
Published as a conference paper at COLM 2024

CATS: Contextually-Aware Thresholding for Sparsity in Large
Language Models

Je-Yong Lee1

Mathematical Institute
Oxford University
je-yong.lee@worc.ox.ac.uk

Donghyun Lee1

Department of Computer Science
University College London
donghyun.lee.21@ucl.ac.uk

Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini
Department of Computer Science
Stanford University
{zgh23, motiwari, azalia}@stanford.edu

Abstract

The dramatic improvements in Large Language Models (LLMs) come at the
cost of increased computational resources for inference. Recent studies ame-
liorate the computational costs of LLMs by increasing their activation spar-
sity but suffer from significant performance degradation on downstream
tasks. In this work, we introduce a new framework for sparsifying the acti-
vations of LLMs and reducing inference costs, dubbed Contextually Aware
Thresholding for Sparsity (CATS). CATS is a relatively simple algorithm
that is easy to implement and highly effective. At the heart of our frame-
work is a new non-linear activation function. We demonstrate that CATS
can be applied to various models, including Mistral-7B and Llama2-7B &
13B, and outperforms existing sparsification techniques across multiple
tasks. More precisely, CATS-based models achieve downstream task perfor-
mance within ∼99% of their base models at 50% activation sparsity, even
without fine-tuning. Moreover, with fine-tuning that targets only 1% of the
parameters, CATS-based models not only converge faster but also achieve
better task performance than competing techniques. Finally, we develop a
custom GPU kernel for efficient implementation of CATS that translates the
activation sparsity of CATS to real wall-clock time speedups. Our custom
kernel implementation of CATS results in a ∼15% improvement in wall-
clock inference latency of token generation. We release our code, experi-
ments, and datasets at https://github.com/ScalingIntelligence/CATS.

1 Introduction

LLMs have demonstrated remarkable success across a variety of fields (Devlin et al., 2018;
Brown et al., 2020; Achiam et al., 2023; Brohan et al., 2023), however, this progress comes
with significant computational costs. The training of GPT-3 is estimated to have consumed
over 3,000,000 GPU-hours and emitted three thousand times the CO2 equivalent of a
round-trip flight from San Francisco to New York (Patterson et al., 2021). Furthermore,
inference costs often eclipse training costs for models that serve trillions of queries. As such,
there is significant interest in reducing the inference costs of LLMs while preserving task
performance.

Various techniques have been proposed to mitigate LLM inference costs. These approaches
are often based on quantization (Frantar et al., 2022; Dettmers et al., 2022), pruning (Ma
et al., 2023; Sun et al., 2023), and other forms of weight sparsification Frantar & Alistarh
(2023). Mixture of Experts (MoE) techniques have emerged as particularly promising and

1These authors contributed equally as co-first authors.

1

https://github.com/ScalingIntelligence/CATS

Published as a conference paper at COLM 2024

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Absolute Post-Activation

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(a) Llama2 Layer 0.

0.0 0.1 0.2 0.3 0.4 0.5
Absolute Post-Activation

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(b) Llama2 Layer 15.

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Post-Activation

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(c) Llama2 Layer 31.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Absolute Post-Activation

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(d) Mistral 7B Layer 0.

0.0 0.1 0.2 0.3 0.4 0.5
Absolute Post-Activation

0.000

0.005

0.010

0.015

0.020

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(e) Mistral 7B Layer 15.

0.0 0.1 0.2 0.3 0.4 0.5
Absolute Post-Activation

0.00

0.01

0.02

0.03

0.04

0.05

Fr
eq

ue
nc

y

Threshold
Within Threshold
Outside Threshold

(f) Mistral 7B Layer 31.

Figure 1: Histograms of post-MLP activations of different layers in different models. Subfig-
ures (a), (b), and (c) correspond to Layers 0, 15, and 31 in Llama2-7B, respectively. Subfigures
(d), (e), and (f) correspond to Layers 0, 15, and 31 in Mistral 7B, respectively. The absolute
threshold indicates 50% sparsity, where values smaller than the threshold are considered
negligible in our technique and thus zeroed out.

are employed by current state-of-the-art LLMs (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022c; Jiang et al., 2024).

