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Abstract

Online object segmentation and tracking in Lidar point
clouds enables autonomous agents to understand their sur-
roundings and make safe decisions. Unfortunately, manual
annotations for these tasks are prohibitively costly. We tackle
this problem with the task of class-agnostic unsupervised
online instance segmentation and tracking. To that end, we
leverage an instance segmentation backbone and propose a
new training recipe that enables the online tracking of ob-
jects. Our network is trained on pseudo-labels, eliminating
the need for manual annotations. We conduct an evaluation
using metrics adapted for temporal instance segmentation.
Computing these metrics requires temporally-consistent in-
stance labels. When unavailable, we construct these labels
using the available 3D bounding boxes and semantic labels
in the dataset. We compare our method against strong base-
lines and demonstrate its superiority across two different
outdoor Lidar datasets. Project page: csautier.github.io/unit

1. Introduction
Being able to segment, classify, and track all object instances
in sequences of point clouds acquired by Lidars is critical
for many applications, including autonomous driving. This
task, called (Multi-Object) Panoptic Tracking [11, 13, 17],
can be seen as a temporal version of panoptic segmentation.

Unfortunately, the cost of annotating point cloud data for
this task can be enormous [3]. Moreover, to ensure high per-
formance and robustness, a dataset should contain enough
examples of rare objects (e.g., one-wheelers, electric scoot-
ers) or hard settings (e.g., adverserial weather), increasing
the cost of annotation further. For systems with an inter-
national scope, such as autonomous driving, there is also a
need to address domain shifts and cover different object dis-
tributions (e.g., shape variations [33]) and local specificities
(e.g., rickshaws). One way to reduce the need for annota-
tions is to rely on self-supervised [4, 22, 23, 26, 28, 29] or
unsupervised learning techniques [2, 21, 31, 38].

In this work, we introduce a new fully unsupervised
method, which we call UNIT, to segment class-agnostic
object instances and track them over time, regardless of their
nature or semantics. More exactly, our goal is to densely seg-

ment an input point cloud so that each input point is assigned
to one and only one instance ID.

As illustrated in Fig. 1, given unlabeled Lidar sequences,
we first obtain pseudo 4D segments of objects by using a
spatio-temporal clustering. Our clustering is inspired by
SegContrast [22] and TARL [23], but we improve these
methods to obtain clusters over a longer time window. This
gives us 4D segments of objects which we then use as pseudo-
labels to train a novel auto-regressive architecture, which, at
inference, identifies and track objects in new Lidar sequences
by being applied to consecutive scans.

To evaluate our method, we test it on two main datasets,
SemanticKITTI [3] and PandaSet-GT [35], which exhibit
different point densities, scan patterns and environments.
We use several metrics to analyze both the segmentation and
temporal tracking quality of our method. We compare our re-
sults against strong baselines as well as temporally-extended
versions of 3D instance segmentation techniques. Finally,
we also show the potential of UNIT as a self-supervised
pretraining technique for semantic segmentation.

2. Related work
Object detection/segmentation with transformers. Our
network architecture relies on a transformer decoder similar
to the one used in DETR [6] for object detection, or in [7, 16,
30] for object segmentation. A set of learnable object queries
are provided at the input of a transformer decoder, which is
in charge of detecting/segmenting objects in the image or
point cloud of interest thanks to a series of cross-attention
layers between the object queries and pixel or point features.
The transformer is trained so that each query attends to at
most one object instance and each object instance is matched
to a single query. By default, these methods do not allow
objects to be tracked over time.

Object detection and tracking with transformers. To
detect and track objects in videos, [17, 19, 32, 37] extend
DETR [6] using two sets of object queries: a first set of
queries is in charge of tracking discovered objects in past
scans, while a second one is in charge of discovering new
objects. In contrast, we propose an architecture that detects
and tracks objects with a single set of queries.

https://csautier.github.io/unit
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Figure 1. We generate pseudo-labels of instances across time in Lidar scans (4D-Seg), which we use to train an online segmenter (UNIT)
that assigns to each 3D point an instance ID consistent over time. UNIT is the only online method displayed here (our input is not an
aggregated scan). We show aggregations of scans over time. The sample scene from Semantic-KITTI, with the car in the foreground, is
mostly static, while the scene from PandaSet-GT is dynamic, with the trace of a moving vehicle.

