
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DO LARGER LANGUAGE MODELS GENERALIZE
BETTER? A SCALING LAW FOR IMPLICIT REASONING
AT PRETRAINING TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is an integral part of many tasks performed by language models (LMs).
However, the effects of scaling model sizes and data on reasoning abilities at
pretraining time remain understudied. To rigorously investigate this problem, we
pretrain LMs from scratch on a synthetic implicit multihop reasoning environment
designed to closely replicate the structure and distribution of real-world large-
scale knowledge graphs. We then assess the LMs’ ability to complete the missing
edges in the graph, which requires multi-hop reasoning that can be viewed as a
simplification of implicit reasoning during real-world pretraining. Interestingly, we
observe that overparameterization can impair the implicit reasoning performance
due to excessive memorization. We investigate different factors that affect the loss
curve when scaling different components of the knowledge graph, model size, and
training steps. To predict the optimal model size for a specific knowledge graph,
we find an empirical scaling law that shows optimal-sized LMs can approximately
reason over 0.008 bit information per parameter. This work shows counterintuitive
effects of model size scaling and provides new insights into the relationship between
scaling and reasoning in LLMs.

1 INTRODUCTION

Language Models (LMs) have demonstrated remarkable capabilities across a wide range of tasks, with
reasoning being a core component (Wei et al., 2022a; Guo et al., 2025). While reasoning is typically
enhanced during the post-training stage by encouraging LMs to generate long chain-of-thoughts
(CoTs) (Guo et al., 2025; Yang et al., 2025), it is reasonable to assume that they already acquire the
foundations of such capability during pretraining, given that post-training operates at a significantly
smaller scale. Several recent studies have explored the mechanisms by which LMs may acquire
reasoning-related abilities through next-token prediction pretraining (Zhu et al., 2024; Wang et al.,
2024a;b). However, the impact of scaling on LMs’ reasoning ability during pretraining remains
poorly understood.

The general scaling behavior of LMs at pretraining time has been extensively investigated, including
the well-known exponential scaling laws for testing loss and compute proposed by Kaplan et al.
(2020) and the training compute-optimal scaling studied by Hoffmann et al. (2022a). Recent work
has also examined the scaling of specific capabilities like machine translation (Ghorbani et al., 2022)
and knowledge capacity/memorization (Allen-Zhu & Li, 2025; Lu et al., 2024). According to these
existing scaling laws, it is in general believed that larger models imply better testing loss or task
performance.

In this paper, instead we find that the scaling of LMs’ reasoning capability at pretraining time
differs from normal power-law scaling, in a simplified controlled pretraining environment. We use
implicit reasoning to denote the reasoning behavior that naturally emerges during pretraining. i.e.
the capability to draw new conclusions from existing knowledge without being explicitly trained
to generate chain-of-thoughts (CoTs). More specifically, we define implicit reasoning over world
knowledge as the task of completing missing edges in an incomplete knowledge graph, which
requires multi-hop traversal according to predefined logic rules that are implicitly encoded in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

graph generation process. To investigate this, we pretrain LMs from scratch using only triples from
the incomplete graph and then evaluate their ability to infer the missing connections.

With sufficient compute, we find that the curve of implicit reasoning loss versus model size follows a
U-shape, revealing an optimal model size that yields the best reasoning performance. This suggests
that overparameterization may impair the implicit reasoning capability instilled during pretraining.
We first observe this phenomenon using data derived from real-world knowledge graphs, and then
systematically study it with synthetically generated data.

We investigate important factors that affect the U-shaped scaling of reasoning loss versus language
model size. Our important findings can be summarized as follows:

• The minimum reasoning loss reachable by an LM is solely determined by the training data,
regardless of training steps and model size.

• The optimal model size is solely determined by knowledge graph complexity and data size
regardless of training steps.

• We show that an optimal-sized LM can approximately reason over 0.008 bit information per
parameter.

As we observed that the optimal model size is likely solely determined by the training knowledge
graph, we then aim to find an empirical scaling law that can predict the optimal model size from
knowledge graph statistics. We identify a linear relationship between the optimal model size and
our proposed graph search entropy, which quantifies the entropy of performing random searches
on a knowledge graph. Under this framework, we find that each parameter in the optimal model
size can reason over approximately 0.008 bits of information in a knowledge graph. In contrast,
Allen-Zhu & Li (2025) show that a language model can memorize up to 2 bits of information per
parameter—substantially more than its reasoning capacity. This gap arises both from the greater
difficulty of reasoning compared to memorization and from the different methodologies used to
compute these information quantities. A more detailed discussion is provided in Section 5.2.

Our work contributes to the broader understanding of LLM reasoning by shedding light on the
intricate relationship between scaling and implicit reasoning capability. Our proposed empirical
reasoning scaling law provides possible practical insights for optimizing LLMs’ implicit reasoning
ability at pretraining time.

2 METHOD

While real-world LLMs are pretrained on large scale text corpora, this corpus can be viewed as
encoding a wide range of world knowledge. The power of LLMs lies in the fact that they can not
only memorize the world knowledge and extract the knowledge when queried, but also reason over
the world knowledge and draw novel conclusions. In this paper, we propose constructing a simplified
pretraining corpus from a knowledge graph. A knowledge graph is comprised of a set of (head
entity, relation, tail entity) triples, and we use each knowledge triple as a training example. We test
the reasoning capability of a language model trained on such a corpus by testing its accuracy in
completing triples that have never been seen in the knowledge graph but can be deduced through
latent rules encoded in the graph structure. For example, if we know A is B’s father, and B is C’s
father, then we can deduce that A is C’s grandfather.

