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ABSTRACT

Can variational auto-encoders (VAEs) generate flexible continuous latent space
for long electrocardiogram (ECG) segments and reconstruct the input? A folded
VAE architecture is introduced in this study which is able to encode long ECG
segments by splitting an input segment into folds and process them in sequence
using a narrow field-of-view in the encoder and concatenate them at the end, in-
stead of processing the long segment at a time. The VAE decoder follows similar
folding and concatenation strategy for reconstruction of the original ECG seg-
ments. The proposed folded VAE architecture is able to generate better recon-
struction of long 30-second ECG segments compared to unfolded classical VAE
approach which often produce trivial reconstruction of long ECG segments. Ex-
perimental results show that the latent representation generated by our folded VAE
architecture not only retains rich compressed information but also aids designing
interpretable models by providing decision-making insights.

1 INTRODUCTION

Variational autoencoders (VAE) are powerful tool for generative modeling. Due to their inherent
continuous latent space, operations such as random sampling and interpolation becomes possible.
The reconstruction ability of VAEs is an important feature which has many applications includ-
ing prototype-based deep learning interpretability methods for time-series (Gee et al., 2019; Zhang
et al., 2023; Li et al., 2018). Reconstruction of VAEs for longer physiological time-series, such as
electrocardiogram (ECG), of various morphology and signal quality remains under explored.

Prototype classifiers are VAE networks where observations are classified based on their similarity
to one or more prototype observations within the dataset (Li et al., 2018). The proximity between
prototype and observations is measured in a flexible and adaptive latent space (Li et al., 2018; Gee
et al., 2019; Zhang et al., 2023). Reconstruction ability of VAE’s decoder module of prototypes and
observations is crucial for communicating interpretability to the end users, as well as, to validate
the claimed prototypes against a given observation for knowledge exploration. Reconstruction of
ECG data using VAEs has been explored in several occasions in the literature including prototype
learning in intrinsic interpretability literature of deep learning (Gee et al., 2019; Zhang et al., 2023),
and ECG generation using VAEs (Kuznetsov et al., 2021; Beetz et al., 2022; Jang et al., 2021).
ECG segment reconstruction, which was often attempted in these studies, either produce short 3-10
second ECG segments or healthy heart beats such as sinus rhythms. The quality of VAE-sampled
latent representation and the ability of VAE’s decoder module to reproduce the source sample needs
to be investigated for long ECG segments and a broad spectrum of heart beats.

VAEs well reconstruct shorter ECG segments, as shown in Figure 1-a, but generates trivial recon-
struction for longer 10 seconds and 30 seconds fragments, shown in Figure 1-b,c. This limitation
of VAEs’ reconstruction ability of ECG data needs to be improved to be useful for respective appli-
cations such as visualisation of prototype and observation in deep learning interpretability studies
based on prototype learning.

For improving the reconstruction ability of VAEs, motivated by the concept of manifold learning
which considers that the dimensionality of many data sets is only artificially high, we propose a
folded encoder/decoder architecture of VAE which narrows down the input field-of-view by splitting
a long ECG input segment into small folds at the beginning of the encoder/decoder followed by a
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concatenation at the end. The consumption of a long segment into folds by the encoder/decoder
backbone allows the network to learn essential ECG features and produce better reconstruction.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

The problem of limited reconstruction ability of VAEs of long ECG segments (shown in Figure 1
bottom-row) is formulated to stimulate the latent space representation, generated by VAEs, to be able
to capture pattern in relatively longer ECG sequences for better reconstruction of the input sequence.
The encoder/decoder network architecture of CNN variational auto-encoders were experimented for
suitability in learning latent space representation.

Figure 1: Original (blue color) and reconstructed (orange color) ECG signal fragment for CNN vari-
ational auto-encoder of (left column: a, d) 3 second, (mid column: b, e) 10 second and (right column:
c, f) 30 second fragment unsupervised trained on ECG recordings of MIT-BIH Polysomnographic
Database (top row) and Mesa dataset (bottom row). The reconstruction ability of VAEs suffers due
to increase in segment length (3, 10 and 30 seconds) and variation in ECG signal recording environ-
ment (above-mentioned two databases).

2.2 VARIATIONAL AUTO-ENCODERS (VAES)

Autoencoders (AEs) are one kind of neural network which consists of two parts - encoder e and
decoder d (Figure 2-a, excluding the sampler which can sample from latent distribution). The en-
coder produces compressed latent representation Z from original high-dimensional input space X
by learning a non-linear transformation e : X → Z. The decoder, on the other hand, learns a
transformation d : Z → X which tries to recover X from the latent representation Z. AEs map
the input to a latent vector in a deterministic way z = e(x) which limits the decoders to reconstruct
x̂ = d(z) = d(e(x)) from a region in the latent space that was never seen by the decoder during the
training (Ghosh et al., 2019).

