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Abstract

We propose a new method to improve large
language models’ (LLMs) performance by in-
corporating the sentence structure knowledge
into the model. Based on the intuitive as-
sumption that a complete sentence is the ba-
sic unit of thinking and reasoning for human
beings, we test it for LLMs by explicitly in-
serting special segment tokens to the positions
within the input sequences where sentence
boundaries are detected, which achieves bet-
ter performance in complex reasoning tasks by
significant margins. Two approaches for in-
corporating sentence structure knowledge are
experimented: In-context learning (ICL) on
instruction-tuned models (Llama3-8B-Instruct
and Qwen2-7B-Instruct) and supervised fine-
tuning (SFT) on a base model (Llama3-8B fine-
tuned with TULU3), and evaluated in highly
reasoning-intensive tasks (e.g., math), both
show positive results. Our findings indicate
that similar to human reasoning, structured
sentences can effectively facilitate LLM rea-
soning performance; integrating linguistically
motivated priors, such as sentence boundaries,
is a promising future direction for developing
simple-yet-effective prompting techniques.

1 Introduction

As the foundation Large Language Model (LLM)
training workflow was proposed by GPT series
(Brown et al., 2020; Ouyang et al., 2022), there
are many works trying to enhance the performance
of language model through different approaches.
Since the proposal of different scaling laws (Ka-
plan et al., 2020; Hoffmann et al., 2022; DeepSeek-
Al et al., 2024), the most common approaches to
improve language models’ performance at train-
ing time are to scale up the model size (Chowdhery
etal., 2022), or alternatively, to scale up the training
data (Touvron et al., 2023). However, scaling up
is heavily dependent on computational resources.
Most researchers have to explore other ways to
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Figure 1: Summary of this study: Downstream per-
formance can be improved through sentence segmen-
tation. Given a prompt, we use a sentence segmentation
model, SaT, to segment it into sentences, and then re-
construct it back with segmentation token inserted (at
the end of each sentence). We observe significant per-
formance gains after applying sentence segmentation to
LLMs, e.g., the downstream performance of segmented
paragraph outperforms the original paragraph by ap-
proximately 10% on the GSM8k when tested with the
Qwen2-7B-Instruct model.

enhance the model performance at inference time,
under the constraint of limited computational bud-
get.

Several works like Wei et al. (2022) and Yao
et al. (2023) are trying to improve performance by
employing thought-prompting methods to scale the
thinking time during inference. Building on the
concept of test-time-scaling, researchers have ex-
plored various techniques to enhance performance,
including self-verification methods like Renze and
Guven (2024), and reinforcement learning (RL)
methods such as Monte-Carlo Tree Search (MCTS)
(Qi et al., 2024; Zhang et al., 2024). Similarly,
there are also some other RL-based approaches
have been proposed, such as reinforcement finetun-
ing (RFT), including DeepSeek R1 and Kimi K1.5



(DeepSeek-Al et al., 2025; Team et al., 2025).
These methods are either time-consuming or
data-consuming. Therefore, it leads to the research
question: Can we get a free lunch to improve LLM
performance by leveraging some sentence-level pri-
ors in human language?
We make the following assumptions:

Assumptions

1. The minimum unit of human thought is the
sentence.

2. Sentence structure can facilitate the pro-
cess of thinking and reasoning.

Based on these assumptions, we propose a
method that uses sentence segmentation to improve
LLM performance. Figure 1 summarizes our work-
flow on how sentence segmentation is incorporated
into the overall LLM inference procedure. We sum-
marize our contributions as follows:

1. We propose a method that explicitly incorpo-
rates the prior knowledge of sentence structure
into LLMs by inserting segmentation tokens
at sentence boundaries, enabling the model to
effectively recognize and utilize sentence struc-
ture information.

2. Experimental results in Section 4 show con-
sistent performance improvements on both In-
Context Learning (ICL) and Supervised Fine-
Tuning (SFT) approaches, confirming that the
sentence structure representation is beneficial
for LLMs’ performance.

3. Ablations on ICL in Section 4.2 demonstrate
that, a more structured segment token is better
for downstream performance, and segmentation
by sentence structure is optimal for performance
compared to n-token segmentation.

