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Abstract

Wasserstein Distributionally Robust Optimization
(WDRO) is a principled framework for robust esti-
mation under distributional uncertainty. However,
its standard formulation can be overly conserva-
tive, particularly in small-sample regimes. We
propose a novel knowledge-guided WDRO (KG-
WDRO) framework for transfer learning, which
adaptively incorporates multiple sources of ex-
ternal knowledge to improve generalization accu-
racy. Our method constructs smaller Wasserstein
ambiguity sets by controlling the transportation
along directions informed by the source knowl-
edge. This strategy can alleviate perturbations
on the predictive projection of the covariates and
protect against information loss. Theoretically,
we establish the equivalence between our WDRO
formulation and the knowledge-guided shrinkage
estimation based on collinear similarity, ensur-
ing tractability and geometrizing the feasible set.
This also reveals a novel and general interpreta-
tion for recent shrinkage-based transfer learning
approaches from the perspective of distributional
robustness. In addition, our framework can adjust
for scaling differences in the regression models
between the source and target and accommodates
general types of regularization such as lasso and
ridge. Extensive simulations demonstrate the su-
perior performance and adaptivity of KG-WDRO
in enhancing small-sample transfer learning.
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1. Introduction
Traditional machine learning methods or empirical risk min-
imization often suffer from overfitting and a lack of general-
ization power, particularly in high-dimensional and small-
sample-size settings. In recent years, distributionally ro-
bust optimization (DRO) has emerged as a powerful frame-
work for mitigating the effects of model misspecification
and enhancing robustness in machine learning generaliza-
tions. Among various DRO formulations, Wasserstein-DRO
(WDRO) gained more attention due to its tractability and
generalizability. Specifically, in WDRO, one optimizes over
worst-case distributions within an ambiguity set defined by
a Wasserstein ball centered at an empirical measure.

However, one persistent challenge with WDRO is its ten-
dency to be overly conservative, which can lead to subopti-
mal performance in practice as found in (Liu et al., 2024).
In many real-world scenarios, prior knowledge can be lever-
aged to improve model performance and robustness. This
transfer learning approach falls under the category of Do-
main Adaptation, which adapts models trained on a source
domain to perform well on a related target domain with
limited labeled data.

A key application is in clinical trials, where the binary out-
come Y ∈ {0, 1} indicates treatment success or failure,
and the high-dimensional covariate X encodes a patient’s
physical and health conditions along with treatment details.
Data scarcity is common—especially for underrepresented
populations. To address this, we leverage a classifier trained
on a majority group (parameterized by θ) as a reference to
estimate a classifier for the minority group (parameterized
by β). This knowledge-guided transfer learning reduces
uncertainty by anchoring the search for β in the direction of
θ. In such a context, transfer learning has proven to be a ver-
satile approach for improving performance on a target task.
Despite its successes, the integration of prior knowledge
into WDRO frameworks has remained an open question.

In this work, we introduce Knowledge-Guided Wasserstein
Distributionally Robust Optimization (KG-WDRO), a novel
framework that adapts the Wasserstein ambiguity set us-
ing external knowledge (parameters). We assume access
to prior predictors of pre-trained models, which can guide
the predictive model in the target dataset. By constrain-
ing the transport cost along directions informed by prior
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knowledge, our approach addresses the conservativeness of
vanilla WDRO while preserving robustness. Intuitively, this
strategy allows the model to focus its uncertainty on regions
where prior knowledge is less reliable, effectively robustify
knowledge-guided generalization.

1.1. Related Works

1.1.1. WASSERSTEIN DRO

Wasserstein DRO has recently garnered significant attention
due to its tractability (Mohajerin Esfahani & Kuhn, 2018;
Blanchet & Murthy, 2019; Gao & Kleywegt, 2023) and gen-
eralizability (Blanchet et al., 2019a; Gao et al., 2022). No-
tably, Blanchet et al. (2019a) and Gao et al. (2022) demon-
strate that Wasserstein DRO with mean square loss is equiva-
lent to the square root lasso (Belloni et al., 2011). Similarly,
Shafieezadeh-Abadeh et al. (2015; 2019); Blanchet et al.
(2019a); Gao et al. (2022) establish that Wasserstein DRO
with logistic loss and hinge loss corresponds to their regular-
ized counterparts. Moreover, the statistical properties of the
WDRO estimator have also been investigated in (Blanchet
et al., 2021; 2022; Gao, 2023). However, leveraging external
knowledge in Wasserstein DRO has been an open problem.

1.1.2. TRANSFER LEARNING

Improving prediction accuracy for target populations by in-
tegrating diverse source datasets has driven methodological
advances in transfer learning. Contemporary approaches
aim to address challenges including distributional hetero-
geneity and limited labeled target data. A common assump-
tion is that the target outcome model aligns partially with
source models, enabling knowledge transfer. For example,
recent frameworks employ selective parameter reduction to
identify transferable sources and sparse or ridge shrinkage
to leverage their knowledge (Bastani, 2020; Li et al., 2021;
Tian & Feng, 2023). Subsequent works tackle covariate
distribution mismatches and semi-supervised scenarios, en-
hancing robustness when labeled target data is scarce (Cai
et al., 2024; He et al., 2024; Zhou et al., 2024). Further
innovations include geometric or profile-based adaptations,
where the target model is represented as a weighted com-
bination of source coefficients (Gu et al., 2024; Lin et al.,
2024).

1.2. Our Contribution

Our contributions are fourfold. Framework: We introduce
KG-WDRO, a principled and flexible framework that inte-
grates prior knowledge into WDRO for linear regression
and binary classification. This framework mitigates the
conservativeness of standard WDRO, enables automated
covariate scaling adjustments, and prevents negative trans-
fer. Theory: We establish the equivalence between KG-

WDRO and shrinkage-based estimation methods, offering a
novel perspective that unifies and interprets a broad range
of knowledge transfer learning approaches through the lens
of distributional robustness. Table 1 provides an overview
of them, highlighting their key capabilities and advantages
and comparing them with our framework. Technicalities:
Leveraging Toland’s Duality (Theorem F.1), we reformu-
late the innermost maximization in WDRO’s strong duality
(Proposition 2.1) into a univariate optimization problem
(Toland’s Duality). This reformulation enhances tractability
while accommodating more general cost functions. Em-
pirical Validation: Through extensive experiments, we
demonstrate the effectiveness of KG-WDRO in improving
small-sample transfer learning.

Below is an overview of our main results for the linear
regression case.
Example 1. Suppose θ is an accessible prior predictor
for a linear model parameterized with β. We show that
the shrinkage-based transfer-learning regression problem,
which estimates a target predictor β by solving

inf
β,κ∈R

∥y −Xβ∥2 +
√
δ∥β − κθ∥p,

can be interpreted as a Wasserstein distributionally robust
optimization (WDRO) problem of the form (WDRO), where
the loss function is least squares, ℓ(X,Y ;β) = (Y−βTX)2,
and the ambiguity set Bδ(PN ; c2,∞) is defined as a ball
around the empirical measure. The cost function c2,∞
augments the standard transport cost by the constraint
xTθ = uTθ so that

c2,∞
(
(x, y), (u, v)

)
=∥x− u∥2q +∞ · |y − v|+∞ · |(x− u)Tθ|.

This establishes a distributionally robust optimization
(DRO) perspective on a broad class of transfer-learning
methods as will be discussed in Section 3.

1.3. Notations & Organizations

We summarize the mathematical notations used in this work.
The positive integers N , M , and d denote, respectively, the
target sample size, the number of sources, and the dimension
of the support of the covariate X . The integers p and q ∈
[1,∞] are reserved for pairs of Hölder conjugates, satisfying
p−1 + q−1 = 1 for p, q ∈ (1,∞), as well as the pair 1 and
∞. For a distribution P supported on the Euclidean space
Rd, we use PN to denote the empirical measure of P with
sample size N . In modeling the target-covariate relationship,
the distribution is often factorized as P = PY |X×PX . For a
vector v ∈ Rd, ∥v∥p denotes the p-norm, where p ∈ [1,∞],
and vT denote the transpose of v. For any two vectors
u, v ∈ Rd, the notation cos (u, v) denote the cosine of the
angle between u and v, calculated by cos (u, v)∥u∥2∥v∥2 =
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Table 1. Overview of recent transfer learning techniques. Each column represents a key capability: Ridge-type / Lasso-type – Regular-
ization type used; Scale Adjustment – Robustness against feature-wise scaling; Continuous outcome / Binary outcome – Supports
regression or classification; Partial Transfer – Selections of prior knowledge; Multi-Source ensemble – Profiles on multiple prior
knowledges.

METHODS
RIDGE
-TYPE

LASSO
-TYPE

SCALE
ADJUSTMENT

CONTINUOUS
OUTCOME

BINARY
OUTCOME

PARTIAL
TRANSFER

MULTI-SOURCE
ENSEMBLE

KG-WDRO ✓ ✓ ✓ ✓ ✓ ✓ ✓
BASTANI (2020) ✓ ✓
LI ET AL. (2021) ✓ ✓
TIAN & FENG (2023) ✓ ✓ ✓
GU ET AL. (2024) ✓ ✓ ✓ ✓
LIN ET AL. (2024) ✓ ✓ ✓ ✓

uTv. All vectors are assumed to be column vectors. Other
specialized notations are defined in context as needed.

The remainder of the paper is organized as follows. Section
2 provides a review of the WDRO framework, including
the strong duality result. In Section 3, we introduce our
KG-WDRO framework and demonstrate its equivalence to
shrinkage-based estimations in both linear regression and
binary classification. Section 4 presents comprehensive
results from our numerical simulations. All proofs and
detailed descriptions of the numerical simulation setups are
provided in the appendix.

2. Preliminaries
We first begin with a short overview of the distributionally
robust framework on statistical learning.

2.1. Optimal Transport Cost

Let P and Q denote two probability distributions supported
on Rd, and we use P(Rd × Rd) to label the set of all prob-
ability measures on the product space Rd × Rd. We say
that an element π ∈ P(Rd × Rd) has first marginal P and
second marginal Q if

π(A× Rd) = P(A), π(Rd ×B) = Q(B),

for all Borel measurable sets A,B ∈ Rd. The class of
all such measures π is collected as Π(P,Q), and is called
the set of transport plans, which is always non-empty.
Choose a non-negative, lower semi-continuous function
c : Rd × Rd → [0,∞] such that c(u, v) = 0 whenever
u = v, then the Kantorovich’s formulation of optimal trans-
port is defined as

Dc(P,Q) := inf
π∈Π(P,Q)

Eπ [c(U, V )] .