VAEs, on the other hand, sample a latent vector z ∼ N(µ, σ) by parameterizing a diagonal Guassian
distribution N(µ, σ) where the parameters µ(x) and σ(x) are mapped from input x (Kingma &
Welling, 2013).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.3 FOLDING AN ECG SIGNAL

Motivated by the principle of manifold learning, which states the idea that the dimensionality of
many data sets is only artificially high (Martinetz & Schulten, 1994; Roweis & Saul, 2000), the
problem of encoding an N second ECG recording should be broken down to encoding N number of
only one-second ECG segments, which is likely to contain as few as one or two heart beats, followed
by a concatenation of encoded folded segments to yield the final encoding. A folded encoding and
decoding can be summarised by the Equation 1 and 2,

e(x) =

n∑
i=1

e(xi) (1)

x̂ = d(z) =

n∑
i=1

d(zi) (2)

where e(x) and d(z) are encoding and decoding which are achieved by applying them over folded
inputs xi and folded sampled vector zi respectively.

Figure 2-a, b show the concept of ECG folding, in encoder - concatenating encoded segments,
sampling from the merged encoding and handing to the decoder, where the opposite is performed
including folding the sampled encoding, decoding each fold and finally merging them to yield the
final reconstruction. A single network backbone was used by the encoder to encode each fold and
the similar shared backbone strategy was followed in the decoder. The use of a shared encoding
(or decoding) sub-network forces it to learn distribution of ECG beats (such as, folds in a manifold
ECG recording) to encode (or decode). The use of a shared sub-network is expected to enforce in
learning general ECG heartbeat features discarding unnecessary information including noise.

2.4 VAE ARCHITECTURE

Figure 2-a shows the concept of shared backbone encoder and decoder for folded ECG and Figure 2-
b shows a block diagram of corresponding neural network layers for 30 second long ECG input
sampled at 64Hz.

The encoder in Figure 2-b consists of four convolution-blocks which receives 30 one-second ECG
folds (1920 samples of a 30 second segment sampled at 64Hz turns into 30 64-sample folds) in
sequence and outputs a feature-map consisting of 4 spatial samples. A fixed number of 8 output
channels per convolution layer was used to keep the network complexity low (thus, the encoder
outputs a 8x4 feature-map). A concatenation layer merges 30 8x4 feature-maps in the second di-
mension (spatial dimension in channel X spatial space) yielding a 8x120 feature-map which moves
to the sampling layer. The use of pooling layer was avoided to retain the temporal relationship from
bottom to top of the four convolution layers and a convolution stride of 2 was used to down-sample
the input similar to a pooling layer.

The sampler takes the merged feature-map of 8x120, flattens to 1x960 vector and maps to mean
vector µ(x) and standard deviation vector σ(x) of a reduced dimension 1x480 which forms the
basis of a Guassian distribution N(µ, σ) from which a latent vector z was sampled and passed to the
decoder.

The decoder receives a 1x480 latent vector z, maps it back to 1x960 and reshapes to 8x120 which is
the dimension same as the concatenated output of the encoder. A folded strategy was adopted, same
as the encoder, by splitting the 8x120 feature-map into 30 8x4 feature-maps which goes through
four transposed convolution blocks, each producing a 1x64 output feature-map. A concatenation
layer then merges 30 of these feature-maps and produce a final 1x1920 feature-map which is the
same shape as the original input. The transposed convolution block in the decoder consists of an
up-sampling layer of scale 2 and a convolution layer with stride 1. A leaky-ReLU non-linearity
activation was used in both encoder and decoder to avoid the dying ReLU problem of large number
of zero neurons due to negative bias (Maas et al., 2013).

