
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPLAT THE NET: RADIANCE FIELDS WITH SPLATTABLE
NEURAL PRIMITIVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Radiance fields have emerged as a predominant representation for modeling 3D
scene appearance. Neural formulations such as Neural Radiance Fields provide
high expressivity but require costly ray marching for rendering, whereas primitive-
based methods such as 3D Gaussian Splatting offer real-time efficiency through
splatting, yet at the expense of representational power. Inspired by advances in
both these directions, we introduce splattable neural primitives, a new volumetric
representation that reconciles the expressivity of neural models with the efficiency
of primitive-based splatting. Each primitive encodes a bounded neural density
field parameterized by a shallow neural network. Our formulation admits an exact
analytical solution for line integrals, enabling efficient computation of perspectively
accurate splatting kernels. As a result, our representation supports integration along
view rays without the need for costly ray marching. The primitives flexibly adapt to
scene geometry and, being larger than prior analytic primitives, reduce the number
required per scene. On novel-view synthesis benchmarks, our approach matches
the quality and speed of 3D Gaussian Splatting while using 10× fewer primitives
and 6× fewer parameters. These advantages arise directly from the representation
itself, without reliance on complex control or adaptation frameworks.

1 INTRODUCTION

Radiance fields have become a predominant representation for modeling 3D scene appearance.
Unlike surface-based approaches, their volumetric formulation is compatible with the gradient-based
optimization routines employed during training from multi-view images. Neural representations
in particular (Mildenhall et al., 2021) offer unprecedented expressivity in encoding radiance fields.
However, rendering an image from a volumetric scene representation is generally challenging: Volume
rendering (Kajiya & Von Herzen, 1984) requires the computation of costly integrals along view
rays, typically solved using quadrature methods such as ray marching (Max, 1995). As a remedy,
primitive-based representations have emerged as an efficient alternative. Popularized by 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023), these approaches model radiance fields using a mixture of
simple volumetric functions. The key to high rendering efficiency lies in the observation that these
primitives can be easily projected onto the image plane, where they become 2D kernels that can be
efficiently splatted. A prime example is the 3D Gaussian primitive used in 3DGS, which reduces
to a 2D Gaussian splatting kernel (Zwicker et al., 2001). Recently, a variety of functions have been
explored as primitives (Mai et al., 2024; von Lützow & Nießner, 2025; Hamdi et al., 2024; Held et al.,
2025a; Huang et al., 2024), all relying on relatively simple analytical formulations, which are widely
considered essential for enabling efficient conversion into view-dependent splatting kernels.

These developments have led to a prevalent, somewhat dichotomous view of radiance field repre-
sentations: Neural representations are expressive but come with the high cost of ray marching for
rendering, whereas primitive-based representations, though simpler and less expressive, offer more
efficient rendering through splatting. We challenge this common wisdom by introducing splattable
neural primitives, offering both expressivity and real-time efficiency; see Fig. 1 for an overview.

The central design ingredient of our primitives is a neural volumetric density field. Its density
distribution is parameterized by a shallow yet expressive neural network and is spatially bounded by
an ellipsoid. This formulation admits an exact analytical solution for line integrals (Subr, 2021; Lloyd
et al., 2020), which enables efficient computation of a perspectively accurate image-space footprint,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Mem: 350MB 
PSNR: 30.31 
#Primitives: 1.5M 

Mem: 84MB 
PSNR: 31.82 
#Primitives: 220K Gaussian Primitives Neural Primitives

(a) (b)
Figure 1: (a) Overview of volumetric splattable neural primitives. Each primitive is spatially bounded by
an ellipsoid, and its density is parameterized as a shallow neural network. (b) A real scene rendered using
Gaussian primitives (left) and neural primitives (right). Our method achieves comparable PSNR to the Gaussian
representation but with fewer primitives, highlighting the expressivity of neural primitives.

i.e., a splatting kernel for rendering. Despite its neural representation, this enables integration of the
density field along each pixel’s view ray without the need for costly ray marching. Our primitives
flexibly adapt to scene geometry and, being typically larger than the analytic primitives employed
in recent work, reduce the total number needed to represent a scene. This yields a highly favorable
trade-off among quality, performance, and compactness in novel-view synthesis: We match the
quality and speed of 3DGS while using 10× fewer primitives and 6× fewer parameters. Crucially,
these advantages result from the design of our representation itself, without requiring complex control
or adaptation frameworks (Mallick et al., 2024; Fan et al., 2024). In summary, our contributions are:

• A taxonomy of radiance field representations, highlighting a dichotomy between neural and
splatting-based approaches (Sec. 2.1).

