϵ = {w ∈ Ω|L(w) < ϵ}.
Define a random event Dϵ(w

∗
anc) as Dϵ(w

∗
anc) = {∃w ∈ Eϵ|∀α ∈ [0, 1],L(αw∗

anc +(1−α)w) ≤ ϵ}.
Consider an anchor model w∗

anc and an arbitrary network w and for ϵ > 0. For ∥w −w∗
anc∥∞ ≤ d

2 ,

P (Dϵ(w
∗
anc)) ≤ (

dϵ
d
)S , (5)

where dϵ = |Eϵ|
1
S represents the average diameter of region Eϵ, S represents the number of parame-

ters of the neural network and the equality holds if and only if Eϵ ⊂ {w|∥w −w∗
anc∥∞ ≤ d} is a

star domain centered at w∗
anc. Thus, when P (Dϵ(w

∗
anc))) > 1− δ, it holds d < dϵ

(1−δ)
1
S

.

Remark 3.4 This lemma links the distance between parameters to LMC, describing that the greater
the probability of LMC (i.e., a small loss barrier) existing between the network w and the anchor
model w∗

anc, the smaller the distance should be between w and w∗
anc.

Then, we provide the following theorem.

Theorem 3.5 We define a two-layer neural network with ReLU activation, and the function is
fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l are
parameters1 and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider
two different networks w1,w2 parameterized with {U1,v1} and {U2,v2} respectively. Each
element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗

anc and
v∗

anc with an interval length of d. If with probability 1 − δ, supα L(αw∗
anc + (1 − α)w1) < ϵ and

supα L(αw∗
anc + (1− α)w2) < ϵ, then with probability 1− δ, it has,

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ), (6)

where Bloss(w1,w2) is the loss barrier as Equation 3.

The proofs are in Appendix B. Theorem 3.5 proves the transitivity of LMC that when w1 and w2

have lower LMC barrier with w∗
anc (the barrier proxy is ϵ) then the barrier between w1 and w2 is also

reduced and bounded.

Then, we will empirically validate the transitivity. We first present the connectivity loss given the
anchor model, which is similar to previous literature (Wortsman et al., 2021; Garipov et al., 2018).
The connectivity loss is as follows,

Lconnect(w,w∗
anc) = Eα∼[0,1]L(αw + (1− α)w∗

anc) =

∫ 1

0

L(αw + (1− α)w∗
anc) dα, (7)

1For simplicity and without loss of generality, we omit the bias terms.
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Figure 2: Linear mode connectivity landscapes of test accuracy, showcasing the transitivity. The accuracy
barrier is shown as the maximal accuracy drop along the landscape. (a) and (c): LMC between one trained
model and the anchor model, and the barrier is eliminated for connectivity loss. (b) and (d): LMC between two
trained models, connectivity loss has the lower barriers, showing the transitivity of LMC. CIFAR-10 is used.

where w∗
anc is the fixed anchor model and w is the model for training. Then, we incorporate the

connectivity loss into the vanilla cross entropy (CE) loss, formulated into the following overall
learning objective,

w∗ = argmin
w

L(w) + βLconnect(w,w∗
anc), (8)

where L(w) is the vanilla CE loss and β is the hyperparameter controlling the strength of the
connectivity loss.

We let w∗
anc be the fixed trained anchor model and independently train two models w∗

1 and w∗
2

according to Equation 8. According to Theorem 3.5, the w∗
1 and w∗

2’s LMC barriers will be reduced
if the transitivity holds. Note that w1 and w2 can have the same or different initializations, and
the transitivity still holds; in the experiments, we make stricter verifications by setting different
initializations.

Table 1: Test accuracies and barriers of two
trained models w/ and w/o connectivity loss.
“Ind. Acc.” refers to 0.5 ∗ A(w1) + 0.5 ∗ A(w2),
and “Fused Acc.” refers to A(0.5∗w1+0.5∗w2).
It validates the transitivity of LMC, stating that by
leveraging the anchor model, the barriers of LMC
are largely reduced. CIFAR-10.
Models Metrics Vanilla CE Loss w/ Connectivity Loss

CNN

Ind. Acc. 64.0± 0.5 63.9± 1.4
Fused Acc. 11.5± 0.9 32.1± 9.0

Acc. Barrier 0.821 0.495 (39.7% ↓)

ResNet 20

Ind. Acc. 66.7± 0.9 69.1± 2.4
Fused Acc. 13.0± 3.8 40.5± 3.5

Acc. Barrier 0.805 0.415 (44.1% ↓)

Pretrained
ResNet18

Ind. Acc. 55.8± 6.6 64.5± 0.3
Fused Acc. 10.0± 0.0 62.1± 0.4

Acc. Barrier 0.819 0.038 (95.4% ↓)

Empirical results. We conduct experiments in Ta-
ble 1 and Figure 2. The anchor model is a mode
independently trained with vanilla CE loss using a
different random seed. In Table 1, training with the
connectivity loss can largely reduce the barriers of
LMC by utilizing the anchor model, even if two mod-
els have different initializations and never commu-
nicate with each other. More intuitive landscape vi-
sualizations are in Figure 2. It can be seen that the
connectivity loss can eliminate the barrier between
the anchor model and the trained model, and due to
the transitivity of LMC, the barrier between the two
independent models is also reduced. The experiments
verify the transitivity of LMC between two models,
and we will show that this transitivity can be extended
to the connectivity of multiple models.

Notes: Our Theorem 3.5 requires no assumptions on the anchor models. Though our empirical
verification in Table 1 and Figure 2 uses trained minima as anchor models, it is validated in Table 7
that the transitivity of connectivity also holds when the anchor models are less performed, e.g.,
random initialization.

3.2 TRANSITIVITY OF GROUP CONNECTIVITY

We study the group connectivity among multiple models and propose the barrier of group connectivity
akin to Definition 2.1 of LMC. For brevity, we only present the definition of accuracy barriers.

Definition 3.6 Group connectivity. The group connectivity of model set {wi}Ki=1 is depicted by the
loss and accuracy barrier defined as:

Bloss({wi}Ki=1) = L( 1
K

K∑
i=1

wi)−
1

K

K∑
i=1

L(wi), Bacc({wi}Ki=1) =

[
1−

A( 1
K

∑K
i=1 wi)

1
K

∑K
i=1 A(wi)

]
, (9)

where L is the loss andA is the accuracy function. A lower barrier refers to better group connectivity.
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Figure 3: Test loss landscapes of three trained
models w/ and w/o connectivity loss. Visualiza-
tion as in (Garipov et al., 2018) with w∗

1 at the ori-
gin. w∗

1 ,w
∗
2 ,w

∗
3 are marked as the black dots. Left:

vanilla CE loss. Right: independently training three
models with improved LMC between the same anchor
model. From the right figure, group connectivity is
improved, and the three models fall into a more con-
nected low-loss region.
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Figure 4: Accuracy barriers (the lower, the better)
of group connectivity by varying numbers of trained
models K. There is only one anchor model for all
settings. It can be seen that generally, larger K will
cause larger barriers, but connectivity loss can still
reduce them, reflecting that the transitivity of LMC can
improve group connectivity. CIFAR-10 is used.

We prove the transitivity of group connectivity that individually training several models and improving
the LMC between one common anchor model will result in better group connectivity among the
trained ones. In addition, we consider the data heterogeneity of practical FL in group connectivity by
giving the following definition.

Definition 3.7 Data heterogeneity. Similar to (Li et al., 2019), we use the minimum to measure
the degree of heterogeneity among the group of individual workers (e.g., clients in FL and modes
in LMC). Let w∗ be a global minimum of all workers and w∗

i is the minimum value of worker i
closest to w∗. We use the term Γ = maxi ∥w∗

i −w∗∥2, i ∈ [K] for quantifying the degree of data
heterogeneity.