2.5 VAE UNSUPERVISED TRAINING

The VAE was trained unsupervised on two different ECG segment lengths - 10 second and 30 second
with 10-folding and 30-folding respectively to verify if VAE reconstruction of per-second folding
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(a)

(b)

Figure 2: (a) CNN VAE concept diagram and (b) architecture with shared feature-extracting back-
bone. ECG N second segment is split into N sub-segments of 1 second excerpts, then encoded,
sampled and forwarded to decoder for reconstructing sub-segments which are then merged to output
N second segment the same length as the original ECG.

yields similar results. The objective of the VAE network is to minimise a loss LV AE

LV AE = wf ∗ Lrecon + LKL (3)

4
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which consists of 2 parts - reconstruction loss Lrecon and KL Divergence loss LKL. The reconstruc-
tion loss ensures that the ECG segment generated by the decoder closely resemble the input ECG
and for this, binary cross-entropy (BCE) loss was found to be convenient given that the input ECG
was scaled using minmax scalar (0-1 range) and decoder outputs pass through a sigmoid layer to
predict output ECG in 0-1 range. BCE loss for a batch of n samples can be formulated as below -

Lrecon(x, x̂) = −ωn[x̂n.logxn + (1− x̂n).log(1− xn)] (4)
where x and x̂ are original and predicted ECG segments accordingly. The reconstruction loss Lrecon

in the equation of LV AE (Equation 3) was scaled by a factor of wf to balance the reconstruction
and KL loss components which corresponds to the fidelity of the reconstructions and the regularity
of the latent space. A value of 500 was found suitable for wf in this experiment.

The KL Divergence loss LKL can be stated as

LKL[G(Zµ, Zσ)|N(0, 1)] = −0.5 ∗
N∑
i=1

1 + log(Zσ2
i
)− Z2

µi
− Z2

σi
(5)

where G(Zµ, Zσ) is the Guassian distribution defined by the encoder’s output Zµ (mean) and Zσ

(standard deviation), and N(0, 1) is the standard normal distribution. The KL Divergence loss LKL

measures the difference between the encoder’s distribution and a prior which is a standard normal
distribution in this experiment. It acts like a regulariser which ensures the latent variables are close
to a prior distribution.

2.6 USE CASE: SLEEP STAGE CLASSIFICATION FROM ECG

In addition to verifying VAE reconstruction ability using shared encoder/decoder backbone and
second-wise folded ECG, the quality of the sampled latent space representation was also tested
by using the representation in a context of 3-stage sleep classification from ECG signals including
Wake, NREM- and REM-sleep. It was hypothesized that the performance of folded ECG with shared
VAE encoder/decoder backbone should not perform lesser than the performance of an unfolded
standard VAE scenario.

2.7 DATASET

Multi-Ethnic Study of Atherosclerosis (MESA) (Zhang et al., 2018a; Chen et al., 2015) dataset
was used for the use case of sleep-wake classification. The dataset itself was sourced from the
National Sleep Research Resource which provides availability of the de-identified records (Dean
et al., 2016; Zhang et al., 2018b). Due to a large number of recordings, a randomly selected subset of
20 subjects was chosen for the current study. ECG recordings in the dataset were sampled at 256Hz
which were downsampled to 100Hz. Another dataset was MIT-BIH Polysomnographic Database
(SLPDB) (Ichimaru & Moody, 1999; Goldberger et al., 2000) from Physionet repository which
contains 18 recordings of multiple physiological signals including ECG during sleep. Sleep stages
were annotated as 30 second segments. Original 250Hz recordings were downsampled to 100Hz.

2.8 NETWORK ARCHITECTURE

The high-level hybrid explainable architecture is shown in Figure 3. The architecture adds two
additional components to the VAE module described above: The Parameterizer and Aggregator.

The Parameterizer is inspired by Alvarez-Melis & Jaakkola (2018); Zhang et al. (2022) and is used
to generate relevance weights of the different splits for each input sample. Whereas in Zhang et al.
(2022) the Parameterizer module was used to generate relevence weights for encoded concepts gen-
erated from a self-attention mechanism, here the Parameterizer aims to do the same for the prede-
fined splits. It is important to note that unlike the encoder of the VAE, the Parameterizer accepts
the entire signal. This provides the Parameterizer with a higher level of context across the entire 30
second sample without the VAE being required to compute over the entire signal. The output of the
Parameterizer is a vector w ∈ RN where N is the number of splits and wn ∈ w is the weight for
split n, for a given sample.

The Aggregator first calculates the linear combination of the flattened encoded splits (or folds) with
the relevance weights and produces a probability weighted by the predicted relevance of each split.
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The encoded splits are flattened using a fully connected layer where the output is a vector p ∈ RC

where pc is the probability of the entire sample being class c.

Figure 3: High-level explainable architecture with segmentation and parameterizer.

While the VAE portions of the model remained fixed as described in section 2.4, Table 1 describes
the output shape, kernel size, and number of parameters for the enconder of the Parameterizer mod-
ule.