It is well-known that (Villani, 2009, Theorem 4.1) there
exists an optimal coupling π† that solves the Kantorovich’s
problem infπ∈Π(P,Q) Eπ [c(U, V )]. Intuitively, we may

think of the value c(u, v) as the cost of transferring one
unit of mass from u ∈ Rd to v ∈ Rd, then Eπ[c(U, V )]
gives the average cost of transferring under the plan π. The
optimal transport cost Dc(P,Q) gives a measure of discrep-
ancy between probability distributions on Rd.

If c(u, v) defines a metric on Rd, then for any p ∈ [1,∞)
the optimal transport cost,

D1/p
c (P,Q) :=

(
inf

π∈Π(P,Q)
Eπ [c(U, V )p]

)1/p

,

defines a metric between probability distributions and
metrizes weak convergence under moment assumptions. It
is called the p-Wasserstein distance. We direct the interested
readers to (Villani, 2009, Chapter 6) for more details. It is
worth mentioning that none of our judiciously chosen cost
functions qualify as metrics on the support of the data.

2.2. Distributionally Robust Optimization

In standard statistical learning framework, one generally
assumes that the target-covariate pair (X,Y ) ∈ Rd × R ∼=
Rd+1 follows a data-generating distribution P := PX,Y on
the support Rd+1. One then seeks to find a ‘best’ parameter
β that relates Y to X through a parameterized model by
solving the stochastic optimization,

inf
β

EP [ℓ(X,Y ;β)] . (SO)

The loss function ℓ(x, y;β) provides a quantification of
the goodness-of-fit in the parameter β given the realized
observation (x, y). Since only samples {(xi, yi)}i=1,...,N

are observed, we can typically only solve the empirical
objective,

inf
β

EPN
[ℓ(X,Y ;β)] = inf

β

1

N

N∑
i=1

ℓ(xi, yi;β). (ERM)

Therefore the distribution P that underlies the data-
generating mechanism is uncertain to the decision-maker.
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This motivated the distributionally robust optimization
(DRO) framework, which entails solving the following min-
imax stochastic program:

inf
β

sup
P∈Pamb

EP[ℓ(X,Y ;β)], (DRO)

where the ambiguity set Pamb represents a class of probabil-
ity measures supported on Rd+1 that are candidates to the
true data-generating distributions. In Wasserstein-DRO, the
ambiguity set is constructed by forming a ‘δ-ball’ around the
canonical empirical measure PN associated to the decision-
maker-defined transport cost c, i.e. we let the ambiguity set
Pamb be chosen as:

Bδ(PN ; c)

:= {P ∈ P(Rd+1)|Dc(P,PN ) ≤ δ}. (WDRO)

This ambiguity set captures probability measures that are
close to the observed empirical measure in the transport
cost Dc, which may be taken as a class of candidates of
measures perturbed from PN . The solution βDRO to (DRO)
that solves the worst case expected loss should perform well
over the entire set of perturbations in the ambiguity set. This
is in contrast to βERM that solves (ERM) only performs well
on the training samples. This adds a robustness layer to the
WDRO problem (WDRO). For a comprehensive overview
of different constructions of ambiguity sets, we direct the
interested reader to (Kuhn et al., 2024, Section 2).

2.3. Strong Duality of Wasserstein DRO

The Wasserstein DRO problem involves an inner maximiza-
tion over an infinite-dimensional set, which appears com-
putationally intractable. However, the distribution Pn is
discrete, strong duality of the Wasserstein DRO reformu-
lates it as a simple univariate optimization.
Proposition 2.1 (Strong Duality, (Blanchet et al., 2019a,
Proposition 1)). Let c : Rd+1 × Rd+1 → [0,∞] be a lower
semi-continuous cost function satisfying c

(
(x, y), (u, v)

)
=

0 whenever (x, y) = (u, v). Then the distributionally robust
regression problem

inf
β∈Rd

sup
P:Bδ(PN )

EP [ℓ(X,Y ;β)] ,

is equivalent to,

inf
β∈Rd

inf
γ≥0

{
γδ +

1

n

N∑
i=1

ϕγ(xi, yi;β)

}
,

where ϕγ(xi, yi;β) is given by,

sup
(u,v)∈Rd+1

{
ℓ(u, v;β)− γc

(
(u, v), (xi, yi)

)}
.

For more general results, see (Blanchet & Murthy, 2019,
Theorem 1) and (Gao et al., 2022, Section 2). The ex-
changeability of sup and inf in Wasserstein-DRO is also
established by (Blanchet et al., 2019a, Lemma 1).

3. Knowledge-Guided Wasserstein DRO
In this section, we propose new cost functions for the
Wasserstein DRO framework that leverage prior knowledge
for transfer learning. For linear regression and binary classi-
fication, these cost functions act as regularizers, encouraging
collinearity with prior knowledge.

3.1. Knowledge-Guided Transport Cost

It is shown in (Blanchet et al., 2019a, Theorem 1) that using
the squared q-norm on the covariates as the cost function

c2
(
(x, y), (u, v)

)
= ∥x− u∥2q +∞ · |y − v|, (1)

equates Wasserstein distributionally robust linear regres-
sion with p-norm regularization on the root mean squared
error (RMSE). The cost function c2 perturbs only the ob-
served covariates {xi}Ni=1, while keeping the observed tar-
gets {yi}Ni=1 fixed. Keeping the observed target Y as fixed
often leads to more mathematically tractable reformulation,
another intuition is that we trust the mechanism by which
the target Y is generated once X is known.

In the presence of prior knowledge θ that may aid in infer-
ring β, we aim to control the extent of perturbation along
the direction of θ.

Specifically, we constrain the size of the prediction discrep-
ancy θTx − θTu = θT∆, where ∆ := x − u. To achieve
this goal, we henceforth augment the cost function c2 with
an additional penalty term that accounts for the size of the
perturbation in the direction of θ:

c2,λ
(
(x, y), (u, v)

)
=∥∆∥2q +∞ · |y − v|+ λh(|θT∆|), (2)

where λ > 0 and h(x) : R→ R+ ∪ {0} is a non-negative,
monotone increasing function of |x| such that h(0) = 0.
Recall that in the cost function c2(·), the targets y remain
fixed. Intuitively, the new cost function (2) encourages the
Wasserstein ambiguity set to include distributions whose
marginals in X generate predictions that align with the data
based on the prior predictor θ. The parameter λ controls
the level of confidence in the prior knowledge. We call
this kind of cost functions knowledge-guided. Since c2,λ
upper bounds the cost function c2, we haveBδ(PX

N ; c2,λ2) ⊆
Bδ(PX

N ; c2,λ1
) ⊆ Bδ(PX

N ; c2) whenever λ2 > λ1.

The corresponding optimal transport problem given by:

inf
π∈Π(QX ,PX

N )
Eπ[c2,λ(X,U)],

can also be expressed as:

inf
π∈Π(QX ,PX

N )
Eπ[c2(X,U)] + λEπ[h(|θT∆|)].
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This formulation regularizes the original optimal trans-
port problem by penalizing large values of the expectation
Eπ[h(|θT∆|)].

For any user-defined function h that measures the discrep-
ancy in generalization with respect to the prior knowledge θ,
we refer to it as weak-transferring of knowledge if λ < +∞,
and strong-transferring of knowledge if λ = +∞. In the
case of strong-transferring, to ensure the finiteness of the
optimal transport problem, the minimizing transport plan
π† must satisfy the orthogonality condition θT∆ = 0, π†-
almost surely. Consequently, the value of θTX remains
unchanged after perturbing PX

N within Bδ(PX
N ; c2,∞). As a

result, this should promote βDRO → θ as δ → ∞.Indeed,
we have the following proposition on the bound of the mini-
max objective with strong transferring.
Proposition 3.1. Let ℓ(X,Y ;β) = (Y −βTX)2 denote the
least square loss, then

inf
β∈Rd

sup
P:Bδ(PN ;c2,∞)

EP
[
(Y − βTX)2

]
≤ inf

α∈R
EP∗

N

[
(Y − (αθ)TX)2

]
.

Thus, the minimax optimizer under knowledge guidance
from θ achieves out-of-sample performance that is at least
as good as the in-sample performance of the naive domain
adapter α̂Nθ. A similar statement applies to the binary
classification settings as discussed in Theorem 3.6.
Remark 3.2. The above framework extends to incorporate
multi-sites prior knowledge, meaning that instead of a single
prior knowledge coefficient θ1, we consider a set of coef-
ficients {θ1, θ2, . . . , θM}. Let Θ := span{θ1, θ2, . . . , θM}
represent the linear span of these prior knowledge coeffi-
cients. In the case of strong-transferring, we must ensure
that rank(Θ) < d; otherwise, the set of orthogonality con-
ditions {θT

m∆ = 0;m ∈ [M ]} would imply that the pertur-
bation ∆ is identically zero (∆ = 0). This would render
the ambiguity set redundant and reduce the WDRO prob-
lem (WDRO) to the ERM problem (ERM). This result is
confirmed by the statements of Theorems 3.3 and 3.6.

3.2. Linear Regression

We begin by examining the WDRO problem (WDRO) for
linear regression within the strong-transferring domain. Fol-
lowing this, we present a specific case within the weak-
transferring domain. Let Θ := span{θ1, . . . , θM} represent
the linear span of the prior knowledge.

3.2.1. STRONG-TRANSFERRING

Define the cost function c2,∞
(
(x, y), (u, v)

)
:= ∥x−u∥2q +

∞ · |y − v|+∞ · |θT
1x− θT

1u|+ . . .+∞ · |θT

Mx− θT

Mu|,
and for a set of observed samples {(xi, yi)}i∈[N ], we use
MSEN (β) := N−1

∑N
i=1(yi − βTxi)

2. Without making

any additional distributional assumptions on (X,Y ), we
obtain the following finite-dimensional representation.

Theorem 3.3 (Linear Regression with Strong-Transferring).
Consider the least-squared loss ℓ(X,Y ;β) = (Y − βTX)2,
then for any q ∈ [1,∞] we have

inf
β∈Rd

sup
P:Bδ(PN ;c2,∞)

EP
[
(Y − βTX)2

]
= inf

β∈Rd,ϑ∈Θ

(√
MSEN (β) +

√
δ∥β − ϑ∥p

)2
,

where p is such that p−1 + q−1 = 1.

From the above result, we observe that the knowledge-
guided WDRO problem for linear regression is equivalent to
regularizing the RMSE with a p-norm distance to the linear
span Θ. The regularization parameter is entirely determined
by the size (or radius) of the Wasserstein ambiguity set. Im-
portantly, the penalty term focuses on the collinearity with
the prior knowledge rather than their algebraic difference or
angular proximity.