Theorem 3.8 We define a two-layer neural network with ReLU activation, and the function is
fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l are
parameters and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider K
different networks wi parameterized with {Ui,vi} located on K clients respectively. Each element
of Ui and vi is sampled from a uniform distribution centered at U∗

anc and v∗
anc with an interval length

of d. If with probability 1− δ, supα Li(αw
∗
anc + (1− α)wi) < ϵ, then with probability 1− δ, it has,

Bloss({wi}Ki=1) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (10)

Landscape visualization. We empirically study whether the transitivity of LMC can be generalized
to group connectivity of multiple models. We let w∗

anc be the anchor model and independently
train three models w∗

1,w
∗
2,w

∗
3 according to Equation 8. Also, training the three models without

connectivity loss is conducted for comparison. Then, we visualize the loss landscapes of w∗
1,w

∗
2,w

∗
3

in Figure 3. For vanilla CE loss, the trained models are scattered in different loss basins with high
barriers between them. However, with the connectivity loss, the LMC between each model and the
anchor model is improved, and as a result of transitivity, the three models fall into a more connected
low-loss region, and the barriers are largely eliminated.

Group connectivity when vary K. We study the transitivity of group connectivity by scaling up
the number of trained models K, which is critical for federated learning with numerous clients.
The results are in Figure 4; note that the number of anchor models is still one. We observe that by
increasing K for the connectivity loss, the barrier in group connectivity will go up but still lower than
the vanilla training. Also, the increase of barriers may converge to a point lower than vanilla training.
It indicates that the transitivity of group connectivity may be weakened for larger K but still effective,
and when K is relatively large (e.g., >8), increasing K will cause little loss of group connectivity.
Furthermore, we will show in Table 4 that our FedGuCci, which incorporates the connectivity loss,
can improve the generalization under different large numbers of clients.
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Table 2: Results in terms of generalization accuracy (%) of global models on four datasets under different
data heterogeneity. The best two methods in each setting are highlighted in bold fonts. M = 50, E = 3.

Dataset Fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Non-IID hyper. 100 0.5 100 0.5 100 0.5 100 0.5

Local 76.22±0.16 62.24±0.35 36.69±0.10 29.73±0.36 7.36±0.14 6.97±0.08 6.47±0.12 6.09±0.02

FedAvg 87.94±0.34 86.99±0.04 63.55±0.16 63.99±0.32 27.21±0.96 25.60±0.62 27.43±1.39 25.11±1.82

FedProx 10.00±0.00 10.00±0.00 61.81±0.47 61.45±0.43 27.78±0.41 28.58±0.28 24.58±0.28 25.02±0.19
FedDyn 88.26±0.17 88.18±0.36 64.99±0.64 65.73±0.31 29.90±7.13 28.49±0.55 30.89±0.03 24.63±2.68
SCAFFOLD 87.95±0.31 86.47±0.14 63.20±0.32 63.96±0.41 1.07±0.09 1.25±0.07 0.529±0.05 0.517±0.02
MOON 86.95±0.09 86.02±0.29 64.24±0.65 63.41±0.31 28.97±1.69 27.36±0.71 27.88±1.08 25.34±0.66
FedRoD 87.97±0.40 87.56±0.60 62.64±0.20 62.56±0.46 26.94±0.78 25.90±1.20 27.67±1.64 25.55±1.56
FedLC 87.90±0.36 86.79±0.29 63.49±0.17 63.97±0.35 27.23±0.69 25.36±0.65 27.63±1.62 25.47±1.84
FedSAM 88.41±0.49 87.62±0.30 65.10±0.41 65.02±0.15 28.11±0.61 26.75±0.74 31.23±0.16 30.44±0.97

FedGuCci 88.85±0.11 88.30±0.39 65.11±0.11 65.80±0.22 30.55±0.67 29.33±0.41 36.46±0.40 33.61±0.60
FedGuCci+ 89.38±0.14 88.61±0.40 68.11±0.27 66.44±0.69 36.20±1.06 35.34±0.68 37.42±0.52 34.80±0.35

4 METHODS

4.1 FEDGUCCI: FL WITH IMPROVED GROUP CONNECTIVITY

In section 3, we have verified the transitivity of group connectivity by using an anchor model. In this
section, we will present FedGuCci, incorporating this property in FL to improve generalization.

Global models as anchor models. We refer to subsection 2.1 for the settings and notations. In our
FedGuCci, we use the global models as the anchor models for connectivity loss with local clients.
Instead of solely using the current round global model as the anchor, we find using several previous
rounds’ global models can form the clients into a more connected region, so we use N previous
global models as the anchors. Specifically, in round t ∈ [T ], the set of anchor models Wt

anc∗ is:

Wt
anc∗ =

{
{wj

g}tj=t−N+1 if t ≥ N,

{wj
g}tj=1 if t < N,

(11)

where wj
g refers to the global model at round j.

FedGuCci local updates. FedGuCci is a client-side algorithm that utilizes the global models as the
anchor and improves the group connectivity of clients, without additional communication overhead.
FedGuCci has the following update rules. In each round t, client i ∈ [M ] conducts local training
according to the following objective:

wt∗
i = argmin

wt
i

Li(w
t
i) + β

1

|Wt
anc∗ |

|Wt
anc∗ |∑

j=1

Lconnecti(w
t
i ,W

t
anc∗,j), (12)

where Wt
anc∗,j refers to the j-th model in the anchor model set, β is the hyperparameter for connec-

tivity loss, Li is the client’s local CE loss, and Lconnecti is the connectivity loss regarding Equation 7.
Clients conduct SGD as Equation 1 to update the local models.

By learning to connect with the global anchor models, FedGuCci will improve the group connectivity
and achieve better generalization as we will elaborate in section 5. The pseudo-code is in 1.

Notes: We note that our method FedGuCci doesn’t require additional communication costs compared
with FedAvg. FedGuCci uses historical global models, which are communicated in previous rounds
and stored at the clients. Instead, FedGuCci may require additional storage at the clients for historical
global models when N > 1, but the storage is lightweight and acceptable. For computation, in
Table 8, we will show that FedGuCci is more efficient than the baselines given a computation budget.

4.2 FEDGUCCI+: ALIGNING LOCAL LOSS LANDSCAPES

In the study of LMC, different modes are trained on the same dataset but with different random seeds
or initializations (Entezari et al., 2022). However, in FL, clients have heterogeneous data, and it is
found that data heterogeneity of clients will cause different curvatures of local loss landscapes (Zhou
et al., 2023), making the connectivity worse. Therefore, aligning local loss landscapes is essential for
better performances of the connectivity loss. In this subsection, we incorporate previous techniques
in FedGuCci to align local loss landscapes and propose FedGuCci+.
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Table 3: Results of pretrained language models on natural language processing (GLUE benchmark).
Methods/Tasks SST-2 MRPC CoLA QNLI RTE STS-B AVG

Local 92.55±0.19 78.38±0.37 47.98±1.01 84.66±0.10 55.69±1.03 87.11±0.36 75.40±0.51

FedAvg 92.79±0.24 84.17±0.38 53.86±0.70 84.52±0.14 68.63±1.53 88.61±0.34 78.76±0.56

FedProx 50.88±0.00 67.26±0.75 00.00±0.00 50.55±0.98 49.39±3.42 00.00±0.00 54.52±1.71
FedDyn 91.19±0.85 84.80±0.41 55.49±1.02 85.51±0.54 61.40±3.89 24.75±9.38 67.19±2.68
SCAFFOLD 92.75±0.12 84.11±0.65 54.28±0.31 84.73±0.16 69.24±2.76 88.31±0.31 78.90±0.72
FedSAM 92.79±0.14 84.81±0.08 53.25±0.43 82.13±0.34 68.14±2.09 87.71±0.42 78.14±0.58

