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Abstract

We propose a new method to improve large001
language models’ (LLMs) performance by in-002
corporating the sentence structure knowledge003
into the model. Based on the intuitive as-004
sumption that a complete sentence is the ba-005
sic unit of thinking and reasoning for human006
beings, we test it for LLMs by explicitly in-007
serting special segment tokens to the positions008
within the input sequences where sentence009
boundaries are detected, which achieves bet-010
ter performance in complex reasoning tasks by011
significant margins. Two approaches for in-012
corporating sentence structure knowledge are013
experimented: In-context learning (ICL) on014
instruction-tuned models (Llama3-8B-Instruct015
and Qwen2-7B-Instruct) and supervised fine-016
tuning (SFT) on a base model (Llama3-8B fine-017
tuned with TULU3), and evaluated in highly018
reasoning-intensive tasks (e.g., math), both019
show positive results. Our findings indicate020
that similar to human reasoning, structured021
sentences can effectively facilitate LLM rea-022
soning performance; integrating linguistically023
motivated priors, such as sentence boundaries,024
is a promising future direction for developing025
simple-yet-effective prompting techniques.026

1 Introduction027

As the foundation Large Language Model (LLM)028

training workflow was proposed by GPT series029

(Brown et al., 2020; Ouyang et al., 2022), there030

are many works trying to enhance the performance031

of language model through different approaches.032

Since the proposal of different scaling laws (Ka-033

plan et al., 2020; Hoffmann et al., 2022; DeepSeek-034

AI et al., 2024), the most common approaches to035

improve language models’ performance at train-036

ing time are to scale up the model size (Chowdhery037

et al., 2022), or alternatively, to scale up the training038

data (Touvron et al., 2023). However, scaling up039

is heavily dependent on computational resources.040

Most researchers have to explore other ways to041

Figure 1: Summary of this study: Downstream per-
formance can be improved through sentence segmen-
tation. Given a prompt, we use a sentence segmentation
model, SaT, to segment it into sentences, and then re-
construct it back with segmentation token inserted (at
the end of each sentence). We observe significant per-
formance gains after applying sentence segmentation to
LLMs, e.g., the downstream performance of segmented
paragraph outperforms the original paragraph by ap-
proximately 10% on the GSM8k when tested with the
Qwen2-7B-Instruct model.

enhance the model performance at inference time, 042

under the constraint of limited computational bud- 043

get. 044

Several works like Wei et al. (2022) and Yao 045

et al. (2023) are trying to improve performance by 046

employing thought-prompting methods to scale the 047

thinking time during inference. Building on the 048

concept of test-time-scaling, researchers have ex- 049

plored various techniques to enhance performance, 050

including self-verification methods like Renze and 051

Guven (2024), and reinforcement learning (RL) 052

methods such as Monte-Carlo Tree Search (MCTS) 053

(Qi et al., 2024; Zhang et al., 2024). Similarly, 054

there are also some other RL-based approaches 055

have been proposed, such as reinforcement finetun- 056

ing (RFT), including DeepSeek R1 and Kimi K1.5 057
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(DeepSeek-AI et al., 2025; Team et al., 2025).058