Consider the case when there is only a single prior knowl-
edge θ1, the penalty term does not constrain the solution
βDRO to be close to θ1, but rather to κ · θ1 for some κ ∈ R
to be optimized. Consequently, this knowledge transfer au-
tomatically robustify solution against scaling of covariates.
Furthermore, it can prevent negative transfer by adapting
its sign to be positively correlated with β∗, which is the
solution to population objective (SO). When δ → ∞, the
penalty term becomes dominant, forcing β to lie in Θ for
any p ≥ 1. This reduces the WDRO problem to a simple
constrained regression problem,

inf
β∈Θ

MSEN (β),

reflecting the complete reliance on the prior knowledge and
prevents excessive shrinkage towards the null estimator.
Remark 3.4. We now discuss two special cases of the
penalty term, p = 2 (ridge-type regularization) and p = 1
(lasso-type regularization). For simplicity, we consider the
case of a single prior knowledge vector θ.

Ridge-type. The penalty term can be explicitly calculated
as

min
κ∈R
∥β − κθ∥2 =

∥∥∥∥β − βTθ

∥θ∥22
θ

∥∥∥∥
2

= ∥β⊥θ∥2,

where β⊥θ is the component of β orthogonal to θ. This
penalty term shrinks distance to the line in the direction of
θ. Furthermore, note that

∥β⊥θ∥2 = ∥β∥2 sin(β, θ) = ∥β∥2
√

1− cos2(β, θ),

which represents a trade-off between the magnitude of β
and its angular proximity to the prior knowledge θ. This
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Figure 1. The two-dimensional contour plots of the regularization term in Theorem 3.3 and Theorem 3.5 with λ ranging from +∞ to 2
to 0.1. The prior knowledge parameter is taken as θ = (2, 1)T. The area between the black contours constitute a feasibility set of the
regularization term when written in its equivalent constraint form. The feasibility set shrinks in the direction of θ, to a circle of radius K
when λ → 0 from above.

trade-off is illustrated in the leftmost figure of Fig.1, draw-
ing the feasibility set of the regularization as a constraint.
This regularization is closely related but different to the one
proposed in (Gu et al., 2024), where they penalize large
values of a computational relaxation of sin (β, θ).

Lasso-type. When the prior knowledge θ is sparse, the
penalty term minκ ∥β − κθ∥1 promotes sparse representa-
tion learning. Consider a simple example where the dimen-
sion is d = 3 and θ = (1, 0, 0)T. In this case, we have:

min
κ
∥β − κθ∥1 = min

κ

(
|β1 − κ|+ |β2|+ |β3|

)
= |β2|+ |β3| =: ∥β91∥1,

where β91 = (β2, β3)
T. This formulation enforces sparsity

only on the last two components of β, reflecting the sparsity
pattern of θ.

3.2.2. WEAK TRANSFERRING

For the special case of q = p = 2, we define the weak-
transferring cost function c2,λ

(
(x, y), (u, v)

)
= ∥x−u∥22 +

λ(θTx− θTu)2 +∞ · |y − v| with 0 < λ < +∞. Here, we
select h(x) = x2 as the user-defined function on controlling
the size of perturbation in θ. For simplicity, we consider a
single prior knowledge vector θ in this setup. This result
can be straightforwardly extended to a multi-source setup
with different values of λ’s.

Theorem 3.5 (Linear Regression with Weak Transferring).
Consider the least-squared loss ℓ(X,Y ;β) = (Y − βTX)2,
then for p = q = 2 we have

inf
β∈Rd

sup
P:Bδ(PN ;c2,λ)

EP
[
(Y − βTX)2

]
= inf

β∈Rd

(√
MSEN (β) +

√
δ ∥β∥Ψλ91

)2
.

With Ψλ = Id −
1

∥θ∥22 + λ
θθT and ∥β∥2Ψλ

= βTΨλβ.

Write Pλ = θθT/(∥θ∥22 + λ), we note that as λ → ∞,
we have Pλ91 → P0 = θθT/∥θ∥22 recovering the projec-
tion matrix onto the prior knowledge θ. Consequently,
∥β∥Ψλ91 → ∥β⊥θ∥2.

We observe that the action

Pλ91β =
βTθ

∥θ∥22 + λ−1
θ

is exactly the ridge regression of β onto θ with a regular-
ization parameter λ−1. Thus, the finiteness of λ, which
can reflect a caution in the prior knowledge θ, induces a
shrinkage effect on the component of β explainable by θ
in the dot product geometry. Since Ψλ ≻ Id − P , we have
∥β∥Ψλ91 > ∥β⊥θ∥2 for any finite λ > 0, this implies the
inclusion of feasibility set

{β : ∥β∥Ψλ91 ≤ K} ⊂ {β : ∥β⊥θ∥2 ≤ K},

as plotted in Fig.1 for an illustration on R2. The contour
{β ∈ R2 : ∥β∥Ψλ91 = K} forms an ellipse centered around
the origin 0. The ellipse has a major axis of half length

K

√
∥θ∥22 + λ−1

λ−1
aligned with the direction of θ, and a mi-

nor axis with half-length K aligned with the direction of θ⊥.
As λ→ 0, representing no-confidence in θ, the half-length
of the major axis converges to K, resulting in a perfect circle
as in ridge regression.

The two-dimensional hyper-parameters (δ, λ−1) enable the
use of data-driven methods, such as grid-search cross-
validation, for hyper-parameter tuning. Unlike the strong-
transferring domain, the inclusion of λ−1 allows the data to
self-determine the informativeness of the source samples.
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3.3. Binary Classifications

In this section, we focus on the context of binary clas-
sification, where the goal is to predict the discrete label
Y ∈ {−1, 1} based on the covariates X ∈ Rd. Unlike
the previous section, we use the q-norm, rather than its
square, to account for distributional ambiguity in the covari-
ate distribution. Define the strong-transferring cost function
c1,∞

(
(x, y), (u, v)

)
:= ∥x−u∥q+∞·|y−v|+∞·|θT

1x−
θT
1u|+ . . .+∞ · |θT

Mx− θT

Mu|. We consider two loss func-
tions here. The logistic loss function is given by

ℓ(X,Y ;β) = log
(
1 + e−Y βTX

)
,

which is the negative log-likelihood of the model that postu-
lates

log
P(Y = 1|X = x)

P(Y = −1|X = x)
= β∗Tx.

The hinge loss is given by

ℓ(X,Y ;β) = (1− Y βTX)+,

which is typically used for training classifiers that look for
‘maximum-margins’ in class boundaries, most notably sup-
port vector machines.

Suppose Y ∈ {−1, 1} is binary and without any distri-
butional assumptions on X , we have the following result
which recovers regularized logistic regressions and support
vector machines.

Theorem 3.6 (Binary Classification with Strong Transfer-
ring). Suppose the loss function ℓ(X,Y ;β) is either the

logistic loss log
(
1 + e−Y βTX

)
or the hinge loss (1 −

Y βTX)+, then for any q ∈ [1,∞] we have

inf
β∈Rd

sup
P:Bδ(PN ;c1,∞)

EP [ℓ(X,Y ;β)]

= inf
β∈Rd,ϑ∈Θ

1

N

N∑
i=1

ℓ(xi, yi;β) + δ∥β − ϑ∥p,

where p is such that p−1 + q−1 = 1.

3.4. Sub-Coefficient-Vector Transferring

In this subsection, we generalize the statements of Theorems
3.3 and 3.6 for p = 2 to arbitrary norms induced by positive-
definite quadratic forms. Let Λ ∈ Rd×d be a positive-
definite symmetric matrix. The norm ∥x∥Λ =

√
xTΛx

induces a metric on Rd, defined as dΛ(x, u) = ∥x − u∥Λ,
known as the Mahalanobis distance. Since Λ is positive def-
inite, it admits a decomposition Λ = ΓTΓ with Γ invertible,
and the norm ∥x∥Λ = ∥Γx∥2 measures length in the geom-
etry distorted by Γ. By (Blanchet et al., 2019b, Lemma 1),
the dual norm of ∥ · ∥Λ is ∥ · ∥Λ−1 . Using Proposition E.6,

the statements of Theorems 3.3 and 3.6 can be easily gener-
alized. Define the space of positive-definite symmetric ma-
trices as Sd×d

+ and the cost function: cΛ2,∞
(
(x, y), (u, v)

)
:=

∥x− u∥2Λ +∞ · |y − v|+∞ ·
∑M

m=1 |θT
mx− θT

mu|.
Corollary 3.7 (Theorem 3.3). For the least-squares loss
ℓ(X,Y ;β) = (Y − βTX)2 and any Λ ∈ Sd×d

+ :

inf
β∈Rd

sup
P:Bδ(PN ;cΛ2,∞)

EP
[
(Y − βTX)2

]
= inf

β∈Rd,ϑ∈Θ

(√
MSEN (β) +

√
δ∥β − ϑ∥Λ−1

)2
.

This formulation enables the use of metric learning meth-
ods to determine Λ directly from the data, as detailed
in (Blanchet et al., 2019b). For example, if the two-
dimensional prior θ = [θ1, θ2] is known to primarily in-
fluence the first component of the truth β = [θ1 + ϵ, β2], we
can select Λ = diag(d1, d2) with d1 ≪ d2. This imposes a
weaker penalty on perturbations in the first direction, result-
ing in a weighted penalty term: minκ

(
(β1 − κθ1)/d1 +

(β2 − κθ2)/d2
)
, which prioritizes aligning β1 with θ1,

while β2 is determined more flexibly based on the data.
We call this sub-coefficient-vector transferring, or the ability
to partially transfer prior knowledge. A similar corollary
applies to Theorem 3.6, as stated in Corollary D.1.

Finally, we again draw the reader’s attention to Table 1,
which compares several transfer learning methods discussed
in Section 1.1.2. Notably, our proposed KG-WDRO frame-
work brings together a broad range of desirable capabilities
within a single, unified approach to transfer learning.

4. Numerical Results
In this section, we present numerical simulations to validate
the effectiveness of the proposed KG-WDRO method. We
compare learners across different settings, including high-
dimensional sparse models, correlated covariates, and multi-
source prior knowledge, for either linear regression or binary
classification tasks. Performance is evaluated using out-of-
sample classification error for binary classifiers and out-of-
sample R2 for linear regressors.

For the single-source experiments, target-source coefficient
pairs (β, θ) are generated from a multivariate normal distri-
bution:

(βj , θj) ∼ N

((
0
0

)
,

(
σ2 ρσ2

ρσ2 σ2

))
, (3)

where ρ is the correlation between β and θ, and the ex-
pected length of θ is approximately σ

√
d− 0.5. We scale

β as β ← sβ with s ∈ (0, 1] to study the stabilizing effects
of strong prior knowledge in small-sample settings. The
dimension-to-sample ratio d/N is varied by fixing d and in-
creasing N . Performance is averaged over 100 simulations.
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Figure 2. Out-of-sample performance plot of the proposed KG-WDRO method for high-dimensional regression tasks, compared against
benchmark methods. The plot shows performance variations as ρ, representing the correlation between true and prior coefficient pairs,
increases. Results are displayed for four specific settings across three experimental groups.