FedGuCci 93.22±0.20 85.77±0.44 55.38±0.44 89.40±0.40 70.96±1.60 89.25±0.44 80.66±0.59

Table 4: Results on different numbers of clients and
participation ratios. Non-IID hyper. is 1.0, and the
dataset is CIFAR-10.
M 100 200

ρ 0.3 0.6 0.3 0.6

Local 27.91±0.24 27.53±0.10 23.39±0.18 23.20±0.22

FedAvg 63.98±0.84 63.41±0.55 61.37±0.79 61.15±1.01

FedProx 52.43±0.66 52.79±0.73 44.63±0.95 44.96±0.78
FedRoD 61.15±0.05 60.30±0.02 58.01±0.92 57.63±1.44
FedLC 63.70±0.69 63.24±0.70 60.99±0.66 60.67±0.81
FedSAM 64.87±0.58 64.45±0.22 62.33±0.56 61.93±0.90

FedGuCci 65.02±0.41 64.54±0.41 62.37±0.83 62.13±0.63
FedGuCci+ 65.34±0.21 65.50±0.35 63.29±0.71 63.93±0.81

Table 5: Results of global models under pretrain-
finetune vision models. Non-IID hyper. is 10.

Dataset CIFAR-10 CIFAR-100

Models ResNet-18 ViT ResNet-18 ViT

Local 65.33±0.35 87.04±0.43 31.01±0.34 64.38±0.47

FedAvg 74.89±0.16 96.16±0.19 45.24±0.57 83.61±0.69

FedProx 50.61±0.81 96.32±0.21 4.29±0.38 78.49±1.92
FedRoD 74.91±0.17 96.18±0.18 45.19±0.76 83.64±0.35
FedLC 74.94±0.13 96.21±0.17 45.18±0.65 83.38±0.64
FedSAM 74.79±0.49 96.27±0.01 45.05±0.44 83.13±0.82

FedGuCci 75.22±0.12 96.38±0.11 45.62±0.61 83.71±0.48
FedGuCci+ 75.30±0.53 96.73±0.13 46.09±0.55 83.96±0.67

Bias reduction. In FL, class imbalance (a.k.a. label skew) is a main cause of data heterogeneity,
and previous works propose logit calibration (Zhang et al., 2022), balanced softmax (Chen & Chao,
2022), and other techniques (Li et al., 2023b; Acar et al., 2020) for reducing the bias caused by class
imbalance. Here, we introduce the logit calibration technique used in FedLC (Zhang et al., 2022) for
bias reduction. The main idea of logit calibration is to add additional terms to the logits to balance
the overall class distributions. From Figure 5 (b), it demonstrates that logit calibration and other bias
reduction methods can align the landscapes by making the local objectives more consistent.

(c)

Aligning local landscapes

 via flatter minima

Parameter

Loss

Parameter

(a)

Client 1’s local 

loss landscape

Client 2’s local

loss landscape

Loss

(b)

Aligning local landscapes

 via bias reduction

Parameter

Loss

Figure 5: Illustration of how FedGuCci+ aligns
the local loss landscapes. (a): Vanilla FedGuCci.
Due to data heterogeneity, clients have different
local loss landscapes. (b): FedGuCci+Bias Re-
duction. Introducing logit calibration or other FL
bias reduction techniques can align the learning
objectives. (c): FedGuCci+Flatter Minima. Intro-
ducing sharpness-aware minimization can make
the landscapes flatter, and as a result, the overlap-
ping regions increase.

Flatter minima. Sharpness-aware minimiza-
tion (Foret et al., 2021; Kwon et al., 2021) (SAM)
find flatter minima to improve generalization.
SAM has also been introduced in FL for better
generalization (Caldarola et al., 2022; Qu et al.,
2022). In our paper, we find SAM can be used to
align local loss landscapes by making the landscapes
flatter, so we also incorporate it in FedGuCci+. From
Figure 5 (c), if the landscapes are flatter, the overlap
regions between two clients will increase. Therefore,
it will have more aligned landscapes. Also, for
FedGuCci, SAM makes the connectivity loss to learn
a cylinder connected with the anchor model instead
of a line (Wen et al., 2023), improving connectivity
robustness and generalization. FedGuCci+ incor-
porates logit calibration and SAM into FedGuCci,
achieving better generalization. We note that FedGuCci+ is a showcase of how FedGucCci is
compatible with other existing techniques for better results, and more techniques can be integrated.

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate how FedGuCci and FedGuCci+ improve
the generalization of FL under various settings and datasets.

5.1 SETTINGS

Datasets and models. Following previous works (Li et al., 2023b; Lin et al., 2020; Li et al., 2023a),
we use 4 vision datasets to conduct experiments: Fashion-MNIST (Xiao et al., 2017), CIFAR-10
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Figure 6: Results under different epochs E. M =
60 for CIFAR-10, and M = 20 for CIFAR-100. T is
200 for both datasets. The non-IID hyper. is 0.4.
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Figure 7: Sensitivity analysis for hyperparameters
N and β for FedGuCci(+). M = 60 and non-IID
hyperparameter is 0.4.

(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le & Yang,
2015). Tiny-ImageNet is a subset of ImageNet (Deng et al., 2009) with 100k samples of 200
classes. We use different models for the datasets as follows: {Fashion-MNIST: VGG11 (Simonyan
& Zisserman, 2015), CIFAR-10: SimpleCNN (Li et al., 2023a), CIFAR-100: ResNet20 (Li et al.,
2018; He et al., 2016), Tiny-ImageNet: ResNet18 (He et al., 2016)}. We also conduct experiments
of pretrained language models on 6 datasets are from GLUE (Wang et al., 2019), and the model is
RoBERTa-base (Liu et al., 2019). For the detailed settings, please refer to Appendix A.

Compared methods. We take the most relevant and the most state-of-the-art FL algorithms as
the baselines. (1) FedAvg (McMahan et al., 2017) with vanilla local training, a simple but strong
baseline; (2) FedProx (Li et al., 2020a), which uses the current round’s global model as local
regularization term; (3) FedDyn (Acar et al., 2020), FL based on dynamic regularization; (4) SCAF-
FOLD (Karimireddy et al., 2020), using control variates for variance reduction; (5) MOON (Li et al.,
2021) with model-contrastive learning; (6) FedRoD (Chen & Chao, 2022), generalization through
decoupling and balanced softmax loss; (7) FedLC (Zhang et al., 2022), FL with logit calibration for
bias reduction; (8) FedSAM (Qu et al., 2022; Caldarola et al., 2022), incorporating sharpness-aware
minimization into FL.

Client Settings. We adopt the Dirichlet sampling to craft IID and heterogeneous data for
clients, which is widely used in FL literature (Lin et al., 2020; Chen & Chao, 2022; Li et al.,
2023b). It considers a class-imbalanced data heterogeneity, controlled by non-IID hyperparame-
ter, and smaller value refers to more heterogeneous data of clients. We vary the hyperparameter
∈ {100, 10, 1.0, 0.5, 0.4, 0.1}with a spectrum from IID to non-IID (heterogeneous). The hyperparam-
eters are shown in the captions or in Appendix A. Except from Table 4, we use full client participation.

Evaluation and implementation. We test the generalization performance, which is validated on the
balanced testset after the global model is generated on the server. For all the experiments, we conduct
three trials for each setting and present the mean accuracy and the standard deviation in the tables.
More implementation details, e.g., hyperparameters, in Appendix A.