These methods are either time-consuming or059

data-consuming. Therefore, it leads to the research060

question: Can we get a free lunch to improve LLM061

performance by leveraging some sentence-level pri-062

ors in human language?063

We make the following assumptions:064

Assumptions

1. The minimum unit of human thought is the
sentence.

2. Sentence structure can facilitate the pro-
cess of thinking and reasoning.

065

Based on these assumptions, we propose a066

method that uses sentence segmentation to improve067

LLM performance. Figure 1 summarizes our work-068

flow on how sentence segmentation is incorporated069

into the overall LLM inference procedure. We sum-070

marize our contributions as follows:071

1. We propose a method that explicitly incorpo-072

rates the prior knowledge of sentence structure073

into LLMs by inserting segmentation tokens074

at sentence boundaries, enabling the model to075

effectively recognize and utilize sentence struc-076

ture information.077

2. Experimental results in Section 4 show con-078

sistent performance improvements on both In-079

Context Learning (ICL) and Supervised Fine-080

Tuning (SFT) approaches, confirming that the081

sentence structure representation is beneficial082

for LLMs’ performance.083

3. Ablations on ICL in Section 4.2 demonstrate084

that, a more structured segment token is better085

for downstream performance, and segmentation086

by sentence structure is optimal for performance087

compared to n-token segmentation.088

4. An explanation analysis in Section 4.4 shows089

why the sentence segmentation approach could090

work.091

5. A potential contribution of this work would be092

a by-product that brings a useful tool to any093

work on LLM+sentence, such as sentence-level094

reward model mentioned in Section 2 and others095

like MCTS in reasoning (treating sentence as096

state & action).097

2 Related Work098

Training Language Model with Pause Token099

Goyal et al. (2024) suggests that a pause before100

an LLM answers the question is beneficial for the 101

performance: it allows LLM to think more about 102

the question through the "<pause>" tokens. They 103

tested the idea during both pretraining stage and 104

finetuning stage, and conducted experiments using 105

SQuAD (Rajpurkar et al., 2016), CommonSense 106

QA (Talmor et al., 2019), and GSM8k (Cobbe et al., 107

2021) datasets for a 1B model. They observed 18% 108

improvements in SQuAD, 8% in CommonSense 109

QA, and 1% in GSM8k, demonstrating that pause 110

tokens can help enhance the model’s reasoning ca- 111

pabilities. 112

Sentence Segmentation Sentence segmentation 113

is a fundamental natural language processing 114

(NLP) task that aims to segment text into sentences. 115

This process plays a crucial role in many NLP sys- 116

tems. Frohmann et al. (2024) proposed a model 117

called Segment Any Text (SaT) for universal text 118

segmentation, which achieves state-of-the-art per- 119

formance on sentence segmentation tasks. 120

Sentence Level Prediction Ippolito et al. (2020) 121

proposed a new approach to solve the fluency prob- 122

lem in story generation and other creative writ- 123

ing tasks. They suggest using sentence prediction 124

rather than token prediction. By using a pretrained 125

BERT model to generate sentence embedding, they 126

trained an MLP model to select the most suitable 127

sentence from a limit yet large pool of candidate 128

sentences. However, this approach is not suitable 129

for open-ended text generation, which makes it far 130

from real-world applications. 131

Sentence Level Reward Model Qiu et al. (2025) 132

suggests that sentence segmentation can be used for 133

reward modeling, thereby introducing a new frame- 134

work named sentence-level RM. The results show 135

that sentence-level reward can outperform token- 136

level RM and response-level RM (e.g.: outperforms 137

response-level RM 2.7% on RewardBench (Lam- 138

bert et al., 2024)). It shows that sentence structure 139

is benefit for reward modeling. 140

3 Encoding Sentence Structure into 141

Language Model 142

3.1 Sentence Segmentation 143

The mainstream approaches to sentence segmen- 144

tation fall into these categories: rule-based meth- 145

ods (Sadvilkar and Neumann, 2020), supervised 146

methods (Frohmann et al., 2024; Wicks and Post, 147

2021), and unsupervised methods (Loper and Bird, 148
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2002). Among these methods, supervised methods149

are currently the most accurate approach, widely150

integrated into various natural language processing151

toolkits. While LLMs are also capable for the sen-152

tence segmentation task using prompting method153

(Ouyang et al., 2022), the purpose of testing LLMs154

on this task is to demonstrate their general capa-155

bilities, rather than to design a tool for sentence156

segmentation task. Supervised methods usually157

use BERT-based model (Devlin et al., 2019) for158

supervise sentence segmentation. Minixhofer et al.159

(2023) defined the objective of sentence segmenta-160

tion as identifying characters that can be followed161

by a delimiter, which can be formula as follows:162

Lθ =
∑
i

logP (yi|x1, x2, . . . , xn, θ)

where yi =

{
1 xi+1 is sentence boundary
0 else

(1)163

It shows that the primary objective of traditional164

sentence segmentation is to predict sentence bound-165

aries (e.g.: "\n").166

3.2 Inference with Sentence Segmentation167

Figure 2 illustrates how sentence segmentation is168

applied in the language modeling task. We refor-169

mulate the tradition sentence segmentation task170

by introducing a segment token (represented as171

"<seg>"), and insert it at the end of each sentence.