Each dataset consists of three parts: data = (train,
val, test). The (train, val) pair shares the same
size, and hyperparameters are selected based on validation
performance. The source data contains 800 samples, with
source truth θ estimated accordingly. Out-of-sample perfor-
mance is measured on the test set of 5000 data points.

4.1. Simulation 1: Logistic with ℓ1-Strong Transferring

In the first experiment, we compare two learners for bi-
nary classification tasks with high-dimensional sparse co-
efficients against our proposed KG-WDRO learner, βKG,
derived using Theorem 3.6 with p = 1. The competing
learners are the target-only vanilla WDRO learner βWDRO

(Blanchet et al., 2019a, Theorem 2) and βTransG, obtained
via the A-Trans-GLM algorithm (Tian & Feng, 2023, Al-
gorithm 1). The target-source pair (β, θ) is generated using
(3) with a dimension of 50 and augmented with 100 ze-
ros for sparsity, resulting in a total dimension of 150. We
test six settings, varying the sample size N ∈ {20, 50, 80},
signal strength s ∈ {0.5, 1}, and truth-prior correlation
ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95}.

The comparison between βKG and βTransG is highly com-
petitive, with βKG consistently outperforming βTransG by
up to 2% in accuracy when the sample size is small (N =
20) across all values of ρ, as shown in the upper-left plot
of Figure 2. In larger sample size scenarios, both learners

perform similarly (see Table 3 for detailed results). Both
transfer learning methods, βKG and βTransG, significantly
outperform the target-only learner, βWDRO.

4.2. Simulation 2: Linear Regression with ℓ2-Weak
Transferring

In this simulation, we compare two learners on high-
dimensional linear regression with correlated covariates
against our proposed learners, βKGweak (Theorem 3.5) and
βKGstrong (Theorem 3.3), both using p = 2. There is
no sparsity in the regression coefficients. The competing
learners are the target-only vanilla WDRO learner βWDRO

(Blanchet et al., 2019a, Theorem 1) and the Trans-Ridge
algorithm adapted from (Li et al., 2021, Algorithm 1), de-
noted as βTransR. The covariates are fixed at dimension
100, with a pairwise correlation of 0.3. The experiment
is conducted across six settings, varying the sample size
N ∈ {50, 70, 90}, signal strength s ∈ {0.8, 1}, and truth-
prior correlation ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95}.

As shown in the upper-right plot of Figure 2, the perfor-
mance of βTransR lags significantly behind both βKGstrong

and βKGweak until the correlation ρ becomes sufficiently
high. Across all settings, βKGstrong and βKGweak consis-
tently outperform βTransR when ρ is moderate or low, as
documented in Table 4. Furthermore, all three transfer learn-
ing methods demonstrate superior performance compared
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to the target-only learner, βWDRO.

4.3. Simulation 3: Transfer Learning with Multiple Sites

In the final set of experiments, we validate our methods in a
multi-source transfer learning setting with high-dimensional
sparse linear regression. The significant components of
the three source coefficients are generated using (3) with
correlation ϱ and dimension 50, denoted as {θ1, θ2, θ3}. We
construct a linear combination, θS = aθ1 + bθ2 + cθ3, and
generate β = ρθS + ε, where ε ∼ N(0, (1− ρ2)Var(θS)),
ensuring Corr(β, θS) = ρ. β is then scaled to match the
magnitude of θS , and all vectors are augmented with 100
zeros, yielding a total dimension of 150. Our proposed
method, βKG (Theorem 3.3, p = 1), is compared against
the oracle Trans-Lasso algorithm (Li et al., 2021, Algorithm
1) (βTransL) and the vanilla WDRO learner βWDRO. The
experiment spans six settings: [a, b, c] = [1,−0.5, 0.2] and
[1, 1, 1], with ϱ = 0.9 and 0.6, respectively. Sample sizes
vary in N ∈ {50, 60, 70}. The truth-prior correlation ranges
in ρ ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.

When [a, b, c] = [1,−0.5, 0.2], the contributions of the θ’s
to the generation of θS are unequal. In this case, it is not
surprising that βKG outperforms βTransL, as shown in the
bottom-left plot of Figure 2. When θS is an equal-weighted
average of the θ’s ([a, b, c] = [1, 1, 1]), the performance
of βKG and βTransL becomes similar. However, βKG still
demonstrates superior performance in larger sample sizes
and higher correlations, as documented in Table 5.

Table 2. Log-loss values for WDRO, KG-WDRO, and Trans-GLM
across the eight target states and overall in the U.S. election dataset.
The best-performing method in each state and overall is highlighted
in distinct colors.

STATE WDRO KG-WDRO TRANS-GLM

ARIZONA 22.43 7.54 8.52
GEORGIA 46.60 27.22 24.89
ILLINOIS 20.02 8.78 15.49
MICHIGAN 43.43 25.23 24.79
MINNESOTA 38.67 23.42 27.63
MISSISSIPPI 34.31 14.99 16.75
N. CAROLINA 41.48 19.02 18.56
VIRGINIA 64.84 21.20 22.84
OVERALL 311.77 147.39 159.49

4.4. A Real Data Analysis

To demonstrate the practical applicability of our KG-WDRO
framework, we evaluate it on the Trans-GLM (Tian & Feng,
2023) dataset, which compiles 2020 U.S. presidential elec-
tion results at the county level (see their references for data
sources). Each county is labeled as ‘1’ if the Democratic
candidate won, and ‘0’ otherwise. We compare KG-WDRO
with Trans-GLM on a binary classification task, where the

goal is to predict county-level election outcomes in eight
target states (Table. 2) using data from the remaining states
as external source knowledge. The features include county-
level demographics such as population size and ethnicity
proportions, and the base model is logistic regression. The
cleaned dataset consists of 3,111 counties and 761 standard-
ized predictors across 49 states. We use data from 2,100
counties as the source to predict outcomes in the eight tar-
get states (approximately 100 counties each). KG-WDRO
outperforms Trans-GLM in 5 out of 8 states and reduces the
overall log-loss by 7.6%. Both transfer learning methods
significantly outperform the standard WDRO estimator.

5. Conclusion
We propose the knowledge-guided Wasserstein distribution-
ally robust optimization (KG-WDRO) framework, which
utilizes prior knowledge of predictors to mitigate the over-
conservativeness of conventional DRO methods. We estab-
lish tractable reformulations and demonstrate their superior
performance compared to other methods. For future work,
we aim to provide statistical guarantees of our proposed
estimators. Furthermore, based on these statistical proper-
ties, we plan to develop a principled approach for selecting
hyperparameters such as δ and λ.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There might be potential societal
consequences of our work, none of which we feel need to
be specifically highlighted here.
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A. Additional Details in Numerical Results
This section provides details to supplement Section 4. We outline the data-generating distributions for all three sets of
experiments, the hyperparameter grids, and the learners used to identify prior knowledge. We present the exact numerical
results for all three sets of experiments. Recall that the notation s ∈ (0, 1] represents the signal strength of the true parameter
β, which works by rescaling the magnitude of β such that β ← sβ. The notation d is the dimension of the covariates, and N
is the sample size. Finally, the symbol ρ represents the correlation between the true β and the prior θ.

A.1. Simulation Results

A.1.1. SIMULATION 1: LOGISTIC REGRESSION

SETTING ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95 WDRO

s = 1 KG-WDRO 0.587 0.647 0.714 0.748 0.794 0.817 0.565
N = 20 TRANS-GLM 0.585 0.641 0.702 0.735 0.778 0.800 -

s = 1 KG-WDRO 0.586 0.647 0.713 0.751 0.797 0.823 0.619
N = 50 TRANS-GLM 0.586 0.645 0.710 0.752 0.792 0.823 -

s = 1 KG-WDRO 0.583 0.646 0.713 0.751 0.798 0.823 0.654
N = 80 TRANS-GLM 0.584 0.646 0.714 0.755 0.800 0.826 -

s = 0.5 KG-WDRO 0.581 0.634 0.690 0.721 0.762 0.787 0.549
N = 20 TRANS-GLM 0.579 0.626 0.674 0.708 0.748 0.760 -

s = 0.5 KG-WDRO 0.580 0.635 0.689 0.728 0.768 0.794 0.588
N = 50 TRANS-GLM 0.579 0.633 0.693 0.723 0.769 0.789 -

s = 0.5 KG-WDRO 0.581 0.637 0.700 0.732 0.775 0.790 0.617
N = 80 TRANS-GLM 0.581 0.638 0.702 0.737 0.779 0.799 -

Table 3. Out-of-sample classification accuracies for Simulation 4.1, comparing KG-WDRO, Trans-GLM, and WDRO across six settings
with varying values of ρ.

A.1.2. SIMULATION 2: LINEAR REGRESSION

SETTING ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95 WDRO

s = 1 KG-WDRO (STRONG) 0.585 0.645 0.740 0.801 0.870 0.912 0.108
N = 50 KG-WDRO (WEAK) 0.583 0.646 0.741 0.800 0.871 0.910 -

TRANS-RIDGE 0.391 0.548 0.706 0.786 0.870 0.915 -

s = 1 KG-WDRO (STRONG) 0.707 0.745 0.803 0.843 0.894 0.924 0.513
N = 70 KG-WDRO (WEAK) 0.704 0.743 0.803 0.842 0.892 0.923 -

TRANS-RIDGE 0.599 0.692 0.788 0.838 0.893 0.925 -

s = 1 KG-WDRO (STRONG) 0.806 0.827 0.859 0.881 0.911 0.932 0.758
N = 90 KG-WDRO (WEAK) 0.804 0.825 0.857 0.880 0.910 0.930 -

TRANS-RIDGE 0.762 0.802 0.849 0.877 0.910 0.932 -

s = 0.8 KG-WDRO (STRONG) 0.563 0.621 0.716 0.777 0.850 0.894 0.030
N = 50 KG-WDRO (WEAK) 0.561 0.622 0.716 0.777 0.849 0.892 -

TRANS-RIDGE 0.213 0.405 0.600 0.700 0.803 0.858 -

s = 0.8 KG-WDRO (STRONG) 0.673 0.713 0.774 0.818 0.872 0.905 0.361
N = 70 KG-WDRO (WEAK) 0.670 0.710 0.774 0.816 0.869 0.903 -

TRANS-RIDGE 0.470 0.585 0.704 0.768 0.837 0.875 -

s = 0.8 KG-WDRO (STRONG) 0.768 0.791 0.826 0.851 0.886 0.911 0.703
N = 90 KG-WDRO (WEAK) 0.765 0.788 0.825 0.851 0.885 0.909 -

TRANS-RIDGE 0.671 0.724 0.785 0.821 0.863 0.890 -

Table 4. Out-of-sample R2 for Simulation 4.2, comparing KG-WDRO (Strong), KG-WDRO (Weak), Trans-Ridge, and WDRO across six
settings with varying values of ρ.
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A.1.3. SIMULATION 3: MULTI-SITES

Here, recall that the notation ϱ denote the correlation of generating the three prior knowledge under the scheme (3).