MoE techniques activate only a subset of parameters at each inference stage, thereby re-
ducing memory and computational requirements compared to using the entire model.
Prevailing implementations of MoE techniques introduce many multi-layer perceptrons
(MLPs; the “experts”) and dynamically select which experts to multiply with the hidden
vector. This selection is performed by a “router”—a small neural network trained to deter-
mine the appropriate experts to activate based on the input (Lewis et al., 2021; Rajbhandari
et al., 2020).

Concurrently, recent work has observed that activations in the MLP blocks of LLMs are
sparse (Liu et al., 2023b; Mirzadeh et al., 2023). This implies that only a few rows (or columns)
of the corresponding weight matrices are required for the forward pass. Intuitively, if we
could predict a priori which elements of the weight matrices were unnecessary via an
oracle, we could obviate their respective computations. This is thematically similar to
MoE approaches: the activated neurons of the weight matrices can be viewed as activated
“experts” and the oracle can be seen as the “router.”

We observe that the activation patterns of common LLMs suggest a path to such an oracle.
Figure 1 shows a histogram of the post-MLP activations for Layers 0, 15, and 31 for Llama-7B
and Mistral-7B on a sample of 500 data points from the RefinedWeb dataset (Penedo et al.,
2023). Many of the activations are concentrated about 0; if these activations could be made
exactly 0, the corresponding weights of the MLP blocks could be made unnecessary during
inference. It is this observation that motivates our study.

In this work, we make the following contributions:

1. We draw a connection between the MoE framework and multiplication performed
by dense matrices in the MLP blocks of LLMs.

2. We introduce a new sparsification procedure based on a novel activation function,
dubbed CATS (for Contextually Aware Thresholding for Sparsity), motivated by an

2

Published as a conference paper at COLM 2024

empirical evaluation of activation distributions (Figure 1). Crucially, CATS allows
for a controllable level of sparsity.

3. We demonstrate that, without any fine-tuning, CATS can be applied to various
models, including Mistral-7B and Llama2-7B & 13B, and achieves comparable
downstream task performance even at sparsity levels as high as 50%.

4. We demonstrate that, with parameter-efficient fine-tuning, CATS outperforms an
existing sparsification technique in downstream task performance at the same
sparsity level and number of fine-tuning steps.

5. We provide a custom GPU kernel implementation that exploits the sparsity of
CATS and achieves a ∼15% improvement in wall-clock inference latency of token
generation over the dense models.

2 Related Work

Significant recent work focuses on reducing the inference costs of LLMs. Approaches that
utilize mixture-of-experts or activation sparsity are most similar to our work.

Mixture-of-Experts (MoE) techniques induce effective sparsity in LLMs by determining
which subset of subnetworks (the “experts”) to activate during the inference pass, often
via a trained “router” subnetwork. This is a popular line of work with significant research
interest (Shazeer et al., 2017; Hazimeh et al., 2021; Zhou et al., 2022; Lewis et al., 2021;
Roller et al., 2021; Zuo et al., 2021; Komatsuzaki et al., 2022; Lou et al., 2021; Mustafa et al.,
2022; Rajbhandari et al., 2022; Zhang et al., 2022a;b; Fedus et al., 2022a; Zoph et al., 2022;
Kudugunta et al., 2021; Fedus et al., 2022c; Lepikhin et al., 2020; Du et al., 2022; Fedus et al.,
2022b; Jiang et al., 2024). For a review of MoE models, we refer the reader to (Fedus et al.,
2022a).

Activation Sparsity: Activations are known to be sparse in LLMs that utilize ReLU non-
linearities in their MLP blocks (Li et al., 2022); however, the reasons for this are not well-
understood Hoefler et al. (2021). Nonetheless, activation sparsity induced by ReLU non-
linearities has been explored to reduce memory usage and inference time (Jaszczur et al.,
2021; Liu et al., 2023b; Szatkowski et al., 2023). Recent work in this area has framed the
rows of weight matrices in MLP layers as experts, similar to our work, and/or deploys a
small neural network to predict which activations will be non-zero to reduce inference costs
(Zhang et al., 2024; Liu et al., 2023b) in these ReLU-based models.