Layer Type Output Shape Kernel Shape Number of Parameters
Conv1d [32, 32, 2996] [5] 192
BatchNorm1d [32, 32, 2996] – 64
Conv1d [32, 32, 2996] [5] 5,152
BatchNorm1d [32, 32, 2996] – 64
Swish [32, 32, 2996] – –
Conv1d [32, 32, 2996] [5] 5,152
BatchNorm1d [32, 32, 2996] – 64
Swish [32, 32, 2996] – –
MaxPool1d [32, 32, 1500] 2 –
AdaptiveMaxPool1d [32, 32, 1] – –
Trainable params: 11,082
Non-trainable params: 0

Table 1: Parameterizer Model Architecture

2.9 MODEL TRAINING AND TESTING

The classifier sub-network is trained simultaneously with the VAE and the objective of the network
is to minimise the combined reconstruction and classification loss,

L = Lc(Xi, yi) + LV AE (6)

Cross-entropy loss was found suitable to account for the classification error and the combined loss
was back-propagated through the whole network (classifier and VAE encoder/decoder sub-networks)
by using ADAM optimiser for faster convergence. A small learning rate 0.0001 was found suitable
for training the network with maximum epoch as high as 400. A validation loss was calculated end
of each epoch and any improvement in validation loss was considered as a milestone throughout
the end of the maximum epoch and during each milestone the model was saved and at the end test
performance was calculated with the latest model.

Subject-wise split was considered for the sleep-stage classification task in both the datasets where a
80/20 split of subjects was done for training and testing and the training subjects were further split
into 80/20 for training and validation. Recordings in training were then segmented into 30 second
sleep epochs, mixed together and used for model training and a similar strategy was adopted for
the validation and testing groups. Pre-processing steps include downsampling to a common 100Hz
frequency and removal of baseline wander in ECG signals.
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2.10 EXPERIMENTAL SETUP

There were 2 experiments carried out in this study. Firstly, a folded VAE architecture was used
to train unsupervised way from both the datasets - MESA dataset and MIT-BIH Polysomnography
dataset. This one is to validate if the problem specified in Figure 1 can be solved in both the datasets.
Secondly, a VAE guided network arrangement was used to train a sleep stage classifier to learn 3
stages such as Wake, NREM- and REM-sleep stages. Particularly, 6-fold and 10-fold VAEs were
used for the VAE guided sleep-stage classification task. A note on the Figure 2 is that the 64Hz
sampling frequency of input ECG shown in the network diagram was altered in the experiment to
be 100Hz for convenience and it is suggested to consider the network diagram as a representative
model.

3 RESULTS

Figure 4 shows the reconstruction of 30 second ECG segments with 3, 5 and 10 splits before passing
through the encoder/decoder and finally concatenate at the decoder output. The reconstruction was

Figure 4: Reconstruction of CNN VAE with shared feature-extracting backbone which splits input
30 second segment into (left column: a, d) 3-folds, 10-second each, (middle column: b, e) 5-folds,
6-second each and (right column: c, f) 10-folds, 3-second each. The top row shows reconstruction
at 10 epoch of Split-VAE training and the bottom row shows that at 70 epoch. The ECG data are
from MIT-BIH Polysomnographic Database.

captured during unsupervised training of VAE using the Physionet Polysomnographic dataset at 10th
(Figure 4:a-c) and 70th (Figure 4:d-f) training iterations. Reconstructed ECG during early training
iterations (epoch 10) of both 10 second and 30 second segments were found to be sparse than the
reconstruction during later iteration (epoch 70). Reconstructed 3-split and 5-split of 30 second ECG
segments (Figure 4:{a, d} and {b, e}) were found to recover fewer ECG beats compared to 10-split
scenario (Figure 4-c, f).

Figure 5 shows reconstruction of 30 second segments of 20 randomly selected ECG recordings in
6- and 10-splits after 60 epoch of VAE training. The reconstruction quality shows that the decoder
can recognise every ECG beat of 30 second segments.

The sleep stage classification accuracy across all four test subjects of the MESA dataset was 71.64%,
75.17%, 69.03%, and 44.15%, with an mean accuracy of 65.00%. For 6-split VAE, the Param-
eterizer generates weights as [0.774, 0.688, 0.693, 0.693, 0.696, 0.692] for one of the test subjects
which signifies the contribution of each of the 6-folds. The first weight 0.774 out stands which
demands a closer inspection of the first 5 seconds of the input ECG to understand any pattern and
do domain specific interpretation. Likewise, for 10-split VAE, the Parameterizer generates weights

7
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Figure 5: Reconstruction of CNN VAE with shared feature-extracting backbone which splits input
30 second segment into (a) 6 folds, and (b) 10 folds at epoch 70 of VAE training. The ECG data are
from 20 randomly selected subjects of MESA Database.

as [0.939, 0.892, 0.860, 0.732, 0.854, 0.799, 0.939, 0.635, 0.816, 0.730] for one of the test subjects
which signifies the importance of the highlighted folds (fold number 1 and 7).

