Under review as a conference paper at ICLR 2026

DO LARGER LANGUAGE MODELS GENERALIZE
BETTER? A SCALING LAW FOR IMPLICIT REASONING
AT PRETRAINING TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is an integral part of many tasks performed by language models (LMs).
However, the effects of scaling model sizes and data on reasoning abilities at
pretraining time remain understudied. To rigorously investigate this problem, we
pretrain LMs from scratch on a synthetic implicit multihop reasoning environment
designed to closely replicate the structure and distribution of real-world large-
scale knowledge graphs. We then assess the LMs’ ability to complete the missing
edges in the graph, which requires multi-hop reasoning that can be viewed as a
simplification of implicit reasoning during real-world pretraining. Interestingly, we
observe that overparameterization can impair the implicit reasoning performance
due to excessive memorization. We investigate different factors that affect the loss
curve when scaling different components of the knowledge graph, model size, and
training steps. To predict the optimal model size for a specific knowledge graph,
we find an empirical scaling law that shows optimal-sized LMs can approximately
reason over 0.008 bit information per parameter. This work shows counterintuitive
effects of model size scaling and provides new insights into the relationship between
scaling and reasoning in LLMs.

1 INTRODUCTION

Language Models (LMs) have demonstrated remarkable capabilities across a wide range of tasks, with
reasoning being a core component (Wei et al., 2022a; Guo et al., 2025). While reasoning is typically
enhanced during the post-training stage by encouraging LMs to generate long chain-of-thoughts
(CoTs) (Guo et al., 2025; Yang et al., 2025), it is reasonable to assume that they already acquire the
foundations of such capability during pretraining, given that post-training operates at a significantly
smaller scale. Several recent studies have explored the mechanisms by which LMs may acquire
reasoning-related abilities through next-token prediction pretraining (Zhu et al., 2024; Wang et al.,
2024a;b). However, the impact of scaling on LMs’ reasoning ability during pretraining remains
poorly understood.

The general scaling behavior of LMs at pretraining time has been extensively investigated, including
the well-known exponential scaling laws for testing loss and compute proposed by Kaplan et al.
(2020) and the training compute-optimal scaling studied by Hoffmann et al. (2022a). Recent work
has also examined the scaling of specific capabilities like machine translation (Ghorbani et al., 2022)
and knowledge capacity/memorization (Allen-Zhu & Li, 2025; Lu et al., 2024). According to these
existing scaling laws, it is in general believed that larger models imply better testing loss or task
performance.

In this paper, instead we find that the scaling of LMs’ reasoning capability at pretraining time
differs from normal power-law scaling, in a simplified controlled pretraining environment. We use
implicit reasoning to denote the reasoning behavior that naturally emerges during pretraining. i.e.
the capability to draw new conclusions from existing knowledge without being explicitly trained
to generate chain-of-thoughts (CoTs). More specifically, we define implicit reasoning over world
knowledge as the task of completing missing edges in an incomplete knowledge graph, which
requires multi-hop traversal according to predefined logic rules that are implicitly encoded in the

Under review as a conference paper at ICLR 2026

graph generation process. To investigate this, we pretrain LMs from scratch using only triples from
the incomplete graph and then evaluate their ability to infer the missing connections.

With sufficient compute, we find that the curve of implicit reasoning loss versus model size follows a
U-shape, revealing an optimal model size that yields the best reasoning performance. This suggests
that overparameterization may impair the implicit reasoning capability instilled during pretraining.
We first observe this phenomenon using data derived from real-world knowledge graphs, and then
systematically study it with synthetically generated data.

We investigate important factors that affect the U-shaped scaling of reasoning loss versus language
model size. Our important findings can be summarized as follows:

* The minimum reasoning loss reachable by an LM is solely determined by the training data,
regardless of training steps and model size.

* The optimal model size is solely determined by knowledge graph complexity and data size
regardless of training steps.

* We show that an optimal-sized LM can approximately reason over 0.008 bit information per
parameter.

As we observed that the optimal model size is likely solely determined by the training knowledge
graph, we then aim to find an empirical scaling law that can predict the optimal model size from
knowledge graph statistics. We identify a linear relationship between the optimal model size and
our proposed graph search entropy, which quantifies the entropy of performing random searches
on a knowledge graph. Under this framework, we find that each parameter in the optimal model
size can reason over approximately 0.008 bits of information in a knowledge graph. In contrast,
Allen-Zhu & Li (2025) show that a language model can memorize up to 2 bits of information per
parameter—substantially more than its reasoning capacity. This gap arises both from the greater
difficulty of reasoning compared to memorization and from the different methodologies used to
compute these information quantities. A more detailed discussion is provided in Section 5.2.

Our work contributes to the broader understanding of LLM reasoning by shedding light on the
intricate relationship between scaling and implicit reasoning capability. Our proposed empirical
reasoning scaling law provides possible practical insights for optimizing LLMs’ implicit reasoning
ability at pretraining time.

2 METHOD

While real-world LLMs are pretrained on large scale text corpora, this corpus can be viewed as
encoding a wide range of world knowledge. The power of LLMs lies in the fact that they can not
only memorize the world knowledge and extract the knowledge when queried, but also reason over
the world knowledge and draw novel conclusions. In this paper, we propose constructing a simplified
pretraining corpus from a knowledge graph. A knowledge graph is comprised of a set of (head
entity, relation, tail entity) triples, and we use each knowledge triple as a training example. We test
the reasoning capability of a language model trained on such a corpus by testing its accuracy in
completing triples that have never been seen in the knowledge graph but can be deduced through
latent rules encoded in the graph structure. For example, if we know A is B’s father, and B is C’s
father, then we can deduce that A is C’s grandfather.

Formally, a knowledge graph G consists of |G| = N triples (e, r, e?), where e € £ is the head
entity, ! € & is the tail entity, and € R is a relation. A simple example of knowledge triple is (DC,
is the capital of, USA).These knowledge triples naturally form a graph, with nodes as
the entities and each edge labeled with a relation type. We denote the total number of entities or nodes
by |€| = N, and the total number of edge or relation types by [R| = N,.. Then a corpus constructed
from this knowledge graph would consist of NV data points. The objective of a language model with
parameter 6 trained on this corpus is then:

N
1 h t
L) = arg min — Z —log Py(e,ri, ;).

i=1

Under review as a conference paper at ICLR 2026

To eliminate confounding variables and information contained in the lexical form of the entity and
relation names, we label each entity and relation with a random ID and tokenize the IDs by characters.
We use the Llama (Touvron et al., 2023) model architecture to implement LMs of different sizes by
adjusting the hidden dimensions and the number of layers. The specific parameter scheme can be
found in the Appendix B.