• A novel volumetric representation based on splattable neural primitives, bridging the gap
between and leveraging the benefits of both neural and primitive-based approaches (Sec. 3).

• The application of the representation to novel-view synthesis, validating its practical effec-
tiveness and efficiency: Neural primitives achieve real-time rendering speed and produce
result quality comparable to 3DGS with a smaller memory budget (Sec. 4).

We will make all source code and trained models available.

2 BACKGROUND AND RELATED WORK

2.1 RADIANCE FIELD REPRESENTATION AND RENDERING

Radiance fields represent the appearance of a 3D scene via a function Fθ : (x,d) → (σ, c), which
maps a spatial location x ∈ R3 and view direction d ∈ S2 to a volumetric density σ ∈ R+ and
an RGB color c ∈ R3. Synthesizing an image from a radiance field involves emission–absorption
volume rendering (Kajiya & Von Herzen, 1984) along view rays r(t) = o + td, where o ∈ R3

denotes the camera center, and t ∈ R+ parameterizes the ray. Specifically, each RGB pixel color
C ∈ R3 is computed by evaluating the radiance field along its corresponding view ray:

C(r) =

∫ tf

tn

exp

(
−
∫ t

tn

σ (r(s)) ds

)
σ (r(t)) c (r(t),d) dt, (1)

where tn and tf are near and far bounds, respectively. Recent years have seen considerable research
devoted to the foundational question of how to best represent Fθ. Representations can be arranged
along an atomicity scale, from monolithic models that entangle all components in a single structure
to modular formulations made up of many simple, spatially localized primitives (horizontal axis in
Fig. 2a). In the following paragraphs, we briefly review the literature on radiance field representations
along this atomicity scale, from monolithic to modular.

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) represent Fθ using a neural network.
Numerous follow-up works extended and enhanced its capabilities (e.g., (Barron et al., 2021; 2022;
Martin-Brualla et al., 2021)). However, rendering an image from it involves ray marching, that is,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Atomicity

N
eu

ra
lit

y

Neural 
Radiance Fields
[Mildenhall et al. 2021]

InstantNGP
[Müller et al. 2022]

Plenoxels
[Fridovich-Keil et al. 2022]

Mixture of
Volumetric Primitives

[Lombardi et al. 2021]

3D Gaussian 
Splatting

[Kerbl et al. 2023]

Neural 
Radiance Fields / 

InstantNGP
Plenoxels Mixture of

Vol. Primitives
3D Gaussian 

Splatting

Splatting – Analytic IntegrationRay Marching – Sampling Non-NeuralNeural

Figure 2: Positioning of our work relative to hallmark radiance field representations. a) Overview of representa-
tions organized along two central design dimensions: Atomicity (horizontal axis), spanning from monolithic
(left) to distributed (right) representations; Neurality (vertical axis), ranging from non-neural (bottom) to fully
neural (top) approaches. Dot color indicates the supported rendering algorithm. b) Illustration of the rendering
algorithms associated with each representation. Our method is the only neural, primitive-based model that
supports efficient splatting for rendering—thereby eliminating the need for costly ray marching—while retaining
the flexibility of a neural design.

discretizing Eq. 1 into a finite sum of samples along each ray (Max, 1995) (red dots in Fig. 2b):

C(r) ≈
N∑
i=1

exp

−
i−1∑
j=1

σjδj

 (1− exp(−σi)δi) ci, (2)

where δi is the distance between adjacent samples. This rendering process is computationally
expensive, as each sample entails a forward pass through the representation network. The pursuit
of efficiency has motivated a shift from monolithic to more distributed, explicit representations.
Prominent directions include the use of grids (Fridovich-Keil et al., 2022; Barron et al., 2023),
volumetric meshes (Govindarajan et al., 2025), and neuro-explicit structures (Müller et al., 2022;
Chan et al., 2022; Reiser et al., 2021), all seeking trade-offs between computational cost and memory.
Sparse representations allow skipping of empty space (Lombardi et al., 2021; Liu et al., 2020; Yu
et al., 2021), reducing the number of samples during ray marching.