5.2 MAIN RESULTS

Results under various datasets and models. In Table 2, our methods can reach state-of-the-art
results across four datasets under both IID (α = 100) and heterogeneous (α = 0.5) settings2.
Generally, FedGuCci can reach the best performances over current FL methods, and FedGuCci+
can strengthen FedGuCci in most cases. Also, the performance gains of our approaches are more
dominant under more complicated datasets, like Tiny-ImageNet. While FedSAM stands as the most
robust baseline for generalization, our connectivity loss not only yields better results but is also
compatible with it (FedGuCci+).

Results on different M and ρ. We conduct experiments by varying the number of clients M and
participation ratios of clients ρ in Table 4. It demonstrates that FedGuCci and FedGuCci+ can
also excel when the number of clients is large and partial participation exists, indicating their great
potential under cross-device settings (Charles et al., 2021).

Results of different local epochs E. In Figure 6, FedGuCci is consistently leading under different
E, while FedGuCci+ is not robust on CIFAR-10. For CIFAR-100, FedGuCci has a more obvious
advantage when E is large, and this is rationale since the connectivity and model drift issues are more
severe under large local updates.

2It’s important to mention that certain methods might fail in specific settings, exhibiting accuracy levels close
to random guessing, e.g., FedProx in Fashion-MNIST.
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5.3 EXPERIMENTS UNDER PRETRAINED MODELS

We conduct experiments under pretrain-finetune paradigm for both vision and language tasks.

Results under pretrained language models. We use 6 datasets from GLUE (Wang et al., 2019)
benchmark for finetuning pretrained language models. For each dataset, we randomly split the data
into several clients and conduct finetuning using low-rank adaption (LoRA), and the pretrained model
is RoBERTa-base (Liu et al., 2019). It is notable that some language tasks are not classifications,
so FedRoD, FedLC, and FedGuCci+, which rely on classification loss, are not applicable. The results
are in Table 3, where our FedGuCci reaches promising performances over existing methods. It
is observed that some methods that are superior in Table 2 have worse performances in pretrained
language models, e.g., FedDyn, while our FedGuCci keeps steady advantages.

Results under pretrained vision models. We conduct experiments under pretrained vision
models, namely, ResNet18 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) and Vision
Transformer (ViT-B/32) (Dosovitskiy et al., 2021) pretrained on CLIP (Radford et al., 2021). Table 5
presents the finetuning results of FL methods on CIFAR-10 and CIFAR-100. It seems that FedAvg
is a strong baseline when it comes to pretrained vision backbones, especially for the ViT. However,
it is illustrated that FedGuCci is also improving generalization over FedAvg.

In this subsection, we showcase the applicability of FedGuCci under the pretrain-finetune paradigm,
and it reveals FedGuCci’s great potential in collaboratively finetuning foundation models, such as
large language models (Radford et al., 2018; Touvron et al., 2023).

5.4 FURTHER ANALYSES AND ABLATION STUDIES

Sensitivity analyses of hyperparameters. As illustrated in Figure 7, we vary the FedGuCci(+)’s
hyperparameters N and β of Equation 11 and Equation 12. It reveals that FedGuCci and FedGuCci+
have a wide range of effective hyperparameters, outperforming FedAvg. We find FedGuCci+ is more
sensitive than FedGuCci, that high N and β may degrade the performances. For β, there may exist
an optimization-connectivity tradeoff at the clients. If β is too high, the connectivity loss may hurt
the local optimization steps, causing generalization declines of local models, further detrimental to
the fused global model.

We conduct sensitivity analyses of FedGuCci(+)’s hyperparameters and their ablation study.

Table 6: Ablation study of FedGuCci+. M =
50, non-IID: 1.0.

Methods/Datasets CIFAR-10 CIFAR-100

FedAvg 64.14±0.38 20.81±0.52

FedGuCci 65.45±0.19 22.74±0.42

FedGuCci + only logit calibration 65.51±0.15 22.99±0.58

FedGuCci + only SAM 65.93±0.38 25.81±1.02

FedGuCci+ (with both) 66.05±0.35 25.97±0.49

Ablation study. Table 6 shows that FedGuCci
already has obvious generalization gains over
FedAvg; further, SAM and the bias reduction method
(logit calibration) can reach higher generalization on
FedGuCci. SAM has a more dominant improvement
on FedGuCci. We note that FedGuCci is general and
flexible and may be compatible with more existing
FL algorithms (Sun et al., 2023; Dai et al., 2023),
and FedGuCci+ is just one showcase.

Computation analysis. In Table 8, we compare the computation costs of methods in terms of
reaching a targeted accuracy. It can be seen that FedGuCci requires less computation to reach the
target accuracies than the baselines, e.g., FedRoD, MOON, FedSAM, etc.

More results: Please refer to Appendix C for more results, including experiments under more hetero-
geneous data (Table 9 with non-IID hyper. 0.1 and 0.05), experiments under smaller participation
ratios (Table 10), and so on.

6 CONCLUSION

In this paper, we study the transitivity of linear mode connectivity (LMC) and use this property to
improve the generalization of federated learning (FL). We first empirically and theoretically verify
the transitivity of LMC between two models by leveraging a fixed anchor model, and we extend
it to group connectivity among multiple models. Then, we propose FedGuCci and FedGuCci+ in
FL. Extensive experiments demonstrate our proposed methods can improve the generalization of FL
under various settings.
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Appendix
In this appendix, we provide the details omitted in the main paper and more analyses and discussions.

• Appendix A: details of experimental setups (cf. section 3 and section 5 of the main paper).
• Appendix B: detailed proofs of Lemma 3.3, Theorem 3.5, and Theorem 3.8 (cf. section 3 of

the main paper).
• Appendix C: additional results and analyses (cf. section 3 and section 5 of the main paper).
• Appendix D: more discussions about the related works (cf. section 2 of the main paper).

A IMPLEMENTATION DETAILS

Algorithm 1 FedGuCci: Federated Learning with Improved Group Connectivity

Input: M clients, communication round T , local epoch E, participation ratio ρ = K
M ; number of

anchor models N ; initial global model w1
g;

Output: final global model wT
g ;

1: for each round t = 1, . . . , T do
2: # Client updates
3: for each client i, i ∈ [M ] in parallel do
4: Set local model wt

i ← wt
g;

5: Replay N historical global models as the anchor models Wt
anc∗ by Equation 11;

6: Compute E epochs of client local training with connectivity loss by Equation 12;
7: end for
8: # Server updates
9: The server samples a set St of K clients and receive their models {wt

i}i∈St ;
10: The server obtains the global model wt+1

g via aggregation by Equation 2;
11: end for
12: Obtain the final global model wT

g .

In this section, we present the implementation details omitted from the main paper.

A.1 IMPLEMENTATION ENVIRONMENT

All experiments were conducted on Intel Xeon Silver 4108 CPU, and NVIDIA Tesla V100 GPU with
32GB of graphics memory, using Python 3.9.18 and PyTorch 2.1.0.

A.2 DATASETS

CIFAR-10 (Krizhevsky et al., 2009) consists of 60,000 32x32 color images, evenly distributed among
10 different classes, including airplanes, automobiles, birds, cats, etc., each represented by 6,000
images. The dataset is split into 50,000 training images and 10,000 test images. FashionMNIST (Xiao
et al., 2017) is designed as an advanced replacement for the MNIST dataset, suitable for benchmarking
machine learning models. It comprises 70,000 images divided into 60,000 training samples and
10,000 test samples. Each image is a 28x28 grayscale representation of fashion items from 10
different classes, such as shirts, trousers, sneakers, etc. The CIFAR-100 dataset (Krizhevsky et al.,
2009) is similar to CIFAR-10 but more challenging, containing 100 different classes grouped into 20
superclasses. It includes 60,000 32x32 color images, with 600 images per class, divided into 50,000
training images and 10,000 test images. This dataset is primarily used for developing and evaluating
more sophisticated image classification models. TinyImageNet TinyImageNet is a reduced-scale
version of the renowned ImageNet dataset, which comprises a total of 200 classes. The dataset is
structured into training, validation, and test sets, with 200,000 training images, 20,000 validation
images, and 20,000 test images. The GLUE benchmark is a compilation of 9 datasets for evaluating
natural language understanding systems. Tasks are framed as either single-sentence classification or
sentence-pair classification tasks. GLUE includes MNLI (inference, (Williams et al., 2017)), MRPC
(paraphrase detection, (Socher et al., 2013)), MRPC (paraphrase detection, (Dolan & Brockett, 2005)),
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CoLA (linguistic acceptability, (Warstadt et al., 2019)), QNLI (inference, (Rajpurkar et al., 2018)),
QQP (question-answering), RTE (inference), WNLI (inference), and STS-B (textual similarity, (Cer
et al., 2017)). Due to high computation costs, we only used SST2, MRPC, CoLA, QNLI, RTE, and
STS-B for evaluation. For the replication in Table 3, we report results on the development sets after
fine-tuning the pretrained models on the corresponding single-task training data. Our fine-tuning
approach is LoRA(Hu et al., 2021).