Formally, a knowledge graph G consists of |G| = N triples (eh, r, et), where eh ∈ E is the head
entity, et ∈ E is the tail entity, and r ∈ R is a relation. A simple example of knowledge triple is (DC,
is the capital of, USA). These knowledge triples naturally form a graph, with nodes as
the entities and each edge labeled with a relation type. We denote the total number of entities or nodes
by |E| = Ne and the total number of edge or relation types by |R| = Nr. Then a corpus constructed
from this knowledge graph would consist of N data points. The objective of a language model with
parameter θ trained on this corpus is then:

L(θ) = argmin
θ

1

N

N∑
i=1

− logPθ(e
h
i , ri, e

t
i).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To eliminate confounding variables and information contained in the lexical form of the entity and
relation names, we label each entity and relation with a random ID and tokenize the IDs by characters.
We use the Llama (Touvron et al., 2023) model architecture to implement LMs of different sizes by
adjusting the hidden dimensions and the number of layers. The specific parameter scheme can be
found in the Appendix B.

To evaluate the language model’s capability of reasoning over the knowledge graph, we test the LMs
on a held-out set of triples that are not seen in the training time. Note that all entity and relation
types should have been seen during training time and the language model is only tasked to connect
missing edges. To eliminate the need to generate the correct form of relation and entity IDs, and
to handle the case where multiple correct answers exist, we design the testing set to be 10-option
multiple-choice questions: the language model is tasked to choose the correct tail entity given the
head entity and the relation. We ensure that there is only one correct answer among the given 10
options. Suppose there are M questions in the testing set.1 For a ground truth triple (eh, r, et), we
design 9 distracting options e(1), e(2), ..., e(9). Then we use the test accuracy Acc(θ,G) and testing
loss ℓ(θ,G) to evaluate the reasoning capability of a language model θ over the knowledge graph G:

êi = arg max
e∈{eti,e

(1)
i ,e

(2)
i ,...,e

(9)
i }

Pθ(e|ehi , ri),

Acc(θ,G) =
M∑
i=1

1[êi = eti]/M, ℓ(θ,G) =

M∑
i=1

− logPθ(e
t
i|ehi , ri)/M.

3 INITIAL EXPERIMENTS WITH REAL-WORLD KNOWLEDGE GRAPH

In our initial sets of experiments, we investigate the reasoning scaling effect using a real-world
knowledge graph, FB15K-237 (Toutanova & Chen, 2015). FB15K-237 is sampled from FB15K
(Bordes et al., 2013), which is a dataset adapted from the Freebase knowledge base (Bollacker et al.,
2007), a web-scale knowledge base released by Google. FB15K-237 contains Ne = 14, 505 entities,
Nr = 237 relations, and N = 310, 116 knowledge triples. We process this dataset in three different
ways: (a) translate each knowledge triple into a natural language sentence by prompting GPT4 and
then tokenize the sentence with a pre-trained tokenizer, as shown in the first row of Figure 1; (b)
translate each knowledge triple into a natural language sentence using pre-generated templates, as
show in the second row of Figure 1; (c) translate each knowledge triple into text by assigning a
random ID to each entity and relation and tokenize them by characters, as shown in the last row of
Figure 1. An example can be found in Appendix A Figure 5.

In Figure 1, we show different-sized LMs trained on FB15K-237 in all settings with different
numbers of training steps. We observe a consistant reasoning performance drop when using larger
models, across different ways of processing the knowledge triples, while the training loss decreases
monotonically with respect to model size. This observation contradicts the previous belief that larger
models always yield a smaller testing loss.

This implies that a language model can overfit to the training data when it is overparameterized for
the underlying reasoning structure. Such deviation from traditional scaling law has also been reported
in broken neural scaling law (Caballero et al., 2023) which proposed a double-descent-like (Nakkiran
et al., 2020) function form instead of a monotonic power-law form. There have also been observations
of tasks with inverse scaling (Wei et al., 2023) for large LMs.

In this paper, we focus primarily on the scaling of model size and data complexity. Rather than merely
increasing the size of the training data, we explore many different setting for generating synthetic
knowledge graphs. This allows us to ablate individual components of the graph generation process
and examine how overall graph complexity affects reasoning. In the synthetic experiments presented
below, we use random IDs instead of natural language sentences to eliminate lexical and syntactic
effects, yielding cleaner trends from which we can draw quantitative conclusions.

In the following sections, we will mostly focus on understanding the ”turning point” of the reasoning
loss. More specifically, we want to understand what is the optimal model size, that is the model size
that can obtain the smallest possible reasoning testing loss. As shown in Figure 1 and in Figure 3

1We fix M = 1000 for all of our experiments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Reasoning Accuracy (b) Testing Loss

Triple-only

Template

GPT-
generated

(d) Reasoning Accuracy (e) Testing Loss (f) Training Loss

(g) Reasoning Accuracy (h) Testing Loss (i) Training Loss

(c) Training Loss

Figure 1: The multiple-choice accuracy/loss on unseen triples of different-sized LMs trained on a real-word
knowledge graph FB15K-237. The first column shows that the testing accuracy decreases after a certain model
size. The second column shows U-shape loss curves of LMs trained with different numbers of steps. The third
column shows the training loss decreases steadily. These trends are stable across different ways of processing
the knowledge triples, with the triple-only data shows the cleanest trend. Note that the model size on x-axis is in
log scale.

(a), we find this optimal model size is largely stable when training the model for enough steps. Note
that, at training time, we repeat the training triples for many epochs (e.g. 30 times for FB15K-237) to
find the optimal model size. This graph epoch is different from the real-world cases where we repeat
the whole pretraining corpus for certain epochs. Because we can view each triple in the graph as a
piece of factual knowledge (e.g. Barack Obama’s wife is Michelle Obama), this knowledge is usually
repeated many times in a pretraining text corpus, in many different forms. Therefore, although our
models have seen the same triple many times during training, the same piece of factual knowledge
could also have been repeated several times in one pass of a real-world pretraining corpus.

