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ABSTRACT

Ising model has already played a pivotal role in the formulation of neural networks
like Hopfield networks and Restricted Boltzmann machines. Recently, Transform-
ers have recently gained popularity due to their ability to learn long range depen-
dencies through self-attention. In our work, we first show that spectral feature
learning with self-attention is prone to instability. Inspired from the Ising model,
we then propose a transformer based network using a adjacently coupled spectral
attention to learn the spectral mapping from RGB images. We further analyse
its stability using the theory of Lipschitz constant. The method is evaluated and
compared with different state-of-the-art methods on multiple standard datasets.

1 INTRODUCTION

Neural networks are well known to exhibit properties that are commonly derived from statistical
physics. This is clearly because of the large population of neurons in an network that certainly fol-
lows the fundamental physical laws. While some works have highlighted the underlying behaviour
of neural nets in terms of these principles Huang (2023), some others explicitly utilize the principles
from different physics domains and apply them to machine learning Raissi et al. (2019). In this work,
we apply the idea of nearest neighbour coupling from Ising model Brush (1967) and remodel the
self-attention to learn spectral reconstruction. It is known that spectral reconstruction is an ill-posed
problem Lin & Finlayson (2020). Hyperspectral to RGB projection can be thought as projecting the
hyperspectral image vector along the spectral response space. This in turn results in the loss of the
image vector lying in the null space of spectral response, and therefore the exact inverse mapping
cannot be performed without the unknown null space vector. In recent years, transformers gained
popularity for application in computer vision problems. They found applications in low level vi-
sion problems like image super-resolution Lu et al. (2022); Sinha et al. (2022), image inpainting Li
et al. (2022), and so on. Self-attention is the key essence of exploiting long range dependencies in
Transformers. However, this approach to estimate the spectral attention coefficients along spectral
channels has serious limitations in spectral recovery task. Intuitively, for a feature map with C num-
ber of channels, the corresponding C×C shaped attention matrix uses a scalar value to correlate the
spatial variation between two channels. Furthermore, the Lipschitz constant of self-attention layer
is proportional to the variance in input that results into larger sensitivity factor Kim et al. (2021).
To alleviate this issue, we present a spectral attention layer that is relatively more stable than self-
spectral attention. We further utilize the theory of Lipschitz constant to mathematically show the
stability under trivial assumptions

2 PROPOSED METHOD

Figure 1 shows the overall end-to-end architecture. It primarily consists of Multi-Scale Spatio-
Spectral Feature Block (MS-SSF) followed by a pointwise convolution, and a residual connection
is used to avoid the vanishing gradient problems. MS-SSF block learns spatial and spectral depen-
dencies at different scales. The pointwise convolution scales the number of channels in intermediate
layers without changing the spatial context. Figure 1B shows the architecture of the MS-SSF block
that follows U-Net Ronneberger et al. (2015) like architecture. MS-SSF block uses a separable
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Figure 1: A: End-to-end transformer network. B: MSSSFB-C: Multi-Scale Spatio Spectral Feature
Block with C number of input channels. C: Transformer block with C number of input channels. D:
Adjacent Channel Coupler (ACC). E: Architecture of spectral attention.

convolution layer for feature transformation, and a transformer block to learn spatial-spectral fea-
ture dependencies. The transformer block, as shown in Figure 1C, uses residual architecture and
batch normalization for training stability. While the transformers in NLP tasks are inclined towards
LayerNorm, the CNN based architectures for vision problems are more batch norm friendly. Many
works have shown that batch norm outperforms layer norm for properly chosen batch size Chen
et al. (2021). Though BatchNorm based pure self-attention suffers from instability issues, it works
reasonably well for mixed architecture. Spatio-Spectral Transformer Attention (SSTA) is the core
attention module to learn inter-channel and spatial interactions using the adjacently coupled spec-
tral self-attention and non-local second-order self-attention and the resulting attention coefficient is
governed by the spectral features in the majority.

2.1 LIPSCHITZ STABILITY OF ADJACENTLY COUPLED SPECTRAL ATTENTION

The motivation to propose coupled spectral attention is to overcome the limitations of using spec-
tral wise self-attention for spectral dependencies. Firstly, To apply self-attention along the spectral
dimension on the feature map X ∈ RH×W×C shaped feature map, the corresponding spectral at-
tention coefficient using estimated key K ∈ RC×HW and query Q ∈ RC×HW is computed as
Aij =

∑HW−1
k=0 Qi,kK

T
k,j . It squeezes the spatio-spectral context between two channels to a single

scalar value causing the information loss. Second,the Lipschitz constant of self-attention is bounded
by the variance of the input resulting in larger sensitivity Kim et al. (2021). To support the argument,
Lemma 1 shows that the L2 norm of diagonal elements of Jacobian is proportional to the squared
dynamic range of the input.