Taking a radically different approach by pushing atomicity to the extreme, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) represents Fθ as an unstructured mixture of up to millions of 3D primitive
functions. Each primitive, Pi, is specified by a small set of parameters that determine its density
distribution, σi(x), along with appearance parameters that capture its view-dependent color, ci(r).
Rendering an image from this representation can be achieved through splatting, a two-step process:
In the first step, σi is projected to the image plane by integrating along the view ray r (blue lines in
Fig. 2b), yielding a 2D opacity kernel

αi(r) = 1− exp

(
−
∫ ∞

−∞
σi (r(t)) dt

)
. (3)

In the second step, Eq. 1 simplifies to highly efficient alpha blending of the 2D kernels:

C(r) ≈
∑

i∈N (r)

ci(r)αi(r)

i−1∏
j=1

(1− αj(r)) , (4)

where N represents the indices of the depth-sorted primitives intersected by the view ray. Evaluating
Eq. 3 is generally non-trivial, but for 3D Gaussian primitives Pi, the footprint αi simplifies to a 2D
Gaussian kernel under reasonable assumptions (Zwicker et al., 2001; Celarek et al., 2025), enabling
high rendering speed and supporting high-quality radiance fields with millions of Gaussians in 3DGS.

The 3D Gaussian is not the only primitive allowing efficient (approximate) conversion into a 2D
splatting kernel α. Recent work has explored a variety of primitive shapes (Mai et al., 2024; von
Lützow & Nießner, 2025; Hamdi et al., 2024; Held et al., 2025a; Chen et al., 2024; Li et al., 2024; Gu
et al., 2024; Hamdi et al., 2024; Talegaonkar et al., 2025; Liu et al., 2025), all relying on hand-crafted
analytic kernels for efficient evaluation of Eq. 3. In contrast, our representation introduces splattable
neural primitives, greatly increasing modeling flexibility. Neural components have also been used in
the context of primitive splatting, for example, by injecting structure into the representation (Lu et al.,
2024) or enforcing spatial regularization (Mihajlovic et al., 2024), yet these methods ultimately splat

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Gaussian functions. To the best of our knowledge, we are the first to represent the volumetric kernel
itself – i.e., the density distribution – as a neural network, making the primitive fundamentally neural
rather than merely Gaussian with neural augmentations.

2.2 INTEGRATION WITH NEURAL NETWORKS

Estimating integrals is common in visual computing. Feed-forward neural networks trained on the
integrand can sometimes perform this task effectively. A notable class in this context is shallow neural
networks with one hidden layer, which remain universal function approximators (Cybenko, 1989)
and can be integrated in closed form (Yan et al., 2013; Zhe-Zhao et al., 2006; Lloyd et al., 2020; Subr,
2021). Our approach builds on this insight by modeling neural primitives that support closed-form
integration along view rays. In contrast, deep neural networks have also been applied to integral
computation via derivative graphs (Lindell et al., 2021; Teichert et al., 2019), but their high evaluation
cost and difficulty in producing consistent integrals along arbitrary rays remain challenges.

3 METHOD

In this section, we first introduce our neural representation (Sec. 3.1), before explaining how to render
images using this representation (Sec. 3.2). Finally, we discuss implementation details including our
population control strategy, network design, and training protocol (Sec. 3.3).

3.1 REPRESENTATION a) b)

Figure 3: a) Geometry of our representation for a single prim-
itive. Analytic splatting kernels are computed by performing
closed-form integration of a neural density field (green shape)
along view rays (blue line). b) Architecture of our neural
density field. Density σ is a function of 3D spatial position x.

We parameterize Fθ as a mixture of vol-
umetric primitives {Pi}. Each primitive
occupies a volume bounded by an ellip-
soid (Mai et al., 2024), which we denote
as B (Fig. 3a). This ellipsoid is defined
by a center xB ∈ R3, a scaling vector
sB ∈ R3 along its principal axes, and a
rotation quaternion qB ∈ R4. In accor-
dance with the radiance field formalism,
each primitive must define a spatially varying density σ and a view-dependent color c, described next.
We define a density field σ(x) : B → R within the volume of the ellipsoid as

σ(x) = fσ

(
x− xB

∥sB∥∞

)
, (5)

where fσ is a shallow neural network with one hidden layer of width Nσ and periodic activation (Sitz-
mann et al., 2020) (Fig. 3b):

fσ(x) = W2 (cos (ω0 (W1 (x) + b1))) + b2. (6)

Here, W1 ∈ RNσ×3 and W2 ∈ R1×Nσ are weight matrices, while b1 ∈ RNσ and b2 ∈ R are biases.
Similar to (Sitzmann et al., 2020), we use a fixed boosting frequency ω0, which yields a stable
initialization. The network structure of Eq. 6 admits an interpretation analogous to a Fourier series,
where W1 and b1 correspond to frequencies and phases, and W2 and b2 are amplitudes and offsets.
The normalization by xB and sB in Eq. 5 ensures that fσ operates on a centered and uniformly scaled
domain. In the appendix, we show proof-of-concept extensions of this model to higher-dimensional
inputs, including time, which can be easily incorporated into our model by augmenting the network’s
input dimensions. To represent view-dependent color, we adopt the Spherical Harmonics basis.