Figure 2: As an example, the paragraph start with
"<bos>", end with "<eos>". We insert segmentation
tokens "<seg>" after every sentences.

172
This explicitly incorporates the sentence struc-173

ture into the model. By treating "<seg>" as an input174

token, the original language modeling task could175

be extended, which requires the LLM to predict the176

segment token at sentence boundaries, allowing the177

model to learn the sentence structure. According178

to the previous assumption, downstream perfor-179

mance should be improved when segment tokens180

are added.181

3.3 In-Context Learning182

We propose an In-Context Learning (ICL) approach183

for learning sentence structure using segment to-184

kens. The ICL approach could learn the structure185

from analogy according to Dong et al. (2024). It is 186

formulated as: 187

xi = argmax P (xi|S, x1, x2...xi−1, θ) (2) 188

where S represents a sequence of all previous texts, 189

and x denotes the tokens in the generating sentence. 190

S is defined as: 191

S = [s1, xseg, s2, xseg, ..., sn, xseg] (3) 192

where si is a sentence, and xseg is the segment 193

token. 194

By repeatedly inserting segmentation tokens af- 195

ter each sentence, LLMs can infer sentence struc- 196

ture from in-context information, and learn to out- 197

put segmentation tokens at sentence boundaries. 198

Our observations show that most of the modern 199

published LLMs are able to successfully identify 200

sentence structures and insert segmentation tokens 201

appropriately. The subsequent experiment in Sec- 202

tion 4 demonstrates that the downstream perfor- 203

mance of LLMs improves with this ICL-based 204

structural learning. 205

3.4 Supervised Finetuning 206

In contrast to ICL, another approach uses super- 207

vised fine-tuning (SFT) to learn the sentence struc- 208

ture. It integrates sentence segmentation as struc- 209

tural knowledge into the LLM’s parameters instead 210

of relying on context only. We formulate the prob- 211

lem in SFT approach the same as Equation (2). For 212

finetuning, we use the normal form of SFT: 213

Lθ =
N∑
i=k

logP (xi|x1, x2, ..., xi−1, θ) (4) 214

where x denotes all tokens in the input text (includ- 215

ing segmentation tokens), N is the length of the 216

whole text, and k represents the length of the input 217

prompt. Compared to eq. (1), which predicts the 218

segmentation token, the target of sentence segmen- 219

tation here is included in the next token prediction 220

task by predicting the segment token. 221

While ICL relies on sufficient contextual knowl- 222

edge (i.e., requiring long context), SFT does not 223

require a context. It can automatically incorporate 224

segment tokens into model outputs. This approach 225

is more suitable for zero-shot scenarios, which are 226

better aligned with LLM’s real-world applications. 227

In our SFT experiments, we treat the segment to- 228

ken directly as a special token inside the tokenizer. 229

The token is added to the vocabulary; thus it intro- 230

duces new embedding and lm_head weights. 231

3



4 Experiments232

4.1 Settings233

Our experiments aim to highlight differences be-234

fore and after applying sentence segmentation in235

reasoning-related tasks. The hypothesis is that sen-236

tence segmentation can enhance the downstream237

task performance, especially on tasks that require238

strong reasoning abilities.239

Dataset For the ICL experiments, we selected240

datasets that satisfy both criteria: having a long241

enough context for learning, and evaluating reason-242

ing abilities. We choose two math datasets, GSM8k243

(Cobbe et al., 2021) and MATH (Hendrycks et al.,244

2021b), and a reading comprehension dataset,245

DROP (Dua et al., 2019). We also choose MMLU246

(Hendrycks et al., 2021a) to test our method’s per-247

formance in language understandingby output the248

answer with CoT prompt and calculate the exact249

match (EM) score (Clémentine Fourrier, 2023).250

We apply 8-shot CoT for GSM8k, 4-shot CoT for251

MMLU and MATH, and 3-shot CoT for DROP,252

reporting the EM score.253

For SFT experiments, we additionally intro-254