A.3 MODELS

SimpleCNN. The simple CNN for CIFAR-10 is a convolutional neural network model with ReLU
activations, consisting of 3 convolutional layers followed by 2 fully connected layers. The first
convolutional layer has a size of (3, 32, 3), followed by a max-pooling layer of size (2, 2). The second
and third convolutional layers have sizes of (32, 64, 3) and (64, 64, 3), respectively. The last two fully
connected layers have sizes of (6444, 64) and (64, num_classes), respectively.

ResNets. We followed the model architectures used in (Li et al., 2018). The number in the model
names indicates the number of layers in the models, whereas a larger number indicates a deeper
network. We used ResNet18 and ResNet20 for CIFAR-10 and CIFAR-100, respectively. Notably, to
mitigate abnormal effects introduced by batch normalization layers (Li et al., 2020b; Lin et al., 2020),
followed by (Adilova et al., 2023), we removed all batch normalization layers from the ResNets.

VGG. VGG (Simonyan & Zisserman, 2015) is a convolutional neural network (CNN) architecture
that gained prominence in the field of computer vision. Among its variants, we used VGG11.

RoBERTa. RoBERTa is a natural language processing (NLP) model that builds upon the foundation
laid by BERT, which was introduced by (Liu et al., 2019) to address some limitations and improve the
performance of BERT on various NLP tasks. It comes in various sizes, and we used RoBERTa-base
considering to high computational costs.

ViT. ViT (Dosovitskiy et al., 2020) is a deep learning model for visual tasks that adopts the Trans-
former structure proposed in NLP. ViT divides a picture into several patches, treats the patch as a
word, and then uses a self-attention mechanism to capture the relationship between patches. When
ViT is pre-trained with a large amount of data, it will perform particularly well on downstream tasks.

A.4 RANDOMNESS

In all experiments, we conducted each experiment three times with different random seeds and
reported the averaged results along with standard deviations.

We ensured consistency by setting torch, numpy, and random functions with the same random seed,
thereby making the data partitions and other settings identical. To ensure all algorithms started with
the same initial model, we saved an initial model for each architecture and loaded it at the beginning
of each experiment. Additionally, for experiments involving partial participation, the selection of
participating clients in each round significantly influenced the model’s performance. To maintain
fairness, we saved the sequences of participating clients in each round and loaded these sequences for
all experiments. This procedure guaranteed that, given a random seed and participation ratio, every
algorithm had the same set of sampled clients in each round.

A.5 EVALUATION

CIFAR-10, CIFAR-100, FashionMNIST and Tiny-ImageNet. We evaluate the global model
performance on the test dataset of each dataset. The test dataset is mostly class-balanced and can
reflect the global learning objective of a federated learning system. Therefore, the performance of the
model on the test set can indicate the generalization performance of global models (Li et al., 2023a;
Lin et al., 2020). In each experiment, we take the average test accuracy of the last 5 rounds as the
final test accuracy.

GLUE. For GLUE, we used the validation dataset for evaluation. Following by (Hu et al., 2021), we
chose the best accuracy as the final test accuracy.
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A.6 HYPERPARAMETER

Table 2: For Fashion-MNIST, T is 400, batch size is 64 and learning rate is 0.08. For CIFAR-10,
T is 150, batch size is 64 and learning rate is 0.04. For CIFAR-100, T is 200, batch size is 64 and
learning rate is 0.03. For Tiny-ImageNet, learning rate is 0.01 and T is 50. Optimzier is ADAM for
Fashion-MNIST and others are SGD.

Table 3: Optimizer is Adam for all datasets. For CoLA and STSB, T is 25, batch size is 16 and
learning rate is 2e-5. For SST-2, T is 50, batch size is 16, and learning rate is 2e-6. For QNLI, T
is 20, batch size is 32 and learning rate is 2e-6. For RTE and MRPC, T is 80, batch size is 16 and
learning rate is 2e-5.

Table 4: T is 150, E is 3, batch size is 64 and learning rate is 0.04.

Table 5: ResNet-18 and MobileViT are pretrained on ImageNet. E is 3 for both models. For ViT, T is
15, batch size is 16 and learning rate is 0.001. For ResNet, T is 50, batch size is 64 and learning rate
1e-4.

Table 6: For CIFAR-10, T is 150, batch size is 64 and learning rate is 0.04. For CIFAR-100, T is 200,
batch size is 64, and learning rate is 0.03.

Figure 6: M = 60 for CIFAR-10, and M = 20 for CIFAR-100. T is 200 for both datasets. Learning
rate is 0.03 for CIFAR-10, and 0.04 for CIFAR-100.

Figure 7: T is 150, E is 3, M is 60, learning rate is 0.02, and batch size is 64.

B PROOF

In this section, we give the proofs of the lemma and theorem in section 3.

Lemma B.1 (Lemma 3.3) Set the uniform and bounded domain for network w as Eϵ = {w ∈
Ω|L(w) < ϵ}. Define a random event Dϵ(w

∗
anc) as Dϵ(w

∗
anc) = {∃w ∈ Eϵ|∀α ∈ [0, 1],L(αw∗

anc +
(1− α)w) ≤ ϵ}. Consider an anchor model w∗

anc and an arbitrary network w and for ϵ > 0. Then
for ∥w −w∗

anc∥∞ ≤ d
2 ,

P (Dϵ(w
∗
anc)) ≤ (

dϵ
d
)S , (13)

where dϵ = |Eϵ|
1
S represents the average diameter of region Eϵ, S represents the number of parame-

ters of the neural network and the equality holds if and only if Eϵ ⊂ {w|∥w −w∗
anc∥∞ ≤ d} is a

star domain centered at w∗
anc. Thus, when P (Dϵ(w

∗
anc))) > 1− δ, it holds d < dϵ

(1−δ)
1
S

.

Proof: In the following proof, we denote the region as Vd = {w|∥w −w∗
anc∥∞ ≤ d

2} with volume
|Vd| = dS and denote the segment between w and w∗

anc as l(w∗
anc,w) = {αw∗

anc + (1− α)w, α ∈
[0, 1]}.

First we prove if Eϵ ⊂ Vd is a star domain centered at w∗
anc, P (Dϵ(w

∗
anc)) = |Eϵ|

dS . Select a
parameter point w0 in Vd arbitrarily. If w0 ∈ Eϵ, then because Eϵ is a star domain centered at w∗

anc,
l(w∗

anc,w) ⊂ Eϵ and thus w0 ∈ Dϵ(w
∗
anc). If w0 /∈ Eϵ, then w0 /∈ Dϵ(w

∗
anc) by the definition of

Dϵ(w
∗
anc). Therefore, Eϵ = Dϵ(w

∗
anc) and we have P (Dϵ(w

∗
anc)) = P (Eϵ) = |Eϵ|

|Vd| =
|Eϵ|
dS .