3.2 RENDERING

Images of our representation are rendered using an efficient splatting-based approach. Specifically,
for each primitive bounding ellipsoid B intersected by a view ray r(t), we compute the entry and exit
distances, tin and tout, along the ray via an analytic line–ellipsoid intersection. To obtain a splatting
kernel via Eq. 3, the crucial step is to evaluate the density integral along the view ray (blue line in
Fig. 3a):

α̂(tin, tout,o,d) :=

∫ tout

tin

σ (o+ td) dt = S (tout;o,d)− S (tin;o,d) , (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GT

8Prims 32Prims 128Prims

GT

32Prims 128Prims 256Prims

N
eu

ra
l P

ri
m

G
au

ss
ia

n 
Pr

im
432 * 1.7K * 6.9K *

112 * 448 * 1.8K *

1.7K * 6.9K * 27.6K *

448 * 1.8K * 7.2K *

N
eu

ra
l P

ri
m

G
au

ss
ia

n 
Pr

im

Figure 4: Demonstration of the expressivity of the proposed neural density field. We train both neural and
Gaussian primitives on the teapot and leaf datasets using different numbers of primitives. For each example, we
visualize the reconstructed density field and color-coded primitives, illustrating how these ellipsoid-bounded
neural primitives are deformed to represent complex structures. ∗ denotes the total number of parameters.

where S(t;o,d) denotes the antiderivative with respect to t of the function t 7→ σ(o+ td), which
depends parametrically on o and d. The equality follows from the fundamental theorem of calculus.
Based on recent findings (Lloyd et al., 2020; Subr, 2021), we derive a closed-form antiderivative for
our density field:

S(t;o,d) = [W2 ⊘ (ω0 ·W1 (d))] sin (ω0 (t ·W1 (d) +W1 (o) + b1)) + t · b2, (8)

where ⊘ denotes elementwise division. Incorporating Eq. 3 with the previous derivations yields the
final splatting kernel

α(r) = 1− exp (−max (0, α̂ (tin, tout,o,d))) , (9)

where the additional clamping to zero ensures nonnegative accumulated density. The final pixel color
is determined using front-to-back compositing per Eq. 4.

Discussion We emphasize the efficiency of evaluating the splatting kernel via Eq. 9, which computes
a closed-form integral along arbitrary view rays through the neural density field, thereby avoiding
the computational cost of ray marching. In contrast to splatting-based Gaussian rendering, relying
on an affine approximation of the projection operator (Heckbert, 1989; Zwicker et al., 2004), our
method yields perspectively accurate results. Note that the density σ in Eq. 5 is never evaluated
directly, neither during training nor during view synthesis. Instead, all computations operate directly
on its antiderivative S. Yet, in contrast to a light-field-style approach that directly regresses integrated
appearance (Sitzmann et al., 2021), our method achieves multi-view consistency by construction.

3.3 IMPLEMENTATION DETAILS

Primitives We initialize W1 ∼ U (−1/3, 1/3) and W2 ∼ U
(
−
√

6/Nσ/ω0,
√
6/Nσ/ω0

)
fol-

lowing (Sitzmann et al., 2020). We set the number of hidden neurons Nσ to 8 and the frequency
multiplier ω0 to 30. Similar to 3DGS, we employ four bands of Spherical Harmonics coefficients
for color representation. Each neural primitive in our system consists of 99 parameters in total,
around 1.6× more than Gaussian primitives used in 3DGS. We provide a detailed analysis of network
configurations in Sec. 5.

Population Control Population control is a key factor to the success of primitive-based methods.
However, the 3DGS densification strategy is incompatible with neural primitive representations. To
address this, we introduce a simple yet effective densification strategy. Unlike 3DGS, which uses the
gradients of primitive screen-space locations as the criterion for densification, our approach relies on
the gradient magnitude of the network weights. Similar to 3DGS, we duplicate or split primitives
when this gradient exceeds a threshold. Primitives with low gradients are pruned. We do not use any
opacity resetting.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Mem (0.08MB) PSNR: 23.87 

Mem (0.12MB) PSNR: 22.39 

Mem (2MB) PSNR: 32.86 

Mem (2.4MB) PSNR: 29.68 

Mem (36MB) PSNR: 34.81 

Mem (57MB) PSNR: 34.87 

Mem (0.08MB) PSNR: 22.56 

Mem (0.12MB) PSNR: 20.99 

Mem (2MB) PSNR: 29.33 

Mem (2.4MB) PSNR: 26.72 

Mem (40MB) PSNR: 35.41 

Mem (77MB) PSNR: 35.78 

Mem(0.1MB) Mem(2MB) UnlimitedGT

O
ur

s
3D

G
S

O
ur

s
3D

G
S

Figure 5: Comparison of our method against 3DGS on the synthetic dataset under different memory constraints.