To evaluate the language model’s capability of reasoning over the knowledge graph, we test the LMs
on a held-out set of triples that are not seen in the training time. Note that all entity and relation
types should have been seen during training time and the language model is only tasked to connect
missing edges. To eliminate the need to generate the correct form of relation and entity IDs, and
to handle the case where multiple correct answers exist, we design the testing set to be 10-option
multiple-choice questions: the language model is tasked to choose the correct tail entity given the
head entity and the relation. We ensure that there is only one correct answer among the given 10
options. Suppose there are M questions in the testing set.! For a ground truth triple (", 7, '), we
design 9 distracting options e(1), e(?) ... e(®). Then we use the test accuracy Acc(f, G) and testing
loss £(6, G) to evaluate the reasoning capability of a language model 6 over the knowledge graph G:

~ h
€; = arg fna); o P@(e‘eiarz’),
66{8;,65 >,e§),...,eg >}

M M
Acc(0,G) =Y 1[e; =el]/M, £(6,G) = —log Py(elle}', r;)/M.

1=1 =1
3 INITIAL EXPERIMENTS WITH REAL-WORLD KNOWLEDGE GRAPH

In our initial sets of experiments, we investigate the reasoning scaling effect using a real-world
knowledge graph, FB15K-237 (Toutanova & Chen, 2015). FB15K-237 is sampled from FB15K
(Bordes et al., 2013), which is a dataset adapted from the Freebase knowledge base (Bollacker et al.,
2007), a web-scale knowledge base released by Google. FB15K-237 contains N, = 14, 505 entities,
N, = 237 relations, and N = 310, 116 knowledge triples. We process this dataset in three different
ways: (a) translate each knowledge triple into a natural language sentence by prompting GPT4 and
then tokenize the sentence with a pre-trained tokenizer, as shown in the first row of Figure 1; (b)
translate each knowledge triple into a natural language sentence using pre-generated templates, as
show in the second row of Figure 1; (c) translate each knowledge triple into text by assigning a
random ID to each entity and relation and tokenize them by characters, as shown in the last row of
Figure 1. An example can be found in Appendix A Figure 5.

In Figure 1, we show different-sized LMs trained on FB15K-237 in all settings with different
numbers of training steps. We observe a consistant reasoning performance drop when using larger
models, across different ways of processing the knowledge triples, while the training loss decreases
monotonically with respect to model size. This observation contradicts the previous belief that larger
models always yield a smaller testing loss.

This implies that a language model can overfit to the training data when it is overparameterized for
the underlying reasoning structure. Such deviation from traditional scaling law has also been reported
in broken neural scaling law (Caballero et al., 2023) which proposed a double-descent-like (Nakkiran
et al., 2020) function form instead of a monotonic power-law form. There have also been observations
of tasks with inverse scaling (Wei et al., 2023) for large LMs.

In this paper, we focus primarily on the scaling of model size and data complexity. Rather than merely
increasing the size of the training data, we explore many different setting for generating synthetic
knowledge graphs. This allows us to ablate individual components of the graph generation process
and examine how overall graph complexity affects reasoning. In the synthetic experiments presented
below, we use random IDs instead of natural language sentences to eliminate lexical and syntactic
effects, yielding cleaner trends from which we can draw quantitative conclusions.

In the following sections, we will mostly focus on understanding the “turning point” of the reasoning
loss. More specifically, we want to understand what is the optimal model size, that is the model size
that can obtain the smallest possible reasoning testing loss. As shown in Figure 1 and in Figure 3

'We fix M = 1000 for all of our experiments.

Under review as a conference paper at ICLR 2026

(a) Reasoning Accuracy (b) Testing Loss (c) Training Loss
o2
GPT-
generated
(f) Training Loss
Template
oo 9 e 2 e @ se 8 113 18 219 438 721 1287
(g) Reasoning Accuracy (h) Testing Loss (i) Training Loss
081 —e— #steps=2000 A) -+~ #steps=2000 e 10 .K,:‘\ +— #steps=2000
#steps=4000 \‘ N —: “ #steps=4000 /1/ . A\\N #steps=4000
#steps=6000 /¥ / #5teps=6000 \ #5teps=6000
07 #steps=8000 / #steps=8000 S 8 #steps=8000
o #steps=10000 — 121 o #steps=10000 P o #steps=10000
z / / ’
; £ 06 £ @ @ -
Triple-only 5 / / & g°
< 4 / \
/ ® \ ~
05 / R -
N s / N \ -
N\ / N
\ / .
S/ . 3 - .
04 N ¥ ~s. — ™
s o A AN 2 ———3
T3 o7 13 Ze 53 15 @0 w0 ma 18 mee eianes W o7 13 Ze 53 w5 2o @0 ma s mee eiines @3 07 13 26 53 15 2o @0 me s We enanes
Llama model size (M) Llama model size (M) Llama model size (M)

Figure 1: The multiple-choice accuracy/loss on unseen triples of different-sized LMs trained on a real-word
knowledge graph FB15K-237. The first column shows that the testing accuracy decreases after a certain model
size. The second column shows U-shape loss curves of LMs trained with different numbers of steps. The third
column shows the training loss decreases steadily. These trends are stable across different ways of processing
the knowledge triples, with the triple-only data shows the cleanest trend. Note that the model size on x-axis is in
log scale.

(a), we find this optimal model size is largely stable when training the model for enough steps. Note
that, at training time, we repeat the training triples for many epochs (e.g. 30 times for FB15K-237) to
find the optimal model size. This graph epoch is different from the real-world cases where we repeat
the whole pretraining corpus for certain epochs. Because we can view each triple in the graph as a
piece of factual knowledge (e.g. Barack Obama’s wife is Michelle Obama), this knowledge is usually
repeated many times in a pretraining text corpus, in many different forms. Therefore, although our
models have seen the same triple many times during training, the same piece of factual knowledge
could also have been repeated several times in one pass of a real-world pretraining corpus.