4. An explanation analysis in Section 4.4 shows
why the sentence segmentation approach could
work.

5. A potential contribution of this work would be
a by-product that brings a useful tool to any
work on LLM-+sentence, such as sentence-level
reward model mentioned in Section 2 and others
like MCTS in reasoning (treating sentence as
state & action).

2 Related Work

Training Language Model with Pause Token
Goyal et al. (2024) suggests that a pause before

an LLM answers the question is beneficial for the
performance: it allows LLM to think more about
the question through the "<pause>" tokens. They
tested the idea during both pretraining stage and
finetuning stage, and conducted experiments using
SQuAD (Rajpurkar et al., 2016), CommonSense
QA (Talmor et al., 2019), and GSM8k (Cobbe et al.,
2021) datasets for a 1B model. They observed 18%
improvements in SQuAD, 8% in CommonSense
QA, and 1% in GSMS8k, demonstrating that pause
tokens can help enhance the model’s reasoning ca-
pabilities.

Sentence Segmentation Sentence segmentation
is a fundamental natural language processing
(NLP) task that aims to segment text into sentences.
This process plays a crucial role in many NLP sys-
tems. Frohmann et al. (2024) proposed a model
called Segment Any Text (SaT) for universal text
segmentation, which achieves state-of-the-art per-
formance on sentence segmentation tasks.

Sentence Level Prediction Ippolito et al. (2020)
proposed a new approach to solve the fluency prob-
lem in story generation and other creative writ-
ing tasks. They suggest using sentence prediction
rather than token prediction. By using a pretrained
BERT model to generate sentence embedding, they
trained an MLP model to select the most suitable
sentence from a limit yet large pool of candidate
sentences. However, this approach is not suitable
for open-ended text generation, which makes it far
from real-world applications.

Sentence Level Reward Model Qiu et al. (2025)
suggests that sentence segmentation can be used for
reward modeling, thereby introducing a new frame-
work named sentence-level RM. The results show
that sentence-level reward can outperform token-
level RM and response-level RM (e.g.: outperforms
response-level RM 2.7% on RewardBench (Lam-
bert et al., 2024)). It shows that sentence structure
is benefit for reward modeling.

3 Encoding Sentence Structure into
Language Model

3.1 Sentence Segmentation

The mainstream approaches to sentence segmen-
tation fall into these categories: rule-based meth-
ods (Sadvilkar and Neumann, 2020), supervised
methods (Frohmann et al., 2024; Wicks and Post,
2021), and unsupervised methods (Loper and Bird,



2002). Among these methods, supervised methods
are currently the most accurate approach, widely
integrated into various natural language processing
toolkits. While LLMs are also capable for the sen-
tence segmentation task using prompting method
(Ouyang et al., 2022), the purpose of testing LLMs
on this task is to demonstrate their general capa-
bilities, rather than to design a tool for sentence
segmentation task. Supervised methods usually
use BERT-based model (Devlin et al., 2019) for
supervise sentence segmentation. Minixhofer et al.
(2023) defined the objective of sentence segmenta-
tion as identifying characters that can be followed
by a delimiter, which can be formula as follows:

L@ - Zlogp(yi|x1,x2,...,xn,9)

K3
1 ;47 is sentence boundary

where y; =
’ {O else
(1
It shows that the primary objective of traditional
sentence segmentation is to predict sentence bound-

aries (e.g.: "\n").

3.2 Inference with Sentence Segmentation

Figure 2 illustrates how sentence segmentation is
applied in the language modeling task. We refor-
mulate the tradition sentence segmentation task
by introducing a segment token (represented as
"<seg>"), and insert it at the end of each sentence.

<bos> | sentence; | <seg> | sentence, | <seg> | <eos>

Figure 2: As an example, the paragraph start with
"<bos>", end with "<eos>". We insert segmentation
tokens "<seg>" after every sentences.