4 SYNTHETIC DATA CONSTRUCTION

Figure 2: Nine possible node types generated
by two logical rules. Each entity position in
a rule would create a new entity type. Each
relation shared between two rules would also
create two new entity types.

To investigate how the underlying knowledge structure
influences LMs’ reasoning performance, we propose an
algorithm to generate synthetic knowledge graphs that
mimic real-world knowledge graphs. More specifically,
we assume that the knowledge graph generation process
is governed by a set of logical rules.

For example, a rule for inferring the locatedIn relation
can be (e1, locatedIn, e2)← (e1, neighborOf, e3)
∧ (e3, locatedIn, e2). Formally, for a target relation
r, we consider logic rules with conjunctive form. For
∀{ei}ni=0 ⊂ E ,

(e0, r, en)← (e0, r1, e1) ∧ ... ∧ (en−1, rn, en),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where (ei−1, ri, ei) ∈ G. We abbreviate such rule by h(r) = [r1, r2, ..., rn]. We randomly generate
a set of logical rules H and ensure there are no cycles in the set. To grow a graph that follows
these rules, we enforce sparsity of the possible relation types connecting to and branching out each
entity. More specifically, we define node types based on the possible relation types connecting to and
branching out each entity, based on the generated rules, as illustrated in Figure 2. Such sparsity is
also observed in real-world knowledge graphs.

Our random graph generation process is inspired by the preferential attachment process (Barabási
& Albert, 1999), which is used for generating scale-free networks with a power-law distribution for
the degrees of the nodes. Intuitively, preferential attachment implies a “the rich get richer” approach
to edge placement in the graph. Each time a new node is added to the graph, there is a ‘preference’
to connect to the nodes that are already highly connected, with a probability proportional to the
target node’s degree. Since we have observed the scale-free property in real-world knowledge graphs
and the internet is known to be a scale-free network (Albert et al., 1999), we adopt a preferential
attachment based graph generation process. To accommodate different relation types assigned to
each edge, we maintain a degree distribution for each relationship and add new edges according to
preferential attachment. A comparison of the node degree distribution between synthetic graph and
real-world graph can be found in Appendix C Figure 6.

The code for our random graph generation algorithm is shown in the Appendix D. In summary, we
first randomly generate a set of rules H, with the number of rules |H| = Nh and the range of rule
length [Lmin, Lmax] as hyperparameters. Then we generate all possible node types as illustrated in
Figure 2, with the maximum number of relations per node Mr as a hyperparameter. We generate a
seed graph by instantiating each rule with a set of new entities. To this, we incrementally add one
new entity until the number of entities reaches Nr, by first randomly assigning a node type to it, and
then randomly sampling the m relation types from the set of relations defined by the node type. We
choose the target of these m new edges by preferential attachment. After adding every K entities, we
search through the current graph to add any edges that can be inferred through the logic rules defined
in H. We call the triples that can be deduced through a logic rule by deducible triples, otherwise
atomic triples.

Finally, we limit the number of training triples to N and ensure that the the ratio between the number
of deductible triples and atomic triples to γ by subsampling the generated graph. We also further
ensure that the triples in the held-out test set are all deductible through the training triple. In this way,
we can generate synthetic knowledge graphs with specific sizes and complexity.

5 SCALING LAWS

In this section, we investigate the scaling law of language models trained on different synthetic
knowledge graphs. We conduct controlled experiments to show the effect of individual components
of the data generation process. We also propose an information-theoretical way to measure the overall
reasoning complexity of a knowledge graph, which we call the graph search entropy, and relate this
linearly with the optimal model size. i.e. the model size that obtains the lowest possible testing loss.

5.1 GRAPH GENERATION ABLATION

We study the effects of the following four hyperparameters of graph data generation: the number of
triples N , the number of entities Ne, the number of relations Nr, and the number of rules Nh. We
fix all training hyperparameters as specified in the Appendix B. In all experiments except Figure 3
(a), we train all models for 10k steps. The detailed data generation configuration for each set of
experiments can also be found in the Appendix B.

Stable optimal model size with respect to training steps. In Figure 3 (a), we show the effect of
training language models on the same knowledge graph with different numbers of training steps. As
mentioned in Section 3, the optimal model size becomes smaller when the number of training steps
increases, and then becomes stable after 4k steps. Another observation is regardless of the number
of training steps, the maximum accuracy or minimum loss is stable. While we have ensured that
all testing triples can be deduced through the training triples, there seems to be a performance cap
determined solely by the knowledge graph data, which is unaffected by model size.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: We show the effect of different hyperparameters of the synthetic knowledge graph generation process.
In each experiment, we keep all other parameters the same and only change one hyperparameter. We show the
effect with both the testing accuracy (left) and the testing loss (right) as the y-axis, with different model sizes as
the x-axis in log scale.

More triples implies a larger optimal model size. In Figure 3 (b), we show the effect of the number
of unique triples N sampled after the same knowledge graph generation process. This setting is
arguably the most similar to the real-world pretraining of language models: the underlying world
knowledge graph of all the pretraining corpora is largely stable, and training data are realizations
of the underlying knowledge graph and so the sizes of different corpora are simply a result of
subsampling/upsampling the knowledge in the existing graph. We can see that a larger number
of training triples results in a larger optimal model size and a better reasoning performance. This
observation aligns with the classic scaling laws. However, there exists an optimal model size for
the full knowledge graph: after sampling beyond the size of the full knowledge graph, you can only
sample previously seen knowledge. In this case, the optimal model size would be stable no matter the
training data size.

