# DO LARGER LANGUAGE MODELS GENERALIZE BETTER? A SCALING LAW FOR IMPLICIT REASONING AT PRETRAINING TIME

**Anonymous authors**Paper under double-blind review

### **ABSTRACT**

Reasoning is an integral part of many tasks performed by language models (LMs). However, the effects of scaling model sizes and data on reasoning abilities at pretraining time remain understudied. To rigorously investigate this problem, we pretrain LMs from scratch on a synthetic implicit multihop reasoning environment designed to closely replicate the structure and distribution of real-world largescale knowledge graphs. We then assess the LMs' ability to complete the missing edges in the graph, which requires multi-hop reasoning that can be viewed as a simplification of implicit reasoning during real-world pretraining. Interestingly, we observe that overparameterization can impair the implicit reasoning performance due to excessive memorization. We investigate different factors that affect the loss curve when scaling different components of the knowledge graph, model size, and training steps. To predict the optimal model size for a specific knowledge graph, we find an empirical scaling law that shows optimal-sized LMs can approximately reason over 0.008 bit information per parameter. This work shows counterintuitive effects of model size scaling and provides new insights into the relationship between scaling and reasoning in LLMs.

### 1 Introduction

Language Models (LMs) have demonstrated remarkable capabilities across a wide range of tasks, with reasoning being a core component (Wei et al., 2022a; Guo et al., 2025). While reasoning is typically enhanced during the post-training stage by encouraging LMs to generate long chain-of-thoughts (CoTs) (Guo et al., 2025; Yang et al., 2025), it is reasonable to assume that they already acquire the foundations of such capability during pretraining, given that post-training operates at a significantly smaller scale. Several recent studies have explored the mechanisms by which LMs may acquire reasoning-related abilities through next-token prediction pretraining (Zhu et al., 2024; Wang et al., 2024a;b). However, the impact of scaling on LMs' reasoning ability during pretraining remains poorly understood.

The general scaling behavior of LMs at pretraining time has been extensively investigated, including the well-known exponential scaling laws for testing loss and compute proposed by Kaplan et al. (2020) and the training compute-optimal scaling studied by Hoffmann et al. (2022a). Recent work has also examined the scaling of specific capabilities like machine translation (Ghorbani et al., 2022) and knowledge capacity/memorization (Allen-Zhu & Li, 2025; Lu et al., 2024). According to these existing scaling laws, it is in general believed that larger models imply better testing loss or task performance.

In this paper, instead we find that the scaling of LMs' reasoning capability at pretraining time differs from normal power-law scaling, in a simplified controlled pretraining environment. We use **implicit reasoning** to denote the reasoning behavior that naturally emerges during pretraining. i.e. the capability to draw new conclusions from existing knowledge without being explicitly trained to generate chain-of-thoughts (CoTs). More specifically, we define implicit reasoning over world knowledge as the task of completing missing edges in an incomplete knowledge graph, which requires multi-hop traversal according to predefined logic rules that are implicitly encoded in the

graph generation process. To investigate this, we pretrain LMs from scratch using only triples from the incomplete graph and then evaluate their ability to infer the missing connections.

With sufficient compute, we find that the curve of implicit reasoning loss versus model size follows a U-shape, revealing an **optimal model size** that yields the best reasoning performance. This suggests that overparameterization may impair the implicit reasoning capability instilled during pretraining. We first observe this phenomenon using data derived from real-world knowledge graphs, and then systematically study it with synthetically generated data.

We investigate important factors that affect the U-shaped scaling of reasoning loss versus language model size. Our important findings can be summarized as follows:

- The minimum reasoning loss reachable by an LM is solely determined by the training data, regardless of training steps and model size.
- The optimal model size is solely determined by knowledge graph complexity and data size regardless of training steps.
- We show that an optimal-sized LM can approximately reason over 0.008 bit information per parameter.

As we observed that the **optimal model size** is likely solely determined by the training knowledge graph, we then aim to find an empirical scaling law that can predict the optimal model size from knowledge graph statistics. We identify a linear relationship between the optimal model size and our proposed **graph search entropy**, which quantifies the entropy of performing random searches on a knowledge graph. Under this framework, we find that each parameter in the optimal model size can reason over approximately 0.008 bits of information in a knowledge graph. In contrast, Allen-Zhu & Li (2025) show that a language model can memorize up to 2 bits of information per parameter—substantially more than its reasoning capacity. This gap arises both from the greater difficulty of reasoning compared to memorization and from the different methodologies used to compute these information quantities. A more detailed discussion is provided in Section 5.2.

Our work contributes to the broader understanding of LLM reasoning by shedding light on the intricate relationship between scaling and implicit reasoning capability. Our proposed empirical reasoning scaling law provides possible practical insights for optimizing LLMs' implicit reasoning ability at pretraining time.

### 2 Method

While real-world LLMs are pretrained on large scale text corpora, this corpus can be viewed as encoding a wide range of world knowledge. The power of LLMs lies in the fact that they can not only memorize the world knowledge and extract the knowledge when queried, but also reason over the world knowledge and draw novel conclusions. In this paper, we propose constructing a simplified pretraining corpus from a knowledge graph. A knowledge graph is comprised of a set of (head entity, relation, tail entity) triples, and we use each knowledge triple as a training example. We test the reasoning capability of a language model trained on such a corpus by testing its accuracy in completing triples that have never been seen in the knowledge graph but can be deduced through latent rules encoded in the graph structure. For example, if we know A is B's father, and B is C's father, then we can deduce that A is C's grandfather.

Formally, a knowledge graph G consists of |G|=N triples  $(e^h,r,e^t)$ , where  $e^h\in\mathcal{E}$  is the head entity,  $e^t\in\mathcal{E}$  is the tail entity, and  $r\in\mathcal{R}$  is a relation. A simple example of knowledge triple is (DC, is the capital of, USA). These knowledge triples naturally form a graph, with nodes as the entities and each edge labeled with a relation type. We denote the total number of entities or nodes by  $|\mathcal{E}|=N_e$  and the total number of edge or relation types by  $|\mathcal{R}|=N_r$ . Then a corpus constructed from this knowledge graph would consist of N data points. The objective of a language model with parameter  $\theta$  trained on this corpus is then:

$$L(\theta) = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} -\log P_{\theta}(e_i^h, r_i, e_i^t).$$

To eliminate confounding variables and information contained in the lexical form of the entity and relation names, we label each entity and relation with a random ID and tokenize the IDs by characters. We use the Llama (Touvron et al., 2023) model architecture to implement LMs of different sizes by adjusting the hidden dimensions and the number of layers. The specific parameter scheme can be found in the Appendix B.