Training We follow the same loss function as 3DGS, and introduce a geometric regularization term
to penalize the extreme anisotropy in primitive shapes by minimizing the standard deviation of the
components of the scale vector sB . The effectiveness of this regularization is demonstrated in Sec. 5.
We implement all frameworks in PyTorch (Paszke et al., 2017) and CUDA. All models are trained
on a single NVIDIA A40 GPU and evaluated on an NVIDIA RTX 4090 for performance analysis.
Due to the complex optimization landscape of neural fields, the convergence of our representation
is slower than a Gaussian-based one. We therefore extend training to 100k iterations. Additional
training details are provided in Appendix A.

4 EVALUATION

In this section, we perform a comprehensive evaluation of neural primitives on novel-view synthesis
tasks. We first demonstrate the expressivity of the neural density field (Sec. 4.1). We then perform
quantitative and qualitative analysis on synthetic datasets (Sec. 4.2) and real datasets (Sec. 4.3).
Please refer to Appendix B for additional results.

4.1 PRIMITIVE EXPRESSIVITY

Leveraging a flexible neural density field and analytically exact integration, our method faithfully
reproduces complex geometries with a small number of primitives. To demonstrate this, we optimize
varying numbers of neural and Gaussian primitives to approximate the density fields of several 3D
geometries from multiple views. We visualize both the renderings and the color-coded primitives in
Fig. 4. We observe that a few neural primitives suffice to represent complex and diverse geometries,
such as the teapot’s curved handle, the smooth cut in the leaf, and the triangular leaf petiole. In
contrast, Gaussian primitives are limited by their symmetric ellipsoidal shape and soft boundaries,
making them unsuitable for accurately representing complex solid structures. Neural primitives
achieve superior performance while using 4× fewer primitives and 16× fewer parameters than
Gaussian primitives.

4.2 SYNTHETIC SCENES

Protocol We compare our method with 3DGS on the Synthetic NeRF dataset (Mildenhall et al.,
2021) across varying memory budgets. Specifically, we resample the original meshes to target vertex
counts (200, 500, 1k, 2k, 5k, 10k, 20k) and use them to initialize primitive positions for optimization,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison of our method against 3DGS on the Synthetic NeRF dataset under different
memory budgets. We evaluate image quality using three standard metrics: LPIPS, PSNR, and SSIM.

Mem (MB) 0.1 0.4 1.0 2.0 4.0 Unlimited

Method 3DGS Ours 3DGS Ours 3DGS Ours 3DGS Ours 3DGS Ours 3DGS Ours

PSNR↑ 23.1 24.7 25.6 27.6 27.2 28.9 28.4 30.4 29.6 31.4 33.3 33.4
SSIM↑ .843 .879 .882 .916 .907 .932 .925 .948 .941 .956 .970 .967
LPIPS↓ .249 .161 .174 .097 .129 .073 .098 .051 .072 .039 .031 .032

Ours3DGS GTConvSplat GES Vol3DGS BetaGS

Figure 6: Visual comparison of our method against several primitive-based methods on the novel-view synthesis
task for real scenes. We demonstrate that our neural primitives achieve high-fidelity results comparable to other
approaches, requiring 10× fewer primitives and 6× fewer parameters.

omitting primitive densification. We also include an “unlimited” setting, in which training follows
the standard densification procedure with no primitive budget.

Results We report numerical results in Tab. 1. Our method outperforms 3DGS under limited
memory budgets and achieves performance comparable to 3DGS when no memory constraints are
imposed. Visual comparisons are shown in Fig. 5. For Ficus, a single primitive can already reconstruct
an entire leaf (highlighted by the white frame). Similarly, in Lego, neural primitives capture diverse
geometries, such as the front shovel and the rear wheel. In contrast, Gaussian primitives perform
poorly on these complex structures, particularly under tight budgets.