Number of rules does not impact optimal model size. In Figure 3 (c), we show the effect of
generating knowledge graphs of the same size with different numbers of rules Nh. More rules mean
that the testing triples need to be solved in more ways. The number of rules does not have a significant
effect on the optimal model size, but affects the reasoning performance. There appears to be an
optimal number of rules (20) that results in the best performance. This is because more rules increases
the complexity of solving the test set while fewer rules increases the ambiguity in the training set. i.e.
a relation may be be deduced through correlations outside of the predefined rules. The reason why
the number of rules does not affect the optimal model size is likely because it does not significantly
impact the graph search entropy. This will be discussed in detail in Section 5.2.

More relations imply a larger optimal model size. In Figure 3 (d), we show the effect of generating
knowledge graphs of the same size and the same number of rules with different numbers of relations
Nr. While the rules used for deducing the testing set remain the same for all experiments, there are
additional relations that may not be used by any of the rules. We construct knowledge graphs with
an excessive number of relations by adding additional relation patterns. In general, more relations
improves the best reasoning performance while increasing the optimal model size. More relations
increases the complexity of the knowledge graph, and thus increases the optimal model size. On
the other hand, as discussed in the previous experiment, a small number of rules along with a small

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: The optimal model size with the lowest possible testing loss v.s. the graph search entropy. The
red line is the linear regression line using data from the synthetic experiments (blue squares), with a 95%
confidence interval. We also plot the graph search entropy and optimal model size from the real-world FB15K-
237 experiment (green dot) to verify the accuracy of the obtained linear scaling law.

number of relations increases the ambiguity in the training set. By adding dummy relations that are
not used for reasoning, the language model can better distinguish between the logic rules and spurious
correlations between relations. Thus the reasoning performance improves with more relations.

The optimal model size increases with the deductible ratio when the ratio is small. In Figure 3 (e),
we show the effect of generating knowledge graphs with different ratios between deductible triples
and atomic triples, γ, while keeping the number of entities and the number of triples unchanged. A
larger ratio implies that the language model can see more rule patterns at training time, thus improving
the reasoning performance. The increase in performance and optimal model size stops after a ratio
threshold.

More entities imply a larger optimal model size. In Figure 3 (f), we show the effect of generating
knowledge graphs with different numbers of nodes/entities Ne. In this experiment, we also scale the
number of triples to keep all other hyperparameters unchanged. Increasing the number of entities
increases the optimal model size while also increasing the testing loss. More entities imply a larger
graph which increases the graph complexity, thus increasing the optimal model size. As in this
experiment, we use a small number of rule (Nh = 5) and relations (Nr = 10), an excessive number
of entities and triples will create more ambiguity thus hurting the reasoning performance.

5.2 OPTIMAL MODEL SIZE V.S. GRAPH SEARCH ENTROPY

From our previous ablation studies, we hypothesize that the optimal model size is positively related to
the overall complexity of the knowledge graph. Thus, we propose that we measure the complexity of
a knowledge graph by quantifying the amount of information that can be obtained from the graph by
exploring the graph through a random search. From our task definition, to reason over the knowledge
graph, the language model needs to (a) identify the set of logic rules by observing repetitive patterns;
(b) traverse the graph using one or more specific logic rules to locate the tail entity. So we define the
graph search entropy as the maximum amount of information that can be obtained when randomly
traversing the graph.

To simplify the problem, we first focus on the average amount of information we can observe at
one node of the graph. If we consider a random walk over the knowledge graph, then we refer to
the entropy produced by each step/node on the walk trace for an infinitely long random walk as the
entropy rate of this random walk. For a graph G, the maximum entropy rate is equal to the log of the
largest eigenvalue of the adjacency matrix A. Note that only consider the entropy rate with respect
to the entity, without considering the entropy rate with respect to the relation. We can compute the
relation entropy rate with the stationary distribution and transition matrix induced by the maximal
entropy rate random walk. If we denote the dominating eigenvalue by λ ∈ R and the corresponding
eigenvector by ψ ∈ RNe , then the stationary distribution ρ ∈ RNe can be written as:

ρi = ψi/||ψ||22.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The transition matrix S ∈ RNe×Ne of the maximal entropy random walk can be written as:

Sij = (Aij/λ)(ψj/ψi).

We can then transform the entity-to-entity transition matrix S ∈ RNe×Ne into an entity-to-relation
transition matrix Sr ∈ RNe×Nr by merging the entries with the same relation together:

Sr
ij =

Ne∑
k=1

1[(i, j, k) ∈ G]Sik.

Finally, the relation entropy rate Hr(G) can be written as:

Hr(G) = −
Ne∑
i=1

ρi

Nr∑
j=1

Sr
ij log(S

r
ij).

The overall graph search entropy H(G) can then be written as the sum of the entity entropy rate
and the relation entropy rate multiplied by the number of nodes:

H(G) = Ne(log(λ) +Hr(G)).

We empirically investigate the relation between the optimal model and the graph search entropy by
plotting them against each other in Figure 4, and perform linear regression. The optimal model sizes
are obtained from the synthetic experiments conducted in the ablation studies. In the ablation studies
we only report the results for exponentially increasing model sizes for clarity. In this study to better
capture the optimal model size, we make the model sizes near the optimal model size more fine-grain.
In all experiments, we keep the training hyperparameter the same, with 10k train steps.

We find a strong linear relation between the optimal model size and the graph search entropy with
R2 = 0.85. Note that there are a few sources of noise for locating the optimal model size for a
specific knowledge graph. First, we only train language model with selected sizes due to compute
and time limitations, and the quantization of the model size would disrupt the smoothness of the
scaling law. Second, the exact location of the optimal model size is dependent on the training steps,
which we did not thoroughly traverse but choose to inspect at the training step 10k.