To evaluate the language model's capability of reasoning over the knowledge graph, we test the LMs on a held-out set of triples that are not seen in the training time. Note that all entity and relation types should have been seen during training time and the language model is only tasked to connect missing edges. To eliminate the need to generate the correct form of relation and entity IDs, and to handle the case where multiple correct answers exist, we design the testing set to be 10-option multiple-choice questions: the language model is tasked to choose the correct tail entity given the head entity and the relation. We ensure that there is only one correct answer among the given 10 options. Suppose there are M questions in the testing set. For a ground truth triple  $(e^h, r, e^t)$ , we design 9 distracting options  $e^{(1)}, e^{(2)}, ..., e^{(9)}$ . Then we use the test accuracy  $Acc(\theta, G)$  and testing loss  $\ell(\theta, G)$  to evaluate the reasoning capability of a language model  $\theta$  over the knowledge graph G:

$$\begin{split} \hat{e}_i &= \arg\max_{e \in \{e_i^t, e_i^{(1)}, e_i^{(2)}, \dots, e_i^{(9)}\}} P_{\theta}(e|e_i^h, r_i), \\ \text{Acc}(\theta, G) &= \sum_{i=1}^M \mathbb{1}[\hat{e}_i = e_i^t]/M, \qquad \ell(\theta, G) = \sum_{i=1}^M -\log P_{\theta}(e_i^t|e_i^h, r_i)/M. \end{split}$$

### 3 INITIAL EXPERIMENTS WITH REAL-WORLD KNOWLEDGE GRAPH

In our initial sets of experiments, we investigate the reasoning scaling effect using a real-world knowledge graph, FB15K-237 (Toutanova & Chen, 2015). FB15K-237 is sampled from FB15K (Bordes et al., 2013), which is a dataset adapted from the Freebase knowledge base (Bollacker et al., 2007), a web-scale knowledge base released by Google. FB15K-237 contains  $N_e=14,505$  entities,  $N_r=237$  relations, and N=310,116 knowledge triples. We process this dataset in three different ways: (a) translate each knowledge triple into a natural language sentence by prompting GPT4 and then tokenize the sentence with a pre-trained tokenizer, as shown in the first row of Figure 1; (b) translate each knowledge triple into a natural language sentence using pre-generated templates, as show in the second row of Figure 1; (c) translate each knowledge triple into text by assigning a random ID to each entity and relation and tokenize them by characters, as shown in the last row of Figure 1. An example can be found in Appendix A Figure 5.

In Figure 1, we show different-sized LMs trained on FB15K-237 in all settings with different numbers of training steps. We observe a consistant reasoning performance drop when using larger models, across different ways of processing the knowledge triples, while the training loss decreases monotonically with respect to model size. This observation contradicts the previous belief that larger models always yield a smaller testing loss.

This implies that a language model can overfit to the training data when it is overparameterized for the underlying reasoning structure. Such deviation from traditional scaling law has also been reported in broken neural scaling law (Caballero et al., 2023) which proposed a double-descent-like (Nakkiran et al., 2020) function form instead of a monotonic power-law form. There have also been observations of tasks with inverse scaling (Wei et al., 2023) for large LMs.

In this paper, we focus primarily on the scaling of model size and data complexity. Rather than merely increasing the size of the training data, we explore many different setting for generating synthetic knowledge graphs. This allows us to ablate individual components of the graph generation process and examine how overall graph complexity affects reasoning. In the synthetic experiments presented below, we use random IDs instead of natural language sentences to eliminate lexical and syntactic effects, yielding cleaner trends from which we can draw quantitative conclusions.

In the following sections, we will mostly focus on understanding the "turning point" of the reasoning loss. More specifically, we want to understand what is the **optimal model size**, that is the model size that can obtain the smallest possible reasoning testing loss. As shown in Figure 1 and in Figure 3

<sup>&</sup>lt;sup>1</sup>We fix M = 1000 for all of our experiments.



Figure 1: The multiple-choice accuracy/loss on unseen triples of different-sized LMs trained on a real-word knowledge graph FB15K-237. The first column shows that the testing accuracy decreases after a certain model size. The second column shows U-shape loss curves of LMs trained with different numbers of steps. The third column shows the training loss decreases steadily. These trends are stable across different ways of processing the knowledge triples, with the triple-only data shows the cleanest trend. Note that the model size on x-axis is in log scale.

(a), we find this optimal model size is largely stable when training the model for enough steps. Note that, at training time, we repeat the training triples for many epochs (e.g. 30 times for FB15K-237) to find the optimal model size. This graph epoch is different from the real-world cases where we repeat the whole pretraining corpus for certain epochs. Because we can view each triple in the graph as a piece of factual knowledge (e.g. Barack Obama's wife is Michelle Obama), this knowledge is usually repeated many times in a pretraining text corpus, in many different forms. Therefore, although our models have seen the same triple many times during training, the same piece of factual knowledge could also have been repeated several times in one pass of a real-world pretraining corpus.

### 4 SYNTHETIC DATA CONSTRUCTION

To investigate how the underlying knowledge structure influences LMs' reasoning performance, we propose an algorithm to generate synthetic knowledge graphs that mimic real-world knowledge graphs. More specifically, we assume that the knowledge graph generation process is governed by a set of logical rules.

For example, a rule for inferring the locatedIn relation can be  $(e_1, \texttt{locatedIn}, e_2) \leftarrow (e_1, \texttt{neighborOf}, e_3) \land (e_3, \texttt{locatedIn}, e_2)$ . Formally, for a target relation r, we consider logic rules with conjunctive form. For  $\forall \{e_i\}_{i=0}^n \subset \mathcal{E}$ ,

$$(e_0, r, e_n) \leftarrow (e_0, r_1, e_1) \wedge ... \wedge (e_{n-1}, r_n, e_n),$$



Figure 2: Nine possible node types generated by two logical rules. Each entity position in a rule would create a new entity type. Each relation shared between two rules would also create two new entity types.

where  $(e_{i-1}, r_i, e_i) \in \mathcal{G}$ . We abbreviate such rule by  $h(r) = [r_1, r_2, ..., r_n]$ . We randomly generate a set of logical rules  $\mathcal{H}$  and ensure there are no cycles in the set. To grow a graph that follows these rules, we enforce sparsity of the possible relation types connecting to and branching out each entity. More specifically, we define *node types* based on the possible relation types connecting to and branching out each entity, based on the generated rules, as illustrated in Figure 2. Such sparsity is also observed in real-world knowledge graphs.