Crucially, however, recent state-of-the-art LLMs such as Mistral-7B (Jiang et al., 2023),
Llama2-7B (Touvron et al., 2023), and Gemma (Team et al., 2024)) employ MLP blocks based
on more complex nonlinearities that do not inherently induce sparsity Mirzadeh et al. (2023).
As such, most of the work on ReLU-based activation sparsity is inapplicable to these models.
To the best of our knowledge, ReLUfication is the only work that attempts to bridge this
gap (Mirzadeh et al., 2023). ReLUfication replaces the SiLU and GeLU activation functions
in LLMs with ReLU to induce sparsity. ReLUfication is the primary baseline against which
we compare CATS. In contrast with ReLUfication, CATS contains a controllable level of
sparsity. Furthermore, in Section 5, we demonstrate that CATS demonstrates significantly
better downstream task performance and fine-tuning efficiency than ReLUfication.

We note that Zhang et al. (2024) is concurrent to our work. In contrast with their work,
however, our work is not an empirical evaluation of existing activation functions. Rather,
we propose a new framework for sparsifying LLMs. Our framework utilizes a novel
activation function and enables controllable sparsity. We validate the performance of CATS
in extensive evaluations and provide a custom GPU kernel that translates CATS’ sparsity to
real wall-clock time gains in Section 5.

We discuss additional research areas on LLM efficiency, such as quantization, structure
pruning, knowledge distillation, and hardware-aware optimization in Appendix A.

3

Published as a conference paper at COLM 2024

3 Background

Motivation: As described in Section 1, MoE models selectively activate expert subnetworks
via a trained router. Crucially, we may view the rows (or columns) of MLP matrices as
experts in an MoE model. To identify the layers most likely to benefit from this MoE
perspective (where many activations can be zeroed), we examine the activations of different
layers in LLMs. Figure 1 demonstrates that activations of the Gated-MLP layers tend to
concentrate around zero across different LLMs. This behavior suggests that many neurons
of MLP layers minimally affect the output in future operations.

Gated-MLP Blocks: We now describe the components of LLMs that our work aims to
accelerate: the Gated-MLP blocks. They are commonly used in LLMs, including in the
Llama2 family of models, Mistral-7B, and Gemma. A Gated-MLP block consists of several
fully-connected layers and performs the following computation:

Gated-MLP(x) := (SiLU(xWgate) ∗ (xWup))Wdown (1)

where x ∈ Rb×d, Wgate, Wup ∈ Rd×m, Wdown ∈ Rm×d, ∗ indicates element-wise multiplica-
tion, and

SiLU(x) := x ∗ sigmoid(x) =
x

1 + e−x (2)

Crucially, the operation SiLU(xWgate) can be viewed as the router in an MoE model.
Through this lens, the columns of Wup and the rows of Wdown are the experts. If SiLU(x)
is always binary, i.e., 1 or 0, it would turn on/off elements of the remaining computation
(multiplication by WupWdown). When SiLU(x) is not binary, it can be viewed as a “soft”
router that weighs the experts by different amounts.

4 Method: Contextually-Aware Thresholding for Sparsification (CATS)

We now describe CATS, a framework to accelerate the Gated-MLP blocks of LLMs. The
CATS framework proposes a new, simple activation function and exploits the sparsity
induced by this activation. In Section 5, we apply CATS to Mistral-7B and Llama2-7B
and show that CATS-based models still exhibit significant activation sparsity, even when
fine-tuned.

4.1 Stage 1: Determining Cutoff Threshold

We assume we are given a desired sparsity level k (e.g., 70%) as input. For each Gated-MLP
block in the LLM, we compute the activations over a random subset of the training data,
limited to only 500 data points. We then compute the cutoff threshold as the kth percentile of
the resulting values.

Concretely, the cutoff threshold t is

t := min{t′ : F(t′) ≥ k} (3)

where F represents the empirical cumulative distribution function of the absolute values of
the activations for the given MLP block.

Figure 1 shows histograms of the absolute values of activations for different MLP blocks
in various models on the RefinedWeb dataset (Penedo et al., 2023). A sparsity level of 70%
corresponds to a threshold of approximately 0.15; different sparsity levels correspond to
different thresholds. We note that these thresholds are chosen and fixed before any further
fine-tuning.