After fitting a linear regression line using the data from our synthetic experiments, we check the
validity of this empirical scaling law against our real-world knowledge graph, FB15K-237. We
calculate the graph search entropy for FB15K-237, and find the predicted optimal model size is very
close to the observed optimal model size, shown as a green dot in Figure 4.

From our scaling law, we can see that roughly 124 additional parameters in the optimal model size
are required per 1-bit entropy increase in the knowledge graph. That is a language model can only
reliably (not perfectly) reason over 0.008 bit information per parameter. This is very different from
the knowledge capacity scaling law concluded by Allen-Zhu & Li (2025), which shows that the
language model can store 2 bits of knowledge per parameter. We think this discrepancy is due to
two reasons: first, our scaling law is not only about memorizing the knowledge, but also about
reasoning over the learned knowledge, which is significantly harder. Second, the way we compute the
graph search entropy is fundamentally different from the way Allen-Zhu & Li (2025) computes the
knowledge entropy. While Allen-Zhu & Li (2025) describes the entropy of the knowledge generation
process, our graph search entropy describes the entropy of randomly traversing a fixed knowledge
graph. In this way, we did not directly measure the amount of information that a language model
needs to memorize, but measuring the complexity of traversing, and therefore, reasoning over a
graph. It is hard, if not impossible, to obtain the data generation process of real-world data, but it
is possible to get an estimate of the underlying knowledge graph of a corpus through automated
knowledge graph construction algorithms (Zhong et al., 2023). Thus, it is possible to predict the
optimal reasoning model size for real-world pretraining, by first constructing a knowledge graph
from the pretraining corpus, and then computing its graph search entropy, and finally using a similar
scaling law to calculate the optimal model size.

5.3 LIMITATIONS

We want to highlight that this study is only conducted on simplified pretraining data from knowledge
graphs, and the results are not directly applicable to real-world language model pretraining with large

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

text corpus. The setting of our study provides a reasonable analogy to the real-world language model
pretraining, and the obtained insight might be found useful in the real world when the compute is
abundant with very large models and very large datasets that exhaustively traverse the underlying
knowledge graph. We leave the work of verifying our scaling law in the real word to future research
due to its resource-demanding nature.

6 RELATED WORK

Language Model Scaling Laws Kaplan et al. (2020) first observed a power-law relationship
between LLM perplexity, model parameter count, and training data size, laying the foundation for
scaling law research. Subsequently, Hoffmann et al. (2022b) explored optimal training strategies
under constrained computational resources and discovered that LLM parameter size and the number of
training tokens should scale proportionally to achieve optimal compute efficiency under a fixed budget.
Beyond pretraining performance, researchers further confirmed that downstream task performance
can also be reliably predicted based on model size and training data volume (Hernandez et al., 2021;
Isik et al., 2024). Allen-Zhu & Li (2025); Lu et al. (2024) have turned to exploring more specific
capability dimensions, focusing particularly on the scaling laws of factual memory in LLMs and their
behavioral patterns when memorizing different types of facts. Most recently, Roberts et al. (2025)
have confirmed that scaling laws are skill-dependent, and found that knowledge-intensive tasks are
more parameter-hungry while reasoning-intensive tasks are more data-hungry. Springer et al. (2025)
challenge a core assumption in scaling research—that more pretraining invariably leads to better
downstream performance. Our paper identifies a different U-shaped scaling curve under the specific
scenario of knowledge graph reasoning and reveals that the search complexity of the knowledge
graph determines the optimal model size. This echoes the discovery of Pandey (2024) and Yin et al.
(2024) that classic scaling laws are highly dependent on the data complexity or the compression ratio
of the data. Havrilla & Liao (2024) also confirmed from both theoretical and empirical perspectives
that the power of the power scaling law depends on the intrinsic dimension of the training data.

Language Model Reasoning Our paper focuses on the reasoning capability of LMs which has
drawn a lot of attention recently (Zhang et al., 2023; Chen et al., 2023; Yao et al., 2023a;b; Wang et al.,
2023; Guo et al., 2025; Jin et al., 2024; Yeo et al., 2025; Team et al., 2025; Li et al., 2025). LLMs are
usually trained to reason in a step-by-step manner in real-world tasks like math problems (Wei et al.,
2022b) and coding (Yang et al., 2024). In our experiments, we do not ask LMs to generate a CoT
solution, but ask the language model to directly choose the correct answer from the given options,
because our pretrain-only LMs are not trained to give a CoT solution for a query. Our synthetic
reasoning environment is the most similar to Wang et al. (2024b), which also use the knowledge
graph completion task as a testbed to understand how LMs learn to reason at pretraining time. They
propose that LMs are able to aggregate random walk paths sampled from the knowledge graph. Wang
et al. (2024a); Zhu et al. (2024) also employ a graph structure to ground their synthetic reasoning
tasks to explain how LLMs reason, but their reasoning is defined as concatenations of relations: A is
r1 to B and B is r2 to C implies A is r1r2 to C. The knowledge graph completion task we employ is
more complex than simple concatenation of relations as the language model needs to find out which
relation r1r2 corresponds to from the knowledge graph.