Our random graph generation process is inspired by the preferential attachment process (Barabási & Albert, 1999), which is used for generating scale-free networks with a power-law distribution for the degrees of the nodes. Intuitively, preferential attachment implies a "the rich get richer" approach to edge placement in the graph. Each time a new node is added to the graph, there is a 'preference' to connect to the nodes that are already highly connected, with a probability proportional to the target node's degree. Since we have observed the scale-free property in real-world knowledge graphs and the internet is known to be a scale-free network (Albert et al., 1999), we adopt a preferential attachment based graph generation process. To accommodate different relation types assigned to each edge, we maintain a degree distribution for each relationship and add new edges according to preferential attachment. A comparison of the node degree distribution between synthetic graph and real-world graph can be found in Appendix C Figure 6.

The code for our random graph generation algorithm is shown in the Appendix D. In summary, we first randomly generate a set of rules  $\mathcal{H}$ , with the number of rules  $|\mathcal{H}| = N_h$  and the range of rule length  $[L_{min}, L_{max}]$  as hyperparameters. Then we generate all possible node types as illustrated in Figure 2, with the maximum number of relations per node  $M_r$  as a hyperparameter. We generate a seed graph by instantiating each rule with a set of new entities. To this, we incrementally add one new entity until the number of entities reaches  $N_r$ , by first randomly assigning a node type to it, and then randomly sampling the m relation types from the set of relations defined by the node type. We choose the target of these m new edges by preferential attachment. After adding every K entities, we search through the current graph to add any edges that can be inferred through the logic rules defined in  $\mathcal{H}$ . We call the triples that can be deduced through a logic rule by *deducible triples*, otherwise atomic triples.

Finally, we limit the number of training triples to N and ensure that the the ratio between the number of deductible triples and atomic triples to  $\gamma$  by subsampling the generated graph. We also further ensure that the triples in the held-out test set are all deductible through the training triple. In this way, we can generate synthetic knowledge graphs with specific sizes and complexity.

# 5 SCALING LAWS

In this section, we investigate the scaling law of language models trained on different synthetic knowledge graphs. We conduct controlled experiments to show the effect of individual components of the data generation process. We also propose an information-theoretical way to measure the overall reasoning complexity of a knowledge graph, which we call the **graph search entropy**, and relate this linearly with the **optimal model size**. i.e. the model size that obtains the lowest possible testing loss.

# 5.1 GRAPH GENERATION ABLATION

We study the effects of the following four hyperparameters of graph data generation: the number of triples N, the number of entities  $N_e$ , the number of relations  $N_r$ , and the number of rules  $N_h$ . We fix all training hyperparameters as specified in the Appendix B. In all experiments except Figure 3 (a), we train all models for 10k steps. The detailed data generation configuration for each set of experiments can also be found in the Appendix B.

**Stable optimal model size with respect to training steps.** In Figure 3 (a), we show the effect of training language models on the same knowledge graph with different numbers of training steps. As mentioned in Section 3, the optimal model size becomes smaller when the number of training steps increases, and then becomes stable after 4k steps. Another observation is regardless of the number of training steps, the maximum accuracy or minimum loss is stable. While we have ensured that all testing triples can be deduced through the training triples, there seems to be a performance cap determined solely by the knowledge graph data, which is unaffected by model size.



Figure 3: We show the effect of different hyperparameters of the synthetic knowledge graph generation process. In each experiment, we keep all other parameters the same and only change one hyperparameter. We show the effect with both the testing accuracy (left) and the testing loss (right) as the y-axis, with different model sizes as the x-axis in log scale.

More triples implies a larger optimal model size. In Figure 3 (b), we show the effect of the number of unique triples N sampled after the same knowledge graph generation process. This setting is arguably the most similar to the real-world pretraining of language models: the underlying world knowledge graph of all the pretraining corpora is largely stable, and training data are realizations of the underlying knowledge graph and so the sizes of different corpora are simply a result of subsampling/upsampling the knowledge in the existing graph. We can see that a larger number of training triples results in a larger optimal model size and a better reasoning performance. This observation aligns with the classic scaling laws. However, there exists an optimal model size for the full knowledge graph: after sampling beyond the size of the full knowledge graph, you can only sample previously seen knowledge. In this case, the optimal model size would be stable no matter the training data size.

Number of rules does not impact optimal model size. In Figure 3 (c), we show the effect of generating knowledge graphs of the same size with different numbers of rules  $N_h$ . More rules mean that the testing triples need to be solved in more ways. The number of rules does not have a significant effect on the optimal model size, but affects the reasoning performance. There appears to be an optimal number of rules (20) that results in the best performance. This is because more rules increases the complexity of solving the test set while fewer rules increases the ambiguity in the training set. i.e. a relation may be be deduced through correlations outside of the predefined rules. The reason why the number of rules does not affect the optimal model size is likely because it does not significantly impact the graph search entropy. This will be discussed in detail in Section 5.2.

More relations imply a larger optimal model size. In Figure 3 (d), we show the effect of generating knowledge graphs of the same size and the same number of rules with different numbers of relations  $N_r$ . While the rules used for deducing the testing set remain the same for all experiments, there are additional relations that may not be used by any of the rules. We construct knowledge graphs with an excessive number of relations by adding additional relation patterns. In general, more relations improves the best reasoning performance while increasing the optimal model size. More relations increases the complexity of the knowledge graph, and thus increases the optimal model size. On the other hand, as discussed in the previous experiment, a small number of rules along with a small





Figure 4: The optimal model size with the lowest possible testing loss v.s. the graph search entropy. The red line is the linear regression line using data from the synthetic experiments (blue squares), with a 95% confidence interval. We also plot the graph search entropy and optimal model size from the real-world FB15K-237 experiment (green dot) to verify the accuracy of the obtained linear scaling law.

number of relations increases the ambiguity in the training set. By adding dummy relations that are not used for reasoning, the language model can better distinguish between the logic rules and spurious correlations between relations. Thus the reasoning performance improves with more relations.