This explicitly incorporates the sentence struc-
ture into the model. By treating "<seg>" as an input
token, the original language modeling task could
be extended, which requires the LLM to predict the
segment token at sentence boundaries, allowing the
model to learn the sentence structure. According
to the previous assumption, downstream perfor-
mance should be improved when segment tokens
are added.

3.3 In-Context Learning

We propose an In-Context Learning (ICL) approach
for learning sentence structure using segment to-
kens. The ICL approach could learn the structure

from analogy according to Dong et al. (2024). It is
formulated as:

x; = argmax P(x;|S, x1,29...xi—1,0)  (2)

where S represents a sequence of all previous texts,
and z denotes the tokens in the generating sentence.
S is defined as:

S = [Slaxsegas%xsegamasmxseg] 3)

where s; is a sentence, and 7,4 is the segment
token.

By repeatedly inserting segmentation tokens af-
ter each sentence, LLMs can infer sentence struc-
ture from in-context information, and learn to out-
put segmentation tokens at sentence boundaries.
Our observations show that most of the modern
published LLMs are able to successfully identify
sentence structures and insert segmentation tokens
appropriately. The subsequent experiment in Sec-
tion 4 demonstrates that the downstream perfor-
mance of LLMs improves with this ICL-based
structural learning.

3.4 Supervised Finetuning

In contrast to ICL, another approach uses super-
vised fine-tuning (SFT) to learn the sentence struc-
ture. It integrates sentence segmentation as struc-
tural knowledge into the LLM’s parameters instead
of relying on context only. We formulate the prob-
lem in SFT approach the same as Equation (2). For
finetuning, we use the normal form of SFT:

N
Ly = Zlog P(zilzy, o, ...y zi—1,0)  (4)
i=k
where x denotes all tokens in the input text (includ-
ing segmentation tokens), IV is the length of the
whole text, and k represents the length of the input
prompt. Compared to eq. (1), which predicts the
segmentation token, the target of sentence segmen-
tation here is included in the next token prediction
task by predicting the segment token.

While ICL relies on sufficient contextual knowl-
edge (i.e., requiring long context), SFT does not
require a context. It can automatically incorporate
segment tokens into model outputs. This approach
is more suitable for zero-shot scenarios, which are
better aligned with LLM’s real-world applications.

In our SFT experiments, we treat the segment to-
ken directly as a special token inside the tokenizer.
The token is added to the vocabulary; thus it intro-
duces new embedding and Im_head weights.



4 [Experiments

4.1 Settings

Our experiments aim to highlight differences be-
fore and after applying sentence segmentation in
reasoning-related tasks. The hypothesis is that sen-
tence segmentation can enhance the downstream
task performance, especially on tasks that require
strong reasoning abilities.

Dataset For the ICL experiments, we selected
datasets that satisfy both criteria: having a long
enough context for learning, and evaluating reason-
ing abilities. We choose two math datasets, GSM8k
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021b), and a reading comprehension dataset,
DROP (Dua et al., 2019). We also choose MMLU
(Hendrycks et al., 2021a) to test our method’s per-
formance in language understandingby output the
answer with CoT prompt and calculate the exact
match (EM) score (Clémentine Fourrier, 2023).
We apply 8-shot CoT for GSM8K, 4-shot CoT for
MMLU and MATH, and 3-shot CoT for DROP,
reporting the EM score.

For SFT experiments, we additionally intro-
duced three datasets, MMLU-Pro (Wang et al.,
2024), GPQA (Rein et al., 2024) and HumanEval
(Chen et al., 2021). MMLU-Pro is a harder ver-
sion of MMLU dataset. GPQA is an extremely
difficult QA dataset designed by domain experts,
which requires knowledge, understanding, and rea-
soning. HumanEval is a coding dataset for Python
coding question. It is similar to the math problem
that also evaluates reasoning ability. GPQA and
HumanEval do not have a long enough context (0-
shot by default), so they are not included in ICL
experiments. The settings of GSM8k, MATH and
DROP are the same as ICL, while we apply 0-shot
CoT for MMLU and GPQA here. HumanEval is
also in O-shot, and MMLU-Pro is tested in 5-shot
CoT. We report the EM score for each task except
HumanEval, in which we report the pass@1 score.