4 SYNTHETIC DATA CONSTRUCTION

To investigate how the underlying knowledge structure
influences LMs’ reasoning performance, we propose an
algorithm to generate synthetic knowledge graphs that
mimic real-world knowledge graphs. More specifically, N T [P @
we assume that the knowledge graph generation process

is governed by a set of logical rules.

’ 6 \

N 4 s g e g
For example, a rule for inferring the locatedInrelation \P°3 ey) e
can be (e1, locatedIn, es) < (e, neighborOf, e3)

’ r4 T

A (e3, locatedIn, es). Formally, for a target relation M2

, we consider logic rules with conjunctive form. For _, . .
nw n gic rules w Junctiv Figure 2: Nine possible node types generated
Veitizo C €.

by two logical rules. Each entity position in
a rule would create a new entity type. Each
relation shared between two rules would also
create two new entity types.

(€0,7,€n) < (€0,71,€1) A cce A(€n—1,7n, €n),

Under review as a conference paper at ICLR 2026

where (e;_1,7;,¢€;) € G. We abbreviate such rule by h(r) = [r1, 79, ..., 7). We randomly generate
a set of logical rules H and ensure there are no cycles in the set. To grow a graph that follows
these rules, we enforce sparsity of the possible relation types connecting to and branching out each
entity. More specifically, we define node types based on the possible relation types connecting to and
branching out each entity, based on the generated rules, as illustrated in Figure 2. Such sparsity is
also observed in real-world knowledge graphs.

Our random graph generation process is inspired by the preferential attachment process (Barabasi
& Albert, 1999), which is used for generating scale-free networks with a power-law distribution for
the degrees of the nodes. Intuitively, preferential attachment implies a “the rich get richer” approach
to edge placement in the graph. Each time a new node is added to the graph, there is a ‘preference’
to connect to the nodes that are already highly connected, with a probability proportional to the
target node’s degree. Since we have observed the scale-free property in real-world knowledge graphs
and the internet is known to be a scale-free network (Albert et al., 1999), we adopt a preferential
attachment based graph generation process. To accommodate different relation types assigned to
each edge, we maintain a degree distribution for each relationship and add new edges according to
preferential attachment. A comparison of the node degree distribution between synthetic graph and
real-world graph can be found in Appendix C Figure 6.

The code for our random graph generation algorithm is shown in the Appendix D. In summary, we
first randomly generate a set of rules #, with the number of rules || = N}, and the range of rule
length [Lyin, Limaz] as hyperparameters. Then we generate all possible node types as illustrated in
Figure 2, with the maximum number of relations per node M, as a hyperparameter. We generate a
seed graph by instantiating each rule with a set of new entities. To this, we incrementally add one
new entity until the number of entities reaches [V,., by first randomly assigning a node type to it, and
then randomly sampling the m relation types from the set of relations defined by the node type. We
choose the target of these m new edges by preferential attachment. After adding every K entities, we
search through the current graph to add any edges that can be inferred through the logic rules defined
in H. We call the triples that can be deduced through a logic rule by deducible triples, otherwise
atomic triples.

Finally, we limit the number of training triples to /N and ensure that the the ratio between the number
of deductible triples and atomic triples to v by subsampling the generated graph. We also further
ensure that the triples in the held-out test set are all deductible through the training triple. In this way,
we can generate synthetic knowledge graphs with specific sizes and complexity.

5 SCALING LAWS

In this section, we investigate the scaling law of language models trained on different synthetic
knowledge graphs. We conduct controlled experiments to show the effect of individual components
of the data generation process. We also propose an information-theoretical way to measure the overall
reasoning complexity of a knowledge graph, which we call the graph search entropy, and relate this
linearly with the optimal model size. i.e. the model size that obtains the lowest possible testing loss.

5.1 GRAPH GENERATION ABLATION

We study the effects of the following four hyperparameters of graph data generation: the number of
triples IV, the number of entities V., the number of relations /V,., and the number of rules N;. We
fix all training hyperparameters as specified in the Appendix B. In all experiments except Figure 3
(a), we train all models for 10k steps. The detailed data generation configuration for each set of
experiments can also be found in the Appendix B.

Stable optimal model size with respect to training steps. In Figure 3 (a), we show the effect of
training language models on the same knowledge graph with different numbers of training steps. As
mentioned in Section 3, the optimal model size becomes smaller when the number of training steps
increases, and then becomes stable after 4k steps. Another observation is regardless of the number
of training steps, the maximum accuracy or minimum loss is stable. While we have ensured that
all testing triples can be deduced through the training triples, there seems to be a performance cap
determined solely by the knowledge graph data, which is unaffected by model size.

Under review as a conference paper at ICLR 2026

(a) Effect of Training Steps (b) Effect of #Triples
— o Woteps=1000 ~+ wriles=10000
os{ 18 #steps=2000 os » #triples=20000
#steps=4000 #triples=25000
071 1 #5teps=6000 o7 2 #triples=30000
#steps=8000 Hriples=35000
06 3 1 #steps=" o -
R 3 ps-10000 > iples=40000
H #5teps=12000 g g2 #triples=60000 .
§° 121 —a— #steps=16000 § = #triples=80000 -~
04 15| —o— #triples=100000
o 10 <&
Nt
03 8 N/, 10 ._.\
Uama model size (M)) lama model size M) DU amamodel size)
(c) Effect of #Rules (d) Effect of #Relations
250{ —e— #rules=5 — - \ o #relations=10
. #rules=10 / 08 r #relati =20 /s
- \ 25 #rules=20 P / #relations=40 2 »
\ 200 #rules=30 / 07 f > #relations=60 /
. / N, rules=40)] #reltions=g0
175 o+ #rules=50 o8 / ~e— #relations=100 L4
o 4 s £ 4]
13 P Sos 3
£ / .
y ol LA
100] o /
04 P e/ A © ~
, = - /
03 o 2 ey’
ama madelsize () ™ lma model size () i 7 ama mode size ()
(e) Effect of Deductible Ratio (f) Effect of #Entities
0| —— ratio=0.1 A o #entities=1000
rato=03 \ Fentities=2000
. Fentiies=4000
07 L ratio=0.5 #entities=8000
ratio=0.7 y, Fentiies=10000
gm L2 -+ ratio=0.9 ” gul w/”
< / <. 15
o / 4 -
o - A
— 7N\ - o o
A, A # "
02 e

Liama model size (M) Liama model size (M) Liama model size (M) Llama model size (M)

Figure 3: We show the effect of different hyperparameters of the synthetic knowledge graph generation process.
In each experiment, we keep all other parameters the same and only change one hyperparameter. We show the
effect with both the testing accuracy (left) and the testing loss (right) as the y-axis, with different model sizes as
the x-axis in log scale.