The next step we prove that if Eϵ ̸⊂ Vd, or Eϵ is not a star domain centered at w∗
anc, then

P (Dϵ(w
∗
anc)) <

|Eϵ|
dS .

If Eϵ ̸⊂ Vd, then |Dϵ(w
∗
anc)| ≤ |Eϵ ∩ Vd| < |Eϵ| and P (Dϵ(w

∗
anc)) =

|Dϵ(w
∗
anc)|

|Vd| < |Eϵ|
|Vd| . Here, the

first inequality |Dϵ(w
∗
anc)| ≤ |Eϵ ∩ Vd| holds, because Dϵ(w

∗
anc) ⊂ Eϵ ∩Vd and the second inequality

|Eϵ ∩ Vd| < |Eϵ| holds, because ∃w0 ∈ Eϵ/Vd, ϵ0 > 0 st. {w|∥w −w0∥ < ϵ0} ⊂ Ω/Vd ∩ Eϵ for
Ω/Vd and Eϵ are open sets and |Eϵ ∩ Vd| ≤ |Eϵ| − |{w|∥w −w0∥ < ϵ0}| < |Eϵ|.
If Eϵ is not a star domain centered at w∗

anc, then there exists w0 ∈ Eϵ such that l(w∗
anc,w0) ̸⊂ Eϵ. Then

∃α1 ∈ (0, 1) st. w1
∆
= α1w

∗
anc + (1− α1)w0 satisfies L(w1) > ϵ. For L(·) is smooth, there exists
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ϵ1 > 0 st. ∀w ∈ Uϵ1(w1)
∆
= {w|∥w1 −w∥2 < ϵ1}, L(w) ≥ ϵ + L(w1)−ϵ

2 > ϵ. Then for Eϵ is an
open set, choose ϵ2 < ϵ1 st. Uϵ2(w0) ⊂ Eϵ. ∀w2 ∈ Uϵ2(w0), w3 = α1w

∗
anc + (1− α1)w2 satisfies

∥w3 − w1∥2 = (1 − α1)∥w0 − w2∥2 < (1 − α1)ϵ2 < ϵ1. Thus w3 ∈ Uϵ1(w1), which leads to

L(w3) > ϵ. Therefore, Uϵ2(w0)∩Dϵ(w
∗
anc) = ∅ and P (Dϵ(w

∗
anc)) =

|Dϵ(w
∗
anc)|

dS ≤ |Eϵ|−|Uϵ2 (w0)|
dS <

|Eϵ|
dS . □

Theorem B.2 (Theorem 3.5) We define a two-layer neural network with ReLU activation, and
the function is fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and
U ∈ Rh×l are parameters3 and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b}
uniformly. Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and
consider two different networks w1,w2 parameterized with {U1,v1} and {U2,v2} respectively.
Each element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗

anc and
vanc with an interval length of d. If with probability 1 − δ, supα L(αw∗

anc + (1 − α)w1) < ϵ and
supα L(αw∗

anc + (1− α)w2) < ϵ, then with probability 1− δ, it has,

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ), (14)

where Bloss(w1,w2) is the loss barrier as Equation 3.

Proof: Let’s first define gα(x) = (αU1+(1−α)U2)x and zx(α) = (αv1+(1−α)v2)
⊤σ((αU1+

(1− α)U2)x)− αv⊤
1 σ(U1x)− (1− α)v2

⊤σ(U2x), α ∈ [0, 1]. Then we can express zx(α) as:

zx(α) = (αv1 + (1− α)v2)
⊤σ(gα(x))− αv⊤

1 σ(U1x)− (1− α)v2
⊤σ(U2x). (15)

For each element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗
anc

and v∗
anc with an interval length of d, U1, U2, v1 and v2 can be represented as U1 = U∗

anc + Ũ1,
U2 = U∗

anc + Ũ2, v1 = v∗
anc + ṽ1 and v2 = v∗

anc + ṽ2 respectively, where each element of Ũ1, Ũ2,
ṽ1 and ṽ2 follows distribution U [−d

2 ,
d
2 ]. Using ṽ1 and ṽ2, zx(α) can be represented as

zx(α) = (αv1 + (1− α)v2)
⊤σ(gα(x))− αv⊤

1 σ(U1x)− (1− α)v2
⊤σ(U2x)

= (αṽ1 + (1− α)ṽ2 + v∗
anc)

⊤σ(gα(x))− α(ṽ⊤
1 + v∗

anc
⊤)σ(U1x)− (1− α)(ṽ⊤

2 + v∗
anc

⊤)σ(U2x)

= [(αṽ1 + (1− α)ṽ2)
⊤σ(gα(x))− αṽ⊤

1 σ(U1x)− (1− α)ṽ⊤
2 σ(U2x)]

+ v∗
anc

⊤[σ(gα(x))− ασ(U1x)− (1− α)σ(U2x)].
(16)

We also assume that the number of hidden neurons h is sufficiently large for the convenience of
analysis as (Entezari et al., 2022). In the following proof, we will make use of Hoeffding’s inequality
for sub-Gaussian distributions (especially, uniform distribution). Here, we state it for reference:
Let X1, . . . , Xn be n independent random variables such that Xi ∼ U(−d

2 ,−
d
2 ). Then for any

a = (a1, ..., an) ∈ Rn, we have

P

[
|

n∑
i=1

aiXi| > t

]
≤ 2 exp

(
− 2t2

d2∥a∥22

)
.

To bound zx(α), we have

|zx(α)| ≤|[(αṽ1 + (1− α)ṽ2)
⊤σ(gα(x))− αṽ⊤

1 σ(U1x)− (1− α)ṽ⊤
2 σ(U2x)]|

+ |v∗
anc

⊤[σ(gα(x))− ασ(U1x)− (1− α)σ(U2x)]|
≤α|ṽ⊤

1 (σ(gα(x))− σ(U1x))|+ (1− α)|ṽ⊤
2 (σ(gα(x))− σ(U2x))|

+ α|v∗
anc

⊤(σ(gα(x))− σ(U1x))|+ (1− α)|v∗
anc

⊤(σ(gα(x))− σ(U2x))|.

(17)

Then we bound the first term and the third term, and the second term and the fourth term are bounded
similarly due to symmetry. For the concentration upper bound of the first term of Equation 17, we

3For simplicity and without loss of generality, we omit the bias terms.
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use the Hoeffding’s inequality for elements of ṽ1, with probability 1− δ
k

α
∣∣ṽ⊤

1 [(σ(gα(x))− σ(U1x)]
∣∣ ≤ αd

√
1

2
log(2k/δ)∥σ(gα(x))− σ(U1x)∥2 (18)

≤ αd

√
1

2
log(2k/δ)∥gα(x)−U1x∥2 (19)

= α(1− α)d

√
1

2
log(2k/δ)∥(U2 −U1)x∥2. (20)

Equation 19 is due to the fact that the ReLU activation function satisfies the Lipschitz continuous
condition with constant 1. For the bound of the third term of Equation 17, we have

α
∣∣∣v∗

anc
⊤ [(σ(gα(x))− σ(U1x)]

∣∣∣ ≤ αdanc∥σ(gα(x))− σ(U1x)∥2 (21)

≤ αdanc∥gα(x)−U1x∥2 (22)
= α(1− α)danc∥(U2 −U1)x∥2. (23)

Equation 22 is due to the fact that the ReLU activation function satisfies the Lipschitz continuous
condition with constant 1. For the term ∥(U2 −U1)x∥2 in Equation 20 and Equation 23, taking a
union bound, with probability 1− δ

k , we have

∥(U2 −U1)x∥2 ≤

√√√√ h∑
i=1

|(UB;i,: −UA;i,:)x|2 (24)