For SFT dataset, we use a subset from TULU3
SFT dataset (Lambert et al., 2025) that removes
safety & non-compliance subset, multilingual sub-
set, and TableGPT subset.

Model We conduct ICL experiments on the
LLaMA3-8b-Instruct model (Grattafiori et al.,
2024) and Qwen2-7b-Instruct model (Yang et al.,
2024), and SFT experiments on the LLaMA3-8b-
Base model (Grattafiori et al., 2024). We performed
a full-parameter SFT on 8 xL40 GPUs.

| MMLU | GSM8k | MATH | DROP
Llama3-8B 62.89 75.51 32.60 46.39
Llama3-8B-seg 67.28 78.01 32.26 53.16

| +4.39%71 | +2.50% 1 | -0.34% | | +6.77% 1
Qwen2-7B 64.43 73.92 53.33 38.14
Qwen2-7B-seg 69.96 81.65 54.30 50.64

| +5.53% 1 | +7.73% 1 | +0.97% 1 | +12.50%1

Table 1: Main results of performance comparison be-
tween LLM w./w.o. sentence segmentation applied in
ICL approach. {Model Name}-seg represents model
evaluating with sentence segmentation. The segmenta-
tion token here we used is "<seg>".

Preprocessing All input texts are preprocessed
by a model released by Frohmann et al. (2024),
named SaT-12L-sm (which we refer to as SaT di-
rectly), a SOTA model in sentence segmentation. It
is a BERT-like model with 12 layers. For each in-
put, the model returns a list of segmented sentences.
Then we insert a segment token (e.g.: "<seg>") af-
ter each sentence, and concatenate them back into
the original text. In ICL experiments, we directly
take the segmented text as input. For SFT experi-
ments, we treat the segment token as a new special
token and introduce it in finetuning, so that it could
learn from the sentence segmentation.

4.2 In-context Learning Experiments
4.2.1

The main results of ICL are shown in Table 1. It
demonstrates that both the two models with sen-
tence segmentation applied outperform the two
models without sentence segmentation applied, ex-
cept the result of MATH in Llama3-8B-Instruct.
An obvious enhancement appears in MMLU and
GSMSk in both models, also in MATH in Qwen-
7B-Instruct. A greater enhancement appears in
DROP, which improves in nearly 6.8% in Llama3-
8B-Instruct, and 12.5% in Qwen2-7B-Instruct. The
table shows that segmenting the input into sen-
tences can improve reasoning performance through
ICL. The sentence structure indeed helps LLM in
reasoning tasks.

We find that the only opposite effect in the re-
sult is MATH in Llama3-8B-Instruct. The same
situation also appears in Section 4.2.2’s experi-
ments. We conjecture the reason is that Llama3-8B-
instruct has a weaker reasoning ability compared to
Qwen2-7B-Instruct. Therefore, for a harder math
problem, the model’s reasoning ability failed to
meet the passing standard. Even if segmentation is

Main Results of In-Context Learning



Llama3-8B Qwen2-7B

GSM8k | MATH | DROP | GSM8k | MATH | DROP
orig. | 7551 | 3260 | 4639 | 73.92 | 53.33 | 38.14
<seg> | 78.01 | 3226 | 53.16 | 81.65 | 54.30 | 50.64
seg 77.17 | 30.58 | 28.30 | 80.36 | 54.30 | 44.56
<and> | 77.17 | 3148 | 53.14 | 8241 | 5870 | 5198
and 7434 | 31.10 | 53.14 | 74.68 | 58.84 | 47.24
i 77.86 | 31.18 | 53.30 | 80.81 | 60.18 | 49.58
$? 78.01 | 31.90 | 53.85 | 82.17 | 58.40 | 16.17
114 78.46 | 31.56 | 53.85 | 81.88 | 57.12 | 36.81

‘ <seg> ‘ seg ‘ <and> ‘ and ‘ i ‘ $? ‘ 114
Avg.
Improve +5.021 ‘ -0.77) | +5.831 | +3.241 | +5.501 | +0.101 | +3.301

Table 2: Results of the performance of different segmen-
tation tokens in ICL. The upper table is the comparison
between different tokens. The the left first column is
the segmentation tokens we tested, "orig." represents
that no segmentation token is applied. The lower table
is the average improvement of segmentation tokens.The
three segmentation tokens that have an overall better
performance are bold.

applied, the abilities to solve such problems cannot
be enhanced.