More triples implies a larger optimal model size. In Figure 3 (b), we show the effect of the number
of unique triples N sampled after the same knowledge graph generation process. This setting is
arguably the most similar to the real-world pretraining of language models: the underlying world
knowledge graph of all the pretraining corpora is largely stable, and training data are realizations
of the underlying knowledge graph and so the sizes of different corpora are simply a result of
subsampling/upsampling the knowledge in the existing graph. We can see that a larger number
of training triples results in a larger optimal model size and a better reasoning performance. This
observation aligns with the classic scaling laws. However, there exists an optimal model size for
the full knowledge graph: after sampling beyond the size of the full knowledge graph, you can only
sample previously seen knowledge. In this case, the optimal model size would be stable no matter the
training data size.

Number of rules does not impact optimal model size. In Figure 3 (c), we show the effect of
generating knowledge graphs of the same size with different numbers of rules /V;,. More rules mean
that the testing triples need to be solved in more ways. The number of rules does not have a significant
effect on the optimal model size, but affects the reasoning performance. There appears to be an
optimal number of rules (20) that results in the best performance. This is because more rules increases
the complexity of solving the test set while fewer rules increases the ambiguity in the training set. i.e.
a relation may be be deduced through correlations outside of the predefined rules. The reason why
the number of rules does not affect the optimal model size is likely because it does not significantly
impact the graph search entropy. This will be discussed in detail in Section 5.2.

More relations imply a larger optimal model size. In Figure 3 (d), we show the effect of generating
knowledge graphs of the same size and the same number of rules with different numbers of relations
N.,.. While the rules used for deducing the testing set remain the same for all experiments, there are
additional relations that may not be used by any of the rules. We construct knowledge graphs with
an excessive number of relations by adding additional relation patterns. In general, more relations
improves the best reasoning performance while increasing the optimal model size. More relations
increases the complexity of the knowledge graph, and thus increases the optimal model size. On
the other hand, as discussed in the previous experiment, a small number of rules along with a small

Under review as a conference paper at ICLR 2026

144

121

101

Optimal Model Size (M)

— y=0.124x-0.062(R? = 0.85)

0 20 40 60 80 100
Entropy (Kbits)
Figure 4: The optimal model size with the lowest possible testing loss v.s. the graph search entropy. The
red line is the linear regression line using data from the synthetic experiments (blue squares), with a 95%

confidence interval. We also plot the graph search entropy and optimal model size from the real-world FB15K-
237 experiment (green dot) to verify the accuracy of the obtained linear scaling law.

number of relations increases the ambiguity in the training set. By adding dummy relations that are
not used for reasoning, the language model can better distinguish between the logic rules and spurious
correlations between relations. Thus the reasoning performance improves with more relations.

The optimal model size increases with the deductible ratio when the ratio is small. In Figure 3 (e),
we show the effect of generating knowledge graphs with different ratios between deductible triples
and atomic triples, 7y, while keeping the number of entities and the number of triples unchanged. A
larger ratio implies that the language model can see more rule patterns at training time, thus improving
the reasoning performance. The increase in performance and optimal model size stops after a ratio
threshold.

More entities imply a larger optimal model size. In Figure 3 (f), we show the effect of generating
knowledge graphs with different numbers of nodes/entities N,. In this experiment, we also scale the
number of triples to keep all other hyperparameters unchanged. Increasing the number of entities
increases the optimal model size while also increasing the testing loss. More entities imply a larger
graph which increases the graph complexity, thus increasing the optimal model size. As in this
experiment, we use a small number of rule (/N = 5) and relations (N, = 10), an excessive number
of entities and triples will create more ambiguity thus hurting the reasoning performance.

5.2 OPTIMAL MODEL SIZE V.S. GRAPH SEARCH ENTROPY

From our previous ablation studies, we hypothesize that the optimal model size is positively related to
the overall complexity of the knowledge graph. Thus, we propose that we measure the complexity of
a knowledge graph by quantifying the amount of information that can be obtained from the graph by
exploring the graph through a random search. From our task definition, to reason over the knowledge
graph, the language model needs to (a) identify the set of logic rules by observing repetitive patterns;
(b) traverse the graph using one or more specific logic rules to locate the tail entity. So we define the
graph search entropy as the maximum amount of information that can be obtained when randomly
traversing the graph.

To simplify the problem, we first focus on the average amount of information we can observe at
one node of the graph. If we consider a random walk over the knowledge graph, then we refer to
the entropy produced by each step/node on the walk trace for an infinitely long random walk as the
entropy rate of this random walk. For a graph G, the maximum entropy rate is equal to the log of the
largest eigenvalue of the adjacency matrix A. Note that only consider the entropy rate with respect
to the entity, without considering the entropy rate with respect to the relation. We can compute the
relation entropy rate with the stationary distribution and transition matrix induced by the maximal
entropy rate random walk. If we denote the dominating eigenvalue by A € R and the corresponding
eigenvector by 1) € RN¢, then the stationary distribution p € R can be written as:

pi = i/ |[¥|[3-

Under review as a conference paper at ICLR 2026

The transition matrix S € R™¥e* e of the maximal entropy random walk can be written as:
Sig = (Aig /) (W5 /i)

We can then transform the entity-to-entity transition matrix S € R¥e*/Ne into an entity-to-relation
transition matrix S” € R™e>*Nr by merging the entries with the same relation together:

N,
S =10, j, k) € Gl Su.
k=1

Finally, the relation entropy rate H"(G) can be written as:
N. N,
H'(G) == piy_Silog(S]).
i=1 j=1

The overall graph search entropy H (G) can then be written as the sum of the entity entropy rate
and the relation entropy rate multiplied by the number of nodes:

H(G) = N.(log\) + H'(G)).