Note that we obtain more labels than in the ground truth as our class-agnostic segmentation include all objects and stuff, such as trees or
buildings. Also, while our architecture performs online, it outperforms the offline spatio-temporal clustering that we use for training.

Unsupervised instance segmentation. UnScene3D [27]
performs unsupervised instance segmentation in dense point
clouds acquired in static indoor scenes. A Mask3D model
[30] is trained using pseudo-masks obtained by leveraging
self-supervised features and a graph-cut algorithm. Because
of the static setting considered, UnScene3D does not require
any temporal consistency in predictions.

SegContrast [22] and TARL [23] are self-supervised
methods whose pretext tasks rely on pseudo-masks of ob-
jects. SegContrast uses a RANSAC [10] algorithm to remove
the road plan of Lidar scans, and then a DBSCAN clus-
tering [9] to obtain pseudo-segments of instances. TARL
extends SegContrast by working on accumulated scans, re-
placing RANSAC with Patchwork [15], a better-performing
ground segmentation method, and using HDBSCAN instead
of DBSCAN [18], which gives better segments especially
in low-density regions of the point cloud. We compute our
pseudo-segments by building upon TARL (see Sec. 3.1).

3DUIS [21] uses a self-supervised model trained with
SegContrast to define affinity in a graph between points, and
a graph-cut algorithm to get object instances. [21] also pro-
pose the Sassoc metric for evaluating unsupervised segments.

AutoInst [25], like 3DUIS, obtains object segments us-
ing a graph-cut algorithm. This graph is built by exploiting
TARL [23] point features (possibly complemented with DI-
NOv2 [24] features) instead of SegContrast [22] features.
A notable difference between AutoInst and 3DUIS is that
AutoInst operates on accumulated scans instead of single
scans. These segments are then used as pseudo-labels to train
a MaskPLS [16] model, which improves the quality of pre-
dicted segments. This MaskPLS model, like the graph-cut
algorithm, operates on accumulated scans. Unlike AutoInst,

UNIT operates on single scans instead of accumulated scans,
in a online fashion. At inference time, contrary to AutoInst,
UNIT does not need odometry information for accumulation.
UNIT also does not need to leverage pretrained models to
obtain pseudo-labeled objects segments. Besides, AutoInst,
only evaluates on SemanticKITTI where sequences 01 and
04 are removed from the training set because they predomi-
nantly consist of dynamic instances. In contrast, with UNIT,
there are no requirements limiting the number of dynamic in-
stances for training. Last, the code of AutoInst is not publicly
available, which prevents full-fledged comparisons.

OYSTER [38], SeMoLi [31] and LISO [2] use motion
cues to find moving objects and regress boxes around them,
which are used to train an object detector unsupervisedly.
While some aspects are similar to our work, they focus on
moving objects and object detection, while we target all
objects and instance segmentation. Besides, they do not use
a temporal architecture.

3. Method
Fig. 2 provides an overview of our approach: given a se-
quence of Lidar scans, we train an online instance segmenter
that labels each 3D point with an ID for the object to which
it belongs, while maintaining consistent IDs over time: two
points from different scans sharing the same ID belongs
to the same instance. The online, temporal processing is
performed by a novel auto-regressive architecture that suc-
cessively takes individual Lidar scans as input and labels
points as scans come in (without knowing the future).

We train this network without any human supervision.
To that end, we first create pseudo-labels on unannotated
Lidar sequences using a spatio-temporal clustering. As it
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Figure 2. Method overview. Given unlabeled Lidar scans, we create offline pseudo-labels by spatio-temporal clustering (preprocessing). We
then use these pseudo-labels to train an auto-regressive network. At inference, we apply this network to successive scans as they come.

is unsupervised and incorporates very few priors beyond
4D consistency, our method makes no distinction between
“thing” objects (e.g., cars, pedestrians) and “stuff” objects
(e.g., vegetation, buildings), whose separation may anyway
vary from one dataset to another (e.g., for traffic signs).

We detail each step of our approach below.

3.1. Pseudo-labeling via spatio-temporal clustering

Road segmentation. As experimentally verified in prior
work [22, 23, 38], a good strategy for segmenting objects in
automotive Lidar scans is to first remove the ground, as it
makes the objects stand out as isolated clusters that are more
easily separable. As the ground can often be assimilated to a
large, mostly horizontal plane, RANSAC [10] can be used to
separate this plane from the rest of the scan. However, as they
take into account the specific patterns of Lidar point clouds,
recent alternative methods [14, 15] obtain better performance
on ground segmentation, while remaining unsupervised.