The optimal model size increases with the deductible ratio when the ratio is small. In Figure 3 (e), we show the effect of generating knowledge graphs with different ratios between deductible triples and atomic triples,  $\gamma$ , while keeping the number of entities and the number of triples unchanged. A larger ratio implies that the language model can see more rule patterns at training time, thus improving the reasoning performance. The increase in performance and optimal model size stops after a ratio threshold.

More entities imply a larger optimal model size. In Figure 3 (f), we show the effect of generating knowledge graphs with different numbers of nodes/entities  $N_e$ . In this experiment, we also scale the number of triples to keep all other hyperparameters unchanged. Increasing the number of entities increases the optimal model size while also increasing the testing loss. More entities imply a larger graph which increases the graph complexity, thus increasing the optimal model size. As in this experiment, we use a small number of rule  $(N_h=5)$  and relations  $(N_r=10)$ , an excessive number of entities and triples will create more ambiguity thus hurting the reasoning performance.

### 5.2 OPTIMAL MODEL SIZE V.S. GRAPH SEARCH ENTROPY

From our previous ablation studies, we hypothesize that the optimal model size is positively related to the overall complexity of the knowledge graph. Thus, we propose that we measure the complexity of a knowledge graph by quantifying the amount of information that can be obtained from the graph by exploring the graph through a random search. From our task definition, to reason over the knowledge graph, the language model needs to (a) identify the set of logic rules by observing repetitive patterns; (b) traverse the graph using one or more specific logic rules to locate the tail entity. So we define the **graph search entropy** as the maximum amount of information that can be obtained when randomly traversing the graph.

To simplify the problem, we first focus on the average amount of information we can observe at one node of the graph. If we consider a random walk over the knowledge graph, then we refer to the entropy produced by each step/node on the walk trace for an infinitely long random walk as the *entropy rate* of this random walk. For a graph G, the maximum entropy rate is equal to the log of the largest eigenvalue of the adjacency matrix A. Note that only consider the entropy rate with respect to the entity, without considering the entropy rate with respect to the relation. We can compute the relation entropy rate with the stationary distribution and transition matrix induced by the maximal entropy rate random walk. If we denote the dominating eigenvalue by  $\lambda \in \mathbb{R}$  and the corresponding eigenvector by  $\psi \in \mathbb{R}^{N_e}$ , then the stationary distribution  $\rho \in \mathbb{R}^{N_e}$  can be written as:

$$\rho_i = \psi_i / ||\psi||_2^2.$$

The transition matrix  $S \in \mathbb{R}^{N_e \times N_e}$  of the maximal entropy random walk can be written as:

$$S_{ij} = (A_{ij}/\lambda)(\psi_j/\psi_i).$$

We can then transform the entity-to-entity transition matrix  $S \in \mathbb{R}^{N_e \times N_e}$  into an entity-to-relation transition matrix  $S^r \in \mathbb{R}^{N_e \times N_r}$  by merging the entries with the same relation together:

$$S_{ij}^r = \sum_{k=1}^{N_e} \mathbb{1}[(i, j, k) \in G] S_{ik}.$$

Finally, the relation entropy rate  $H^r(G)$  can be written as:

$$H^{r}(G) = -\sum_{i=1}^{N_e} \rho_i \sum_{j=1}^{N_r} S_{ij}^{r} \log(S_{ij}^{r}).$$

The overall **graph search entropy** H(G) can then be written as the sum of the entity entropy rate and the relation entropy rate multiplied by the number of nodes:

$$H(G) = N_e(\log(\lambda) + H^r(G)).$$

We empirically investigate the relation between the optimal model and the graph search entropy by plotting them against each other in Figure 4, and perform linear regression. The optimal model sizes are obtained from the synthetic experiments conducted in the ablation studies. In the ablation studies we only report the results for exponentially increasing model sizes for clarity. In this study to better capture the optimal model size, we make the model sizes near the optimal model size more fine-grain. In all experiments, we keep the training hyperparameter the same, with 10k train steps.

We find a strong linear relation between the optimal model size and the graph search entropy with  $R^2=0.85$ . Note that there are a few sources of noise for locating the optimal model size for a specific knowledge graph. First, we only train language model with selected sizes due to compute and time limitations, and the quantization of the model size would disrupt the smoothness of the scaling law. Second, the exact location of the optimal model size is dependent on the training steps, which we did not thoroughly traverse but choose to inspect at the training step 10k.

After fitting a linear regression line using the data from our synthetic experiments, we check the validity of this empirical scaling law against our real-world knowledge graph, FB15K-237. We calculate the graph search entropy for FB15K-237, and find the predicted optimal model size is very close to the observed optimal model size, shown as a green dot in Figure 4.

From our scaling law, we can see that roughly 124 additional parameters in the optimal model size are required per 1-bit entropy increase in the knowledge graph. That is a language model can only reliably (not perfectly) reason over 0.008 bit information per parameter. This is very different from the knowledge capacity scaling law concluded by Allen-Zhu & Li (2025), which shows that the language model can store 2 bits of knowledge per parameter. We think this discrepancy is due to two reasons: first, our scaling law is not only about memorizing the knowledge, but also about reasoning over the learned knowledge, which is significantly harder. Second, the way we compute the graph search entropy is fundamentally different from the way Allen-Zhu & Li (2025) computes the knowledge entropy. While Allen-Zhu & Li (2025) describes the entropy of the knowledge generation process, our graph search entropy describes the entropy of randomly traversing a fixed knowledge graph. In this way, we did not directly measure the amount of information that a language model needs to memorize, but measuring the complexity of traversing, and therefore, reasoning over a graph. It is hard, if not impossible, to obtain the data generation process of real-world data, but it is possible to get an estimate of the underlying knowledge graph of a corpus through automated knowledge graph construction algorithms (Zhong et al., 2023). Thus, it is possible to predict the optimal reasoning model size for real-world pretraining, by first constructing a knowledge graph from the pretraining corpus, and then computing its graph search entropy, and finally using a similar scaling law to calculate the optimal model size.

### 5.3 LIMITATIONS

We want to highlight that this study is only conducted on simplified pretraining data from knowledge graphs, and the results are not directly applicable to real-world language model pretraining with large

text corpus. The setting of our study provides a reasonable analogy to the real-world language model pretraining, and the obtained insight might be found useful in the real world when the compute is abundant with very large models and very large datasets that exhaustively traverse the underlying knowledge graph. We leave the work of verifying our scaling law in the real word to future research due to its resource-demanding nature.