duced three datasets, MMLU-Pro (Wang et al.,255

2024), GPQA (Rein et al., 2024) and HumanEval256

(Chen et al., 2021). MMLU-Pro is a harder ver-257

sion of MMLU dataset. GPQA is an extremely258

difficult QA dataset designed by domain experts,259

which requires knowledge, understanding, and rea-260

soning. HumanEval is a coding dataset for Python261

coding question. It is similar to the math problem262

that also evaluates reasoning ability. GPQA and263

HumanEval do not have a long enough context (0-264

shot by default), so they are not included in ICL265

experiments. The settings of GSM8k, MATH and266

DROP are the same as ICL, while we apply 0-shot267

CoT for MMLU and GPQA here. HumanEval is268

also in 0-shot, and MMLU-Pro is tested in 5-shot269

CoT. We report the EM score for each task except270

HumanEval, in which we report the pass@1 score.271

For SFT dataset, we use a subset from TULU3272

SFT dataset (Lambert et al., 2025) that removes273

safety & non-compliance subset, multilingual sub-274

set, and TableGPT subset.275

Model We conduct ICL experiments on the276

LLaMA3-8b-Instruct model (Grattafiori et al.,277

2024) and Qwen2-7b-Instruct model (Yang et al.,278

2024), and SFT experiments on the LLaMA3-8b-279

Base model (Grattafiori et al., 2024). We performed280

a full-parameter SFT on 8×L40 GPUs.281

MMLU GSM8k MATH DROP

Llama3-8B 62.89 75.51 32.60 46.39
Llama3-8B-seg 67.28 78.01 32.26 53.16

+4.39%↑ +2.50% ↑ -0.34% ↓ +6.77% ↑

Qwen2-7B 64.43 73.92 53.33 38.14
Qwen2-7B-seg 69.96 81.65 54.30 50.64

+5.53% ↑ +7.73% ↑ +0.97% ↑ +12.50%↑

Table 1: Main results of performance comparison be-
tween LLM w./w.o. sentence segmentation applied in
ICL approach. {Model Name}-seg represents model
evaluating with sentence segmentation. The segmenta-
tion token here we used is "<seg>".

Preprocessing All input texts are preprocessed 282

by a model released by Frohmann et al. (2024), 283

named SaT-12L-sm (which we refer to as SaT di- 284

rectly), a SOTA model in sentence segmentation. It 285

is a BERT-like model with 12 layers. For each in- 286

put, the model returns a list of segmented sentences. 287

Then we insert a segment token (e.g.: "<seg>") af- 288

ter each sentence, and concatenate them back into 289

the original text. In ICL experiments, we directly 290

take the segmented text as input. For SFT experi- 291

ments, we treat the segment token as a new special 292

token and introduce it in finetuning, so that it could 293

learn from the sentence segmentation. 294

4.2 In-context Learning Experiments 295

4.2.1 Main Results of In-Context Learning 296

The main results of ICL are shown in Table 1. It 297

demonstrates that both the two models with sen- 298

tence segmentation applied outperform the two 299

models without sentence segmentation applied, ex- 300

cept the result of MATH in Llama3-8B-Instruct. 301

An obvious enhancement appears in MMLU and 302

GSM8k in both models, also in MATH in Qwen- 303

7B-Instruct. A greater enhancement appears in 304

DROP, which improves in nearly 6.8% in Llama3- 305

8B-Instruct, and 12.5% in Qwen2-7B-Instruct. The 306

table shows that segmenting the input into sen- 307

tences can improve reasoning performance through 308

ICL. The sentence structure indeed helps LLM in 309

reasoning tasks. 310

We find that the only opposite effect in the re- 311

sult is MATH in Llama3-8B-Instruct. The same 312

situation also appears in Section 4.2.2’s experi- 313

ments. We conjecture the reason is that Llama3-8B- 314

instruct has a weaker reasoning ability compared to 315

Qwen2-7B-Instruct. Therefore, for a harder math 316

problem, the model’s reasoning ability failed to 317

meet the passing standard. Even if segmentation is 318
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Llama3-8B Qwen2-7B
GSM8k MATH DROP GSM8k MATH DROP

orig. 75.51 32.60 46.39 73.92 53.33 38.14

<seg> 78.01 32.26 53.16 81.65 54.30 50.64
seg 77.17 30.58 28.30 80.36 54.30 44.56
<and> 77.17 31.48 53.14 82.41 58.70 51.98
and 74.34 31.10 53.14 74.68 58.84 47.24
#### 77.86 31.18 53.30 80.81 60.18 49.58
.$? 78.01 31.90 53.85 82.17 58.40 16.17
114 78.46 31.56 53.85 81.88 57.12 36.81