We rely on these methods to segment the ground. To
find the ground points, we used Patchwork [15] on Se-
manticKITTI (as in TARL [23]), and Patchwork++ [14] on
PandaSet-GT. Both methods need to be applied scan-wise
on each Lidar scan of the training set.

Spatio-temporal segmentation. The authors of TARL [23]
demonstrate that applying HDBSCAN [18] on temporally ac-
cumulated scans enables the extraction of spatially and tem-
porally coherent object instances, even for dynamic objects.
Yet, the complexity of HDBSCAN restricts the application
of this clustering to a short time window. In practice, TARL
[23] aggregates 12 successive scans of SemanticKITTI, and
thus provides pseudo-labels over a temporal window of 1.2 s
as the Lidar operates at 10 Hz. To increase the temporal
context window, we apply a voxel grid sampling to heavily
reduce the number of points to cluster after temporal aggre-
gation. More details are given in the supplementary material.
With this process, we are able to obtain time-coherent clus-
ters over 40 aggregated scans. We will see in Sec. 4 (Tab. 1)
that our clusters have the same quality as the clusters ob-

tained in [23] when evaluated on a per-scan basis, but that
their temporal consistency is of a much better quality.

3.2. Online instance segmentation network

Our segmenter architecture is based on Mask3D [30], which
itself is an adaptation of MaskFormer [7] for 3D point clouds.
We recall below how these methods work (using object-based
queries) and explain what modifications we bring to make
them work in a class-agnostic and temporal (online) setting.
More details are provided in appendix.

Class-agnostic object segmentation. Mask3D uses a trans-
former decoder to segment objects. This decoder attends to
point features and produces one embedding for each input
query, with a fixed number of queries |Q|. Each query q ∈Q
is in charge of segmenting one object via a mask module: the
scalar product between each query embedding and all point
features provide an instance heatmap, which can be trans-
formed into a object-wise binary mask, e.g., via thresholding.
The modifications we bring to Mask3D are threefold.

First, we have to take into account that, in our unsuper-
vised setting, we have no access to the object classes. We
therefore do not use any semantic classification head on top
of the query embeddings.

Second, to densely segment the whole input point cloud,
each input point must be assigned to a mask ID, and thus to a
query. To do so, at inference, after computing all scalar prod-
ucts ⟨feat(p), q⟩ between the point features and the query
embeddings, each point p is assigned the ID of the query
that responds the most to the point features:

ID(p) = ID(query(p)) (1)
query(p) = argmax

q∈Q
⟨feat(p), q⟩ . (2)

(There is no thresholding here as it could leave points without
any assigned ID.) Queries to which at least one point is
assigned are called active queries. During training, this hard
assignment is not applied and the loss is directly computed
on the results of the scalar products (cf. Sec. 3.3).
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Figure 3. Mask3D [30] architecture. The queries are trained to favor
attending to at most one object in the Lidar point cloud (Sec. 3.3).
We adapt this architecture for online segmentation and tracking of
objects in Lidar sequences by forwarding output queries to another
instance of the network, in an auto-regressive manner (see Fig. 2).

Finally, we wish to adapt the queries to follow moving
objects. To that end, we consider an auto-regressive archi-
tecture where the queries at network output are used again
as input to the next network inference (see below).

Auto-regressive extension. Mask3D’s transformer decoder
refines the object queries progressively by attending at point
features output at different resolutions (cf. Fig. 3). After
each refinement step, each query increasingly specializes to
a specific object.

To allow the tracking of each instance through time, we
inject the query embedding at time t (output of the trans-
former decoder) as input to the transformer decoder at time
t+1. As the encoder and decoder share the same weights
at each time step, each query at time t+1 should therefore
continue to attend to the same object that it was already at-
tending to at time t. At least in principle, this architecture
enables the tracking of objects over an infinite time window.
This recursion is illustrated in Fig. 2 (training, inference).

As input to the first network application of this auto-
regressive scheme (see input queries at bottom of Fig. 3), we
use fully-learnable initial queries. This flexibility, which is
in line with [6–8] but unlike the non-parametric queries of
[20, 30], prepare for the recursive use of the queries.