SETTING ρ = 0.7 ρ = 0.75 ρ = 0.8 ρ = 0.85 ρ = 0.9 ρ = 0.95 WDRO

[1,−0.5, 0.2] KG-WDRO 0.560 0.640 0.713 0.783 0.850 0.916 -0.584
ϱ = 0.9, N = 50 TRANS-LASSO 0.578 0.625 0.673 0.723 0.767 0.815 -

[1,−0.5, 0.2] KG-WDRO 0.674 0.728 0.776 0.825 0.875 0.926 0.027
ϱ = 0.9, N = 60 TRANS-LASSO 0.666 0.697 0.732 0.770 0.808 0.850 -

[1,−0.5, 0.2] KG-WDRO 0.793 0.820 0.848 0.878 0.907 0.939 0.375
ϱ = 0.9, N = 70 TRANS-LASSO 0.756 0.779 0.805 0.832 0.857 0.882 -

[1, 1, 1] KG-WDRO 0.565 0.642 0.715 0.785 0.852 0.916 -2.837
ϱ = 0.6, N = 50 TRANS-LASSO 0.628 0.680 0.735 0.790 0.838 0.889 -

[1, 1, 1] KG-WDRO 0.673 0.729 0.778 0.829 0.877 0.928 -0.015
ϱ = 0.6, N = 60 TRANS-LASSO 0.708 0.744 0.786 0.826 0.863 0.902 -

[1, 1, 1] KG-WDRO 0.797 0.825 0.852 0.880 0.911 0.942 0.354
ϱ = 0.6, N = 70 TRANS-LASSO 0.794 0.820 0.844 0.868 0.894 0.919 -

Table 5. Out-of-sample R2 for Simulation 4.3, comparing KG-WDRO, Trans-Lasso, and WDRO across six settings with varying values
of ρ.

A.2. Simulation Setup

Let Ber(p) denote a bernoulli distribution with probability parameter p, U [a, b] denote a uniform distribution supported on
[a, b], and N (µ, σ2) denote a univariate normal distribution with mean µ and variance σ2.

A.2.1. SIMULATION 1: LOGISTIC REGRESSION

In this simulation, the coefficients are generated in a high-dimensional sparse setting. The dimension of the nonzero
components is set to 50, which is then augmented with 100 zero components to introduce sparsity. The nonzero components
of the true coefficient-prior pair (β, θ) are generated using the multivariate normal scheme in (3), with component variance
σ2 = 0.4 and ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95}. The target labels are generated as Ytarget ∼ Ber (1/(1 + exp (9βTX)),
and the source labels are generated as Ysource ∼ Ber (1/(1 + exp (9θTX)), where X ∼ U [−2, 2]150. The sample size N
for (Xtarget, Ytarget) is varied across {20, 50, 80}, while the sample size for the source data (Xsource, Ysource) is fixed at
800. Each dataset is paired with a validation set of the same size for hyperparameter selection.

Let grid1 denote a hyperparameter grid ranging from 0.0001 to 1 with 10 log-spaced values, and let grid2 denote a
hyperparameter grid ranging from 0.0001 to 2 with 20 log-spaced values. The βWDRO estimator is learned by selecting
the best-performing hyperparameter on grid1 using validation data. For the A-Trans-GLM learner (Tian & Feng, 2023,
Algorithm 1), the transferring step is optimized using grid1, and the debiasing step is optimized using grid2. For the
KG-WDRO learner βKG proposed in Theorem 3.6 with p = 1, the prior θ is first learned from the source data using the
vanilla WDRO method on grid1, followed by learning βKG on grid2 with the learned θWDRO as input.

The simulations are conducted on the parameter grid N ∈ {20, 50, 80} × ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95} × s ∈ {0.5, 1},
with each configuration repeated 100 times. The average results are reported.

A.2.2. SIMULATION 2: LINEAR REGRESSION

In this simulation, the coefficients are generated in a high-dimensional correlated setting. The dimension of the coefficients
is set to 100 and the components of the true coefficient-prior pair (β, θ) are generated using the multivariate normal
scheme in (3), with component variance σ2 = 0.1 and ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95}. The target labels are generated as
Ytarget ∼ N (βTX,

√
0.5), and the source labels are generated as Ysource ∼ N (θTX,

√
0.5), where X ∼ N (0,Σ) with

Σi,j =

{
1 if i = j,

0.3 if i ̸= j,
for all i, j = 1, 2, . . . , 100.
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The sample size N for (Xtarget, Ytarget) is varied across {50, 70, 90}, while the sample size for the source data
(Xsource, Ysource) is fixed at 800. Each dataset is paired with a validation set of the same size for hyperparameter se-
lection.

Let grid1 denote a hyperparameter grid ranging from 0.0001 to 1 with 10 log-spaced values, and let grid2 denote a
hyperparameter grid ranging from 0.0001 to 1.5 with 20 log-spaced values. The βWDRO estimator is learned by selecting
the best-performing hyperparameter on grid1 using validation data. For the Trans-Ridge learner adapted from (Li et al.,
2021, Algorithm 1), the transferring step is optimized using grid1, and the debiasing step is optimized using grid2. For the
KG-WDRO learner βKGstrong proposed in Theorem 3.3 with p = 2, and the βKGweak learner proposed in Theorem 3.5, the
prior θ is first learned from the source data using the vanilla WDRO method on grid1, followed by learning βKGstrong on
grid2 with the learned θWDRO as input. The λ−1 grid for βKGweak is 0.0001 to 8 with 20 log-spaced values.

The simulations are conducted on the parameter grid N ∈ {50, 70, 90} × ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95} × s ∈ {0.8, 1},
with each configuration repeated 100 times. The average results are reported.

A.2.3. SIMULATION 3: MULTIPLE SITES

In this simulation, the coefficients are generated in a high-dimensional sparse setting. The dimension of the nonzero
components is set to 50, which is then augmented with 100 zero components to introduce sparsity. The number of
external source is 3, we generate the their coefficients θ1, θ2, θ3 using the scheme (3). We construct a linear combination,
θS = aθ1 + bθ2 + cθ3, and generate the target coefficient β = ρθS + ε, where ε ∼ N(0, (1 − ρ2)Var(θS)), ensuring
Corr(β, θS) = ρ. The target coefficient β is then scaled to match the magnitude of θS .

The target labels are generated as Ytarget ∼ N (βTX,
√
0.5), and the source labels are generated as Ysource,m ∼

N (θT
mX,

√
0.5) for m ∈ [3], where X ∼ N (0,Σ) with

Σi,j =

{
1 if i = j,

0.1 if i ̸= j,
for all i, j = 1, 2, . . . , 150.

The sample size for the target data ranges in {50, 60, 70}.

Let grid1 denote a hyperparameter grid ranging from 0.0001 to 1 with 15 log-spaced values, and let grid2 denote a
hyperparameter grid ranging from 0.0001 to 3 with 20 log-spaced values. The βWDRO estimator is learned by selecting
the best-performing hyperparameter on grid1 using validation data. For the oracle Trans-Lasso learner (Li et al., 2021,
Algorithm 1), the transferring step is optimized using grid1, and the debiasing step is optimized using grid2 using all three
source data. For the KG-WDRO learner βKG proposed in Theorem 3.3 with p = 1, the priors θ1, θ2, θ3 are first learned
from the three source data using the vanilla WDRO method on grid1, followed by learning βKG on grid2 with the learned
θ1,WDRO, θ2,WDRO, θ3,WDRO as input.

The simulations are conducted on the parameter grid N ∈ {50, 60, 70} × ρ ∈ {0.3, 0.5, 0.7, 0.8, 0.9, 0.95} × [a, b, c] ∈
{[1,−0.5, 0.2], [1, 1, 1]}, with each configuration repeated 100 times. The average results are reported.

B. Proof of Results in Regression.
Proof of Proposition 3.1. This result follows from the observation that, under the constraint imposed by c2,∞, for any
P# ∈ Bδ(PN ; c2,∞) and any α ∈ R, the marginal distributions of (Y, αθTX) must agree under PN and P#. That is,

PN

(
(Y, αθTX) ∈ A×B

)
= P#

(
(Y, αθTX) ∈ A×B

)
,

for all Borel measurable sets A,B ⊂ R. Consequently, for any P# ∈ Bδ(PN ; c2,∞) we have

EPN

[
(Y − αθTX)2

]
= EP#

[
(Y − αθTX)2

]
,

then choosing β = αθ, we have

inf
β∈Rd

sup
P:Bδ(PN )

EP
[
(Y − βTX)2

]
= sup

P:Bδ(PN )

inf
β∈Rd

EP
[
(Y − βTX)2

]
≤ sup

P:Bδ(PN )

EP
[
(Y − αθTX)2

]
.

= EPN

[
(Y − αθTX)2

]
,

13
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where the first equality invoked the Minimax Theorem of WDRO (Blanchet et al., 2019a, Lemma 1). Taking infimum over
α completes the proof.

Lemma B.1. Let fβ : Rd → R be defined as ∆ ∈ Rd 7→ (βT∆)2 − 2r(β)βT∆ depending on some β ∈ Rd and let r(β) be
a non-negative real-valued function in β. Then the convex conjugate f∗

β(∆
∗) : Rd → R is given by

f∗
β(∆

∗) =


(βT∆∗ + 2r(β)∥β∥22)2

4∥β∥42
if ∆∗ ∈ spanβ,

+∞ otherwise.

Therefore the biconjugate f∗∗
β (∆) : Rd → R of fβ(∆) has representation:

f∗∗
β (∆) = sup

α∈R

(
α(βT∆)− (α+ 2r(β))2

4

)
.