4.2.2 Different Segmentation Tokens Affect
the Results

In Section 4.2.1, the main experiments of ICL used
"<seg>" as segmentation token. However, the se-
mantic information of the segmentation token may
affect the LLM in recognizing sentence structure.
To see how the difference of segmentation tokens
affects ICL performance, we conducted more ex-
periments on it.

Table 2 shows the ICL results with different seg-
mentation tokens. The result shows that LLM can
recognize the sentence structure and thereby per-
forms better if the token is wrapped by "<>", e.g.,
"<seg>" performs better than "seg", so as "<and>".
This indicates that structured segmentation tokens
are easier for LLM to recognize. Also, we found
that using tokens that contain semantic information
like "seg" could be harmful in some tasks, while
using "and" does not; we suggest that the reason
is word "and" performs some degrees of semantic
segmentation in a paragraph, while "seg" is actually
not.

To further study the effects of different semantic
information, we tested three tokens, "####", ".$?",
"114", which correspond to structured information
(marker between CoT and final answer in GSM8k),
punctuations, and numbers. We are surprised to
find that, although ".$?" and "114" do not perform
as well as others, they are able to enhance the per-

Sentence Length 0 Sentence Length (Zoom)

Sentence Length
= N
(=] o
o o
! | !
Sentence Length
B
o
|

P

F & & & ¢ & & O &
é}‘\ ¥ & & & (,‘:e\ ¥ & &g

Num of Sentences 2 Num of Sentences (Zoom)

100 4

80 -

—
v
L

60 -

40

*] l
SE S
f

Figure 3: The distribution of sentence length and num-
ber of sentences of each datasets. The left column fig-
ures are the origin distribution, the right column figures
are zoomed up based on the left figures. We mark the
medians and extrema on these figures. The length is
the length of tokenized sentence, tokenized by Llama3
tokenizer.
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formance on many tasks. It suggests that LLMs
are sensitive to regularly repeated tokens, and are
able to exclude the influences of harmful semantic
information. "####" performs generally as well as
"<seg>" and "<and>", averagely better than ".$?"
and "114".

In conclusion, the average improvements of
"<seg>", "<and>" and "###H#" are larger than other
segmentation tokens. It supports our assumption:
a more structured segment token can have better
overall performance. The result shows that for ICL,
it is better to choose a segment token that contains
more structured information and less semantic in-
formation.

4.2.3 Sentence Segmentation vs. N-Token
Segmentation

Next, we explore whether the sentence struc-
ture under human prior knowledge is optimal for
LLMs. To find the answer, a comparison of down-
stream performance is made between segmentation
based on sentence and segmentation based on n-
token.Segmentation of n-token is to insert the seg-
ment token in the tokenized text every n tokens.
We use "<seg>" as the segmentation token in this
section. The results are shown in Figure 4.

From the figure, we can see that the performance
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Figure 4: The results of Llama3-8b-Instruct and Qwen2-7b-Instruct over GSM8k and DROP datasets on in-context
learning experiments. We compare different segmentation methods. The x-axis is the n of n-token segmentation
(e.g.: 32 represents 32-token segmentation). "None" represents no segmentation applied, and "Sent" represents
segment via sentence structure. For Llama3-8B, the upper gray line of "Sent" represents GSM8k acc. 78.01,
and DROP acc. 53.16, the lower gray line of "None" represents GSM8k acc. 75.51, and DROP acc. 46.39. For
Qwen2-7B, the upper gray line of "Sent" represents GSM8k acc. 81.65, and DROP acc. 50.64, the lower gray line
of "None" represents GSM8k acc. 73.92, and DROP acc. 38.14.

of n-token segmentation with n > 4 outperforms
that of no segmentation, except 4-token segmenta-
tion, where both LLMs perform poorly in GSMS8k.
The performance increases as n increases, until it
reaches n = 128, where both LLMs are poorer
in both tasks compared to n = 64. We make a
new assumption that the segment tokens are to help
LLMs to summarize the previous information, or
to help LLMs to stop and think. Therefore, n-token
segmentation with n = 4 makes the information
too sparse, making the semantic information frag-
mented; while n becomes much larger (n = 128)
making the situation similar to no segmentation, so
that the performance decreases. Forn = 16, 32, 64,
there are less fragments as n increases, so more se-
mantic information is kept inside the segments.