4.3 REAL SCENES

Protocol For evaluation on real scenes, we follow established practice and use two scenes from
Deep Blending (Hedman et al., 2018), two from Tanks & Temples (Knapitsch et al., 2017), and all
scenes from the Mip-NeRF360 dataset (Barron et al., 2022). We compare against three method fami-
lies: (i) splatting-based approaches with analytic primitives – 3DGS (Kerbl et al., 2023), GES (Hamdi
et al., 2024), ConvSplat (Held et al., 2025b), BetaGS (Liu et al., 2025), and Vol3DGS (Talegaonkar
et al., 2025); (ii) T-3DGS (Mallick et al., 2024), which provides a more sophisticated mechanism for
controlling the memory footprint of primitive-based representations; and (iii) monolithic representa-
tions – Plenoxels (Fridovich-Keil et al., 2022), INGP (Müller et al., 2022), and MipNeRF360 (Barron
et al., 2022). All experiments use the official code released by the respective authors. Since our
reproduced baseline results closely match those reported in the respective papers, we report the
original numbers for consistency. For a fair comparison, all inference FPS values are measured on a
single NVIDIA GeForce RTX 4090 GPU.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Numerical comparisons on three real-scene datasets. For each method, we indicate whether it is
splatting-based (Spl.) and/or neural (Neu.). We also report novel-view synthesis quality (PSNR↑, SSIM↑ (Wang
et al., 2004), LPIPS↓ (Zhang et al., 2018)), rendering speed (in frames per second), and memory usage (in MB).

Mip-NeRF360 Tanks & Temples Deep Blending

Spl. Neu. PSNR SSIM LPIPS FPS Mem PSNR SSIM LPIPS FPS Mem PSNR SSIM LPIPS FPS Mem

Plen ✗ ✗ 23.08 .626 .463 7 2.1k 21.08 .719 .379 13 2.3k 23.06 .795 .510 11 2.7k
INGP ✗ ✓ 25.59 .699 .331 9 48 21.92 .745 .305 14 48 24.96 .817 .390 3 48
Mip360 ✗ ✓ 27.69 .792 .237 <1 9 22.22 .759 .257 <1 9 29.40 .901 .245 <1 9

3DGS ✓ ✗ 27.21 .815 .214 152 734 23.14 .841 .183 188 411 29.41 .903 .243 154 676
GES ✓ ✗ 26.91 .794 .250 279 377 23.35 .836 .198 372 222 29.68 .901 .252 289 399
BetaGS ✓ ✗ 28.75 .845 .179 71 356 24.85 .870 .140 119 200 30.12 .914 .236 91 343
ConvSplat ✓ ✗ 26.66 .769 .266 103 77 23.71 .842 .170 83 83 29.61 .901 .245 66 110
Vol3DGS ✓ ✗ 27.30 .813 .209 124 703 23.74 .854 .167 168 255 29.72 .908 .247 156 844

T-3DGS ✓ ✗ 27.31 .801 .252 265 152 23.95 .837 .201 408 73 29.82 .904 .260 409 67

Ours ✓ ✓ 27.21 .791 .216 115 93 23.59 .846 .162 158 80 29.20 .892 .264 178 82

w/o regularization w/ regularization

GT

Rendering

Color-coding
(final step)

Color-coding
(initial step)

Ours AutoInt

Figure 7: We analyze (left) the effect of an alternative neural integration strategy, AutoInt (Lindell et al., 2021),
and (right) the effect of geometry regularization during training.

Results We summarize numerical results in Tab. 2. Our method achieves high-fidelity reconstruc-
tions with image quality and runtime comparable to state-of-the-art splatting-based approaches with
analytic primitives, while generally requiring substantially less memory. Compared to monolithic
neural representations, our neural splatting-based representation is more than an order of magnitude
faster. While T-3DGS attains a similar trade-off, its control mechanisms are orthogonal to our contri-
bution, which focuses on the representation itself; “taming” our neural primitives can be expected to
yield significant gains as well. Fig. 6 confirms that our reconstructions are on par with the state of
the art. In particular, our approach accurately captures fine-grained, structured geometry, such as the
carpet region (highlighted in red) in the Kitchen and Bonsai scenes.

5 ABLATION STUDIES

Here, we first investigate an alternative neural integration strategy compatible with a neural repre-
sentation (Sec. 5.1). We then analyze the impact of the key parameters in our model formulation
(Sec. 5.2) as well as the effect of the geometry regularization term (Sec. 5.3).

5.1 NEURAL INTEGRATION

AutoInt (Lindell et al., 2021) is an alternative approach for computing line integrals in a neural field,
which we compare in Fig. 7, left. AutoInt uses a ray-based parameterization and applies automatic
differentiation with respect to ray depth during training to obtain an integral network. However,
this induces view-dependent density, leading to inconsistencies across viewpoints. In contrast, our
method models the density field with a shallow network that depends only on 3D position, ensuring
multi-view consistency.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ω₀=30

ω₀=10

ω₀=1

Nσ=4 Nσ=8 Nσ=32Nσ=16GT Nσ=8 Nσ=16GT

Figure 8: We visualize the effect of network width Nσ and frequency multiplier ω0 on the expressivity of our
neural density field.