### 6 RELATED WORK

**Language Model Scaling Laws** Kaplan et al. (2020) first observed a power-law relationship between LLM perplexity, model parameter count, and training data size, laying the foundation for scaling law research. Subsequently, Hoffmann et al. (2022b) explored optimal training strategies under constrained computational resources and discovered that LLM parameter size and the number of training tokens should scale proportionally to achieve optimal compute efficiency under a fixed budget. Beyond pretraining performance, researchers further confirmed that downstream task performance can also be reliably predicted based on model size and training data volume (Hernandez et al., 2021; Isik et al., 2024). Allen-Zhu & Li (2025); Lu et al. (2024) have turned to exploring more specific capability dimensions, focusing particularly on the scaling laws of factual memory in LLMs and their behavioral patterns when memorizing different types of facts. Most recently, Roberts et al. (2025) have confirmed that scaling laws are skill-dependent, and found that knowledge-intensive tasks are more parameter-hungry while reasoning-intensive tasks are more data-hungry. Springer et al. (2025) challenge a core assumption in scaling research—that more pretraining invariably leads to better downstream performance. Our paper identifies a different U-shaped scaling curve under the specific scenario of knowledge graph reasoning and reveals that the search complexity of the knowledge graph determines the optimal model size. This echoes the discovery of Pandey (2024) and Yin et al. (2024) that classic scaling laws are highly dependent on the data complexity or the compression ratio of the data. Havrilla & Liao (2024) also confirmed from both theoretical and empirical perspectives that the power of the power scaling law depends on the intrinsic dimension of the training data.

Language Model Reasoning Our paper focuses on the reasoning capability of LMs which has drawn a lot of attention recently (Zhang et al., 2023; Chen et al., 2023; Yao et al., 2023a;b; Wang et al., 2023; Guo et al., 2025; Jin et al., 2024; Yeo et al., 2025; Team et al., 2025; Li et al., 2025). LLMs are usually trained to reason in a step-by-step manner in real-world tasks like math problems (Wei et al., 2022b) and coding (Yang et al., 2024). In our experiments, we do not ask LMs to generate a CoT solution, but ask the language model to directly choose the correct answer from the given options, because our pretrain-only LMs are not trained to give a CoT solution for a query. Our synthetic reasoning environment is the most similar to Wang et al. (2024b), which also use the knowledge graph completion task as a testbed to understand how LMs learn to reason at pretraining time. They propose that LMs are able to aggregate random walk paths sampled from the knowledge graph. Wang et al. (2024a); Zhu et al. (2024) also employ a graph structure to ground their synthetic reasoning tasks to explain how LLMs reason, but their reasoning is defined as concatenations of relations: A is  $r_1$  to B and B is  $r_2$  to C implies A is  $r_1r_2$  to C. The knowledge graph completion task we employ is more complex than simple concatenation of relations as the language model needs to find out which relation  $r_1r_2$  corresponds to from the knowledge graph.

### 7 Conclusion

This paper presents a rigorous study of the scaling behavior of implicit reasoning in language models pretrained on knowledge graphs. Our findings reveal a U-shaped relationship between implicit reasoning performance and model size: overparameterization induces excessive memorization, which in turn degrades reasoning ability. We further identify key factors that determine the optimal model size, including the number of training triples and the complexity of the graph. Most notably, we propose an empirical scaling law that links the optimal model size to graph search entropy, demonstrating that a language model can reason over approximately 0.008 bits of information per parameter. Although our experiments are conducted in controlled settings to ensure rigor, the insights derived from this work offer promising directions for future studies on real-world pretraining and the enhancement of reasoning capabilities in large language models.

# 8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All experimental settings, including model architectures, training procedures, and hyperparameters, are described in detail in Section 2, Section 5 and Appendix B. To facilitate empirical reproducibility, we include a script of data construction steps in Appendix D. Additionally, we provide a simplified version of our source code as an easy-to-run Jupyter notebook for reproducing some of our experiments in the supplementary materials.

# REFERENCES

- Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the world-wide web. *Nature*, 401(6749):130–131, September 1999. ISSN 1476-4687. doi: 10.1038/43601. URL https://doi.org/10.1038/43601.
- Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling laws. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=FxNNiUgtfa.
- Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*, 286 (5439):509–512, 1999.
- Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: a shared database of structured general human knowledge. In *Proceedings of the 22nd National Conference on Artificial Intelligence Volume 2*, AAAI'07, pp. 1962–1963. AAAI Press, 2007. ISBN 9781577353232.
- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper\_files/paper/2013/file/lcecc7a77928ca8133fa24680a88d2f9-Paper.pdf.
- Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=sckjveqlCZ.
- Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. *Transactions on Machine Learning Research*, 2023.
- Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia, Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. In *International Conference on Learning Representations*, 2022.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation theory for transformer neural networks on intrinsically low-dimensional data. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=N2wYPMpifA.
- Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer. *arXiv preprint arXiv:2102.01293*, 2021.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, pp. 30016–30030, 2022b.

- Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In *ICLR* 2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024.
- Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and Mengnan Du. The impact of reasoning step length on large language models. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 1830–1842, 2024.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv* preprint arXiv:2001.08361, 2020.
- Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025.
- Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuan-Jing Huang, and Xipeng Qiu. Scaling laws for fact memorization of large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 11263–11282, 2024.
- Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=Blg5sA4twr.
- Rohan Pandey. gzip predicts data-dependent scaling laws. arXiv preprint arXiv:2405.16684, 2024.
- Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute optimal scaling of skills: Knowledge vs reasoning. *arXiv preprint arXiv:2503.10061*, 2025.
- Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi, Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune. https://arxiv.org/abs/2503.19206, 2025.
- Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
- Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and Scott Wen-tau Yih (eds.), *Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality*, pp. 57–66, Beijing, China, July 2015. Association for Computational Linguistics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/W15-4007/.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers: A mechanistic journey to the edge of generalization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024a. URL https://openreview.net/forum?id=D4QgSWxiOb.
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pp. 2609–2634, 2023.

- Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, and William Yang Wang. Understanding reasoning ability of language models from the perspective of reasoning paths aggregation. In *Forty-first International Conference on Machine Learning*, 2024b.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022a. ISSN 2835-8856. URL https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in neural information processing systems*, volume 35, pp. 24824–24837, 2022b.
- Jason Wei, Najoung Kim, Yi Tay, and Quoc V Le. Inverse scaling can become u-shaped. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=19sGqVUxQw.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
- John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023b.
- Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.
- Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm performance. *arXiv preprint arXiv:2407.06645*, 2024.
- Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large language models. In *The Eleventh International Conference on Learning Representations*, 2023.
- Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. A comprehensive survey on automatic knowledge graph construction. *ACM Computing Surveys*, 56(4):1–62, 2023.
- Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stuart J Russell. Towards a theoretical understanding of the reversal curse via training dynamics. Advances in Neural Information Processing Systems, 37:90473–90513, 2024.

# **APPENDIX**

# A DATA PROCESSING EXAMPLE

| Туре           | Example                                                                                                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original       | "triple": {     "head": "drama film",     "relation": "/media_common/netflix_genre/titles",     "tail": "American History X" }                                                                 |
| GPT4 generated | "The drama film includes \"American History X\" as one of its Netflix genre titles."                                                                                                           |
| Template       | "template": "\$tail was released as part of the \$head genre on Netflix during its period of popularity.", "sentence": "American History X is featured under the drama film genre on Netflix." |
| Triple-only    | (1254, 22, 765)                                                                                                                                                                                |

Figure 5: An example of a triple being processed in three different ways.

# B EXPERIMENT DETAILS

| Model size | hidden size | MLP size | #attention heads | #layers |
|------------|-------------|----------|------------------|---------|
| 0.3M       | 128         | 256      | 2                | 2       |
| 0.7M       | 128         | 256      | 2                | 4       |
| 1.3M       | 256         | 512      | 4                | 2       |
| 2.6M       | 256         | 512      | 4                | 4       |
| 5.3M       | 256         | 512      | 4                | 8       |
| 10.5M      | 512         | 1024     | 8                | 4       |
| 21.0M      | 512         | 1024     | 8                | 8       |
| 42.0M      | 512         | 1024     | 8                | 16      |
| 83.9M      | 1024        | 2048     | 16               | 8       |
| 167.8M     | 1024        | 2048     | 16               | 16      |
| 335.6M     | 1024        | 2048     | 16               | 32      |
| 671.2M     | 2048        | 4096     | 32               | 16      |
| 1342.4M    | 2048        | 4096     | 32               | 32      |

Table 1: Language model (Llama) size details

| batch size | lr   | lr scheduler | warmup ratio | weight decay | max length |
|------------|------|--------------|--------------|--------------|------------|
| 1024       | 1e-4 | cosine       | 0.2          | 0            | 128        |

Table 2: Hyperparameter settings for language model pretraining.

|     | N             | $N_e$      | $N_r$      | $N_h$    | $\gamma$     |
|-----|---------------|------------|------------|----------|--------------|
| (a) | 100k          | 10k        | 100        | 50       | 0.5          |
| (b) | 10k/20k//100k | 10k        | 100        | 50       | 0.5          |
| (c) | 100k          | 10k        | 100        | 5/10//50 | 0.5          |
| (d) | 100k          | 10k        | 10/20//100 | 50       | 0.5          |
| (e) | 100k          | 10k        | 100        | 50       | 0.1/0.5//0.9 |
| (f) | 10k/20k//100k | 1k/2k//10k | 10         | 5        | 0.5          |

Table 3: Knowledge graph hyperparameter settings for Figure 3 experiments. We keep  $L_{min}=2$  and  $L_{max}=4$  for all experiments. Here N denotes the number of triples,  $N_e$  denotes the number of entities,  $N_r$  denotes the number of relations,  $N_h$  denotes the number of rules,  $\gamma$  denotes the ratio between deductible triples and atomic triples,  $L_{min}$  denotes the minimum rule length, and  $L_{max}$  denotes the maximum rule length.

# C SYNTHETIC KNOWLEDGE GRAPH V.S. REAL-WORLD KNOWLEDGE GRAPH



Figure 6: Distribution of node degrees of synthetic and real-world knowledge graphs.



Figure 7: Distribution of number of outgoing relations per node of synthetic and real-world knowledge graphs.