4

Published as a conference paper at COLM 2024

4.2 Stage 2: Sparsifying Gate-MLP Blocks

Given the cutoff threshold t ≥ 0 corresponding to the input sparsity level k, we wrap the
SiLU(x) activations in each MLP block with the CATS activation. The CATS operation,
denoted as CATSt(·), is defined as:

CATSt(xj) :=
{

xj, if |xj| ≥ t
0, if |xj| < t

(4)

Here, t is the sparsification threshold and xj is the j-th element of the vector x, respectively.

This results in a new activation CATSt(SiLU(·)):

CATS t(SiLU(xWgate)) =

{
SiLU(xWgate) |SiLU(xWgate)| ≥ t
0 |SiLU(xWgate)| < t

(5)

Intuitively, the resulting model zeros out activations that are likely to be close to 0 because
their corresponding inputs were small. This procedure produces a trained model with
sparse activations, whose performance can then be evaluated. We empirically validate
that this procedure results in a model with an approximate sparsity level of k, even after
fine-tuning, as detailed in Appendix C.

4.3 Custom Kernel Design

The previous subsections describe the procedure for sparsifying LLM’s activations, obviating
unnecessary computations, and reducing the required number of floating point operations
(FLOPs) in each MLP block. We now translate this reduction in FLOPs to a reduction in
actual wall-clock latency and increase in generation throughput via a custom GPU kernel.

Custom GPU Kernel 1 MLP using CATS

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← SiLU(xWgate)
3: Mask← 1 if |v| ≥ t else 0
4: x1 ← (xWup[Mask] ∗ v[Mask])
5: y← x1Wdown[Mask]

We focus on reducing the latency of the MLP
blocks by reducing memory accesses, as the
MLP blocks are known to be memory-bound
during inference when the batch size is small
(Kim et al., 2023). As shown in Line 4 of
the Custom GPU Kernel 1, we first fuse the
element-wise multiplication of v[Mask] into
each tiling of xWup[Mask]. Here, v represents
the hidden vector after applying the SiLU ac-
tivation function, and Mask denotes a binary
mask identifying elements of v with large absolute values. This fusion saves memory oper-
ations that would be necessary for storing and loading x1 several times. We then directly
use Mask to control which parts of the weight matrices Wup and Wdown to load, instead
of using the compressed indices directly as in Zhang et al. (2023) This further improves
the kernel speed because it avoids expensive synchronization operations. In Section 5.3,
we demonstrate how our custom GPU kernel effectively reduces the inference latency of
CATS-based models as sparsity increases.

5 Experiments

In this section, we describe the experiments with which we assess the performance of CATS.
We first describe the experimental details that are common to all experimental settings. We
then describe experiments on downstream task performance. Finally, we measure CATS’
effect on wall-clock time inference when implemented with the custom GPU kernel from
Section 4. We find that CATS-based models outperform their ReLUfication versions in
downstream task performance, with or without fine-tuning, and can exploit their sparsity
for wall-clock inference time speedups over the base models.

5

Published as a conference paper at COLM 2024

We first describe the experimental setup, including base models, CATS-based models,
metrics, datasets, and computational environment.

Base Models: We apply CATS to both Mistral-7B and Llama2-7B as base models to verify it
is generally applicable to different LLMs. We measure the performance of each CATS model
against the original base model. We also compare the performance to of the CATS-based
models to the base model transformed by ReLUfication from Mirzadeh et al. (2023).

CATS-based Models: For a given base model, we train three CATS-based variants that
exhibit different sparsity levels in the MLP blocks: 50%, 70%, and 90% activation sparsity.
We call these models CATS-50%, CATS-70%, and CATS-90%, respectively, where the base
models are clear from context.

Metrics: We compare models using several metrics. In the first set of experiments, we
compare each model’s accuracy on downstream tasks. In the second set of experiments, we
compare each model’s wall-clock time inference latency.

Datasets: For the downstream task performance experiments, we use the OpenBookQA,
ARC Easy, Winogrande, HellaSwag, ARC Challenge, PIQA, BoolQ, and SCI-Q datasets
from the Eleuther AI Evaluation Harness (Gao et al., 2023) as in Mirzadeh et al. (2023)
for ease of comparison; these tasks were originally chosen to measure various abilities of
the models across various domains, such as reading comprehension and reasoning. For
the latency and generation task experiments, we assess the wall-clock inference time and
perplexity score on the RefinedWeb test dataset (Penedo et al., 2023).