3.3. Training loss

Our training loss is made of two main terms. The first
term is a scan-wise training loss, similar to the one used in
Mask3D [30]. We detail its construction in our class-agnostic
setup below. The second loss term favors a time-consistent
segmentation.

We denote the number of points, queries and pseudo
ground-truth instances by Np, Nq and No, respectively. The
loss is computed based on an affinity score Aij , which
is the scalar product between the query-embeddings j =

1, . . . , Nq and the point features i = 1, . . . , Np, followed by
a sigmoid. We also denote by G ∈ [0, 1]Np×No the assign-
ment matrix between the points and the objects as computed
from the pseudo-labels: Gio = 1 if point i belongs to object
o according to the clustering, and 0 otherwise.

Scan-wise training loss. To compute the scan-wise loss,
we need to find correspondences between queries and object
instances. These correspondences are computed by mini-
mizing a cost of assignment between them. The global cost
matrix C ∈ RNq×No between the queries and the object
instances is defined as:

C = λdice C
dice + λBCE C

BCE , (3)

where Cdice is based on the Dice loss,

Cdice
jo =

2
∑Np

i=1 AijGio∑Np

i=1 Aij
2 +

∑Np

i=1 Gio
2
, (4)

and CBCE is based on the binary cross entropy,

CBCE
jo =

Np∑
i=1

Gio log(Aij) + (1−Gio) log(1−Aij) . (5)

We use λdice = 2 and λBCE = 5, as in [30]. Unlike in [30],
we do not have any information about the semantic class of
the objects in our unsupervised setting. We therefore do not
use any classification loss related to semantic categories. The
actual matching between object instances o and queries j is
obtained using the Kuhn–Munkres algorithm (aka Hungarian
matching) with C as cost matrix. Once this matching m(·)
is obtained, we minimize

min(Nq,No)∑
o=1

λdice C
dice
m(o)o + λBCE C

BCE
m(o)o , (6)

where m(o) is the index of the matched query for object o.
Finally, this process is repeated identically at 12 different
layers and scales of the ResUNet, and the final loss is a sum
of all corresponding loss computations, as in [30].

Time consistency loss. We aim at being able to segment
and track object instances for a time period much longer than
the time window seen during training. In fact, we can only
train our network on two consecutive scans on our resources.
To enforce time-coherent segmentation over longer periods
of time, we propose the consistency loss described below.

Let us consider an object instance o segmented at time t
and t+1 with our pseudo-labeling strategy. For instance o and
for each query q, we compute the average similarity score
(scalar product between query embedding and point features)
with the points belonging to o at time t and t+1. We then
transform these scores as a probability of assignment over
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the queries using a softmax layer (over the dimensions of the
queries). We obtain two probability distributions for each
object o: Ht

o ∈ [0, 1]Nq and Ht+1
o ∈ [0, 1]Nq . To encourage

temporal continuity, we minimize the relative entropy, i.e.,
the Kullback-Leibler divergence from Ht+1

o to Ht
o

Lcons
o = DKL(H

t
o||Ht+1

o ) . (7)

We consider Ht
o to be the target distribution and do not back-

propagate through it (thanks to a stop-gradient operation).
However, note that back-propagation goes through the two
timesteps thanks to the auto-regressive architecture. In prac-
tice, an equivalent gradient is obtained with a cross-entropy
loss between Ht+1

o and Ht
o, while keeping the stop-gradient

operation on Ht
o.

Global loss. We first pretrain our network in a single scan
setting, using the scan-wise loss function:

1

N

N∑
o=1

[
λdice C

dice
m(o)o + λBCE C

BCE
m(o)o

]
, (8)

with N = min(Nq, No). We then train on two consecutive
scans by adding the time-consistency loss between the first
and second scans:

1

N

N∑
o=1

[
λdice C

dice
m(o)o + λBCE C

BCE
m(o)o + λconsLcons

o

]
. (9)

In this second phase, costs Cdice and CBCE are computed
only on the second scan. Thus, the Hungarian matching used
to compute mapping m(·) uses only the query embedding at
the second scan. We used λcons = 1 in our experiments.

Further details about the architecture and training proce-
dure are provided in appendix.