5.2 NETWORK WIDTH

We analyze how the number of hidden neurons (Nσ) and the frequency multiplier (ω0) affect the
expressivity of our neural representation. We vary Nσ ∈ 4, 8, 16, 32 and ω0 ∈ 1, 10, 30, and run
experiments on Snowflake using a single primitive and Leaf using eight primitives. As shown in
Fig. 8, larger Nσ and higher ω0 better reproduce the Snowflake structure and the smooth contours of
Leaf. We further evaluate on real scenes from MipNeRF360, disabling densification and optimizing
the same number of primitives with varying Nσ. With Nσ = 4, we obtain an average PSNR of
26.96; Nσ = 8 and Nσ = 16 yield 27.21 and 27.29, respectively. Although Nσ = 16 offers greater
expressivity than 8 in toy settings, this advantage diminishes on real scenes due to the difficulty of
optimizing a highly under-constrained problem. Balancing memory footprint and expressivity, we set
Nσ = 8 and ω0 = 30 as the default configuration for all experiments.

5.3 GEOMETRY REGULARIZATION

Jointly optimizing millions of neural primitives in complex scenes is highly under-constrained and
prone to local minima, often resulting in extreme geometries, as shown in Fig. 7, right. We find that
geometric regularization stabilizes training by penalizing elongated primitives. While numerical
results remain similar, the regularization yields clear qualitative improvements.

6 DISCUSSION AND CONCLUSION

Our method is a novel radiance field representation that reconciles the expressivity of neural represen-
tations with the efficiency of splatting-based rendering techniques. We identify accurate density field
integration as a key factor for achieving high expressivity in novel-view synthesis. Inspired by neural
radiance fields, we formulate each primitive as a shallow network, which enables exact integration by
evaluating the analytical anti-derivative with only two queries, reducing the ray-marching burden.
While such a network has comparably limited representational capacity, the primitive-based approach
mitigates the limitation by enabling a collection of tiny primitives to jointly reconstruct fine-grained
scene details. This design provides both computational accuracy and efficiency. Furthermore, we
show that ellipsoid-bounded neural primitives can be integrated into a differentiable splatting-based
renderer, achieving real-time rendering performance. Our experiments demonstrate that neural primi-
tives produce high-fidelity results comparable to 3DGS while requiring 10× fewer primitives and
6× fewer parameters, and delivering 100× speedups over neural-based methods. We believe that
splattable neural representation opens new possibilities of integrating neural-based representation
with splatting-based rendering techniques.

Although neural primitives exhibit substantial expressivity with limited memory resources, the com-
plexity of the optimization landscape for millions of networks occasionally introduces convergence
difficulties, hindering the expressivity of neural representations. A promising avenue for future
research is to develop effective optimization or training strategies to fully unleash the expressivity of
neural primitives. Moreover, as a general density field representation, our neural density field remains
orthogonal to other techniques designed for color field and densification. Hence, integrating neural
primitives with such advanced techniques is another interesting direction to explore in the future.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
ICCV, 2021.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. ICCV, 2023.

Zoubin Bi, Yixin Zeng, Chong Zeng, Fan Pei, Xiang Feng, Kun Zhou, and Hongzhi Wu. Gs3:
Efficient relighting with triple gaussian splatting. In SIGGRAPH Asia 2024 Conference Papers, pp.
1–12, 2024.

Adam Celarek, George Kopanas, George Drettakis, Michael Wimmer, and Bernhard Kerbl. Does 3d
gaussian splatting need accurate volumetric rendering? In Computer Graphics Forum, pp. e70032.
Wiley Online Library, 2025.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 16123–16133, 2022.

Haodong Chen, Runnan Chen, Qiang Qu, Zhaoqing Wang, Tongliang Liu, Xiaoming Chen, and
Yuk Ying Chung. Beyond gaussians: Fast and high-fidelity 3d splatting with linear kernels, 2024.
URL https://arxiv.org/abs/2411.12440.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps. Advances in neural
information processing systems, 37:140138–140158, 2024.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Shrisudhan Govindarajan, Daniel Rebain, Kwang Moo Yi, and Andrea Tagliasacchi. Radiant foam:
Real-time differentiable ray tracing. arXiv:2502.01157, 2025.

Chun Gu, Zeyu Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Tetrahedron splatting for 3d generation.
In NeurIPS, 2024.