We empirically investigate the relation between the optimal model and the graph search entropy by
plotting them against each other in Figure 4, and perform linear regression. The optimal model sizes
are obtained from the synthetic experiments conducted in the ablation studies. In the ablation studies
we only report the results for exponentially increasing model sizes for clarity. In this study to better
capture the optimal model size, we make the model sizes near the optimal model size more fine-grain.
In all experiments, we keep the training hyperparameter the same, with 10k train steps.

We find a strong linear relation between the optimal model size and the graph search entropy with
R? = 0.85. Note that there are a few sources of noise for locating the optimal model size for a
specific knowledge graph. First, we only train language model with selected sizes due to compute
and time limitations, and the quantization of the model size would disrupt the smoothness of the
scaling law. Second, the exact location of the optimal model size is dependent on the training steps,
which we did not thoroughly traverse but choose to inspect at the training step 10k.

After fitting a linear regression line using the data from our synthetic experiments, we check the
validity of this empirical scaling law against our real-world knowledge graph, FB15K-237. We
calculate the graph search entropy for FB15K-237, and find the predicted optimal model size is very
close to the observed optimal model size, shown as a green dot in Figure 4.

From our scaling law, we can see that roughly 124 additional parameters in the optimal model size
are required per 1-bit entropy increase in the knowledge graph. That is a language model can only
reliably (not perfectly) reason over 0.008 bit information per parameter. This is very different from
the knowledge capacity scaling law concluded by Allen-Zhu & Li (2025), which shows that the
language model can store 2 bits of knowledge per parameter. We think this discrepancy is due to
two reasons: first, our scaling law is not only about memorizing the knowledge, but also about
reasoning over the learned knowledge, which is significantly harder. Second, the way we compute the
graph search entropy is fundamentally different from the way Allen-Zhu & Li (2025) computes the
knowledge entropy. While Allen-Zhu & Li (2025) describes the entropy of the knowledge generation
process, our graph search entropy describes the entropy of randomly traversing a fixed knowledge
graph. In this way, we did not directly measure the amount of information that a language model
needs to memorize, but measuring the complexity of traversing, and therefore, reasoning over a
graph. It is hard, if not impossible, to obtain the data generation process of real-world data, but it
is possible to get an estimate of the underlying knowledge graph of a corpus through automated
knowledge graph construction algorithms (Zhong et al., 2023). Thus, it is possible to predict the
optimal reasoning model size for real-world pretraining, by first constructing a knowledge graph
from the pretraining corpus, and then computing its graph search entropy, and finally using a similar
scaling law to calculate the optimal model size.

5.3 LIMITATIONS

We want to highlight that this study is only conducted on simplified pretraining data from knowledge
graphs, and the results are not directly applicable to real-world language model pretraining with large

Under review as a conference paper at ICLR 2026

text corpus. The setting of our study provides a reasonable analogy to the real-world language model
pretraining, and the obtained insight might be found useful in the real world when the compute is
abundant with very large models and very large datasets that exhaustively traverse the underlying
knowledge graph. We leave the work of verifying our scaling law in the real word to future research
due to its resource-demanding nature.

6 RELATED WORK

Language Model Scaling Laws Kaplan et al. (2020) first observed a power-law relationship
between LLM perplexity, model parameter count, and training data size, laying the foundation for
scaling law research. Subsequently, Hoffmann et al. (2022b) explored optimal training strategies
under constrained computational resources and discovered that LLM parameter size and the number of
training tokens should scale proportionally to achieve optimal compute efficiency under a fixed budget.
Beyond pretraining performance, researchers further confirmed that downstream task performance
can also be reliably predicted based on model size and training data volume (Hernandez et al., 2021;
Isik et al., 2024). Allen-Zhu & Li (2025); Lu et al. (2024) have turned to exploring more specific
capability dimensions, focusing particularly on the scaling laws of factual memory in LLMs and their
behavioral patterns when memorizing different types of facts. Most recently, Roberts et al. (2025)
have confirmed that scaling laws are skill-dependent, and found that knowledge-intensive tasks are
more parameter-hungry while reasoning-intensive tasks are more data-hungry. Springer et al. (2025)
challenge a core assumption in scaling research—that more pretraining invariably leads to better
downstream performance. Our paper identifies a different U-shaped scaling curve under the specific
scenario of knowledge graph reasoning and reveals that the search complexity of the knowledge
graph determines the optimal model size. This echoes the discovery of Pandey (2024) and Yin et al.
(2024) that classic scaling laws are highly dependent on the data complexity or the compression ratio
of the data. Havrilla & Liao (2024) also confirmed from both theoretical and empirical perspectives
that the power of the power scaling law depends on the intrinsic dimension of the training data.

Language Model Reasoning Our paper focuses on the reasoning capability of LMs which has
drawn a lot of attention recently (Zhang et al., 2023; Chen et al., 2023; Yao et al., 2023a;b; Wang et al.,
2023; Guo et al., 2025; Jin et al., 2024; Yeo et al., 2025; Team et al., 2025; Li et al., 2025). LLMs are
usually trained to reason in a step-by-step manner in real-world tasks like math problems (Wei et al.,
2022b) and coding (Yang et al., 2024). In our experiments, we do not ask LMs to generate a CoT
solution, but ask the language model to directly choose the correct answer from the given options,
because our pretrain-only LMs are not trained to give a CoT solution for a query. Our synthetic
reasoning environment is the most similar to Wang et al. (2024b), which also use the knowledge
graph completion task as a testbed to understand how LMs learn to reason at pretraining time. They
propose that LMs are able to aggregate random walk paths sampled from the knowledge graph. Wang
et al. (2024a); Zhu et al. (2024) also employ a graph structure to ground their synthetic reasoning
tasks to explain how LLMs reason, but their reasoning is defined as concatenations of relations: A is
71 to B and B is 72 to C implies A is 7172 to C. The knowledge graph completion task we employ is
more complex than simple concatenation of relations as the language model needs to find out which
relation 77y corresponds to from the knowledge graph.