757

# D SYNTHETIC KNOWLEDGE GRAPH GENERATION CODE

```
758
        import networkx as nx
759
        import numpy as np
760
        import random
761
        \textbf{from} \ \text{collections} \ \textbf{import} \ \text{defaultdict}
762
763
        def add_edge(G, h, t, r):
764
            num_edges = 0
765
            if G.has_edge(h, t):
                 if r not in G[h][t]['id']:
766
                     G[h][t]['id'].append(r)
767
                     num_edges += 1
768
                 else:
769
                     print('edge already exists')
770
            else:
771
                 G.add_edge(h, t, id=[r])
772
                 num_edges += 1
773
            print('add edge: ', (h, r, t), 'num edges: ', num_edges)
774
             return num_edges
775
776
        def generate_rules(relations, num_rules, L_min, L_max, weighted=False, temperature=0.25):
777
            # Generate K acyclic logic rules with varying lengths
778
            dependency_graph = defaultdict(set)
779
            rules = []
780
            weights = []
781
            if weighted:
782
                 for 1 in range(L_min, L_max + 1):
783
                     weights.append(np.exp(-temperature*1))
784
                 probs = np.array([w / sum(weights) for w in weights])
785
             else:
786
                 weights = [1] * (L_max - L_min + 1)
787
             def has_cycle(start, visited, stack):
788
                 """Detects if adding a new dependency introduces a cycle."""
789
                 if start not in visited:
790
                     visited.add(start)
791
                     stack.add(start)
792
                     print('visited: ', visited)
793
                     print('stack: ', stack)
794
                     for neighbor in dependency_graph[start]:
795
                         if neighbor in stack:
796
                             return True
797
                         elif has_cycle(neighbor, visited, stack):
                             return True
                 if start in stack:
799
                     stack.remove(start)
800
                 return False
801
802
             for _ in range(num_rules):
803
                 while True:
804
                     if weighted:
805
                         length = random.choices(range(L_min, L_max + 1), weights=weights)[0]
806
807
                         length = random.randint(L_min, L_max)
                     rule_relations = random.choices(relations, k = length + 1) # the first element is the implied relation
808
                     valid rule = True
809
                     for i in range(1, len(rule_relations)):
```

```
810
                         dependency_graph[rule_relations[0]].add(rule_relations[i])
811
812
                        # Check for cycles
813
                        if has_cycle(rule_relations[i], set(), set()):
814
                             valid_rule = False
815
                             for j in range(1, i + 1):
816
                                 dependency_graph[rule_relations[0]].remove(rule_relations[j])
817
818
                    if valid_rule:
819
                         rules.append(tuple(rule_relations))
820
                        break
821
822
            print('rules: ', rules)
823
            return rules
824
825
        def get_node_types(rules, max_num_relations_per_node=3):
826
            # map node types to out relations
            node_types = {}
827
            # map out relations to node types
828
            r2node_types = defaultdict(list)
829
            for rule in rules:
830
                for i in range(len(rule)):
831
                    node_type = len(node_types)
832
                    if i == 0:
833
                         node_types[node_type] = [rule[i], rule[1]]
834
                         r2node_types[rule[i]].append(node_type)
835
                         r2node_types[rule[1]].append(node_type)
836
                     elif i == len(rule) - 1:
837
                         node_types[node_type] = ['-' + rule[i], '-' + rule[0]]
838
                         r2node_types['-' + rule[i]].append(node_type)
                         r2node_types['-' + rule[0]].append(node_type)
839
840
                        node_types[node_type] = ['-' + rule[i], rule[i+1]]
841
                         r2node_types['-' + rule[i]].append(node_type)
842
                         r2node_types[rule[i+1]].append(node_type)
843
844
            print(node_types)
845
            print(r2node_types)
846
847
            for num_rs in range(2, max_num_relations_per_node):
848
                possible_new_node_types = []
849
                for r in r2node_types:
                    alt_rs = []
850
851
                     for node_type in r2node_types[r]:
                         for _r in node_types[node_type]:
852
                             if _r != r:
853
                                 alt_rs.append(_r)
854
                    alt_rs = list(set(alt_rs))
855
                    for node_type in r2node_types[r]:
856
                         if len(node_types[node_type]) == num_rs:
857
                             for _r in alt_rs:
858
                                 if _r not in node_types[node_type]:
859
                                     possible_new_node_types.append(tuple(sorted([_r] + list(node_types[node_type]))))
860
                    print(possible_new_node_types)
                     possible_new_node_types += list(set(possible_new_node_types))
861
                possible_new_node_types = list(set(possible_new_node_types))
862
                print(possible_new_node_types)
863
```

```
864
                 for rs in possible_new_node_types:
865
                     new_node_type = len(node_types)
866
                     node_types[new_node_type] = list(rs)
867
                     for _r in rs:
868
                         r2node_types[_r].append(new_node_type)
869
870
             return node_types
871
        def get_adj_out_relations(rules):
872
             adj = defaultdict(list)
873
             for rule in rules:
874
                 for i in range(len(rule)):
875
                     if i == 0:
876
                         adj[rule[i]].append(rule[1])
877
                         adj[rule[1]].append(rule[i])
878
                     elif i == len(rule) - 1:
879
                         adj['-' + rule[i]].append('-' + rule[0])
880
                         adj['-' + rule[0]].append('-' + rule[i])
881
                     else:
                         adj['-' + rule[i]].append(rule[i+1])
882
                         adj[rule[i+1]].append('-' + rule[i])
883
             return adj
884
885
         def latent_rule_graph(num_rules=50, L_min=2, L_max=4, n=10000, m=10, n_r=200,
886
                               num\_test = 1000\,, \quad num\_train = 150000\,, \quad check\_frequency = 100\,,
887
                               power_law=False, initial_graph=None,
888
                               length_weighted=False, mcmc=0.2, temperature=0.25,
889
                               deductible_ratio=0.5):
890
             # Generate relations and entities
891
             print("mcmc: ", mcmc)
892
             relations = ['P' + str(i) for i in range(n_r)]
893
             all_rules = generate_rules(relations, max(n_r//L_min, num_rules), L_min, L_max)
             r2rules = {}
894
             for rule in all_rules:
895
                 if rule[0] not in r2rules:
896
                     r2rules[rule[0]] = []
897
                 r2rules[rule[0]].append(rule[1:])
898
             num_triples = 0
899
             repeated_entities = defaultdict(list) # map in relation to entities
900
             child_relations = []
901
             for rule in all_rules:
902
                 child_relations += rule[1:]
903
             child_relations = list(set(child_relations))
             child_relations += ['-' + r for r in child_relations]
904
905
             deductible_rules = random.sample(all_rules, num_rules)
             if length_weighted:
906
                 weights = [int(100*np.exp(-temperature*len(rule))) for rule in all_rules]
907
908
                 weights = [1 for _ in all_rules]
909
             repeated_rules = []
910
             for rule, weight in zip(all_rules, weights):
911
                 for _ in range(weight):
912
                     repeated_rules.append(rule)
913
             random.shuffle(repeated_rules)
914
             adj = get_adj_out_relations(repeated_rules)
             all_deductibles = {}
915
916
             if initial_graph is None:
917
                 # Default initial graph
```

```
918
                G = nx.DiGraph()
919
                 node_id = 0
920
                min_repeated_entities = 0
921
                 while min_repeated_entities < m:
922
                     for rule in all_rules:
923
                         source = 'Q' + str(node_id)
924
                        node_id += 1
                        h = source
925
                         for r in rule[1:]:
926
                             t = 'Q' + str(node_id)
927
                             node_id += 1