3.4. Query recycling mechanism

The number of queries in our architecture is fixed. In our
experiments, it is set to Nq = 300, which off-the-shelf
allows the segmentation and tracking of at most 300 different

instances over an entire sequence. This is far lower than the
number of objects in a sequence of thousands of scans. We
need a process to handle the appearance of new objects and
their disappearance (when they go out of sight) with a query
recycling mechanism.

Our recycling process is based on a simple heuristics.
After each scan at a given time t is processed, we com-
pute the barycenter of the points associated to every active
query. Then for each active query q, we retrieve its previous
barycenter, at tpast. At this stage, we need a simple rule to
determine if query q is still tracking the same object or track-
ing a new object. We do so by checking the distance between
the two barycenters for q at t and tpast. If this distance is
smaller than 10 m, then we assume the query is still tracking
the same object; otherwise it is tracking a new object, which
was never seen in the past. In this case, we assign a new
object ID to the query.

Note that the barycenters are computed in the coordinate
system of the ego vehicle. We compute the distance between
barycenters without compensating for the motion of the ego-
vehicle between time tpast and t, which means we do not
need odometry information nor a side method to register
the scans. Our criterion simply checks if, relative to the
ego-vehicle, the segmented object appears in a completely
different area than where it was before. This criterion is
imperfect. For instance, a new object could be detected by
the same query as an old object if it were appearing at a
location close to the position of the old object relative to the
ego-vehicle. While this strategy still works reasonably well
in practice, it leaves room for improvement.

4. Experiments
4.1. Datasets

SemanticKITTI [3] is a Lidar dataset acquired in Germany,
with a 64-beam Lidar capturing scans at 10 Hz. We use the
usual split where sequences 00 to 10 but 08 are used for
(unsupervised) training, and sequence 08 is used for valida-
tion. On the validation sequence, our metric are computed



on object instances of the following classes: car, bicycle, mo-
torcycle, truck, other-vehicle, person, bicyclist, and motorcy-
clist. This dataset contains the longest sequences, with the
validation sequence consisting of 4071 consecutive scans.

PandaSet [35] contains data captured with two different Li-
dar sensors, a rotating Pandar64 and a solid-state PandarGT,
at 10 Hz. Following [26], we use GPS coordinates to create
two spatially separated training and validation sets, using
scans collected in San Francisco for training and the rest as
the validation set. PandaSet does not contain instance ground
truth. We create them by combining semantic segmentation
and object detection labels in a process described in the sup-
plementary material. In this work, we only experiment with
the dense point clouds captured with PandarGT, as Pandar64
has similar characteristics to the Velodyne HDL-64E used in
SemanticKITTI. We denote this set by PandaSet-GT.

4.2. Baselines

We consider six different baselines. The first three baselines
are 3DUIS [21], the unsupervised spatio-temporal segmen-
tation used in TARL [23] (TARL-Seg), and our technique
for generating pseudo-labels (dubbed 4D-Seg). All of these
baselines are able to segment and track over a limited time
window. We thus propose an improved version of them by
post-processing the results to find correspondences between
instances obtain over two successive time windows. Note
that, unlike UNIT, none of these baselines are online, except
3DUIS, which does not provide spatio-temporal segments.

3DUIS [21] is, to the best of our knowledge, the only pub-
lished method performing unsupervised instance segmen-
tation on automotive Lidar point clouds. This method is
working scan-wise and obtains instances by solving a graph-
cut problem. As solving this graph-cut problem already is
computationally intensive in the scan-wise setting, we do
not apply graph-cuts directly in the spatio-temporal setting.
Instead, we compare this method to ours in a scan-wise set-
ting but also use the post-processing described below to turn
the discovered 3D segments into 4D segments.

TARL’s segments and our 4D segments are obtained using
classical clustering (HDBSCAN [18]) on scans accumulated
after rigid registration (see Sec. 3.1). Both methods provide
spatio-temporal segments over a predefined time-window,
unlike our method UNIT which is online. Note as well
that we do not need to register the scans in UNIT. The
clustering used in TARL was tuned for SemanticKITTI, with
a time window corresponding to 12 consecutive scans. Our
4D segments provides object instances over 40 consecutive
scans on both SemanticKITTI and PandaSet-GT.

Baseline improvement. All of the above methods provide
4D segments over a fixed time window. By construction,
they are unable to track an object over a temporal horizon

longer than this time window, which impacts negatively their
performance relatively to the metrics defined in Sec. 4.3.