<seg> seg <and> and #### .$? 114

Avg.
Improve

+5.02↑ -0.77↓ +5.83↑ +3.24↑ +5.50↑ +0.10↑ +3.30↑

Table 2: Results of the performance of different segmen-
tation tokens in ICL. The upper table is the comparison
between different tokens. The the left first column is
the segmentation tokens we tested, "orig." represents
that no segmentation token is applied. The lower table
is the average improvement of segmentation tokens.The
three segmentation tokens that have an overall better
performance are bold.

applied, the abilities to solve such problems cannot319

be enhanced.320

4.2.2 Different Segmentation Tokens Affect321

the Results322

In Section 4.2.1, the main experiments of ICL used323

"<seg>" as segmentation token. However, the se-324

mantic information of the segmentation token may325

affect the LLM in recognizing sentence structure.326

To see how the difference of segmentation tokens327

affects ICL performance, we conducted more ex-328

periments on it.329

Table 2 shows the ICL results with different seg-330

mentation tokens. The result shows that LLM can331

recognize the sentence structure and thereby per-332

forms better if the token is wrapped by "<>", e.g.,333

"<seg>" performs better than "seg", so as "<and>".334

This indicates that structured segmentation tokens335

are easier for LLM to recognize. Also, we found336

that using tokens that contain semantic information337

like "seg" could be harmful in some tasks, while338

using "and" does not; we suggest that the reason339

is word "and" performs some degrees of semantic340

segmentation in a paragraph, while "seg" is actually341

not.342

To further study the effects of different semantic343

information, we tested three tokens, "####", ".$?",344

"114", which correspond to structured information345

(marker between CoT and final answer in GSM8k),346

punctuations, and numbers. We are surprised to347

find that, although ".$?" and "114" do not perform348

as well as others, they are able to enhance the per-349
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Figure 3: The distribution of sentence length and num-
ber of sentences of each datasets. The left column fig-
ures are the origin distribution, the right column figures
are zoomed up based on the left figures. We mark the
medians and extrema on these figures. The length is
the length of tokenized sentence, tokenized by Llama3
tokenizer.

formance on many tasks. It suggests that LLMs 350

are sensitive to regularly repeated tokens, and are 351

able to exclude the influences of harmful semantic 352

information. "####" performs generally as well as 353

"<seg>" and "<and>", averagely better than ".$?" 354

and "114". 355

In conclusion, the average improvements of 356

"<seg>", "<and>" and "####" are larger than other 357

segmentation tokens. It supports our assumption: 358

a more structured segment token can have better 359

overall performance. The result shows that for ICL, 360

it is better to choose a segment token that contains 361

more structured information and less semantic in- 362

formation. 363

4.2.3 Sentence Segmentation vs. N-Token 364

Segmentation 365

Next, we explore whether the sentence struc- 366

ture under human prior knowledge is optimal for 367

LLMs. To find the answer, a comparison of down- 368

stream performance is made between segmentation 369

based on sentence and segmentation based on n- 370

token.Segmentation of n-token is to insert the seg- 371

ment token in the tokenized text every n tokens. 372

We use "<seg>" as the segmentation token in this 373

section. The results are shown in Figure 4. 374

From the figure, we can see that the performance 375
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Figure 4: The results of Llama3-8b-Instruct and Qwen2-7b-Instruct over GSM8k and DROP datasets on in-context
learning experiments. We compare different segmentation methods. The x-axis is the n of n-token segmentation
(e.g.: 32 represents 32-token segmentation). "None" represents no segmentation applied, and "Sent" represents
segment via sentence structure. For Llama3-8B, the upper gray line of "Sent" represents GSM8k acc. 78.01,
and DROP acc. 53.16, the lower gray line of "None" represents GSM8k acc. 75.51, and DROP acc. 46.39. For
Qwen2-7B, the upper gray line of "Sent" represents GSM8k acc. 81.65, and DROP acc. 50.64, the lower gray line
of "None" represents GSM8k acc. 73.92, and DROP acc. 38.14.