7 CONCLUSION

This paper presents a rigorous study of the scaling behavior of implicit reasoning in language models
pretrained on knowledge graphs. Our findings reveal a U-shaped relationship between implicit
reasoning performance and model size: overparameterization induces excessive memorization,
which in turn degrades reasoning ability. We further identify key factors that determine the optimal
model size, including the number of training triples and the complexity of the graph. Most notably,
we propose an empirical scaling law that links the optimal model size to graph search entropy,
demonstrating that a language model can reason over approximately 0.008 bits of information per
parameter. Although our experiments are conducted in controlled settings to ensure rigor, the insights
derived from this work offer promising directions for future studies on real-world pretraining and the
enhancement of reasoning capabilities in large language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All experimental settings,
including model architectures, training procedures, and hyperparameters, are described in detail in
Section 2, Section 5 and Appendix B. To facilitate empirical reproducibility, we include a script
of data construction steps in Appendix D. Additionally, we provide a simplified version of our
source code as an easy-to-run Jupyter notebook for reproducing some of our experiments in the
supplementary materials.

REFERENCES

Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the world-wide web. Nature,
401(6749):130–131, September 1999. ISSN 1476-4687. doi: 10.1038/43601. URL https:
//doi.org/10.1038/43601.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=FxNNiUgtfa.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Kurt Bollacker, Robert Cook, and Patrick Tufts. Freebase: a shared database of structured general
human knowledge. In Proceedings of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAI’07, pp. 1962–1963. AAAI Press, 2007. ISBN 9781577353232.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=sckjveqlCZ.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. In International
Conference on Learning Representations, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=N2wYPMpifA.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

10

https://doi.org/10.1038/43601
https://doi.org/10.1038/43601
https://openreview.net/forum?id=FxNNiUgtfa
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=sckjveqlCZ
https://openreview.net/forum?id=N2wYPMpifA
https://openreview.net/forum?id=N2wYPMpifA

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pp. 30016–30030, 2022b.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In ICLR
2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 1830–1842, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuan-Jing Huang, and Xipeng Qiu. Scaling laws
for fact memorization of large language models. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 11263–11282, 2024.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=B1g5sA4twr.

Rohan Pandey. gzip predicts data-dependent scaling laws. arXiv preprint arXiv:2405.16684, 2024.

Nicholas Roberts, Niladri Chatterji, Sharan Narang, Mike Lewis, and Dieuwke Hupkes. Compute
optimal scaling of skills: Knowledge vs reasoning. arXiv preprint arXiv:2503.10061, 2025.

Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
https://arxiv.org/abs/2503.19206, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-
ference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and
Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality, pp. 57–66, Beijing, China, July 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/W15-4007/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers: A
mechanistic journey to the edge of generalization. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024a. URL https://openreview.net/forum?
id=D4QgSWxiOb.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609–2634, 2023.

11

https://openreview.net/forum?id=B1g5sA4twr
https://aclanthology.org/W15-4007/
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=D4QgSWxiOb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, and William Yang
Wang. Understanding reasoning ability of language models from the perspective of reasoning
paths aggregation. In Forty-first International Conference on Machine Learning, 2024b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022a. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in neural information processing systems, volume 35, pp. 24824–24837, 2022b.

Jason Wei, Najoung Kim, Yi Tay, and Quoc V Le. Inverse scaling can become u-shaped. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//openreview.net/forum?id=19sGqVUxQw.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
performance. arXiv preprint arXiv:2407.06645, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023.

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xindong Wu. A comprehensive survey on automatic
knowledge graph construction. ACM Computing Surveys, 56(4):1–62, 2023.

Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stuart J
Russell. Towards a theoretical understanding of the’reversal curse’via training dynamics. Advances
in Neural Information Processing Systems, 37:90473–90513, 2024.

12

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=19sGqVUxQw
https://openreview.net/forum?id=19sGqVUxQw

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A DATA PROCESSING EXAMPLE

ExampleType

"triple": {
"head": "drama film",
"relation": "/media_common/netflix_genre/titles",
"tail": "American History X"

}

Original

"The drama film includes \"American History X\" as one of its Netflix genre titles."GPT4 generated
"template": "$tail was released as part of the $head genre on Netflix during its period of popularity.",
"sentence": "American History X is featured under the drama film genre on Netflix."

Template

(1254, 22, 765)Triple-only

Figure 5: An example of a triple being processed in three different ways.

B EXPERIMENT DETAILS

Model size hidden size MLP size #attention heads #layers

0.3M 128 256 2 2
0.7M 128 256 2 4
1.3M 256 512 4 2
2.6M 256 512 4 4
5.3M 256 512 4 8
10.5M 512 1024 8 4
21.0M 512 1024 8 8
42.0M 512 1024 8 16
83.9M 1024 2048 16 8

167.8M 1024 2048 16 16
335.6M 1024 2048 16 32
671.2M 2048 4096 32 16

1342.4M 2048 4096 32 32

Table 1: Language model (Llama) size details

batch size lr lr scheduler warmup ratio weight decay max length

1024 1e-4 cosine 0.2 0 128

Table 2: Hyperparameter settings for language model pretraining.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

N Ne Nr Nh γ

(a) 100k 10k 100 50 0.5
(b) 10k/20k/.../100k 10k 100 50 0.5
(c) 100k 10k 100 5/10/.../50 0.5
(d) 100k 10k 10/20/.../100 50 0.5
(e) 100k 10k 100 50 0.1/0.5/.../0.9
(f) 10k/20k/.../100k 1k/2k/.../10k 10 5 0.5

Table 3: Knowledge graph hyperparameter settings for Figure 3 experiments. We keep Lmin = 2 and Lmax = 4
for all experiments. Here N denotes the number of triples, Ne denotes the number of entities, Nr denotes the
number of relations, Nh denotes the number of rules, γ denotes the ratio between deductible triples and atomic
triples, Lmin denotes the minimum rule length, and Lmax denotes the maximum rule length.

C SYNTHETIC KNOWLEDGE GRAPH V.S. REAL-WORLD KNOWLEDGE GRAPH

Figure 6: Distribution of node degrees of synthetic and real-world knowledge graphs.