Lemma 1:Let m and M be the minimum and maximum values of X, and WQ and WK be the query
and key weights in self-attention.The L2 norm of diagonal elements of Jacobian in self-attention
network is given by,

∥Ji,i∥2 ≤
∥∥WKWQ

∥∥
2

4
+

∥∥WKWQ
∥∥
2

(M −m)2

4
+ 1, (1)

with equality if (softmax(XWQ(XWK)T )i,i = 1 and Xi = 1.

Proof: See Appendix A.1.

To combat the sensitivity issue, we use the Ising model Brush (1967) as a reference. The total
energy of system in Ising model is a function of spin states coupled with their nearest neighbour and
an external field trying to align these spin states. In other words,

−E(si) = J
∑
<i,j>

sisj + µBB
∑
i

si (2)

−E(si) = f1(si, sj:j∈<i,j>) + f2(B, si) (3)
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In equation 2, J is the coupling constant, si is the spin variable (hidden state), < i, j > indicates
nearest neighbour, and B is the external magnetic field (input). Equation 3 represents the Ising
model in the form of generalised functions. Following this, we formulate the adjacent coupling in
spectral unit. The channel wise output can be mathematically described as,

Yc = Xc +
1

2

(
fF
c (Xc)⊙ (σ(gFc (Xc) + hF

c (Yc−1))) + fB
c (Xc)⊙ (σ(gBc (Xc) + hB

c (Yc+1)))
)
,

(4)

wher c is the channel, fF , gF , hF and fB , gB , hB are the convolution functions in forward and
backward regressors respectively, and σ(.) is the sigmoid function. As shown in equation 4, each
feature map is estimated as the average of forward and backward regressors to learn the residual
coupled spectral dependencies. At the same time, the long-range dependency is exploited by using
the updated adjacent feature maps in the attention map. Since there is no hidden layer, the output
acts as the hidden unit in the model. It is to be noted that unlike correlation based spin coupling,
we use non-linear interpolation approach to explicitly model the smooth spectral profile. Equation
4 can be rewritten as matrix operation on the vectorized mappings Xc, Yc ∈ RHW as,

Yc =Xc +
1

2

(
op(WfF

c
)Xc ⊙ (σ(op(WgF

c
)Xc + op(WhF

c
)Yc−1))

+ op(WfB
c
)Xc ⊙ (σ(op(WgB

c
)Xc + op(WhB

c
)Yc+1))

) (5)

Lemma 2. Let ω = e2πi/HW and W f be the convolution kernel in the function f . Let J be the
difference between the learned kernel and its initialization and given by J = W f −W f

0 . Also, let F
be a complex matrix such that Fij = ωij . If ϵf = 1

9 (F
TJF )0,0, then upper bound on the L2 norm

of diagonal elements of Jacobian of adjacently coupled spectral self-attention is given by,

∥Ji,i∥2 ≤1 +
1

8

(
(1 + 9ϵf

F

i )(1 + 9ϵg
F

i ) + (1 + 9ϵf
B

i )(1 + 9ϵg
B

i )
)√

HWmax(|M |, |m|)

+
1

2

(
(1 + 9ϵf

F

i ) + (1 + 9ϵf
B

i )
)

Proof: See Appendix A.2.
Lemma 3. Let the loss function and learning rate for transformer network be L = ρ+ γ

2 ∥w∥22 and
η respectively, where ρ is the data fidelity term and γ is regularisation parameter. Let k be the kernel
size of the filters. If η and γ are chosen such that after T iterations max

∥∥∥ ∂ρ
∂w

∥∥∥
2
≤ e−ηγT k

ηT , then

the upper bound on the L2 norm of Jacobian ∥Ji,j∥2 after T iterations is given by,

∥Ji,j∥2 ≤ e−∥i−j∥ηγT
j∏

k=i

k ∥Yk∥2

∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

Proof: See Appendix A.3.
Lemma 2 shows that the L2 norm of the Jacobians’s diagonal elements (Lipschitz constant for diago-
nal elements) of the model is proportional to the maximum of absolute dynamic range. Furthermore,
Lemma 3 derives the general formulation for Lipschitz constant under mild assumptions.