=

√√√√ h∑
i=1

|(UB;i,: −UA;i,:)x|2 (25)

≤ d∥x∥2
√
h log(2hk/δ) (26)

= db
√

h log(2hk/δ). (27)

Then take a union bound choosing k = 6 (because the union bound is taken for 6 equations,
Equation 20 and Equation 27 for the first and the second terms in Equation 17 respectively, and
Equation 27 for the third and the fourth terms in Equation 17 respectively.), with probability 1− δ
we have

|zx(α)| ≤α
∣∣ṽ⊤

1 (σ(gα(x))− σ(U1x))
∣∣+ (1− α)

∣∣ṽ⊤
2 (σ(gα(x))− σ(U2x))

∣∣ (28)

+ α
∣∣∣v∗

anc
⊤(σ(gα(x))− σ(U1x))

∣∣∣+ (1− α)
∣∣∣v∗

anc
⊤(σ(gα(x))− σ(U2x))

∣∣∣ (29)

≤2α(1− α)d

√
1

2
log(12/δ) · db

√
h log(12h/δ) + 2α(1− α)danc · db

√
h log(12h/δ)

(30)

≤2
√
2α(1− α)

√
hb(d2 + ddanc) log(12h/δ) (31)

≤
√
2

2

√
hb(d2 + ddanc) log(12h/δ). (32)

For supα L(αw∗
anc+(1−α)w) < ϵ holds with probability 1−δ, by Lemma 3.3, we have d < dϵ

(1−δ)
1
S

with S = hl + h. Then |zx(α)| can be bounded as

|zx(α)| ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ). (33)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Now we turn to calculate the bound of the loss barrier Bloss(w1,w2). For the loss function L(·, y) is
convex and 1-Lipschitz, we have:

Bloss(w1,w2) =E[L(fαv1+(1−α)v2,αU1+(1−α)U2
(x), y)− αL(fv1,U1

(x), y)− (1− α)L(fv2,U2
(x), y)]

(34)
≤E[L(fαv1+(1−α)v2,αU1+(1−α)U2

(x), y)− L(αfv1,U1
(x) + (1− α)fv2,U2

(x), y)]
(35)

≤E[
∣∣fαv1+(1−α)v2,αU1+(1−α)U2

(x)− (αfv1,U1
(x) + (1− α)fv2,U2

(x))
∣∣], (36)

where the expectation is with respect to the dataset. Equation 35 is due to the convexity of L(·, y),
while Equation 36 is due to the assumption that L(·, y) is 1-Lipschitz. Then use the bound of zx(α),
with probability 1− δ, we have

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ). (37)

□

Theorem B.3 (Theorem 3.8) We define a two-layer neural network with ReLU activation, and the
function is fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l

are parameters and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider K
different networks wi parameterized with {Ui,vi} located on K clients respectively. Each element
of Ui and vi is sampled from a uniform distribution centered at U∗

anc and v∗
anc with an interval length

of d. If with probability 1− δ, supα Li(αw
∗
anc + (1− α)wi) < ϵ, then with probability 1− δ, it has,

Bloss({wi}Ki=1) ≤ (38)
√
2hb

2(1− δ)
2

hl+h

dϵ+Γ(dϵ+Γ + danc) log(4hK
2/δ).

Proof: Similar to Theorem 3.5, we first define g(x) = ( 1
K

∑K
i=1 Ui)x and z(x) =

( 1
K

∑K
i=1 vi)

⊤σ(( 1
K

∑K
i=1 Ui)x)− 1

K

∑K
i=1 viσ(Uix). Then we can express z(x) as:

z(x) = (
1

K

K∑
i=1

vi)
⊤σ(g(x))− 1

K

K∑
i=1

v⊤
i σ(Uix). (39)

For each element of Ui and vi is sampled from a uniform distribution centered at U∗
anc and v∗

anc
with an interval length of d, Ui and vi can be represented as Ui = U∗

anc + Ũi and vi = v∗
anc + ṽi

respectively, where each element of Ũi and ṽi follows distribution U [−d
2 ,

d
2 ]. Using ṽi, zx(α) can

be represented as

z(x) = (
1

K

K∑
i=1

vi)
⊤σ(g(x))− 1

K

K∑
i=1

v⊤
i σ(Uix) (40)

= (v∗
anc +

1

K

K∑
i=1

ṽi)
⊤σ(g(x))− 1

K

K∑
i=1

(v∗
anc + ṽi)

⊤σ(Uix) (41)

=
1

K

K∑
i=1

ṽ⊤
i (σ(g(x))− σ(Uix)) +

1

K

K∑
i=1

v∗
anc

⊤(σ(g(x))− σ(Uix)). (42)
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Similar to Equation 17 and Equation 20, with probability 1− δ
2 , Equation 42 can be bound with

|z(x)| ≤ 1

K

K∑
i=1

|ṽ⊤
i (σ(g(x))− σ(Uix))|+

1

K

K∑
i=1

|v∗
anc

⊤(σ(g(x))− σ(Uix))| (43)

≤
d
√

1
2 log(4K/δ)

K

K∑
i=1

|(σ(g(x))− σ(Uix))|+
danc

√
1
2 log(4K/δ)

K

K∑
i=1

|(σ(g(x))− σ(Uix))|

(44)

≤
d
√

1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix|+
danc

√
1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix| (45)

≤
(d+ danc)

√
1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix|. (46)

Then similar to Equation 27, with probability 1− δ
2 , Equation 46 can be bound with

|z(x)| ≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

|(Uj −Ui)x| (47)

≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

|(Uj −Ui)x| (48)

≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

d∥x∥2
√

h log(4hK2/δ) (49)

≤
√
2

2
d(d+ danc)b

√
h log(4hK2/δ). (50)

Set the minimum of Li closest to w∗
anc is w∗

anc,i. For supα Li(αwi + (1− α)w∗
anc) < ϵ holds with

probability 1− δ, then with probability 1− δ we have,
sup
α
L(αwi + (1− α)w∗

anc,i) ≤ sup
α
L(αwi + (1− α)w∗

anc) + γ∥w∗
anc −w∗

anc,i∥22 (51)

≤ϵ+ γΓ2. (52)

Equation 51 is due to the assumption that L(·) is γ-smooth. By Lemma 3.3, we have d <
dϵ+γΓ2

(1−δ)
1
S

with S = hl + h. Then |zx(α)| can be bounded as

|zx(α)| ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (53)

Now we turn to calculate the bound of the loss barrier Bloss({wi}Ki=1). For the loss function L(·, y)
is convex and 1-Lipschitz, similar to Equation 36, we have:

Bloss({wi}Ki=1) =L(
1

K

K∑
i=1

wi)−
1

K

K∑
i=1

L(wi) (54)

=E[L(f 1
K

∑K
i=1 vi,

1
K

∑K
i=1 Ui

(x), y)− 1

K

K∑
i=1

L(fvi,Ui
(x), y)] (55)

≤E[L(f 1
K

∑K
i=1 vi,

1
K

∑K
i=1 Ui

(x), y)− L(
1

K

K∑
i=1

fvi,Ui
(x), y)] (56)

≤E[|f 1
K

∑K
i=1 vi,

1
K

∑K
i=1 Ui

(x)− 1

K

K∑
i=1

fvi,Ui
(x)|], (57)
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Table 7: Verification of transitivity of linear mode connectivity with less performed anchor
models. CIFAR-10. "Random init. Anchors" refers to that anchor models are randomly initialized
models whose initializations are also different from the trained models. "Semi-trained Anchors"
refers to that anchor models are trained for one epoch with less performed accuracy. It can be seen
that when the anchor models are less performed (A(wanc)s are low), the transitivity still holds that
connectivity loss to the same anchor model can reduce connectivity barrier.