Figure 7: Distribution of number of outgoing relations per node of synthetic and real-world knowledge graphs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D SYNTHETIC KNOWLEDGE GRAPH GENERATION CODE

import networkx as nx

import numpy as np

import random

from collections import defaultdict

def add edge(G, h, t, r):

num edges = 0

if G.has edge(h, t):

if r not in G[h][t][’id’]:

G[h][t][’id’].append(r)

num edges += 1

else:

print(’edge already exists’)

else:

G.add edge(h, t, id=[r])

num edges += 1

print(’add edge: ’, (h, r, t), ’num edges: ’, num edges)

return num edges

def generate rules(relations , num rules , L min , L max , weighted=False, temperature=0.25):

Generate K acyclic logic rules with varying lengths
dependency graph = defaultdict(set)

rules = []

weights = []

if weighted:

for l in range(L min , L max + 1):

weights.append(np.exp(−temperature*l))
probs = np.array([w / sum(weights) for w in weights])

else:

weights = [1] * (L max − L min + 1)

def has cycle(start, visited, stack):

”””Detects i f adding a new dependency introduces a cycle.”””
if start not in visited:

visited.add(start)

stack.add(start)

print(’visited: ’, visited)

print(’stack: ’, stack)

for neighbor in dependency graph[start]:

if neighbor in stack:

return True

elif has cycle(neighbor , visited, stack):

return True

if start in stack:

stack.remove(start)

return False

for in range(num rules):

while True:

if weighted:

length = random.choices(range(L min , L max + 1), weights=weights)[0]

else:

length = random.randint(L min , L max)

rule relations = random.choices(relations , k = length + 1) # the first element is the implied relation
valid rule = True

for i in range(1, len(rule relations)):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

dependency graph[rule relations[0]].add(rule relations[i])

Check for cycles
if has cycle(rule relations[i], set(), set()):

valid rule = False

for j in range(1, i + 1):

dependency graph[rule relations[0]].remove(rule relations[j])

break

if valid rule:

rules.append(tuple(rule relations))

break

print(’rules: ’, rules)

return rules

def get node types(rules, max num relations per node=3):

map node types to out relations
node types = {}
map out relations to node types
r2node types = defaultdict(list)

for rule in rules:

for i in range(len(rule)):

node type = len(node types)

if i == 0:

node types[node type] = [rule[i], rule[1]]

r2node types[rule[i]].append(node type)

r2node types[rule[1]].append(node type)

elif i == len(rule) − 1:

node types[node type] = [’−’ + rule[i], ’−’ + rule[0]]
r2node types[’−’ + rule[i]].append(node type)
r2node types[’−’ + rule[0]].append(node type)

else:

node types[node type] = [’−’ + rule[i], rule[i+1]]
r2node types[’−’ + rule[i]].append(node type)
r2node types[rule[i+1]].append(node type)

print(node types)

print(r2node types)

for num rs in range(2, max num relations per node):

possible new node types = []

for r in r2node types:

alt rs = []

for node type in r2node types[r]:

for r in node types[node type]:

if r != r:

alt rs.append(r)

alt rs = list(set(alt rs))

for node type in r2node types[r]:

if len(node types[node type]) == num rs:

for r in alt rs:

if r not in node types[node type]:

possible new node types.append(tuple(sorted([r] + list(node types[node type]))))

print(possible new node types)

possible new node types += list(set(possible new node types))

possible new node types = list(set(possible new node types))

print(possible new node types)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

for rs in possible new node types:

new node type = len(node types)

node types[new node type] = list(rs)

for r in rs:

r2node types[r].append(new node type)

return node types

def get adj out relations(rules):

adj = defaultdict(list)

for rule in rules:

for i in range(len(rule)):

if i == 0:

adj[rule[i]].append(rule[1])

adj[rule[1]].append(rule[i])

elif i == len(rule) − 1:

adj[’−’ + rule[i]].append(’−’ + rule[0])
adj[’−’ + rule[0]].append(’−’ + rule[i])

else:

adj[’−’ + rule[i]].append(rule[i+1])
adj[rule[i+1]].append(’−’ + rule[i])

return adj

def latent rule graph(num rules=50, L min=2, L max=4, n=10000, m=10, n r=200,

num test=1000, num train=150000, check frequency=100,

power law=False, initial graph=None,

length weighted=False, mcmc=0.2, temperature=0.25,

deductible ratio=0.5):

Generate relations and entities
print("mcmc: ", mcmc)

relations = [’P’ + str(i) for i in range(n r)]

all rules = generate rules(relations , max(n r//L min , num rules), L min , L max)

r2rules = {}
for rule in all rules:

if rule[0] not in r2rules:

r2rules[rule[0]] = []

r2rules[rule[0]].append(rule[1:])

num triples = 0

repeated entities = defaultdict(list) # map in relation to entities
child relations = []

for rule in all rules:

child relations += rule[1:]

child relations = list(set(child relations))

child relations += [’−’ + r for r in child relations]
deductible rules = random.sample(all rules , num rules)

if length weighted:

weights = [int(100*np.exp(−temperature*len(rule))) for rule in all rules]
else:

weights = [1 for in all rules]

repeated rules = []

for rule, weight in zip(all rules , weights):

for in range(weight):

repeated rules.append(rule)

random.shuffle(repeated rules)

adj = get adj out relations(repeated rules)

all deductibles = {}

if initial graph is None:

Default initial graph

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G = nx.DiGraph()

node id = 0

min repeated entities = 0

while min repeated entities < m:

for rule in all rules:

source = ’Q’ + str(node id)

node id += 1

h = source

for r in rule[1:]:

t = ’Q’ + str(node id)

node id += 1

num triples += add edge(G, h, t, r)

repeated entities[r].append(t)

repeated entities[’−’ + r].append(h)
h = t

num triples += add edge(G, source, t, rule[0])

repeated entities[rule[0]].append(t)

repeated entities[’−’ + rule[0]].append(source)

min repeated entities = min([len(set(repeated entities[r])) for r in child relations])

else:

if len(initial graph)< m or len(initial graph)> n:

raise nx.NetworkXError(

f"Initial graph needs between m={m} and n={n} nodes"
)

G = initial graph.copy()

node id = len(G)

if not power law:

repeated entities = {r: list(set(repeated entities[r])) for r in repeated entities}

Start adding the other nodes.
while node id < n:

source = ’Q’ + str(node id)

node id += 1

possible relations = [r for r in adj if r in child relations]

if len(possible relations) == 0:

print(’no adj relations’)

break

print(’add child edge’)

chosen edges = []

stop = False

for in range(m):

it = 0

while (r, t) in chosen edges:

r = random.choice(possible relations)

t = random.choice(repeated entities[r])

it += 1

if it> 100:

print(’failed to find edge’)

stop = True

break

if stop or len(possible relations) == 0:

break

possible relations = [r for r in adj[r] if r in child relations]

chosen edges.append((r, t))

if r[0] == ’−’:
num triples += add edge(G, t, source, r[1:])

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

repeated entities[r[1:]].append(source)

else:

num triples += add edge(G, source, t, r)

repeated entities[’−’ + r].append(source)
repeated entities[r].append(t)

if len(possible relations) == 0:

print(’no adj relations’)

break

if not power law:

repeated entities = {r: list(set(repeated entities[r])) for r in repeated entities}

if node id % check frequency == 0 or node id == n−1:
add deductibles
all nodes = list(G.nodes)

random.shuffle(all nodes)

for h in all nodes:

for rule in deductible rules:

head list = [h]

r = rule[0]

for r in rule[1:]:

next head list = []

for e h in head list:

if e h not in G.nodes:

continue

for e t in G[e h]:

if r in G[e h][e t][’id’]:

if random.random()< mcmc:

next head list.append(e t)

head list = next head list

for t in head list:

if (h, r, t) not in all deductibles:

all deductibles[(h, r, t)] = [rule]

elif rule not in all deductibles[(h, r, t)]:

all deductibles[(h, r, t)].append(rule)

if not G.has edge(h, t) or r not in G[h][t][’id’]:

print(’add deductible edge’)

add edge(G, h, t, r)

num triples += 1

repeated entities[r].append(t)

repeated entities[’−’ + r].append(h)

atomic triples = []

deductible triples = []

for h, t in G.edges:

for r in G[h][t][’id’]:

if (h, r, t) not in all deductibles:

atomic triples.append((h, r, t))

else:

deductible triples.append((h, r, t))

random.shuffle(atomic triples)

random.shuffle(deductible triples)

assert len(atomic triples) >= int(num train * (1−deductible ratio))
assert len(deductible triples) >= int(num train * deductible ratio) + 2 * num test

remove triples = []

train atomic triples = atomic triples[:int(num train * (1−deductible ratio))]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

remove triples += atomic triples[int(num train * (1−deductible ratio)):]
train deductible triples = deductible triples[:int(num train * deductible ratio)]
remove triples += deductible triples[int(num train * deductible ratio):]

for h, r, t in remove triples:

t = t

rs = G[h][t][’id’]

if r in rs:

if len(rs) == 1:

G.remove edge(h, t)

else:

G[h][t][’id’].remove(r)

train triples = train deductible triples + train atomic triples

random.shuffle(train triples)

print("num train triples: ", len(train triples))

r2rule = {}
for rule in deductible rules:

if rule[0] in r2rule:

r2rule[rule[0]].append(rule[1:])

else:

r2rule[rule[0]] = [rule[1:]]

def check deductible(triple):

h, r, t = triple

alt ts = []

for rule in r2rule[r]:

head list = [h]

for r in rule:

next head list = []

for e h in head list:

for e t in G[e h]:

if r in G[e h][e t][’id’]:

next head list.append(e t)

head list = next head list

alt ts += head list

if t in alt ts:

return True

return False

id test triples = []

for i in range(int(num train * deductible ratio), len(deductible triples)):
if check deductible(deductible triples[i]):

id test triples.append(deductible triples[i])

if len(id test triples) == num test:

break

id test rules = [all deductibles[triple] for triple in id test triples]

print("num id test triples: ", len(id test triples))

rule2triples = defaultdict(list)

for triple in deductible triples[i+1:]:

for rule in all deductibles[triple]:

rule2triples[rule].append(triple)

uniformly sample testing triples from each rule
uniform test triples = []

for rule in rule2triples:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

triples = []

for triple in rule2triples[rule]:

if check deductible(triple):

triples.append(triple)

if len(triples)> num test//len(rule2triples):

uniform test triples += random.sample(triples, num test//len(rule2triples))

else:

uniform test triples += triples

random.shuffle(uniform test triples)

uniform test rules = [all deductibles[triple] for triple in uniform test triples]

print("num uniform test triples: ", len(uniform test triples))

return G, deductible rules , train triples , id test triples , id test rules , uniform test triples , uniform test rules

21

	Introduction
	Method
	Initial Experiments with Real-World Knowledge Graph
	Synthetic Data Construction
	Scaling Laws
	Graph Generation Ablation
	Optimal Model Size v.s. Graph Search Entropy
	Limitations

	Related Work
	Conclusion
	Reproducibility statement
	Data Processing Example
	Experiment Details
	Synthetic Knowledge Graph v.s. Real-world Knowledge Graph
	Synthetic Knowledge Graph Generation Code