Proof. The convex conjugate f∗
β(∆

∗) is defined as

f∗
β(∆

∗) := sup
∆∈Rd

(
∆∗T∆− (βT∆)2 + 2r(β)(βT∆)

)
,

where ∆∗, β ∈ Rd and r(β) ∈ R are taken as fixed values. Orthogonalize ∆ = aβ + ω in the direction of β with a ∈ R,
and ω ∈ Rd such that βTω = 0. Then , we have ∆∗T∆ = a∆∗Tβ +∆∗Tω, and the convex conjugate becomes

f∗(∆∗) = sup
a,ω

(
a(∆∗Tβ) + ∆∗Tω − a2∥β∥42 + 2ar(β)∥β∥22

)
s.t βTω = 0.

Fixing ω, the objective is a negative quadratic function in a, hence the objective in a is bounded from above by a finite value.
Now, if ∆∗ is not orthogonal to ω, the term supω ∆∗Tω is unbounded, and the convex conjugate f∗(∆∗) = +∞. If ∆∗ is
orthogonal to ω, then the convex conjugate attains finite value. Note that ∆∗Tω = 0 ⇐⇒ ∆∗ ∈ spanβ. Hence condition
on {∆∗ = αβ ;α ∈ R}, we have

f∗(∆∗) = sup
a

(
a(∆∗Tβ)− a2∥β∥42 + 2r(β)a∥β∥22

)
=

(
∆∗Tβ + 2r(β)∥β∥22

)2
4∥β∥42

,

where the optimal solution is a∗ =
α+ 2r(β)

2∥β∥22
, and the coefficient α is given by the projection scalar α =

∆∗Tβ

∥β∥22
.

The biconjuagte
f∗∗(∆) = sup

∆∗

(
∆T∆∗ − f∗(∆∗)

)
,

is therefore bounded from below if and only if ∆∗ ∈ spanβ. Let ∆∗ = αβ for some α ∈ R, then substituting we get the
representation,

f∗∗(∆) = sup
α

(
∆T(αβ)−

(
βT(αβ) + 2r(β)∥β∥22

)2
4∥β∥42

)

= sup
α

(
α(∆Tβ)− (α+ 2r(β))2

4

)
.

It can be readily verified that f∗∗(∆) = f(∆) as promised by the Fenchel-Moreau Theorem (Theorem E.4).

Lemma B.2. Let gθ(∆) : Rd → R be defined as ∆ ∈ Rd 7→ |θT∆| for some θ ∈ Rd. Then the convex conjugate g∗θ(∆
∗) is

given by

g∗θ(∆
∗) =

{
0 if ∆∗ = αθ and |α| ≤ 1,

+∞ otherwise.

14
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Therefore the convex conjugate of the function g(∆) := γ
∑M

m=1 gθm(∆) for some γ > 0 is given by

g∗(∆∗) =

{
0 if ∆∗ =

∑M
m=1 αmθm and , |αm| ≤ γ for each m,

+∞ otherwise.

Proof. The convex conjugate is defined as

g∗θ(∆
∗) = sup

∆

(
∆∗T∆− |θT∆|

)
,

again, orthogonalize ∆ = aθ + ω, where a =
θT∆

∥θ∥22
and θTω = 0. Now by the change of variable u := θT∆, the convex

conjugate is now

g∗θ(∆
∗) = sup

u,ω

(
u

∥θ∥22
(∆∗Tθ) + ∆∗Tω − |u|

)
s.t θTω = 0.

Thus the convex conjugate g∗θ(∆
∗) = +∞ if ∆∗ ̸∈ span θ. If ∆∗ = αθ for some α ∈ R, then

g∗θ(∆
∗) = g∗θ(αθ) = sup

u

(
u

∥θ∥22
α∥θ∥22 − |u|

)
= sup

u

(
αu− |u|

)
=

{
0 if |α| ≤ 1,

+∞ otherwise,

where the last equality holds by noting that supu αu− |u| = | · |∗(α) is the convex conjugate of the absolute value function
(Proposition E.2). This proofs the convex conjugate of g∗θ(∆

∗). Now g(∆) = γ
∑M

m=1 gθm(∆) = γḡ(∆), the convex
conjugate of ḡ(∆) is

ḡ∗(∆∗) = (gθ1 + . . .+ gθM )∗(∆∗)

= inf
∆∗

(
g∗θ1(∆

∗
1) + . . .+ g∗θM (∆∗

M )
)

s.t ∆∗
1 + . . .+∆∗

M = ∆∗,

where the second line follows from the infimal convolution property of sum of convex conjugates (Theorem E.5). We know
that ḡ∗ is finite if and only if g∗θm(∆∗

m) = 0 for all m ∈ [M ], that is ∆∗
m = αmθm for some αm ∈ [−1, 1] for all m ∈ [M ].

Hence ḡ∗(∆∗) = 0 if and only if ∆∗ =
∑M

m=1 αmθm and αm ∈ [−1, 1] for all m ∈ [M ]. Finally we can calculate the

convex conjugate g∗(∆∗) = (γḡ)∗(∆∗) = γḡ∗
(
∆∗

γ

)
by the scaling law of convex conjugates (Proposition E.3) given

γ > 0. This concludes the proof.

We now give the proof to Theorem 3.3.

Proof of Theorem 3.3. Let r(β) := y − βTx. Then first consider the cost function

c2
(
(x, y), (u, v)

)
:= ∥x− u∥2q +∞ · |y − v|+ d(θT

1x− θT

1u) + . . .+ d(θT

Mx− θT

Mu).

where we replaced the transferring strength from +∞ to a finite-valued distance function d(x) : R→ R that is a monotone
function in |x|, with d(0) = 0. We will then let d(x)→∞ except at x = 0. Then the supremum function

ϕγ(x, y;β) = sup
(u,v)∈Rd+1

{
ℓ(u, v;β)− γc

(
(u, v), (x, y)

)}
,

is finite if and only if v = y. Then, we have

l (u, v;β)− γc ((u, v) , (x, y))

= (y − βTu)
2 − γ ∥x− u∥2q − γd (θT

1x− θT

1u)− . . .− γd(θT

Mx− θT

Mu).
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Denote by ∆ := u− x, we get

l (u, v;β)− γc ((u, v) , (x, y))

=r(β)2 +
{
(βT∆)2 − 2r(β)βT∆− γ∥∆∥2q − γd(θT

1∆)− . . .− γd(θT

M∆)
}
.

Consider the objective in ∆

sup
∆

{
(βT∆)2 − 2r(β)βT∆− γ∥∆∥2q − γd(θT

1∆)− . . .− γd(θT

M∆)
}

:= sup
∆

{
fβ(∆)− g(∆)

}
,

where we let fβ(∆) := (βT∆)2 − 2r(β)βT∆ and g(∆) := γ∥∆∥2q + γd(θT
1∆) + . . . + γd(θT

M∆). This is a convex +
concave optimization, we express the convex part of fβ(∆) as a supremum of infinitely many affine functions. Then by

Lemma B.1, we have fβ(∆) = f∗∗
β (∆) = supα∈R

(
α(βT∆)− (α+ 2r(β))2

4

)
, then we may write

sup
∆

{
fβ(∆)− g(∆)

}
=sup

∆

{
sup
α∈R

(
α(βT∆)− (α+ 2r(β))2

4

)
− g(∆)

}
=sup

α

{
sup
∆

(
∆T(αβ)− g(∆)

)
−
(
α+ 2r(β)

)2
4

}

=sup
α

{
g∗(αβ)−

(
α+ 2r(β)

)2
4

}
, (Toland’s Duality)

where g∗ is the convex conjugate of g. Let g(∆) := g1(∆)+gθ(∆), with g1(∆) = γ∥∆∥2q and gθ(∆) := γ
∑M

m=1 d(θ
T
m∆).

Then we can compute the convex conjugate of g using the infimal convolution property (Theorem E.5). Then

g∗(∆∗) = inf
∆∗

1+∆∗
2=∆∗

(
g∗1(∆

∗
1) + g∗θ(∆

∗
2)
)
.

We know that g∗1(∆
∗
1) =

1

4γ
∥∆∗

1∥2p, where p−1 + q−1 = 1 (Proposition E.2). Now suppose d(x) = λ|x| for some λ > 0,

by Lemma B.2, we have,

g∗θ(∆
∗
2) =

{
0 if ∆∗

2 =
∑M

m=1 αmθm and , |αm| ≤ γλ for each m,

+∞ otherwise.

Then the convex conjugate g∗(∆∗) is

g∗(∆∗) = inf
∆∗

2

g∗1(∆
∗ −∆∗

2),

s.t ∆∗
2 =

M∑
m=1

αmθm and , |αm| ≤ γλ for each m,

which is equivalently,

g∗(∆∗) =
1

4γ
inf
α

∥∥∥∥∥∆∗ −
M∑

m=1

αmθm

∥∥∥∥∥
2

p

,

s.t |αm| ≤ γλ for each m.

Letting λ → ∞, we recover the cost function c2,∞, and when λ → ∞, each αm is now free in R. Then we have

g∗(∆∗) =
1

4γ
infϑ∈Θ ∥∆∗ − ϑ∥2p, with Θ := span {θ1, . . . , θM}, the validity of this tactic follows from (Luenberger & Ye,
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2008, Theorem 1, Section 13.1). Then we have g∗(αβ) =
1

4γ
infϑ∈Θ ∥αβ − ϑ∥2p. Suppose α ̸= 0, then dividing by α, we

get

g∗(αβ) =
α2

4γ
inf
ϑ∈Θ
∥β − ϑ∥2p.

If α = 0, then g∗(αβ) = g∗(0) =
1

4γ
infϑ ∥ϑ∥2p = 0, so the representation g∗(αβ) =

α2

4γ
infϑ∈Θ ∥β − ϑ∥2p, is valid for all

α ∈ R. Therefore following the proof of (Blanchet et al., 2019a, Theorem 1),

ϕγ(x, y;β) = r(β)2 +
1

4
sup
α

{
α2

γ
inf
ϑ∈Θ
∥β − ϑ∥2p −

(
α+ 2r(β)

)2}
=

1

4
sup
α

{(
infϑ ∥β − ϑ∥2p

γ
− 1

)
α2 − 4r(β)α

}

=


r(β)2γ

γ − infϑ ∥β − ϑ∥2p
if infϑ ∥β − ϑ∥2p ≤ γ,

+∞ otherwise.