7 CONCLUSION

This paper presents a rigorous study of the scaling behavior of implicit reasoning in language models
pretrained on knowledge graphs. Our findings reveal a U-shaped relationship between implicit
reasoning performance and model size: overparameterization induces excessive memorization,
which in turn degrades reasoning ability. We further identify key factors that determine the optimal
model size, including the number of training triples and the complexity of the graph. Most notably,
we propose an empirical scaling law that links the optimal model size to graph search entropy,
demonstrating that a language model can reason over approximately 0.008 bits of information per
parameter. Although our experiments are conducted in controlled settings to ensure rigor, the insights
derived from this work offer promising directions for future studies on real-world pretraining and the
enhancement of reasoning capabilities in large language models.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All experimental settings,
including model architectures, training procedures, and hyperparameters, are described in detail in
Section 2, Section 5 and Appendix B. To facilitate empirical reproducibility, we include a script
of data construction steps in Appendix D. Additionally, we provide a simplified version of our
source code as an easy-to-run Jupyter notebook for reproducing some of our experiments in the
supplementary materials.

REFERENCES

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabdsi. Diameter of the world-wide web. Nature,
401(6749):130-131, September 1999. ISSN 1476-4687. doi: 10.1038/43601. URL https:
//doi.org/10.1038/43601.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=FxNNiUgtfa.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509-512, 1999.

Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: a shared database of structured general
human knowledge. In Proceedings of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAT 07, pp. 1962-1963. AAAI Press, 2007. ISBN 9781577353232.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In CJ.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/lcecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=sckjveqglCZz.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. In International
Conference on Learning Representations, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=N2wYPMpi fA.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

10

https://doi.org/10.1038/43601
https://doi.org/10.1038/43601
https://openreview.net/forum?id=FxNNiUgtfa
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=N2wYPMpifA
https://openreview.net/forum?id=N2wYPMpifA

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pp. 30016-30030, 2022b.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In ICLR
2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 1830-1842, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuan-Jing Huang, and Xipeng Qiu. Scaling laws
for fact memorization of large language models. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 11263-11282, 2024.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Blg5sAdtwr.

Rohan Pandey. gzip predicts data-dependent scaling laws. arXiv preprint arXiv:2405.16684, 2024.

Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute
optimal scaling of skills: Knowledge vs reasoning. arXiv preprint arXiv:2503.10061, 2025.

Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
https://arxiv.org/abs/2503.19206, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Kiristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-
ference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and
Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality, pp. 57-66, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/W15-4007/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers: A
mechanistic journey to the edge of generalization. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024a. URL https://openreview.net/forum?
1d=D4QgSWxiOb.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609-2634, 2023.

11

https://openreview.net/forum?id=B1g5sA4twr
https://aclanthology.org/W15-4007/
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=D4QgSWxiOb

Under review as a conference paper at ICLR 2026

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, and William Yang
Wang. Understanding reasoning ability of language models from the perspective of reasoning
paths aggregation. In Forty-first International Conference on Machine Learning, 2024b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022a. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in neural information processing systems, volume 35, pp. 24824-24837, 2022b.

Jason Wei, Najoung Kim, Yi Tay, and Quoc V Le. Inverse scaling can become u-shaped. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//openreview.net/forum?id=19sGgVUxQw.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and 1lm
performance. arXiv preprint arXiv:2407.06645, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,

2023.

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. A comprehensive survey on automatic
knowledge graph construction. ACM Computing Surveys, 56(4):1-62, 2023.

Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stuart J
Russell. Towards a theoretical understanding of the’reversal curse’via training dynamics. Advances
in Neural Information Processing Systems, 37:90473-90513, 2024.

12

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=19sGqVUxQw
https://openreview.net/forum?id=19sGqVUxQw

Under review as a conference paper at ICLR 2026

APPENDIX

A DATA PROCESSING EXAMPLE

I

Original "triple": {

"head": "drama film",

"relation": "/media_common/netflix_genre/titles",

"tail": "American History X"

}

GPT4 generated "The drama film includes \"American History X\" as one of its Netflix genre titles."
"template": "$tail was released as part of the $head genre on Netflix during its period of popularity.",
"sentence": "American History X is featured under the drama film genre on Netflix."

Triple-only (1254, 22, 765)

Template

Figure 5: An example of a triple being processed in three different ways.

B EXPERIMENT DETAILS

Model size hidden size MLP size #attention heads #layers

0.3M 128 256 2 2
0.7M 128 256 2 4
1.3M 256 512 4 2
2.6M 256 512 4 4
5.3M 256 512 4 8
10.5M 512 1024 8 4
21.0M 512 1024 8 8
42.0M 512 1024 8 16
83.9M 1024 2048 16 8
167.8M 1024 2048 16 16
335.6M 1024 2048 16 32
671.2M 2048 4096 32 16
1342.4M 2048 4096 32 32

Table 1: Language model (Llama) size details

batchsize Ir Irscheduler warmup ratio weightdecay max length

1024 le-4 cosine 0.2 0 128

Table 2: Hyperparameter settings for language model pretraining.

13

Under review as a conference paper at ICLR 2026

N N, N, N, ~y
(a) 100k 10k 100 50 0.5
(b) 10k/20k/.../100k 10k 100 50 0.5
(©) 100k 10k 100 5/10/.../50 0.5
() 100k 10k 10/20/.../100 50 0.5
() 100k 10k 100 50 0.1/0.5/.../0.9
(f) 10k/20k/../100k 1k/2k/.../10k 10 5 0.5

Table 3: Knowledge graph hyperparameter settings for Figure 3 experiments. We keep Ly,in = 2 and Liymae = 4
for all experiments. Here IV denotes the number of triples, N. denotes the number of entities, /N,- denotes the
number of relations, N}, denotes the number of rules, «v denotes the ratio between deductible triples and atomic
triples, Lmin denotes the minimum rule length, and L, ., denotes the maximum rule length.

C SYNTHETIC KNOWLEDGE GRAPH V.S. REAL-WORLD KNOWLEDGE GRAPH

Log Frequency

Distribution of node degrees

Real-world KG

Log Node Degree

Log Frequency
w & u o

~

Synthetic KG

Log Node Degree

Figure 6: Distribution of node degrees of synthetic and real-world knowledge graphs.

Frequency

2500

2000

1500

1000

500

Distribution of #relation types connecting to a node

Real-world KG

0 5 10

15 20 25 30
#In Relations

35

4000

3500

3000

2500

2000

Frequency

1500

1000

500

Synthetic KG

#In Relations

12

Figure 7: Distribution of number of outgoing relations per node of synthetic and real-world knowledge graphs.