We plot a violin plot to demonstrate the distri-
bution of the sentence length and the number of
sentences of these datasets in Figure 3. It shows
that a sentence contains mostly 5-40 tokens. There-
fore, in the aspect of sentence structure, the case of
n = 4 results in too many fragments. With n = 16,
some short sentences can be included. n = 32 can
contain most sentences, while n = 64 can cover
almost all sentences and sometimes include mul-
tiple sentences. n = 128 is essentially equivalent
to a text that has not been segmented in GSMS8k,
since GSMS8Kk contains less than 5 sentences, while
DROP contains more (less than 15), it fits our ob-
servation that the decrease in DROP from n = 64
ton = 128 is less than GSM8Kk.

However, segmenting by sentence is always bet-
ter than n-token. This means that keeping the se-
mantic information of a sentence not to be frag-
mented would be the best choice. The sentence
structure is the optimal solution to segmentation.

4.3 Supervised Finetuning Experiments

The main results of SFT experiments are shown in
Figure 5. We finetuned two Llama3-8B-Base mod-
els w./w.o. sentence segmentation on the TULU3
subset. The two finetuned model were tested on the
seven datasets. The results show that Llama3-8b-
seg outperforms all tasks compared to Llama3-8B.
We observed a steady performance improvement on
the GSM8k, MATH, and DROP datasets tested in
the ICL experiments, which was in line with our ex-
pectations. The newly included datasets, MMLU-
Pro, GPQA, and HumanEval, also improve after
segmentation.

We aim to show that: sentence segmentation
can be learned by training, in other words, LLMs
are able to learn to output segment tokens auto-
matically, therefore, a long context is not a must.
Putting aside those datasets that need to be tested
with n-shot settings, we found that for the three
0-shot datasets, Llama3-8B-seg all outperforms
Llama3-8B, although not as significant as those
n-shot datasets. It suggests that LLMs can learn
sentence segmentation (by outputting the segment
tokens) and gain an enhancement through segmen-
tation, while a long context could make such en-



MMLU | GSM8k | MATH | DROP | MMLU-Pro | GPQA | HumanEval

Llama3-8B 59.02 72.48 30.86 | 48.50 34.25 26.93 56.71
Llama3-8B-seg | 60.13 74.91 31.58 | 53.26 40.71 27.43 62.80
| +111%71 | +2.43%1 | +0.72%71 | +4.76%1 |  6.46%1 | 0.50%1 |  6.09%1

Figure 5: Main results of performance comparison between LLM w./w.0. sentence segmentation applied in SFT
approach. Here the Llama3-8B model are finetuned with TULU3 subset. We treat segment token as a special token

inside tokenizer.

hancement higher.

We are surprised to see that Llama3-8B-seg
greatly outperforms Llama3-8B on HumanEval.
Since SaT are only trained in human languages,
we did not expect it to be effective for coding, as
their structures are different. However, the results
make us believe that there exist some common-
alities between human language and code. Such
commonalities enable the segmentation patterns
learned from human language to also be effective
for code tasks.

Since we treat the segmentation token as a spe-
cial token as described in Section 3.4, we do not
need to be concerned about the semantic informa-
tion that the segmentation token may introduce to
the experiments.