We improve the performance of these baselines by match-
ing instances discovered in two successive time-windows.
Given the last scan ℓ in a reference time window and the first
scan f in the next time window, we register these scans in
the same coordinate system and compute the convex hull of
all instances in ℓ and f . Whenever the convex hulls of two in-
stances from different scans overlap with an IoU larger than
0.5, the object instance in f is assigned the object ID of the
instance in ℓ. Note that we use the ground-truth poses of the
ego-vehicle only for these baselines—UNIT does not need
access to the vehicle poses. More details are provided in the
supplementary material. We denote the improved baselines
by 3DUIS++, TARL-Seg++, and 4D-Seg++.

4.3. Metrics

Association score. Our main metric is the association score
used in [1] for 4D panoptic segmentation in Lidar data, and
used in [21] for unsupervised class-agnostic instance seg-
mentation. We recall its definition below for completeness.

Let G be the set of manually-annotated objects (sets of
points) serving as ground truth for evaluation but unused dur-
ing training, and S be the set of segments (objects) predicted
by our network. Note that any object in G (similarly for S)
is a 4D segments containing the list of points belonging to
that object at every timestep of the sequence. The temporal
association score Stemp

assoc satisfies:

Stemp
assoc =

1

|G|
∑
g∈G

1

|g|
∑
s∈S

s∩g ̸=0

TPA(s, g)IoU(s, g) , (10)

where TPA(s, g) = |s ∩ g| is the number of true positive
associations between the 4D segments s and g, and IoU is
the intersection-over-union.

A non-temporal version of the association score can be
computed by considering that objects and predictions in
different scans come from different instances. This version
of the association metric, denoted Sassoc, is the metric used
in [21] as this method works in a scan-wise setting.

Best IoU. In complement to the above score, we introduce
another metric where, for each object in G, we first find the
best overlapping segments in S in terms of IoU, and then
compute the average IoU with these best matches:

IoU∗ =
1

|G|
∑
g∈G

max
s∈S

IoU(s, g) . (11)

Note that this metric is computed using 4D segments: the
higher the score, the better the temporal consistency. Note
as well that, in this metric, a predicted segment s can be
a best match for two different ground-truth objects g and
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Stemp
assoc IoU∗ Sassoc Stemp

assoc Sassoc

3DUIS w/o time ✓ - - 0.550 - 0.768
UNIT w/o time ✓ - - 0.715 - 0.811

3DUIS++ ✓ 0.116 0.214 0.550 0.148 0.769
TARL-Seg ✗ 0.231 0.353 0.668 0.264 0.735
TARL-Seg++ ✗ 0.317 0.446 0.617 0.370 0.678
4D-Seg ✗ 0.421 0.529 0.667 0.486 0.784
4D-Seg++ ✗ 0.447 0.513 0.647 0.512 0.762
UNIT ✓ 0.482 0.568 0.696 0.563 0.790

Table 1. Results on SemanticKITTI. All scores are computed on
the validation set of SemanticKITTI. The association scores are
computed using the code of [1], which, by default, is only applied
on segments of more than 50 points for any given scan; we report
the corresponding scores with and without filtering.

PandaSet-GT

O
nl

in
e Unfiltered Filtered

Stemp
assoc IoU∗ Sassoc Stemp

assoc Sassoc

UNIT w/o time ✓ - - 0.562 - 0.719

TARL-Seg ✗ 0.206 0.286 0.369 0.390 0.757
4D-Seg ✗ 0.332 0.399 0.492 0.503 0.740
UNIT ✓ 0.209 0.310 0.531 0.351 0.688

Table 2. Results on PandaSet-GT (validation set, see Sec. 4.1).

g′ (g ̸= g′). It thus provides a measure of the best IoU we
can reach with the available set predictions.

Limitations. The above metrics require 4D manual seg-
ments of each object. In existing datasets, such annotations
are available only for thing classes (cars, pedestrians, etc.).
Thus, while our method is able to segment and track all ob-
jects (both stuff and things), these metrics are only used to
measure performance on a subset of the objects.

Filtered metrics. The metrics used by [21] and [1] include a
scan-wise filter removing all 3D ground-truth segments with
fewer than 50 points. We include these “filtered” metrics
for comparability purposes. We would like to recall never-
theless that this filtering removes small or distant objects
from the metrics. We thus also compute the metrics without
any filtering to provide a more complete assessment of the
performance of the methods.