928
                             num_triples += add_edge(G, h, t, r)
929
                             repeated_entities[r].append(t)
930
                             repeated_entities['-' + r].append(h)
931
932
                         num_triples += add_edge(G, source, t, rule[0])
933
                         repeated_entities[rule[0]].append(t)
934
                         repeated_entities['-' + rule[0]].append(source)
935
                     min_repeated_entities = min([len(set(repeated_entities[r])) for r in child_relations])
             else:
937
                 if len(initial_graph) < m or len(initial_graph) > n:
938
                    raise nx.NetworkXError(
939
                         f"Initial graph needs between m=\{m\} and n=\{n\} nodes"
940
941
                 G = initial_graph.copy()
942
                 node_id = len(G)
943
944
             if not power_law:
945
                 repeated_entities = {r: list(set(repeated_entities[r])) for r in repeated_entities}
946
            # Start adding the other nodes.
947
            while node_id < n:
948
                 source = 'Q' + str(node_id)
949
950
                 possible_relations = [_r for _r in adj if _r in child_relations]
951
                if len(possible_relations) == 0:
952
                    print('no adj relations')
953
                    break
954
                 print('add child edge')
955
                 chosen_edges = []
956
                stop = False
957
                 for _ in range(m):
                    it = 0
958
959
                     while (r, t) in chosen_edges:
                        r = random.choice(possible_relations)
960
                         t = random.choice(repeated_entities[r])
961
962
                         if it > 100:
963
                             print('failed to find edge')
964
                             stop = True
965
                             break
966
                    if stop or len(possible_relations) == 0:
967
                         break
968
                     possible_relations = [_r for _r in adj[r] if _r in child_relations]
969
                     chosen_edges.append((r, t))
970
                    if r[0] == '-':
971
                         num_triples += add_edge(G, t, source, r[1:])
```

```
972
                         repeated_entities[r[1:]].append(source)
973
974
                         num_triples += add_edge(G, source, t, r)
975
                         repeated_entities['-' + r].append(source)
976
                    repeated_entities[r].append(t)
977
                     if len(possible_relations) == 0:
978
                         print('no adj relations')
                         break
979
980
                if not power_law:
981
                     repeated_entities = \{r: list(set(repeated_entities[r])) for r in repeated_entities\}
982
983
                 if node_id % check_frequency == 0 or node_id == n-1:
984
                    # add deductibles
985
                     all_nodes = list(G.nodes)
986
                     random.shuffle(all_nodes)
987
                     for h in all_nodes:
988
                         for rule in deductible_rules:
                             head_list = [h]
989
                             r = rule[0]
991
                             for _r in rule[1:]:
992
                                 next_head_list = []
993
                                 for e h in head list:
994
                                     if e_h not in G.nodes:
995
                                         continue
996
                                     for e_t in G[e_h]:
997
                                         if _r in G[e_h][e_t]['id']:
998
                                              if random.random() < mcmc:</pre>
999
                                                  next_head_list.append(e_t)
1000
                                 head_list = next_head_list
1001
                             for t in head_list:
1002
                                 if (h, r, t) not in all_deductibles:
1003
                                     all_deductibles[(h, r, t)] = [rule]
1004
                                 elif rule not in all_deductibles[(h, r, t)]:
1005
                                     all_deductibles[(h, r, t)].append(rule)
1006
                                 if not G.has_edge(h, t) or r not in G[h][t]['id']:
1007
                                     print('add deductible edge')
1008
                                     add_edge(G, h, t, r)
1009
                                     num_triples += 1
1010
                                     repeated_entities[r].append(t)
1011
                                     repeated_entities['-' + r].append(h)
1012
            atomic_triples = []
1013
            deductible_triples = []
1014
            for h, t in G.edges:
1015
                for r in G[h][t]['id']:
1016
                    if (h, r, t) not in all_deductibles:
1017
                         atomic_triples.append((h, r, t))
1018
                     else:
1019
                         deductible_triples.append((h, r, t))
1020
            random.shuffle(atomic_triples)
1021
            random.shuffle(deductible_triples)
1022
            assert len(atomic_triples) >= int(num_train * (1-deductible_ratio))
            assert len(deductible_triples) >= int(num_train * deductible_ratio) + 2 * num_test
1023
1024
            remove_triples = []
1025
            train_atomic_triples = atomic_triples[:int(num_train * (1—deductible_ratio))]
```

```
1026
            remove_triples += atomic_triples[int(num_train * (1-deductible_ratio)):]
1027
            train_deductible_triples = deductible_triples[:int(num_train * deductible_ratio)]
1028
            remove_triples += deductible_triples[int(num_train * deductible_ratio):]
1029
1030
            for h, r, t in remove_triples:
1031
                _{-}t = t
1032
                rs = G[h][_t]['id']
                if r in rs:
1033
                    if len(rs) == 1:
1034
                        G.remove_edge(h, _t)
1035
                    else:
1036
                        G[h][_t]['id'].remove(r)
1037
1038
            train_triples = train_deductible_triples + train_atomic_triples
1039
            random.shuffle(train_triples)
1040
            print("num train triples: ", len(train_triples))
1041
1042
            r2rule = {}
1043
            for rule in deductible_rules:
                if rule[0] in r2rule:
1044
                    r2rule[rule[0]].append(rule[1:])
1045
                else:
1046
                    r2rule[rule[0]] = [rule[1:]]
1047
1048
            def check_deductible(triple):
1049
                h, r, t = triple
1050
                alt_ts = []
1051
                for rule in r2rule[r]:
1052
                    head_list = [h]
1053
                    for _r in rule:
                        next_head_list = []
1054
1055
                        for e_h in head_list:
                             for e_t in G[e_h]:
1056
                                 if _r in G[e_h][e_t]['id']:
1057
                                     next_head_list.append(e_t)
1058
                        head_list = next_head_list
1059
                    alt_ts += head_list
1060
                if t in alt ts:
1061
                    return True
1062
                return False
1063
1064
            id_test_triples = []
1065
            for i in range(int(num_train * deductible_ratio), len(deductible_triples)):
                if check_deductible(deductible_triples[i]):
1066
1067
                    id_test_triples.append(deductible_triples[i])
                if len(id_test_triples) == num_test:
1068
                    break
1069
1070
            id_test_rules = [all_deductibles[triple] for triple in id_test_triples]
1071
            print("num id test triples: ", len(id_test_triples))
1072
1073
            rule2triples = defaultdict(list)
1074
            for triple in deductible_triples[i+1:]:
1075
                for rule in all_deductibles[triple]:
1076
                    rule2triples[rule].append(triple)
1077
            # uniformly sample testing triples from each rule
1078
            uniform_test_triples = []
1079
            for rule in rule2triples:
```

```
1080
                triples = []
1081
                for triple in rule2triples[rule]:
1082
                    if check_deductible(triple):
1083
                        triples.append(triple)
1084
1085
                if len(triples) > num_test//len(rule2triples):
1086
                    uniform_test_triples += random.sample(triples, num_test//len(rule2triples))
1087
                    uniform_test_triples += triples
1088
1089
            random.shuffle(uniform_test_triples)
1090
            uniform_test_rules = [all_deductibles[triple] for triple in uniform_test_triples]
1091
            print("num uniform test triples: ", len(uniform_test_triples))
1092
1093
            return G, deductible_rules, train_triples, id_test_triples, id_test_rules, uniform_test_triples, uniform_test_rules
1094
1095
1096
1097
```