of n-token segmentation with n ≥ 4 outperforms376

that of no segmentation, except 4-token segmenta-377

tion, where both LLMs perform poorly in GSM8k.378

The performance increases as n increases, until it379

reaches n = 128, where both LLMs are poorer380

in both tasks compared to n = 64. We make a381

new assumption that the segment tokens are to help382

LLMs to summarize the previous information, or383

to help LLMs to stop and think. Therefore, n-token384

segmentation with n = 4 makes the information385

too sparse, making the semantic information frag-386

mented; while n becomes much larger (n = 128)387

making the situation similar to no segmentation, so388

that the performance decreases. For n = 16, 32, 64,389

there are less fragments as n increases, so more se-390

mantic information is kept inside the segments.391

We plot a violin plot to demonstrate the distri-392

bution of the sentence length and the number of393

sentences of these datasets in Figure 3. It shows394

that a sentence contains mostly 5-40 tokens. There-395

fore, in the aspect of sentence structure, the case of396

n = 4 results in too many fragments. With n = 16,397

some short sentences can be included. n = 32 can398

contain most sentences, while n = 64 can cover399

almost all sentences and sometimes include mul-400

tiple sentences. n = 128 is essentially equivalent401

to a text that has not been segmented in GSM8k,402

since GSM8k contains less than 5 sentences, while403

DROP contains more (less than 15), it fits our ob-404

servation that the decrease in DROP from n = 64405

to n = 128 is less than GSM8k.406

However, segmenting by sentence is always bet- 407

ter than n-token. This means that keeping the se- 408

mantic information of a sentence not to be frag- 409

mented would be the best choice. The sentence 410

structure is the optimal solution to segmentation. 411

4.3 Supervised Finetuning Experiments 412

The main results of SFT experiments are shown in 413

Figure 5. We finetuned two Llama3-8B-Base mod- 414

els w./w.o. sentence segmentation on the TULU3 415

subset. The two finetuned model were tested on the 416

seven datasets. The results show that Llama3-8b- 417

seg outperforms all tasks compared to Llama3-8B. 418

We observed a steady performance improvement on 419

the GSM8k, MATH, and DROP datasets tested in 420

the ICL experiments, which was in line with our ex- 421

pectations. The newly included datasets, MMLU- 422

Pro, GPQA, and HumanEval, also improve after 423

segmentation. 424

We aim to show that: sentence segmentation 425

can be learned by training, in other words, LLMs 426

are able to learn to output segment tokens auto- 427

matically, therefore, a long context is not a must. 428

Putting aside those datasets that need to be tested 429

with n-shot settings, we found that for the three 430

0-shot datasets, Llama3-8B-seg all outperforms 431

Llama3-8B, although not as significant as those 432

n-shot datasets. It suggests that LLMs can learn 433

sentence segmentation (by outputting the segment 434

tokens) and gain an enhancement through segmen- 435

tation, while a long context could make such en- 436
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MMLU GSM8k MATH DROP MMLU-Pro GPQA HumanEval

Llama3-8B 59.02 72.48 30.86 48.50 34.25 26.93 56.71
Llama3-8B-seg 60.13 74.91 31.58 53.26 40.71 27.43 62.80

+1.11%↑ +2.43%↑ +0.72%↑ +4.76%↑ 6.46%↑ 0.50%↑ 6.09%↑

Figure 5: Main results of performance comparison between LLM w./w.o. sentence segmentation applied in SFT
approach. Here the Llama3-8B model are finetuned with TULU3 subset. We treat segment token as a special token
inside tokenizer.