3 EXPERIMENTS

3.1 DATASETS

Three publicly available datasets are used for training and performance assessment, including
NTIRE 2020 Arad & Timofte (2020), NTIRE 2022 Arad & Timofte (2022), and CAVE Yasuma
et al. (2010) datasets. The network is trained on the training sets of NTIRE images, and evaluated
on the provided validation sets. For CAVE images, 20 out of 32 images are randomly selected for
training and remaining 12 images are used to validate the performance. All of these datasets have
31 multi-spectral bands covering the visible spectra (400-700 nm) at an interval of 10 nm.
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(a) RGB (b) AWAN (c) HRNet (d) HSCNN+

(e) EDSR (f) MST (g) Ours (h) Spectral Profile

Figure 2: Illustration of residual map in the spectral band predicted by different methods. Spectral
profile compares the spectral profiles generated by different methods.

3.2 PERFORMANCE COMPARISON

The proposed approach is compared with latest state-of-the-art methods, including AWAN Li et al.
(2020), MST Cai et al. (2022a), HSCNN+ Shi et al. (2018), HRNet Zhao et al. (2020), and EDSR
Lim et al. (2017). Table 1 quantitatively compares the performances on three datasets. It is worth
mentioning that our method outperforms the State-of-the-art models with fewer parameters. How-
ever, our approach requires relatively more number of FLOPS since the spectralwise attention is
estimated for all spatial positions through convolution operation. Figure 2 illustrates the residual in
the predicted spectral band of wavelength at 410 nm, and the spectral profile at the centre region of
the image. It can be observed that other methods are sensitive to variation in brightness and contrast,
and therefore incur large residual in the some of regions of predicted multispectral bands.

Table 1: Quantitative comparison of different spectral reconstruction methods. The best ones are shown
in bold.

Method Params (M) FLOPS (G) CAVE NTIRE2020 NTIRE2022

RMSE SAM MRAE RMSE MRAW RMSE
Bicubic - - 0.1689 34.382 0.1745 0.0506 0.2005 0.0712
HSCNN+ 4.65 266.84 0.0353 12.208 0.0684 0.0182 0.3814 0.0588
HRNet 31.70 143.51 0.0298 8.150 0.0682 0.0178 0.3476 0.0550
EDSR 2.42 142.53 0.0384 8.755 0.0707 0.0162 0.3277 0.0437
AWAN 4.04 231.29 0.0375 8.654 0.0678 0.0175 0.2500 0.0367
MST 2.45 26.29 0.0289 7.812 0.0747 0.0173 0.1772 0.0256
Ours 1.18 36.84 0.0246 7.661 0.0669 0.0158 0.1767 0.0301

4 CONCLUSIONS

Though Transformer has been the emergent approach in various applications, the performance and
training stability still requires to be carefully studied. Moreover, the physics based inductive bias
is yet to be explored in the context of vision based transformers. This work specifically focuses on
the implications of self-attention along the spectral dimension, and therefore proposes a modified
structure with theoretical Lipschitz constant to enhance the overall stability of the transformer. As
a future scope, it will be worth to find out other methods to study and evaluate the stability of the
machine learning models that are derived from principles of statistical physics.
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A APPENDIX

A.1 PROOF OF LEMMA 1

From Kim et al. (2021),

Jij = WKWQXTP (i)(EjiX + δijX) + PijI

where WK and WQ are the weights of Key and Query respectively. P is computed as P =

softmax(XWQ(XWK)T√
HW

), and P (i) = diag(Pi:)− PT
i: Pi:.

For i = j,

Jii = WKWQXTP (i)eiiX +WKWQV ar(X) + Pii (6)

∥Jii∥2 ≤ A.(Pi,iXi − (Pi,iXi)
2) +A.V ar(X) + ∥Pii∥2 , (7)

where A =
∥∥WKWQ

∥∥
2

Observe that Pi,iXi−(Pi,iXi)
2 is concave in Pi,iXi and has maxima for Pi,iXi =

1
2 . For ∥Pi,i∥2 =

1, Xi = 0.5. Using this in ∥Ji,i∥2,
∥Jii∥2 ≤ A

4 +A.V ar(X) + 1

A.2 PROOF OF LEMMA 2

The proof is the immediate application of operator norm for convolution kernels in Long et. al.
Long & Sedghi (2020).

In equation 4, the functions f , g and h, being 2D convolutions, can be represented using the matrix
multiplication with corresponding operator matrix Long & Sedghi (2020), i.e. W ∗ x def

= op(W )x.