Computational Environment: All experiments were run on a single machine with 8 L40S
GPUs. Latency experiments were run on a single L40S GPU as each 7B base model was
able to fit in a single GPU RAM when performing inference in brain float 16 (BF16) or
floating point 16/32 (FP16/32) precision. We used DeepSpeed (Rasley et al., 2020) with
BF16 precision to manage the high memory overhead during training. We also employed
Low-Rank Adaptation (LoRA) (Hu et al., 2021) and targeted 1% of the parameters (Query
and Key in attention modules, Wgate, and Wdown) in the fine-tuning experiments. During
inference, we used the transformers v4.36.2 HuggingFace library, PyTorch v2.1.2, and
CUDA v12.1. We used Triton v2.1.0 for our GPU kernels. All experiments were run in
FP32 precision; changing this to FP16 did not materially affect results. All of our code,
including a one-line script to set up an environment and reproduce all of our results, is
available in the supplementary material.

5.1 Downstream Task Performance

We now compare the downstream task performance of the CATS-based models to the
baseline models in several settings and draw several conclusions.

CATS-based models perform comparably to the base models and outperform ReLUfi-
cation in zero-shot accuracy without any fine-tuning: We first compare the performance
of CATS-based models to the baseline models without any fine-tuning. In this setting, the
CATS prescription is applied directly to the base models, i.e., the activation functions are
simply replaced in the MLP blocks and no fine-tuning is performed. Table 1 shows our
results across 8 different benchmark tasks. CATS-based models demonstrate performance
comparable to the unchanged, out-of-the-box base models, even at high sparsity levels. In
particular, at CATS 50% demonstrates performance comparable to the base model. CATS sig-
nificantly outperforms ReLUficiation in downstream task performance at the same sparsity
level (90%).

CATS-based models perform more comparably to the base model and increasingly out-
perform ReLUfication as the model size increases in zero-shot accuracy: Similar to the
previous evaluation, we assess the performance of various CATS configurations and a
baseline Llama-13B model across eight downstream tasks without any fine-tuning. Notably,
the performance degradation of CATS-50% decreased from 1.46% at 7B to 0.65% at 13B.
Conversely, the performance gap between CATS-50% and ReLUfication increased from
29.08% at 7B to 34.55% at 13B. We present the detailed results in Appendix E.

6

Published as a conference paper at COLM 2024

Model ⧹ Dataset WG PIQA SciQ QA HS BoolQ Arc-E Arc-C Avg
acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑

Mistral-7B 0.7419 0.8069 0.959 0.3260 0.6128 0.8370 0.8085 0.5034 0.6994
CATS 50% 0.7245 0.8009 0.948 0.3200 0.6097 0.8193 0.7849 0.5043 0.6890
CATS 70% 0.7190 0.8003 0.929 0.292 0.6057 0.8028 0.7492 0.4693 0.6709
CATS 90% 0.5627 0.6001 0.422 0.212 0.3359 0.7086 0.3754 0.2773 0.4368
ReLUfication 0.5043 0.5092 0.236 0.142 0.2580 0.4208 0.2723 0.2415 0.3230

Llama2-7B 0.6906 0.7807 0.94 0.314 0.5715 0.7774 0.7630 0.4343 0.6589
CATS 50% 0.6748 0.7693 0.927 0.322 0.5711 0.7263 0.7441 0.4121 0.6433
CATS 70% 0.6693 0.7584 0.902 0.294 0.5500 0.6590 0.7008 0.3805 0.6143
CATS 90% 0.5738 0.6627 0.611 0.212 0.3848 0.6284 0.4566 0.2816 0.4764
ReLUfication 0.4893 0.5408 0.2570 0.154 0.2586 0.6003 0.2795 0.2406 0.3525

Table 1: Downstream task performance of base models, CATS-based models at varying
levels of sparsity, and ReLUfication across different benchmark datasets. The CATS versions
of the base models demonstrate comparable performance to original models at high sparsity
levels, e.g., 50%. At higher sparsity levels, CATS still outperforms ReLUfication.