4.4. Results of UNIT

On SemanticKITTI. We compare our method to all the
considered baselines on SemanticKITTI. The results are
presented in Tab. 1. In the single-scan setting, UNIT is better
than 3DUIS. This shows the advantage of training end-to-
end an instance segmenter rather than relying on a graph-cut
method. In the online setting, we notice that post-processing

Training Inference Metric

Scan-wise

Autoreg
.

L
cons
o

(7)

Scan-wise

Autoreg
.

S
te
mp

as
so
c

Sas
so
c

4D-Seg 0.420 0.667

✓ - ✗ ✓ - - 0.715
✓ - ✗ - ✓ 0.330 0.667
- ✓ ✗ - ✓ 0.446 0.727
- ✓ ✓ - ✓ 0.482 0.696

Table 3. Ablation study on the validation set of SemanticKITTI.
Influence of the training and inference procedure (scan-wise or auto-
regessive) as well as the effect of the loss (7) on the performance.

the segments obtained by 3DUIS is not enough to compete
with the segments obtained by TARL-Seg and 4D-Seg on
both temporal metrics Stemp

assoc and IoU∗. We also remark that
4D-Seg performs better than TARL-Seg. This is due to the
longer temporal window used in 4D-Seg as both methods
give similar scores on the scan-wise metric Sassoc. We also
observe that our post-processing over the segments of TARL-
Seg and 4D-Seg improve the spatio-temporal quality of the
segments. The best scores are obtained with our method.

On PandaSet-GT. We notice in Tab. 2 that UNIT surpasses
TARL-Seg, except when filtering out all small ground-truth
segments. Unlike on SemanticKITTI, UNIT does not outper-
forme its pseudo-labels (4D-Seg). The large context window
(4 s) for 4D-Seg with respect to sequence duration (8 s) on
PandaSet-GT provides an advantage to 4D-Seg which has
access to nearly the whole sequence for segmentating, while
UNIT works online. We also recall that UNIT does not re-
quire precise registration of the scans, unlike the baselines.

4.5. Ablation study

We conduct an ablation study on the components of UNIT
on SemanticKITTI. The results are reported in Tab. 3.

First, we remark that, surprisingly, training our network
in a scan-wise setting but doing the inference in an auto-
regressive manner (second row of the table) already provides
reasonable segmentation of instances in 4D, with scores not
so far from those of 4D-Seg. This indicates that using as
input the query embedding of the past scan already allows
to track some object instances without explicit supervision.
This justifies the auto-regressive use of the queries.

Second, as seen from the third row of Tab. 3, training the
network in an auto-regressive manner permits us to surpass
the 4D-Seg baseline (our pseudo-labels). Note that, in this
case, there is no explicit constraint or regularization that
favors the discovery of spatially and temporally consistent
instances. This behavior is only achieved implicitly via the
auto-regressive use of the query embeddings and the use of
spatio-temporal pseudo-labels. Yet, these two ingredients
are enough to surpass 4D-Seg.



nuScenes

O
nl

in
e Unfiltered Filtered

Stemp
assoc IoU∗ Sassoc Stemp

assoc Sassoc

UNIT w/o time ✓ - - 0.390 - 0.570

TARL-Seg ✗ 0.085 0.156 0.189 0.253 0.475
4D-Seg ✗ 0.163 0.246 0.287 0.350 0.546
UNIT ✓ 0.126 0.221 0.356 0.270 0.561

Table 4. Results on nuScenes (validation set).

Percentage of training data
Pre-training Inputs 1% 10% 50% 100%

No pre-training xyz + i 35.0 57.3 69.0 71.2
PointContrast [36] xyz + i 37.0 +2.0 58.9 +1.6 69.4 +0.4 71.1 -0.1
ALSO [4] xyz + i 37.4 +2.4 59.0 +2.7 69.8 +0.8 71.8 +0.6
BEVContrast [29] xyz + i 37.9 +2.9 59.0 +2.7 70.5 +1.5 72.2 +1.0

No pretraining depth + i 35.4 60.2 71.3 71.3
UNIT w/o time depth + i 35.3 -0.1 60.9 +0.7 72.2 +0.9 74.0 +2.7nu