Models Metrics Vanilla CE Loss Connectivity Loss w/ Random Init. Anchors Connectivity Loss w/ Semi-trained Anchors

CNN A(w1)+A(w2)
2 64.0±0.5 63.0±0.8 63.8±0.9

CNN A(wanc) 9.9±0.0 45.6±0.0

CNN A(wanc+w1

2 ) 56.0±2.7 54.2±0.8

CNN A(w1+w2

2 ) 11.5±0.9 23.5±5.4 19.0±4.4

CNN Acc. Barrier 0.821 0.626 (23.8%↓) 0.702 (14.5%↓)

ResNet20 A(w1)+A(w2)
2 66.7±0.9 67.4±1.3 69.0±0.2

ResNet20 A(wanc) 7.1±0.0 29.9±0.0

ResNet20 A(wanc+w1

2 ) 38.3±4.1 42.4±1.2

ResNet20 A(w1+w2

2 ) 13.0±3.8 19.5±0.7 21.0±5.4

ResNet20 Acc. Barrier 0.805 0.710 (11.8%↓) 0.696 (13.5%↓)

Table 8: Comparison of computation cost to reach the target accuracies. The computation cost
is measured by the wall-clock time (minutes) during the implementation, and the less time, the less
computation overhead. Settings: Tiny-ImageNet, non-IID hyper.=0.5, M = 50 , E = 3. It can be
seen that FedGuCci require less computation to reach the target accuracies.

Methods FedAvg FedProx FedDyn FedRoD MOON FedLC FedSAM FedGuCci
Target Acc: 20% 798m (×1.00) 872m (×1.09) 1091m (×1.37) 759m (×0.95) 848m (×1.06) 652m (×0.82) 748m (×0.94) 578m (×0.72)
Target Acc: 23% / 1173m (×1.00) 1181m (×1.01) 1337m (×1.14) 2376m (×2.0267m (×1.08) 752m (×0.64)
Target Acc: 25% / 1413m (×1.00) 1363m (×0.96) / 3649m (×2.58) / 1497m (×1.06) 926m (×0.66)

Table 9: Results under more heterogeneous set-
tings. Tinyimagnet, ResNet-18, T = 50,M =
50, E = 3.

Methods non-IID hyper.=0.1 non-IID hyper.=0.05

FedAvg 22.92±0.42 20.03±0.87

FedDyn 21.40±1.13 18.28±1.59

FedSAM 28.53±0.86 25.53±0.96

FedGuCci 30.33±0.35 26.39±0.41
FedGuCci+ 31.26±0.53 27.21±0.56

Table 10: Experiments with smaller partic-
ipation ratios. Setting: K=100, CIFAR-10,
non-IID α = 0.1.

Methods Ratio = 5% Ratio = 10%
Local 21.80±1.49 26.82±0.09

FedAvg 62.54±0.28 64.15±0.11

FedProx 49.43±0.73 50.45±0.56

FedRoD 62.73±0.27 62.38±0.46

FedLC 62.47±0.57 63.57±0.13

FedSAM 61.92±0.44 63.99±0.41

FedGuCci 63.12±1.04 65.10±0.46
FedGuCci+ 63.61±0.24 64.57±0.44

where the expectation is with respect to the server dataset. Then use the bound of z(α), with
probability 1− δ, we have

Bloss({wi}Ki=1) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (58)

□

C MORE RESULTS

In Table 7, we verify the transitivity of LMC under less performed anchor models, such as random
initialization and semi-trained models. It can be seen that the transitivity stills holds regardless of the
properties of anchor models. Though a better trained anchor model may lead to better transtivitiy.

In Table 8, we compare the computation costs of methods in terms of reaching a targeted accuracy.
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In Table 9, we test our methods under more non-IID data, when in Table 10, we test our methods
under smaller participation ratios. The results all show our methods are effective under these settings.

D MORE RELATED WORKS

Linear Mode Connectivity. Linear mode connectivity (LMC) refers to the phenomenon that there
exists a loss (energy) barrier along the linear interpolation path of two networks, in the cases where i)
the two networks have the same initialization and are trained on the same dataset but with different
random seeds (data shuffles) or augmentations (Ainsworth et al., 2022); ii) the two networks are
with different initializations but are trained on the same dataset (Entezari et al., 2022); iii) the two
networks are the initial network and the final trained network (Vlaar & Frankle, 2022). In our paper,
the transitivity of LMC can be applied to i), ii), and iii), and especially, the two trained models can
have different initializations. Specifically, (Adilova et al., 2023) examines layer-wise LMC, and
finds that there may be no barriers in the layer-wise manner. (Frankle et al., 2020) connects linear
mode connectivity with the lottery ticket hypothesis and finds better connectivity can result in better
pruning performances. (Vlaar & Frankle, 2022) studies the relationship between generalization
and the initial-to-final linear mode connectivity. (Zhao et al., 2020) bridges mode connectivity and
adversarial robustness. Some works try to extend mode connectivity beyond “linear”, e.g., searching
for a non-linear low-loss path (Draxler et al., 2018) or studying mode connectivity under spurious
attributes (Lubana et al., 2023).

Studying the barriers in LMC is an important direction of LMC. Previous works find that there may
be no barriers between different modes, but the connected regions may be non-linear (Draxler et al.,
2018; Garipov et al., 2018). In (Garipov et al., 2018), the authors propose to find paths along modes
by learning Polygonal chain and Bezier curve. Also, Nudged Elastic Band can also be used to find
that connected paths (Draxler et al., 2018). In (Wortsman et al., 2021), the authors propose to learn
connected but diverse low-loss subspaces for efficient ensembling. Our work about the transitivity of
LMC is inspired by the previous works of learning connected paths. However, instead of learning
diverse modes for ensembling, we aim to use the anchor model to improve the linear connectivity
between two independent modes.

Generalization of Federated Learning. Generalization and personalization are two important goals
of federated learning systems (Chen & Chao, 2022; Li et al., 2023a;b; Yuan et al., 2022). Previous
works study and understand the property and nature of generalization in FL. In (Yuan et al., 2022),
the authors rethink the previous definition of generalization by considering the data distributions
of non-participated clients as the participation gap and propose a new data split method based on
the insight. In the paper of FedRoD (Chen & Chao, 2022), the authors claim that generalization
and personalization are not conflicted; instead, improving generalization is the basis for better
personalization.

Some works aim to improve generalization from both the server and client sides. For the clients,
sharpness-aware minimization methods are introduced at the local to find a flatter minimum of local
solvers for better generalization (Caldarola et al., 2022; Qu et al., 2022). Global sharpness-aware
minimization is also considered (Dai et al., 2023). In addition, previous literature seeks to tackle
local heterogeneity to improve generalization, and methods like proximal terms (Li et al., 2020a),
dynamic regularization (Acar et al., 2020), variance reduction (Karimireddy et al., 2020), logit
calibration (Zhang et al., 2022), fixed classifier (Li et al., 2023b), and balanced loss (Chen & Chao,
2022) are devised. For the server, weighted aggregation approaches to de-bias local updates (Wang
et al., 2020) or heterogeneity (Ye et al., 2023) can improve generalization. Recently, global weight
shrinking that sets smaller aggregation weights has been studied for unleashing the potential of weight
regularization in boosting the generalization of FL (Li et al., 2023a).

E LIMITATIONS AND BROADER IMPACTS

Limitations. Though our methods are effective for improving the generalization of federated
learning, they has limitations that it will introduce more computations than FedAvg. The introduced
computations may cause more overhead of computing resources at the edge devices.
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Broader impacts. The connectivity perspective of improving the generalization of federated will
inspire more future works about model fusion. Model fusion has broad applications in large language
models and other fields, and it can merge the abilities of multiple models and data resources. As far
as we are concerned, our methods have no obvious negative impacts.
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