Then the minimization objective can be simplified as

inf
β∈Rd

min
γ≥0

{
γδ +

1

n

N∑
i=1

ϕγ(xi, yi;β)

}

= inf
β

inf
γ≥infϑ∥β−ϑ∥2

p

{
γδ +

1

n

N∑
i=1

ri(β)
2γ

γ − infϑ∥β − ϑ∥2p

}

= inf
β

inf
γ≥infϑ∥β−ϑ∥2

p

{
γδ + MSE(β)

γ

γ − infϑ∥β − ϑ∥2p

}
= inf

β

(√
MSE(β) +

√
δ inf

ϑ
∥β − ϑ∥p

)2

,

where the last equality follows because γδ +
1

n
MSE(β)

γ

γ − infϑ∥β − ϑ∥2p
is a convex function in γ that tends to +∞

approaching the boundaries infϑ ∥β − ϑ∥2p and +∞, so the optimization over γ can be solved using first-order condition.
Then by Proposition 2.1, strong duality holds and,

inf
β

sup
P:Dc2

(P,Pn)≤δ

EP
[
(Y − βTX)2

]
= inf

β,ϑ

(√
MSE(β) +

√
δ∥β − ϑ∥p

)2
.

This reduces the infinite-dimensional optimization to a finite-dimensional problem, where we interchanged infϑ and the
quadratic function, since the quadratic function is monotone increasing on the positive reals.

The next proof is to Theorem 3.5 with the weak transferring cost function c2,λ
(
(x, y), (u, v)

)
= ∥x − u∥22 + λ(θTx −

θTu)2 +∞ · |y − v| with some λ > 0. The statements generalizes to multi-sites by first considering orthogonalizing the
prior knowledge {θ1, . . . , θM}.

Proof of Theorem 3.5. Following the proof of Theorem 3.3, we solve the optimization problem

sup
∆∈Rd

(
(βT∆)2 − 2r(β)βT∆− γ∥∆∥22 − γλ(θT∆)2

)
,

where we recall that γ is the dual-variable in statement of Proposition 2.1, λ > 0 is the transferring strength, θ ∈ Rd is the
prior knowledge, and r(β) = (y − βTx)2 is the residual in β.
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Then let O be an orthogonal matrix, whose first column is θ/∥θ∥2, then use ∆̃ := O−1∆. The objective function now
becomes

(βTO∆̃)2 − 2r(β)βTO∆̃− γ∥∆̃∥22 − γλ∥θ∥22∆̃2
1,

where the last term follows because θTO = (∥θ∥2, 0, . . . , 0), and ∆̃1 denotes the first component of ∆̃. Now define

D = diag

{√
λ∥θ∥22 + 1, 1, . . . , 1

}
,

and consider the change of variable ∆̄ = D∆̃, then the last two terms become

∥∆̃∥22 + λ∥θ∥22∆̃2
1 = ∥D−1∆̄∥22 + λ∥θ∥2

∆̄2
1

λ∥θ∥22 + 1
=

d∑
i=1

∆̄2
d = ∥∆̄∥22.

Therefore, the objective becomes

sup
∆̄

(
(βTOD−1∆̄)2 − 2r(β)βTOD−1∆̄− γ∥∆̄∥22

)
=sup

∆̄

(
∥βTOD−1∥22∥∆̄∥22 − 2r(β)∥βTOD−1∥2∥∆̄∥2 − γ∥∆̄∥22)

= sup
∆̄

(
(∥β∥Ψλ

− γ)∥∆̄∥22 − 2r(β)∥β∥Ψλ
∥∆̄∥2

)
which has finite optimal value

r(β)2∥β∥2Ψλ

γ − ∥β∥2Ψλ

whenever γ ≥ ∥β∥Ψλ
, with Ψλ denoting the positive-definite symmetric matrix,

Ψλ = Id −
1

∥θ∥22 + λ−1
θθT,

that is independent of the choice of O. The first equality follows because we applied Cauchy-Schwarz inequality and since
∆̄ ∈ Rd is free, there is some ∆̄ that achieves equality. The rest of the proof follows exactly along the proof of Theorem 3.3
by completing the optimization over the dual problem using Proposition 2.1.

C. Proof of Results in Classification.
Lemma C.1. Consider the convex function hβ(x) : Rd → R by x ∈ Rd 7→ log (1 + exp (9βTx)), for some q > 0 and
x′ ∈ R. Then for every γ > 0, the constraint optimization problem Hβ(x

′) defined as,

sup
x∈Rp

hβ(x)− γ∥x′ − x∥q,

s.t θT(x′ − x) = 0,

has optimal objective value,

Hβ(x
′) =

{
hβ(x

′) if infκ∈R∥β − κθ∥p ≤ γ,

+∞ otherwise,

where p, q ∈ [1,∞) with p−1 + q−1 = 1.

Proof. This lemma is a simple extension of (Shafieezadeh-Abadeh et al., 2015, Lemma 1). Following their proof, it is shown
that

hβ(x) = h∗∗
β (x) = sup

0≤α≤1

(
(αβ)Tx− h̄∗(α)

)
,

where

h̄∗(α) =

{
α log (α) + (1− α) log (1− α) if α ∈ [0, 1],

+∞ otherwise,
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is the convex conjugate of the function log
(
1 + e9x

)
(Proposition E.2). Then it is shown that the objective Hβ must has

representation

sup
0≤α≤1

inf
∥q∥p≤γ

sup
x

(
(αβ + q)Tx− h̄∗(α)− qTx′),

s.t θT(x− x′) = 0.

Fixing α and q, then the inner maximization in x

sup
x

(
(αβ + q)Tx− qTx′),

s.t θT(x− x′) = 0,

has solution (αβ)Tx′ subject to αβ + q = µθ for some µ ∈ R derived using the first-order condition of the Lagrangian
duality or +∞ otherwise. Then condition on {αβ + q = µθ|µ ∈ R}, the objective has representation

Hβ(x
′) = sup

0≤α≤1
inf

∥q∥p≤γ

(
(αβ)Tx′ − h̄∗(α)

)
s.t q = µθ − αβ

= sup
0≤α≤1

inf
µ,∥µθ−αβ∥p≤γ

(
(αβ)Tx′ − h̄∗(α)

)
.

Consider the constraint ∥µθ − αβ∥p ≤ γ over µ. Suppose α > 0, then dividing by −α, we get the equivalent constraint{
|α|
∥∥∥β − µ

α
θ
∥∥∥
p

}
≤ γ over µ. Defining the change of variable κ :=

µ

α
, then since the Lagrange multiplier µ ∈ R is

free, we have κ is free, and the constraint becomes infκ |α|∥β − κθ∥p ≤ γ over κ ∈ R. If α = 0, then infµ ∥µθ − 0∥ =
0 = 0 · infκ ∥β − κθ∥p. So the equivalent constraint infκ |α|∥β − κθ∥p ≤ γ is valid for all α ∈ [0, 1]. Then condition on
{αβ + q = µθ|µ ∈ R}, the objective becomes,

Hβ(x
′) = sup

0≤α≤1

(
(αβ)Tx′ − h̄∗(α)

)
s.t sup

0≤α≤1
|α| inf

κ
∥β − κθ∥p ≤ γ,

= sup
0≤α≤1

(
(αβ)Tx′ − h̄∗(α)

)
s.t inf

κ
∥β − κθ∥p ≤ γ,

Recognizing that

sup
0≤α≤1

(
(αβ)Tx′ − h̄∗(α)

)
= sup

0≤α≤1
α(βTx′)− h̄∗(α) = h̄∗∗(βTx′) = hβ(x

′),

we get

Hβ(x
′) =

{
hβ(x

′) if infκ ∥β − κθ∥p ≤ γ,

+∞ otherwise.

The above Lemma C.1 is easily generalized to incorporate multiple orthogonality constraints {θT
m(x′ − x) = 0 ;m ∈ [M ]}

using the exact same Lagrangian formulation. Again, recall Θ = span {θ1, . . . , θM}. Thus the optimal objective value
under multiple constraints becomes

Hβ(x
′) =

{
hβ(x

′) if infϑ∈Θ ∥β − ϑ∥p ≤ γ,

+∞ otherwise.

We now give the proof to Theorem 3.6.

Proof of Theorem 3.6 for Logistic Loss. Using Proposition 2.1, we apply the strong duality, and consider the inner opti-
mization problem

sup
P:Dc1,∞(P,Pn)≤δ

EP

[
log
(
1 + e−Y βTX

)]
=

infγ≥0

{
γδ +

1

n

∑N
i=1 supu∈Rd

(
log
(
1 + e−yiβ

Tu
)
− γ∥xi − u∥q

)}
,

s.t θT
m(xi − u) = 0, for all m ∈ [M ] and i ∈ [N ].
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For each i ∈ [N ], we apply Lemma C.1 to the maximization problem,

Hβ(xi) =

{
supu∈Rd

(
log
(
1 + e−yiβ

Tu
)
− γ∥xi − u∥q

)
,

s.t θT
m(xi − u) = 0, for all m ∈ [M ].

which has solution {
log
(
1 + e−yiβ

Txi

)
if infϑ∈Θ ∥β − ϑ∥p ≤ γ,

+∞ otherwise.

Therefore, the maximization problem supP:Dc1,∞(P,Pn)≤δ EP

[
log
(
1 + e−Y βTX

)]
is bounded from above if and only if

γ ≥ infϑ ∥β − ϑ∥p. Under this condition, this reduces the inner optimization problem,

sup
P:Dc1,∞(P,Pn)≤δ

EP

[
log
(
1 + e−Y βTX

)]
= inf

γ≥infϑ ∥β−ϑ∥p

{
γδ +

1

n

N∑
i=1

log
(
1 + e−yiβ

Txi

)}

=
1

n

N∑
i=1

log
(
1 + e−yiβ

Txi

)
+ δ inf

ϑ
∥β − ϑ∥p.

This concludes the proof.

We now give the proof to the maximum margin classifier using the hinge loss.

Proof of Theorem 3.6 for Hinge Loss. As in the case to the proof of Theorem 3.3, we first consider the relaxed cost
function

c1((x, y), (u, v)) = ∥x− u∥q +∞ · |y − v|+ λ ·
M∑

m=1

|θT

mx− θT

mu|,

where we relaxed the transferring strength from +∞ to some finite value λ > 0. We will then let λ → +∞. Again, by
strong duality, we can solve the worst case hinge loss by solving the dual problem

inf
γ≥0

{
γδ +

1

n

N∑
i=1

sup
u

(
(1− yiβ

Tu)+ − γ∥u− xi∥q − γλ

M∑
m=1

|θT

m(xi − u)|

)}
.

Let ∆ := u− x, then we have

sup
u

(
(1− yβTu)+ − γ∥u− x∥q − γλ

M∑
m=1

|θT

m(x− u)|

)

=sup
∆

(
(1− yβT(∆ + x))+ − γ∥∆∥q − γλ

M∑
m=1

|θT

m∆|

)

=sup
∆

sup
0≤α≤1

(
α(1− yβT(∆ + x))− γ∥∆∥q − γλ

M∑
m=1

|θT

m∆|

)

= sup
0≤α≤1

sup
∆

(
−αyβT∆− γ∥∆∥q − γλ

M∑
m=1

|θT

m∆|+ α(1− yβTx)

)
.