14

Under review as a conference paper at ICLR 2026

D SYNTHETIC KNOWLEDGE GRAPH GENERATION CODE

import networkx as nx

import numpy as np

import random

from collections import defaultdict

def add.edge(G, h, t, r):
num_edges = 0
if G.has_edge(h, t):
if r not in G[h][t][’id’]:
G[h][t][’id’].append(r)
num_edges += 1
else:
print (’edge already exists’)
else:
G.add_edge (h, t, id=[r])
num_edges += 1
print(’add edge: ’, (h, r, t), ’num edges: ’, num.edges)

return num_edges

def generate_rules(relations, num_rules, L.min, L_max, weighted=False, temperature=0.25):

Generate K acyclic logic rules with varying lengths
dependency_graph = defaultdict(set)
rules = []
weights = []
if weighted:

for 1 in range(L._min, L_max + 1):

weights.append(np.exp(—temperature*l))

probs = np.array([w / sum(weights) for w in weights])
else:

weights = [1] *% (L.max — L_min + 1)

def has_cycle(start, visited, stack):
”””Detects if adding a new dependency introduces a cycle.

if start not in visited:

333393

visited.add(start)
stack.add(start)
print(’visited: ’, visited)
print(’stack: ', stack)
for neighbor in dependency_graph[start]:
if neighbor in stack:
return True
elif has_cycle(neighbor, visited, stack):
return True
if start in stack:
stack.remove(start)

return False

for _ in range(num.rules):
while True:
if weighted:
length = random.choices(range(L.min, L.max + 1), weights=weights)[0]
else:
length = random.randint(L.min, L_max)
rule_relations = random.choices(relations, k = length + 1) # the first element is the implied relation
valid_rule = True
for i in range(l, len(rule_relations)):

15

Under review as a conference paper at ICLR 2026

dependency_graph[rule_relations[0]].add(rule_relations[i])

Check for cycles
if has_cycle(rule.relations[i], set(), set()):
valid.rule = False
for j in range(l, i + 1):
dependency_graph[rule_relations[0]].remove(rule_relations[j])
break

if valid.rule:
rules.append(tuple(rule_relations))
break

print(’rules: ’, rules)

return rules

def get_node_types(rules, max_num_relations_per_node=3):
map node types to out relations
node_types = {}
map out relations to node types
r2node_types = defaultdict(list)
for rule in rules:
for i in range(len(rule)):
node_-type = len(node_types)
if i ==
node_types[node_type] = [rule[i], rule[1]]
r2node_types[rule[i]].append(node_type)
r2node_types[rule[1]].append(node_type)
elif i == len(rule) — 1:

node_types[node_type] = ['— + rule[i], =’ + rule[0]]

r2node_types[’—" + rule[i]].append(node_type)

r2node_types[’—" + rule[0]].append(node_type)
else:
node_types[node_type] = ['—’ + rule[i], rule[i+1]]
r2node_types[’'—" + rule[i]].append(node_type)

r2node_types[rule[i+1]].append(node_type)

print (node_types)
print(r2node_types)

for num_rs in range(2, max_num_relations_per_node):
possible_new_node_types = []
for r in r2node_types:
alt_.rs = []
for node_-type in r2node_types[r]:
for _r in node_types[node_type]:
if r !=r:
alt.rs.append(-r)
alt.rs = list(set(alt_rs))
for node_type in r2node_types[r]:
if len(node_-types[node_type]) == num.rs:
for _r in alt.rs:
if _r not in node_types[node_type]:
possible_new_node_types.append(tuple(sorted([-r] + list(node_types[node_-type]))))
print(possible_new_node_types)
possible_new_node_types += list(set(possible_new_node_types))
possible_new_node_types = list(set(possible_new_node_types))

print(possible_new_node_types)

16

Under review as a conference paper at ICLR 2026

for rs in possible_new_node_types:
new_node_type = len(node_types)
node_types[new_node_type] = list(rs)
for _r in rs:

r2node_types[.r].append(new_node_type)
return node_types

def get_adj_out_relations(rules):
adj = defaultdict(list)
for rule in rules:
for i in range(len(rule)):
if i == 0:
adj[rule[i]].append(rule[1])
adj[rule[1]].append(rule[i])
elif i == len(rule) — 1:
adj['—’ + rule[i]].append(’'—’ + rule[0])
adj[’—’ + rule[0]].append(’—" + rule[i])
else:
adj[’—" + rule[i]].append(rule[i+1])
adj[rule[i+1]].append(’'—" + rule[i])
return adj

def latent.rule_graph(num.-rules=50, L.min=2, L_max=4, n=10000, m=10, n_r=200,
num_-test=1000, num_train=150000, check_frequency=100,
power_law=False, initial_graph=None,
length_weighted=False, mcmc=0.2, temperature=0.25,
deductible_ratio=0.5):
Generate relations and entities
print("mcmc: ", mcmc)
relations = [’'P’ + str(i) for i in range(n.r)]
all_rules = generate_rules(relations, max(n.r//L_min, num_rules), L.min, L_max)
r2rules = {}
for rule in all_rules:
if rule[0] not in r2rules:
r2rules[rule[0]] = []
r2rules[rule[0]].append(rule[1:])
num_triples = 0
repeated_entities = defaultdict(list) # map in relation to entities
child_relations = []
for rule in all_rules:
child_-relations += rule[1l:]
child_relations = list(set(child._relations))
child_relations += ['—’ + r for r in child_relations]
deductible_rules = random.sample(all_rules, num_rules)
if length_weighted:
weights = [int(100%np.exp(—temperatureklen(rule))) for rule in all_rules]
else:
weights = [1 for _ in all_rules]
repeated_rules = []
for rule, weight in zip(all.rules, weights):
for _ in range(weight):
repeated._rules.append(rule)
random. shuffle(repeated.-rules)
adj = get_adj_out._relations(repeated_rules)
all_deductibles = {}

if initial_graph is None:

Default initial graph

17

Under review as a conference paper at ICLR 2026

G = nx.DiGraph()
node_id = 0
min_repeated_entities = 0
while min_repeated_entities < m:
for rule in all_rules:
source = 'Q’ + str(node_id)
node.id += 1
h = source
for r in rule[1:]:
t = 'Q’ + str(node.id)
node_id += 1
num_triples += add_edge(G, h, t, r)
repeated_entities[r].append(t)
repeated_entities[’—’ + r].append(h)
h=1t
num_triples += add-edge(G, source, t, rule[0])
repeated_entities[rule[0]].append(t)

repeated_entities[’'—’ + rule[0]].append(source)

min_repeated_entities = min([len(set(repeated._entities[r])) for r in child._relations])
else:

if len(initial_graph) < m or len(initial_graph) > n:

raise nx.NetworkXError (

f"Initial graph needs between m:{m} and n:{n} nodes"