4.4 Analysis

Information Flow of Language Modeling The
stack of same-token representations is referred as
a "residual stream" (Nelson Elhage, 2021), and
the overall computation can be viewed as a se-
quence of residual streams connected through layer
blocks, Ferrando and Voita (2024) define the resid-
ual streams along with attention edges, FFN edges
as information flow. Therefore, (Ferrando and
Voita, 2024) suggests to use graph visualization
to track the information flow. We use the visual-
ization tools proposed by (Tufanov et al., 2024)
for information flow visualization. The visualiza-
tion results are in Appendix C. Through the figure,
the last token absorbs the information of the en-
tire paragraph. In particular, the information of
segmentation tokens flow into the last token at a
relatively high layer (usually higher than the other
tokens within the same sentence). Moreover, we
have found that the information within a sentence
tends to converge on the segmentation token first.

Attention Map We also use heat map for atten-
tion visualization. The results of attention map are
shown in Appendix C. Through the attention map,

NXx larger than Avg. score

| 5.90
6 5.40

T T T
llama gwen llama-seg

Figure 6: The average attention score of segmentation
tokens obtained from the last token in GSM8k dataset
is always larger than the average attention score. We
illustrate how much larger are the segmentation tokens’
attention score is compared to the average attention
score.

we find that the segmentation token (along with the
tokens surrounding the segmentation token) tend
to capture the majority of the attention. Especially,
we observe that the query tokens in the latter half
of the sentence tend to focus their attention particu-
larly on the segmentation token.

Average Attention Score of Segmentation To-
kens For a more comprehensive understanding of
the phenomenon inside attention, we calculate the
average attention score of the segmentation tokens
and compare it with the overall average attention
score of the sentence. The calculation is applied on
the attention scores of the last token with respect
to the entire sentence. Figure 6 shows that the at-
tention score of the segmentation tokens is always
significantly higher than the average attention score
of the sentence.

Assumptions Based on Visualization Based on
the visualization results in information flow and
the attention map, and also the numeric results in
the average attention score of the segment tokens,
we assume that the segmentation token has the role
of "summarizing the information within the sen-
tence". Specifically, the segment token aggregates



the information within the sentence onto itself, and
increases its own weight in the attention of the sub-
sequent tokens. We think the results suggest that
the segment tokens could help LLMs to stop at the
segment token and think about the information that
the previous sentence include; and this behavior is
benefit for the final performance.

Assumptions on Why Segmentation Tokens bet-
ter than Punctuations There might be a ques-
tion: why does the segmentation token work better
than punctuation, since punctuation is enough to
delineate sentences? We think the reason might be
that punctuation contains both structural informa-
tion and semantic information, so that the structural
information is implicit rather than explicit. There-
fore, an LLM cannot directly judge the sentence
structure from punctuation tokens, except it is re-
quired by prompts. In contrast, the only usage
of segment tokens is to demonstrate the sentence
structure, so that the structural information is ex-
plicitly included. We plot the N x larger figure in
Appendix B, which shows that punctuations gen-
erally obtain a lower attention score than segment
tokens. We conclude that it is easier for an LLM to
assign its attention to segment tokens than punctua-
tions.

5 Conclusion

In conclusion, this study proposed a new method to
improve LLM performance by sentence segmenta-
tion. Introducing sentence segmentation into LLM
inference can be helpful for language modeling.
We studied two approaches to apply sentence seg-
mentation, ICL and SFT, both of which are able
to work. ICL is a cheap and efficient approach
that can directly improve downstream performance.
However, ICL requires a long context for LLM to
learn from analogy, which is probably not capable
for most application scenarios. On the other hand,
SFT approach does not require a long context to
learn from. By adding the segment tokens inside
the training target, it requires the model to explicitly
learn to segment sentences (by outputting segment
tokens). It can work directly on 0-shot task, which
is closer to most of the real-world applications.
Further ablations show that semantic informa-
tion could affect the performance in ICL, therefore
a more structured segment token is a better choice.
Moreover, we discuss the level of segmentation,
and find out that although token-level segmentation
is somehow enough to enhance the performance,

sentence-level segmentation always works better
than token-level segmentation. Our visualization
indicates that such enhancements of sentence seg-
mentation may be due to the summarization and
aggregation effects of segmentation tokens during
language modeling.