Figure 2: Downstream task performance of the base model, CATS models with different
sparsity levels, and ReLUfication across varying numbers of fine-tuning steps on the Re-
finedWeb dataset applied to Mistral-7B (left) and Llama2-7B (right). The CATS models
exhibit faster convergence and greater fine-tuning efficiency than the ReLUfication variants.
Furthermore, CATS-50% and CATS-70% demonstrate comparable performance to the base
models without any fine-tuning (0 fine-tuning steps).

CATS-based models perform comparably to the base models and outperform ReLUfica-
tion in zero-shot accuracy with “general” fine-tuning: In this setting, CATS is applied the
base models Llama-7B and Mistral-7B. All models are then fine-tuned using LoRA (Hu et al.,
2021), targeting only 1% of the parameters, on the RefinedWeb dataset Penedo et al. (2023).
Their downstream performance is subsequently measured across 8 evaluation datasets.
We emphasize that the dataset upon which the models are fine-tuned is different from the
evaluation datasets in this setting. Figure 2 demonstrates our results. We note several key
observations:

1. CATS-based models still exhibit sparsity after fine-tuning (see Appendix C).

2. CATS-50% demonstrates performance comparable to the base models, even without
any fine-tuning. This is in contrast with ReLUficiation, which demonstrates poor
performance without fine-tuning.

3. CATS-50%, CATS-70%, and CATS-90% all display better task performance than
ReLUfication when controlling for the number of fine-tuning steps. In particular,
even with very few fine-tuning steps, the CATS-based models achieve comparable
performance to the base models.

4. CATS-based models, even with sparsity levels as high as 70%, achieve performance
comparable to the base models within 500 steps of fine-tuning, whereas ReLUfica-
tion does not.

7

Published as a conference paper at COLM 2024

CATS-based models perform comparably to the base models and outperform ReLUfica-
tion with task-specific fine-tuning but without “general“ fine-tuning: In this setting, the
CATS prescription is applied to Mistral-7B. All variants are then fine-tuned for 10 epochs on
the training data and evaluated on test dataset for the Cola, SST2, and BoolQ datasets. Table
2 demonstrates our results. Our observations are similar to those for “general” fine-tuning:

1. CATS-based models still exhibit sparsity after fine-tuning (see Appendix C).
2. CATS-50% demonstrates performance comparable to the base models. This is

in contrast with ReLUficiation, which demonstrates a significant performance
degradation.

3. CATS-50%, CATS-70%, and CATS-90% all display better task performance than
ReLUfication.

Dataset/Sparsity Base Model 0.5 0.7 0.9 ReLUfication

Cola 0.8667 0.8658 (-0.10%) 0.8552 (-1.32%) 0.8303 (-4.21%) 0.6922 (-20.13%)
SST2 0.9644 0.9656 (+0.12%) 0.9702 (+0.60%) 0.9427 (-2.25%) 0.7856 (-18.55%)

BoolQ 0.8905 0.8862 (-0.48%) 0.8807 (-1.10%) 0.7920 (-11.06%) 0.6624 (-25.61%)

Average 0.9072 0.9059 (-0.13%) 0.9020 (-0.52%) 0.8550 (-5.22%) 0.7134 (-19.38%)

Table 2: Downstream task performance of Mistral-7B and its CATS-based and ReLUfication
variants across three different benchmark datasets. Top accuracies are marked in bold and
second-highest in underline. Relative performance degradation is given in parentheses.
CATS-50% demonstrates performance within 0.5% of the base model, whereas ReLUfication
demonstrates a significant performance drop.

5.2 Generation task performance

We now evaluate the generation task performance of the CATS-based models using the
RefinedWeb dataset. Without any fine-tuning, CATS-50% exhibits only a slight increase
in perplexity scores. The difference in perplexity scores between the base models and
CATS-50% further diminishes after 1300 fine-tuning steps.

Specifically, for Llama-7B, the perplexity increases by just 1.06% when comparing the base
model to CATS-50% without fine-tuning, and this difference narrows to 0.60% with minimal
fine-tuning. Similarly, for Mistral-7B, the initial perplexity increase of 1.21% is reduced to a
mere 0.45% after fine-tuning.