hancement higher.437

We are surprised to see that Llama3-8B-seg438

greatly outperforms Llama3-8B on HumanEval.439

Since SaT are only trained in human languages,440

we did not expect it to be effective for coding, as441

their structures are different. However, the results442

make us believe that there exist some common-443

alities between human language and code. Such444

commonalities enable the segmentation patterns445

learned from human language to also be effective446

for code tasks.447

Since we treat the segmentation token as a spe-448

cial token as described in Section 3.4, we do not449

need to be concerned about the semantic informa-450

tion that the segmentation token may introduce to451

the experiments.452

4.4 Analysis453

Information Flow of Language Modeling The454

stack of same-token representations is referred as455

a "residual stream" (Nelson Elhage, 2021), and456

the overall computation can be viewed as a se-457

quence of residual streams connected through layer458

blocks, Ferrando and Voita (2024) define the resid-459

ual streams along with attention edges, FFN edges460

as information flow. Therefore, (Ferrando and461

Voita, 2024) suggests to use graph visualization462

to track the information flow. We use the visual-463

ization tools proposed by (Tufanov et al., 2024)464

for information flow visualization. The visualiza-465

tion results are in Appendix C. Through the figure,466

the last token absorbs the information of the en-467

tire paragraph. In particular, the information of468

segmentation tokens flow into the last token at a469

relatively high layer (usually higher than the other470

tokens within the same sentence). Moreover, we471

have found that the information within a sentence472

tends to converge on the segmentation token first.473

Attention Map We also use heat map for atten-474

tion visualization. The results of attention map are475

shown in Appendix C. Through the attention map,476

llama qwen llama-seg
Models

0

2

4
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N

5.90
5.40 5.55

N× larger than Avg. score

Figure 6: The average attention score of segmentation
tokens obtained from the last token in GSM8k dataset
is always larger than the average attention score. We
illustrate how much larger are the segmentation tokens’
attention score is compared to the average attention
score.