Our work shows that introducing sentence struc-
ture into language modeling can actually improve
LLM performance. It is a cheap and easy ap-
proach that only needs to add a segment token after
each sentence during the data processing procedure,
while the improvement is significant. It encourages
us to look more on language structure and use such
human prior knowledge to help with language mod-
eling task.

Finally, we want to discuss more about the po-
tential by-product of our work that could be useful
in any work about LLM+sentence. Work such as
MCTS, decoding strategy, and sentence-level re-
ward model, is required to segment the sentence
during either preprocessing stage or postprocess-
ing stage if any of them want to study the effects
of treating sentence as a unit. However, achieve-
ments by prompting methods are somehow harmful
to performance, and achievements by segmenta-
tion models are both time-consuming and resource-
consuming. It would be much more convenient if
an LLM could segment the sentence itself. Our
research shows that the use of ICL is not harmful,
even beneficial to performance; while SFT is better
for applications that do not contain a long context.
Therefore, we are here calling for the use of this
methodology within the next generation of LLMs.

6 Limitation

The work has the following limitations: First, the
robustness of the proposed method is not tested on
other segmentation methods (such as rule-based
methods), since most of the applications care more
about the SOTA method. Secondly, although we
conducted the experiment and proved the effective-
ness of sentence segmentation on 7B-level LLMs,
a further scaling experiment is needed. Lastly, due
to the limitation of GPU resources, the effective-
ness of sentence segmentation is only examined on
the finetuning stage; although we believe that the
SFT results are enough to demonstrate usability in
pretraining, it still needs to be confirmed through
further experiments.
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A Tries of Finetuning Instructed Model

We made several tries to finetune an instructed model Llama3-8b-Instruct. Both full parameter finetuning
and LoRA finetuning (Hu et al., 2021) are tested. Amount all our tries, the model’s performances are
always ruined by the finetuning procedure, making the performances decrease compared to it’s original
performances. However, we observed an interesting phenomenon that, no matter how we reduce the
training size of the dataset (from the full dataset to the 10% dataset), the full-parameter finetune always
outperforms the LoRA finetune. According to Ghosh et al. (2024), the LoRA finetune is the initiation of
response and style tokens learning. Therefore, we conclude that sentence segmentation is not a kind of
pattern or format for style learning, it is a kind of knowledge that requires a full parameter finetune to
inject itself into the model.

B Average Attention Score of Punctuations

For comparison with segmentation tokens, we compute the average attention score of punctuation (e.g.:

AU AU

, """ ...) and the newline character ("\n"). The results are shown in Figure 7. Compared to Figure 6,
we can see that the average attention score of punctuation is less than the segmentation tokens.

Nx larger than Avg. score

4.35
41 3.62 3.62
N 3 -

T T T
llama gqwen llama-seg

Figure 7: The average attention score of punctuations and newline character obtained from the last token in GSM8k
dataset.

C Visualizations of Information Flow and Attention Map
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Figure 9: Attention map of Llama3-8b-Instruct. The segmentation token we used is "####''. We replaced it to
"<seg>" only when visualization.
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Figure 10: Attention map of Qwen2-7b-Instruct. The segmentation token we used is "####''. We replaced it to
"<seg>" only when visualization.
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Figure 12: Information flow of Llama3-8b-Instruct on segmentation token "####"
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Figure 13: Information flow of Qwen2-7b-Instruct on segmentation token "####"

o va1

o

o sT1

o

o 921

o

o LT

A A A AANAAAANANNANAAAANAAAANANAANAANAAAANAANANANNANANAAAAAAAANANAAANANAAA

o



	Introduction
	Related Work
	Encoding Sentence Structure into Language Model
	Sentence Segmentation
	Inference with Sentence Segmentation
	In-Context Learning
	Supervised Finetuning

	Experiments
	Settings
	In-context Learning Experiments
	Main Results of In-Context Learning
	Different Segmentation Tokens Affect the Results
	Sentence Segmentation vs. N-Token Segmentation

	Supervised Finetuning Experiments
	Analysis

	Conclusion
	Limitation
	Tries of Finetuning Instructed Model
	Average Attention Score of Punctuations
	Visualizations of Information Flow and Attention Map