Sc
en

es

UNIT depth + i 35.4 61.9 +1.7 72.0 +0.7 73.6 +2.3

No pre-training xyz + i 46.2 57.6 61.8 62.7
PointContrast [36] xyz + i 47.9 +1.7 59.7 +2.1 62.7 +0.9 63.4 +0.7
SegContrast [22] xyz + i 48.9 +2.7 58.7 +1.1 62.1 +0.3 62.3 -0.4
STSSL [34] xyz + i 49.4 +3.2 60.0 +2.4 62.9 +1.1 63.3 +0.6
ALSO [4] xyz + i 50.0 +3.8 60.5 +2.9 63.4 +1.6 63.6 +0.9
TARL [23] xyz + i 52.5 +6.3 61.2 +3.6 63.4 +1.6 63.7 +1.0
BEVContrast [29] xyz + i 53.8 +7.6 61.4 +3.8 63.4 +1.6 64.1 +1.4

No pretraining depth + i 46.6 59.8 62.2 63.4
UNIT w/o time depth + i 49.0 +2.4 61.8 +2.0 64.9 +2.7 65.1 +1.7

Se
m

an
tic

K
IT

T
I

UNIT depth + i 50.2 +3.6 62.4 +2.6 64.9 +2.7 65.9 +2.5

Table 5. Fine-tuning for semantic segmentation. We show the
quality (mIoU% after fine-tuning) of the features we learn self-
supervisedly. Other methods, in grey, have a similar training setup
but a different network architecture and inputs. ‘i’ is for intensity.

Finally, adding the time consistency loss further boosts
the performance on the spatio-temporal metrics.

4.6. Case of low density point clouds

Our method, like [21–23], relies on the extraction of accurate
segments for pseudo-labeling. Such a segmentation is far
easier when starting from dense point clouds, as available
in SemanticKITTI and PandaSet-GT, than when starting
from low-density point clouds. This probably explains why
related methods do not conduct experiments on datasets
like nuScenes, where point clouds are much sparser than
in SemanticKITTI. To test the limits of our method and
baselines on low-density point clouds, we apply them on
nuScenes [5] (see description in Appendix).

As on the other datasets, we notice (cf. Tab. 4) that
4D-Seg surpasses TARL-Seg thanks to its longer temporal
window. UNIT performs better than 4D-Seg on the non-
temporal metric Sassoc but remains below on the temporal
metrics: UNIT does not surpass its pseudo-labels. We recall
nevertheless that UNIT work online and without accumula-
tion and registration of scans, unlike 4D-Seg. Let us also
mention that we noticed a slight drop of performance for

UNIT when using the consistency loss on nuScenes. We hy-
pothesize that the small point density leads to worse pseudo-
labels for small or distant objects, which in turn creates more
noise on the segments used in the consistency loss.

4.7. Fine-tuning the backbone for self-supervision

As an additional experiment, we study the potential of UNIT
as a self-supervised method for semantic segmentation. We
use the sparse U-Net [30] backbone pre-trained by UNIT as
a point-based segmenter. Following the protocol of [4, 29]
on nuScenes and SemanticKITTI, we finetune the pretrained
backbone with different amount of annotated data (1%, 10%,
50% and 100%). The results are presented in Tab. 5. For
comparison, we also report the scores from the literature [29].
Let us highlight nevertheless that these methods use different
variants of sparse U-Net, with different input features. Yet
all sparse U-Nets attain comparable baseline results when
using 100% of labeled data and no pretraining.

We notice that our pretrained sparse backbone under-
performs at very low data regime, but reaches better per-
formance than state-of-the-art self-supervised techniques at
high annotation percentages. It could be due to the size of
the self-training head, i.e., the layers on top of the sparse U-
Net. Indeed our head is a complete multi-scale transformer,
as opposed to previous methods that are at most 3-layered
MLPs. In the latter case, the output feature maps are more
likely to be linearly separable, thus requiring less finetuning
and performing better in low-data regime. A similar behav-
ior is observed for MAE [12] where the pretraining head is
an 8-block transformer and the best performance are reached
for very long finetuning. We also observe that going from
single-scan to multi-scan models improves the performance.

5. Conclusion
We showed that we could segment and track objects in Lidar
data without requiring any manual annotations. This is made
thanks to an offline method generating pseudo-labels, and to
a novel auto-regressive architecture that performs robustly
online once trained on these noisy pseudo-labels only. We
hope that our approach will inspire other authors to consider
other tracking problems where annotations are not available.
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