we find that the segmentation token (along with the 477

tokens surrounding the segmentation token) tend 478

to capture the majority of the attention. Especially, 479

we observe that the query tokens in the latter half 480

of the sentence tend to focus their attention particu- 481

larly on the segmentation token. 482

Average Attention Score of Segmentation To- 483

kens For a more comprehensive understanding of 484

the phenomenon inside attention, we calculate the 485

average attention score of the segmentation tokens 486

and compare it with the overall average attention 487

score of the sentence. The calculation is applied on 488

the attention scores of the last token with respect 489

to the entire sentence. Figure 6 shows that the at- 490

tention score of the segmentation tokens is always 491

significantly higher than the average attention score 492

of the sentence. 493

Assumptions Based on Visualization Based on 494

the visualization results in information flow and 495

the attention map, and also the numeric results in 496

the average attention score of the segment tokens, 497

we assume that the segmentation token has the role 498

of "summarizing the information within the sen- 499

tence". Specifically, the segment token aggregates 500

7



the information within the sentence onto itself, and501

increases its own weight in the attention of the sub-502

sequent tokens. We think the results suggest that503

the segment tokens could help LLMs to stop at the504

segment token and think about the information that505

the previous sentence include; and this behavior is506

benefit for the final performance.507

Assumptions on Why Segmentation Tokens bet-508

ter than Punctuations There might be a ques-509

tion: why does the segmentation token work better510

than punctuation, since punctuation is enough to511

delineate sentences? We think the reason might be512

that punctuation contains both structural informa-513

tion and semantic information, so that the structural514

information is implicit rather than explicit. There-515

fore, an LLM cannot directly judge the sentence516

structure from punctuation tokens, except it is re-517

quired by prompts. In contrast, the only usage518

of segment tokens is to demonstrate the sentence519

structure, so that the structural information is ex-520

plicitly included. We plot the N× larger figure in521

Appendix B, which shows that punctuations gen-522

erally obtain a lower attention score than segment523

tokens. We conclude that it is easier for an LLM to524

assign its attention to segment tokens than punctua-525

tions.526

5 Conclusion527

In conclusion, this study proposed a new method to528

improve LLM performance by sentence segmenta-529

tion. Introducing sentence segmentation into LLM530

inference can be helpful for language modeling.531

We studied two approaches to apply sentence seg-532

mentation, ICL and SFT, both of which are able533

to work. ICL is a cheap and efficient approach534

that can directly improve downstream performance.535

However, ICL requires a long context for LLM to536

learn from analogy, which is probably not capable537

for most application scenarios. On the other hand,538

SFT approach does not require a long context to539

learn from. By adding the segment tokens inside540

the training target, it requires the model to explicitly541

learn to segment sentences (by outputting segment542

tokens). It can work directly on 0-shot task, which543

is closer to most of the real-world applications.544

Further ablations show that semantic informa-545

tion could affect the performance in ICL, therefore546

a more structured segment token is a better choice.547

Moreover, we discuss the level of segmentation,548

and find out that although token-level segmentation549

is somehow enough to enhance the performance,550

sentence-level segmentation always works better 551

than token-level segmentation. Our visualization 552

indicates that such enhancements of sentence seg- 553

mentation may be due to the summarization and 554

aggregation effects of segmentation tokens during 555

language modeling. 556

Our work shows that introducing sentence struc- 557

ture into language modeling can actually improve 558

LLM performance. It is a cheap and easy ap- 559

proach that only needs to add a segment token after 560

each sentence during the data processing procedure, 561

while the improvement is significant. It encourages 562

us to look more on language structure and use such 563

human prior knowledge to help with language mod- 564

eling task. 565

Finally, we want to discuss more about the po- 566

tential by-product of our work that could be useful 567

in any work about LLM+sentence. Work such as 568

MCTS, decoding strategy, and sentence-level re- 569

ward model, is required to segment the sentence 570

during either preprocessing stage or postprocess- 571

ing stage if any of them want to study the effects 572

of treating sentence as a unit. However, achieve- 573

ments by prompting methods are somehow harmful 574

to performance, and achievements by segmenta- 575

tion models are both time-consuming and resource- 576

consuming. It would be much more convenient if 577

an LLM could segment the sentence itself. Our 578

research shows that the use of ICL is not harmful, 579

even beneficial to performance; while SFT is better 580

for applications that do not contain a long context. 581

Therefore, we are here calling for the use of this 582

methodology within the next generation of LLMs. 583

6 Limitation 584

The work has the following limitations: First, the 585

robustness of the proposed method is not tested on 586

other segmentation methods (such as rule-based 587

methods), since most of the applications care more 588

about the SOTA method. Secondly, although we 589

conducted the experiment and proved the effective- 590

ness of sentence segmentation on 7B-level LLMs, 591

a further scaling experiment is needed. Lastly, due 592

to the limitation of GPU resources, the effective- 593

ness of sentence segmentation is only examined on 594

the finetuning stage; although we believe that the 595

SFT results are enough to demonstrate usability in 596

pretraining, it still needs to be confirmed through 597

further experiments. 598
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A Tries of Finetuning Instructed Model 819

We made several tries to finetune an instructed model Llama3-8b-Instruct. Both full parameter finetuning 820

and LoRA finetuning (Hu et al., 2021) are tested. Amount all our tries, the model’s performances are 821

always ruined by the finetuning procedure, making the performances decrease compared to it’s original 822

performances. However, we observed an interesting phenomenon that, no matter how we reduce the 823

training size of the dataset (from the full dataset to the 10% dataset), the full-parameter finetune always 824

outperforms the LoRA finetune. According to Ghosh et al. (2024), the LoRA finetune is the initiation of 825

response and style tokens learning. Therefore, we conclude that sentence segmentation is not a kind of 826

pattern or format for style learning, it is a kind of knowledge that requires a full parameter finetune to 827

inject itself into the model. 828

B Average Attention Score of Punctuations 829

For comparison with segmentation tokens, we compute the average attention score of punctuation (e.g.: 830

".", "!", ","...) and the newline character ("\n"). The results are shown in Figure 7. Compared to Figure 6, 831

we can see that the average attention score of punctuation is less than the segmentation tokens.

llama qwen llama-seg
Models
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2

3

4

5

N
3.62

4.35
3.62

N× larger than Avg. score

Figure 7: The average attention score of punctuations and newline character obtained from the last token in GSM8k
dataset.

832

C Visualizations of Information Flow and Attention Map 833
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Figure 8: Attention map of Llama3-8b-SFT seg
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Figure 9: Attention map of Llama3-8b-Instruct. The segmentation token we used is "####". We replaced it to
"<seg>" only when visualization.
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Figure 10: Attention map of Qwen2-7b-Instruct. The segmentation token we used is "####". We replaced it to
"<seg>" only when visualization.
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Figure 11: Information flow of Llama3-8b-SFT seg
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Figure 12: Information flow of Llama3-8b-Instruct on segmentation token "####"
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Figure 13: Information flow of Qwen2-7b-Instruct on segmentation token "####"
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