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick,
Bernard Ghanem, and Andrea Vedaldi. Ges: Generalized exponential splatting for efficient
radiance field rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19812–19822, 2024.

Paul S Heckbert. Fundamentals of texture mapping and image warping. 1989.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow.
Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics (ToG),
37(6):1–15, 2018.

Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien Deliege, Anthony Cioppa, Silvio Giancola,
Andrea Vedaldi, Bernard Ghanem, and Marc Van Droogenbroeck. 3D convex splatting: Radiance
field rendering with 3D smooth convexes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2025a.

10

https://arxiv.org/abs/2411.12440


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien Deliege, Anthony Cioppa, Silvio Giancola,
Andrea Vedaldi, Bernard Ghanem, and Marc Van Droogenbroeck. 3d convex splatting: Radiance
field rendering with 3d smooth convexes. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 21360–21369, 2025b.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
geometrically accurate radiance fields. In SIGGRAPH 2024 Conference Papers. Association for
Computing Machinery, 2024. doi: 10.1145/3641519.3657428.

James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. ACM SIGGRAPH computer
graphics, 18(3):165–174, 1984.

Kaizhang Kang, Cihui Xie, Chengan He, Mingqi Yi, Minyi Gu, Zimin Chen, Kun Zhou, and Hongzhi
Wu. Learning efficient illumination multiplexing for joint capture of reflectance and shape. ACM
Trans. Graph., 38(6):165–1, 2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Haolin Li, Jinyang Liu, Mario Sznaier, and Octavia Camps. 3d-hgs: 3d half-gaussian splatting. arXiv
preprint arXiv:2406.02720, 2024.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21136–21145, 2024.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14556–14565, 2021.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Rong Liu, Dylan Sun, Meida Chen, Yue Wang, and Andrew Feng. Deformable beta splatting. In
Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques
Conference Conference Papers, pp. 1–11, 2025.

Steffan Lloyd, Rishad A Irani, and Mojtaba Ahmadi. Using neural networks for fast numerical
integration and optimization. IEEE Access, 8:84519–84531, 2020.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, and Jason
Saragih. Mixture of volumetric primitives for efficient neural rendering. ACM Transactions on
Graphics (ToG), 40(4):1–13, 2021.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Alexander Mai, Peter Hedman, George Kopanas, Dor Verbin, David Futschik, Qiangeng Xu, Falko
Kuester, Jonathan T Barron, and Yinda Zhang. Ever: Exact volumetric ellipsoid rendering for
real-time view synthesis. arXiv preprint arXiv:2410.01804, 2024.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7210–
7219, 2021.

11

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108, 1995.

Marko Mihajlovic, Sergey Prokudin, Siyu Tang, Robert Maier, Federica Bogo, Tony Tung, and
Edmond Boyer. SplatFields: Neural gaussian splats for sparse 3d and 4d reconstruction. In
European Conference on Computer Vision (ECCV). Springer, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primi-
tives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022.
doi: 10.1145/3528223.3530127. URL https://doi.org/10.1145/3528223.3530127.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In International Conference on Computer Vision
(ICCV), 2021.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
networks: Neural scene representations with single-evaluation rendering. Advances in Neural
Information Processing Systems, 34:19313–19325, 2021.

Kartic Subr. Q-net: A network for low-dimensional integrals of neural proxies. In Computer Graphics
Forum, volume 40, pp. 61–71. Wiley Online Library, 2021.

Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, and Nicholas Antipa. Volumetrically consis-
tent 3d gaussian rasterization. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 10953–10963, 2025.

Gregory H Teichert, Anirudh R Natarajan, Anton Van der Ven, and Krishna Garikipati. Machine
learning materials physics: Integrable deep neural networks enable scale bridging by learning free
energy functions. Computer Methods in Applied Mechanics and Engineering, 353:201–216, 2019.

Nicolas von Lützow and Matthias Nießner. Linprim: Linear primitives for differentiable volumetric
rendering. arXiv preprint arXiv:2501.16312, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Lina Yan, Jingjing Di, and Ke Wang. Spline basis neural network algorithm for numerical integra-
tion. International Journal of Mathematical, Computational, Physical, Electrical and Computer
Engineering, 7(3):458–461, 2013.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5752–5761, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Zeng Zhe-Zhao, Wang Yao-Nan, and Wen Hui. Numerical integration based on a neural network
algorithm. Computing in science & engineering, 8(4):42–48, 2006.

12

https://doi.org/10.1145/3528223.3530127


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and Mark Pauly. Perspective
accurate splatting. In Proceedings-Graphics Interface, pp. 247–254, 2004.

13