4 DISCUSSION

The results from unsupervised of the VAE architecture indicate a good pattern of reconstruction
for a higher number of splits. This aligns closely with the reconstruction capabilities demonstrated
in previous VAE studies on ECG which demonstrated good reconstruction for 3-10 second samples
(Kuznetsov et al., 2021; Beetz et al., 2022; Jang et al., 2021). The poorer reconstruction for 3 and
10 fold variants provide further evidence that CNN-based VAE architectures struggle to encode long
ECG signals with sufficient granularity as discussed in Figure 1.

Interestingly, though reconstruction was improved by the addition of more data splits, the classifi-
cation performance of the resultant model was poor compared to other architectures trained on the
MESA dataset. For example, Erdenebayar et al. (2020) used a deep network of gated-recurrent units
for three-class sleep stage classification achieving an 80.07% test accuracy while Tang et al. (2022)
utilised a CNN feature extractor combined with a novel transfer-learning approach to achieve high
generalisability for sleep stage classification across subjects with an average accuracy of 80.6%.
Previously, Immaculate Joy et al. (2024) demonstrated a high level of accuracy for cardio-vascular
disease detection through a similar method of using the latent space encoding of a VAE model as
the learned features for a classifier. This discrepancy suggests two possible conjectures for why our
current model was unable to perform. Firstly, the model’s hyperparameters may not be correctly op-
timised, leading to poor generalisability to the test set. Indeed during training, a level of over-fitting
comparing the loss on training and validation in later epochs. Combined with the good reconstruc-
tion, this may indicate that the Parameterizer module may be too large. Another conjecture for
the model’s poor performance may be that the information between splits is not being captured by
the VAE encoder and subsequently not being adequately reflected in the relevance weights gener-
ated by the Parameterizer when encoding the entire signal. The American Sleep Academy of Sleep
Medicine (AASM) defines features from multiple heartbeats as relevant to sleep stage classification
as patterns such as sustained bradycardia or tachycardia, which provides some biological precedence
for inter-split information (Iber et al., 2007).

The folded-VAE architecture, equipped with Parameterizer and Aggregator modules, provides a
flexible framework to design an intrinsically interpretable deep learning model architecture similar
to (Alvarez-Melis & Jaakkola, 2018; Zhang et al., 2023). The only exception is (Zhang et al.,
2023) was trying to connect the neighboring sample points to form concepts, while in our folded
VAE strategy, each fold is seen to be a concept as granular as required based on the given problem.
For example, for a single heart beat level variation, a 30 second long ECG segment can be divided
into 30-splits which would be a single second-wise split VAE where the encoder would try to learn a
single beat on average in a single second ECG segment. Sleep stage classification problem probably
require to observe heart-beat pattern from a number of consecutive beats which can be considered
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as a hyperparameter; we have explored 6-fold and 10-fold only in current study and requires further
investigation.

The sampling step in the VAE encoder used the concatenated folds to sample the encoding which
then acts as an input to the decoder (shown in Figure 2). It can be argued that the sampler may find it
difficult to merge information between folds to form a continuous space. An alternative strategy can
be to take sampling each fold and then concatenate the sampled folds. This sampling-folds first, fol-
lowed by concatenation to form VAE encoder output is used in generating the reconstructions shown
in the results (Figure 4 and Figure 5) with no phase shift issue of the folds in the reconstruction. Any
further study should consider this alteration of the sampler and concatenation into account.

5 CONCLUSION AND FUTURE WORK

Variational autoencoders are growing in populatity for ECG analysis because they allow for simple
embedding into a latent space that can be easily sampled from. However, most studies focus on
applications where the duration of ECG signal being analysed is short. The current study aimed
to investigate the capability of CNN variational autoencoders on long ECG signals and suggest a
potential architecture to address shortcomings by splitting the ECG into smaller chunks. Though
good reconstruction was observed for a higher number of splits, classification accuracy for test
subjects is lower than other architectures trained on the same dataset. Future work is required to
determine the exact mechanism for the poor classification accuracy, and to improve on the initial
interpretable architecture proposed.
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