Ji,i =
∂Yi

∂Xi

= 1 +
1

2

(
diag(op(WfF

i
)Xi ⊙ σ(α1)(1− σ(α1)))op(WgF

i
)

+ diag(op(WfB
i
)Xi ⊙ σ(α2)(1− σ(α2)))op(WgB

i
)
)

+
1

2

(
(op(WfF

i
))⊙ diag(σ(α1))

)
+

1

2

(
(op(WfB

i
))⊙ diag(σ(α2))

)
(8)

Here, α1 = gFi (Xi) + hF
i (Yi−1) and α2 = gBi (Xi) + hB

i (Yi+1). Applying the operator norm from
Long et. al. Long & Sedghi (2020) and taking the L2 norm to estimate the Euclidean Lipschitz
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constant,

∥Ji,i∥2 ≤1 +
1

8

(
(1 + 9ϵf

F

i )(1 + 9ϵg
F

i )

+ (1 + 9ϵf
B

i )(1 + 9ϵg
B

i )
)√

HWmax(|M |, |m|)

+
1

2

(
(1 + 9ϵf

F

i ) + (1 + 9ϵf
B

i )
) (9)

A.3 PROOF OF LEMMA 3

It can be easily shown that weights are being updated by the following equation,

Wt = (1− ηγ)Wt−1 − η
∂ρ

∂W
(10)

Consequently, after T iterations,

WT = (1− ηγ)TW0 − η
( T−1∑

k=0

(1− ηγ)k
∂ρ

∂Wk

)
(11)

Without the loss of generality, weights for the 2D kernel of size k × k is initialized using Xavier-
Glorot initialization,

W0 ∼ U
(
− 1

k
,
1

k

)
(12)

∥WT ∥2 ≤
∥∥(1− ηγ)TW0

∥∥
2
+

∥∥∥∥∥η(
T−1∑
k=0

(1− ηγ)k
∂ρ

∂Wk

)∥∥∥∥∥
2

(13)

∥WT ∥2 ≤ (1− ηγ)T k + η

T−1∑
k=0

∥∥∥∥ ∂ρ

∂Wk

∥∥∥∥
2

(14)

∥WT ∥2 ≤ (1− ηγ)T k + ηTmax

∥∥∥∥ ∂ρ

∂W

∥∥∥∥
2

(15)

∥WT ∥2 ≤ e−ηγT k + ηTmax

∥∥∥∥ ∂ρ

∂W

∥∥∥∥
2

≤ 2e−ηγT k (16)

In (13), W0 ∈ Rk×k and max ∥W0∥2 = k2max(|W0|) = k2.1/k = k, since W0 is sampled from
the uniform distribution having lower and upper limits set to −1/k and 1/k respectively.

Without the loss of generality, we show the proof for Ji,j , i > j,

Ji,j =
∂Yi

∂Xj

=
1

2
diag(op(WfF

i
)Xi ⊙ σ(α1)(1− σ(α1)))op(WhF

i
)
∂Yi−1

∂Xj

≤ 1

2
diag(Yi)op(WhF

i
)
∂Yi−1

∂Xj

≤
i∏

k=j+1

1

2
diag(Yk)op(WhF

k
)
∂Yj

∂Xj

(17)

∥Ji,j∥2 ≤
i∏

k=j+1

1

2
∥Yk∥2

∥∥∥op(WhF
k
)
∥∥∥
2

∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

(18)

7



Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Substituting (16) in (18), we get

∥Ji,j∥2 ≤ e−|i−j|ηγT
j∏

k=i

k ∥Yk∥2 ∥Jj,j∥2 (19)

The proof of ∥Ji,j∥2, i < j follows the same approach and has similar upper bound as in (19).

B IMPLEMENTATION DETAILS

The RGB images are linearly scaled in the range of [0,1] and are fed as a batch of 64× 64 cropped
images. The batch size is set to 20, and the network is optimized using Adam optimizer with default
setting of β1 = 0.9 and β2 = 0.999. The learning is initialized to 0.0002 and subsequently reduced
to 10−6 using cosine annealing for 300 epochs. Similar to Cai et al. (2022b), data augmentation is
also performed using random flipping of the cropped images to avoid overfitting. The training is
performed using Mean Relative Absolute Error (MRAE) as the loss function. The testing phase also
requires linear scaling of RGB images to [0,1]. Owing to sequential estimation, the computation
requires 1.58 seconds per image on testing dataset using single A100 GPU.
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