D)
G = initial_graph.copy()
node_id = len(G)

if not power_law:
repeated._entities = {r: list(set(repeated_entities[r])) for r in repeated,entities}

Start adding the other nodes.
while node.-id < n:
source = 'Q’ + str(node_id)
node_id += 1
possible_relations = [-r for _r in adj if _r in child._relations]
if len(possible_relations) ==
print(’no adj relations’)
break
print(’add child edge’)
chosen_edges = []
stop = False
for _ in range(m):
it = 0
while (r, t) in chosen._edges:
r = random.choice(possible_relations)
t = random.choice(repeated_entities[r])
it += 1
if it > 100:
print(’ failed to find edge’)

stop = True

break
if stop or len(possible_relations) == 0:
break
possible_relations = [_r for _r in adj[r] if _r in child_.relations]

chosen_edges.append ((r, t))
if r[0] == —’:

num_triples += add_edge(G, t, source, r[l:])

18

Under review as a conference paper at ICLR 2026

repeated_entities[r[1:]].append(source)
else:
num_triples += add_edge(G, source, t, r)

repeated_entities[’'—’ + r].append(source)
repeated_entities[r].append(t)
if len(possible_relations) ==

print(’'no adj relations’)

break

if not power_law:

repeated_entities = {r: list(set(repeated._entities[r])) for r in repeated,entities}

if node_.id % check_frequency == 0 or node_id == n—1:
add deductibles
all _nodes = list(G.nodes)
random.shuffle(all_nodes)
for h in all_nodes:
for rule in deductible_rules:
head_-1list = [h]
r = rule[0]

for _r in rulell:]:
next_head_list = []
for e_h in head-list:
if e.h not in G.nodes:
continue
for e_t in G[e_h]:
if _r in G[e.-h][e_t][’id’]:
if random.random() < mcmc:
next_head_-list.append(e_t)
head_list = next_head_list

for t in head_list:

if (h, r, t) not in all._deductibles:
all_deductibles[Ch, r, t)] = [rule]

elif rule not in all_deductibles[(h, r, t)]:
all_deductibles[(h, r, t)].append(rule)

if not G.has_edge(h, t) or r not in G[h][t][’id’]:
print(’add deductible edge’)
add_edge(G, h, t, r)
num_triples += 1
repeated_entities[r].append(t)

repeated_entities[’—’ + r].append(h)
atomic_triples = []
deductible_triples = []
for h, t in G.edges:
for r in G[h][t][’id’]:
if (h, r, t) not in all_deductibles:
atomic_triples.append((h, r, t))
else:
deductible_triples.append(Ch, r, t))
random. shuffle(atomic_triples)
random.shuffle(deductible_triples)
assert len(atomic_triples) >= int(num_train * (l1—deductible_ratio))

assert len(deductible_triples) >= int(num_train * deductible_ratio) + 2 * num_test

remove_triples = []

train_atomic_triples = atomic_triples[:int(num_train * (l1—deductible_ratio))]

19

Under review as a conference paper at ICLR 2026

remove_triples += atomic_triples[int(num_-train % (1—deductible_ratio)):]
train_deductible_triples = deductible_triples[:int(num_train * deductible_ratio)]

remove_triples += deductible_triples[int(num_train * deductible_ratio):]

for h, r, t in remove_triples:
t o=t
rs = G[h][-t][’id’]
if r in rs:
if len(rs) == 1:
G.remove_edge(h, _t)
else:
G[h][_t][’id’].remove(r)

train_triples = train_deductible_triples + train_atomic_triples
random.shuffle(train_triples)

"

print("num train triples: , len(train_triples))

r2rule = {}
for rule in deductible_rules:
if rule[0] in r2rule:
r2rule[rule[0]].append(rule[1:])
else:
r2rule[rule[0]] = [rule[1l:]]

def check_deductible(triple):
h, r, t = triple
alt_-ts = []
for rule in r2rule([r]:
head_list = [h]
for _r in rule:
next_head_list = []
for e_h in head_list:
for e.t in G[e.h]:
if _r in G[e_h][e_t][’id’]:
next_head_list.append(e_t)
head-list = next_head.-list
alt_ts += head_list
if t in alt_ts:
return True

return False

id_-test_triples = []
for i in range(int(num_train * deductible_ratio), len(deductible_triples)):
if check_deductible(deductible_triples[i]):
id_test_-triples.append(deductible_triples[i])
if len(id_test_triples) == num_test:
break

id_test_rules = [all_deductibles[triple] for triple in id_test_triples]

print("num id test triples: , len(id_test_triples))

rule2triples = defaultdict(list)
for triple in deductible_triples[i+1:]:
for rule in all_deductibles[triple]:
rule2triples[rule].append(triple)

uniformly sample testing triples from each rule

uniform_test_triples = []

for rule in rule2triples:

20

Under review as a conference paper at ICLR 2026

triples = []
for triple in rule2triples[rule]:
if check_deductible(triple):
triples.append(triple)

if len(triples) > num_test//len(rule2triples):
uniform_test_triples += random.sample(triples, num_test//len(rule2triples))
else:

uniform_test_triples += triples

random. shuffle(uniform_test_triples)
uniform_test_rules = [all_deductibles[triple] for triple in uniform_test_triples]

"

print ("num uniform test triples: , len(uniform_test_triples))

return G, deductible_rules, train_triples, id_test_triples, id_test_rules, uniform_test_triples, uniform_test_rules

21

	Introduction
	Method
	Initial Experiments with Real-World Knowledge Graph
	Synthetic Data Construction
	Scaling Laws
	Graph Generation Ablation
	Optimal Model Size v.s. Graph Search Entropy
	Limitations

	Related Work
	Conclusion
	Reproducibility statement
	Data Processing Example
	Experiment Details
	Synthetic Knowledge Graph v.s. Real-world Knowledge Graph
	Synthetic Knowledge Graph Generation Code