Where in the second equality we used x+ = sup0≤α≤1 αx. Fixing α, consider the inner minimization in ∆,

sup
∆

(
−αyβT∆− γ∥∆∥q − γλ

M∑
m=1

|θT

m∆|

)
= g∗(−αyβ),
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where g∗(∆∗) is the convex conjugate of g(∆) := γ∥∆∥q + γλ
∑M

m=1 |θT
m∆|. Set γ∥∆1∥q =: g1(∆1) and

γλ
∑M

m=1 |θT
m∆2| =: g2(∆2), then by the infimal convolution property of convex conjugates (Theorem E.5), we know that

g∗(∆∗) = inf
∆∗

1+∆∗
2=∆∗

(
g∗1(∆

∗
1) + g∗2(∆

∗
2)
)
.

From Lemma B.2, we know that if g∗(∆∗) is finite, then g∗2(∆
∗
2) = 0 subject to ∆∗

2 =
∑M

m=1 αmθm and |αm| ≤ λγ for all
m ∈ [M ]. Now it is well known that (Proposition E.2),

g∗1(∆
∗
1) = (γ∥ · ∥q)∗(∆∗

1) = I{∥∆∗
1∥p≤γ}(∆

∗
1),

where IC(x) denotes the convex indicator on the set C. Therefore, letting λ→∞, the constraints {|αm| ≤ λγ|m ∈ [M ]}
is redundant, and we have

g∗(∆∗) =

{
0 if infϑ∈Θ ∥∆∗ − ϑ∥p ≤ γ,

+∞ otherwise,

where we let Θ := span {θ1, . . . , θM}. Therefore, g∗(−αyβ) is finite if and only if infϑ ∥−αyβ−ϑ∥p ≤ γ. Now y = ±1,
so we can remove−y, and this leaves us the condition that infϑ ∥αβ−ϑ∥p ≤ γ, which is equivalent to α infϑ ∥β−ϑ∥p ≤ γ
for all α ∈ [0, 1], including α = 0. Taking supremum over α ∈ [0, 1], the final condition is infϑ ∥β − ϑ∥p ≤ γ. Therefore,
assuming the dual problem is bounded from above, it reduces as

sup
0≤α≤1

sup
∆

(
−αyβT∆− γ∥∆∥q − γλ

M∑
m=1

|θT

m∆|+ α(1− yβTx)

)
= sup

0≤α≤1

(
I{infϑ ∥β−ϑ∥p≤γ} + α(1− yβTx)

)
=(1− yβTx)+ given inf

ϑ
∥β − ϑ∥p ≤ γ.

Finally, the dual form of the distributionally robust optimization problem is

inf
β

inf
γ≥0

{
γδ +

1

n

N∑
i=1

sup
u

(
(1− yiβ

Tu)+ − γ∥u− xi∥q − γλ

M∑
m=1

|θT

m(xi − u)|

)}

= inf
β

inf
γ≥infϑ ∥β−ϑ∥p

{
γδ +

1

n

N∑
i=1

(1− yiβ
Txi)

+

}

= inf
β,ϑ

{
1

n

N∑
i=1

(1− yiβ
Txi)

+ + δ∥β − ϑ∥p

}
.

This completes the proof.

D. Proof of Results in Mahalanobis Norm Regularization
Proof of Corollary 3.7. This is a direct consequence of the convex conjugate of ∥x∥2Λ given in Proposition E.6.

Define the cost function cΛ1,∞
(
(x, y), (u, v)

)
:= ∥x− u∥Λ +∞ · |y − v|+∞ ·

∑M
m=1 |θT

mx− θT
mu|.

Corollary D.1 (Theorem 3.6). Suppose the loss function ℓ(X,Y ;β) is either the logistic loss log
(
1 + e−Y βTX

)
or the

hinge loss (1− Y βTX)+, then for any Λ ∈ Sd×d
+ we have

inf
β∈Rd

sup
P:Bδ(PX

N ;cΛ1,∞)

EP [ℓ(X,Y ;β)]

= inf
β∈Rd,ϑ∈Θ

1

N

N∑
i=1

ℓ(xi, yi;β) + δ∥β − ϑ∥Λ91 .

Proof. For the logistic loss case, this is a direct consequence of the dual norm of ∥x∥Λ, for the hinge loss case this is a direct
consequence of the convex conjugate of ∥x∥Λ. Both given by Proposition E.6.
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E. Useful Results on Convex Conjugation
In this section we review some results on the concept of convex conjugates that repeatedly come up in the proofs. For more
details on convex conjugations, the interested readers can consult (Rockafellar, 1970, Section 12 & 16).

Definition E.1 (Convex Conjugate). Let f : Rd → R be a real-valued function on the Euclidean space, then the convex
conjugate of f is the function f∗ : Rd → R that evaluates x∗ ∈ Rn by

f∗(x∗) = sup
x∈dom (f)

(
x∗Tx− f(x)

)
.

This is also called the Legendre transformation of f , and the Legendre-Fenchel transformation for f defined on arbitrary
real topological vector spaces. Here we collect some examples of convex conjugates that appeared in the appendix. These
are well-known.

Proposition E.2. Let p, q ≥ 1 such that
1

p
+

1

q
= 1.

1. The convex conjugate of the absolute value function f(x) = |x| on R is given by | · |∗(x∗) = I|x∗|≤1(x
∗), the convex

indicator function on the set {|x∗| ≤ 1|x∗ ∈ R}.

2. The convex conjugate of the q-norm ∥x∥q on Rd is given by ∥ · ∥∗q(x∗) = I∥x∗∥p≤1(x
∗), the convex indicator function

on the set {∥x∗∥p ≤ 1|x∗ ∈ Rd}.

3. The convex conjugate of
1

2
∥x∥2q on Rd is given by

(
1

2
∥ · ∥2q

)∗

(x∗) =
1

2
∥x∗∥2p.

4. The convex conjugate of log
(
1 + e9x

)
on R is given by

x∗ log (x∗) + (1− x∗) log (1− x∗) if x∗ ∈ (0, 1)

0 if x∗ = 0, 1

+∞ otherwise.

Another easy consequence from the definition of convex conjugation is the below scaling laws.

Proposition E.3 (Scaling Laws). Let f∗(x∗) be the convex conjugate of f(x) on Rd. Then we have,

1. the convex conjugate of f(ax) whenever a ̸= 0 is given by f∗(x∗/a).

2. the convex conjugate of af(x) whenever a > 0 is given by af∗(x∗/a).

Let Γ
(
Rd
)

denote the class of proper convex lower-semi continuous functions on Rd, the next statement says that this
conjugation induces an one-to-one symmetric correspondence on the class Γ

(
Rd
)
. It is a cornerstone of modern convex

analysis and used in the proof of Theorem 3.3 and Lemma C.1.

Theorem E.4 (Fenchel-Moreau). Let f be a proper convex, lower semi-continuous function on Rd, then

1. the convex conjugation f 7→ f∗ is a bijection on Γ
(
Rd
)
;

2. f ∈ Γ
(
Rd
)
⇐⇒ f∗∗ = f .

Proof. For a proof please consult (Rockafellar, 1970, Section 12).

The next statement concerns the commutativity of convex conjugation and function summation. Its usefulness is profound,
and applied to the proof of Theorem 3.3 and Theorem 3.6.
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Theorem E.5 (Infimal Convolution Property of Convex Conjugation). Let f1, . . . , fM be proper convex functions on Rd,
then

(f1□ . . .□fM )∗ = f∗
1 + . . . f∗

M ,

and
(f1 + . . .+ fM )∗(x∗) = inf

x∗
{f∗

1 (x
∗
1) + . . . f∗

M (x∗
M ) |x∗

1 + . . .+ x∗
M = x∗}.

Proof. For a proof please consult (Rockafellar, 1970, Theorem 16.4).

Proposition E.6. Let Λ ∈ Sd×d
+ , then the dual norm of ∥x∥Λ is ∥x∥Λ−1 . The Cauchy-Schwarz inequality xTu ≤ ∥x∥Λ∥u∥Λ91

holds, and equality is attainable. The convex conjugate of ∥x∥Λ is given by I∥x∗∥Λ91≤1(x
∗), and the convex conjugate of

∥x∥2Λ is given by ∥x∗∥2Λ91/4.

Proof. The dual norm of ∥x∥Λ, the Cauchy-Schwarz inequality and attainability of equality follows from (Blanchet et al.,
2019b, Lemma 1). Now to compute the convex conjugate of ∥x∥2Λ, we want to evaluate

sup
x∈Rd

(x∗Tx− ∥x∥2Λ).

By the Cauchy-Schwarz inequality we have x∗Tx ≤ ∥x∥Λ∥x∗∥Λ91 , and so we have

x∗Tx− ∥x∥2Λ ≤ ∥x∥Λ∥x∗∥Λ91 − ∥x∥2Λ.

Hence
sup
x∈Rd

(x∗Tx− ∥x∥2Λ) ≤ sup
t≥0

(t∥x∗∥Λ91 − t2) =
1

4
∥x∗∥2Λ91 .

By attainability of equality in the Cauchy-Schwarz inequality, the supremum are equal, and we have

sup
x∈Rd

(x∗Tx− ∥x∥2Λ) =
1

4
∥x∗∥2Λ91 .

This proofs the convex conjugate of ∥x∥2Λ. Now consider the convex conjugate of ∥x∥Λ, then we need to evaluate

sup
x∈Rd

(x∗Tx− ∥x∥Λ),

again, by Cauchy-Schwarz and the attainability of equality, we have

sup
x∈Rd

(x∗Tx− ∥x∥Λ) = sup
x∈Rd

(∥x∥Λ∥x∗∥Λ91 − ∥x∥Λ)

= sup
x∈R

(∥x∥Λ(∥x∗∥Λ91 − 1))

=

{
0 if ∥x∗∥Λ91 ≤ 1,

+∞ otherwise.

This completes the proof.

F. Toland’s Duality
The duality theory of Toland’s (Toland, 1978; 1979) concerns the minimization of nonconvex functions, in particular, applies
to the minimization of the difference of convex functions (DC problems). The duality holds under minimal conditions, and
one tries to see if the DC problem can be transformed into something more manageable.
Theorem F.1 (Toland’s Duality). Let f and g be functions on Rd, if f ∈ Γ

(
Rd
)
, then we have

inf
x∈Rd

{f(x)− g(x)} = inf
x∗∈Rd

{g∗(x∗)− f∗(x∗)} .

Toland’s duality is implicitly used in the proof to Theorem 3.3 and Lemma C.1 which also sketches a proof to the above
duality theorem.
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