Model Base Model CATS 50% CATS 50%∗ ReLUfication ReLUfication∗

Llama-7B 2.18 2.203 (+1.06%) 2.193 (+0.60%) 3.104 (+42.38%) 2.617 (+20.04%)
Mistral-7B 2.234 2.261 (+1.21%) 2.244 (+0.45%) 2.801 (+25.34%) 2.562 (+14.68%)

Table 3: Perplexity scores for different models and configurations. The best score is marked
in bold and the second-best is underlined. Percentage differences relative to the base model
are shown in parentheses. Models marked with ∗ are fine-tuned for 1300 steps.

5.3 Wall-clock Time Speedups for Inference

Activation sparsity in a model is not sufficient to directly achieve wall-clock time inference
speedups (Frantar & Alistarh, 2023). In this subsection, we demonstrate that our custom
GPU kernel translates the activation sparsity induced by CATS into tangible wall-clock time
improvements.

CATS-based models can translate their activation sparsity to wall-clock time speedups:

Figure 3 shows the wall-clock inference time of the dense model compared to CATS imple-
mented via the custom GPU kernel described in Section 4.3, for various sparsity levels of

8

Published as a conference paper at COLM 2024

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

La
te

nc
y(

m
s)

Dense
Optimal
CATS-with-Custom-Kernel

(a) Mistral-7B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

La
te

nc
y(

m
s)

Dense
Optimal
CATS-with-Custom-Kernel

(b) Llama2-7B

Figure 3: Latency of the original Mistral-7B MLP block (left, “Dense”), Llama-7B MLP block
(right, “Dense”), and their CATS-based variants at different sparsity levels, compared to
“Optimal.” Our custom GPU kernel improves the latency of the CATS-based variants and
achieves performance close to “Optimal” for most reasonable sparsity levels.

256 512 1024 2048
Generation Length (Tokens)

0

5

10

15

20

25

G
en

er
at

io
n

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Dense
CATS-with-Custom-Kernel

(a) Mistral-7B

256 512 1024 2048
Generation Length (Tokens)

0

5

10

15

20

25

G
en

er
at

io
n

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Dense
CATS-with-Custom-Kernel

(b) Llama2-7B

Figure 4: Throughput of Mistral-7B (left, “Dense”) and Llama2-7B (right, “Dense”) and
CATS-50% with the custom GPU kernel. CATS-50% demonstrates significantly higher
throughput.

CATS. We evaluate the latency of a single MLP block and the throughput of the genera-
tion stage of the end-to-end inference. Mistral-7B contains 32 MLPs with m = 14336 and
d = 4096, and Llama2-7B contains 32 MLPs with m = 11008 and d = 4096 (m and d are
defined after Equation 1).

In Figures 3a and 3b, we compare our method (“CATS-with-Custom-Kernel”) with the
dense MLP with mdense = m (“Dense”) and the dense MLP with moptimal = m ∗ Sparsity
(“Optimal”), the latter of which is a proxy for the best wall-clock time we could hope to
achieve. At 50% and 70% sparsity, the sparse kernel achieves approximately a 40% and 70%
speedup, respectively, over the original dense MLP. Latency measurements were obtained
by conducting 20 rounds of warmups, repeating the kernel 80 times, and computing the
geometric mean of the latency across each round. The comparison with Dense demonstrates
that our sparse kernel consistently outperforms the original MLP. The comparison with

9

Published as a conference paper at COLM 2024

Optimal shows that our sparse kernel closely approaches the Optimal performance at low
sparsity levels. However, as the sparsity level increases, the gap between our performance
and Optimal widens, as expected. We note that our sparse kernel performs the same number
of memory accesses as the Optimal; however, due to differences in access patterns, the
methods result in different wall-clock time measurements. Optimal can perform worse than
our sparse kernel when moptimal does not match the shapes optimized by GPU libraries
(Tillet & Cox, 2017). Conversely, our sparse kernel can underperform compared to Optimal
when the overhead of operations on zero values outweighs the benefits of reduced memory
access.

In Figures 4a and 4b, we compare dense models with CATS-with-Custom-Kernel (50%
sparsity) on the throughput of the generation stage. The generation stage (or “decoding”
stage) is known to be memory-bound (Kim et al., 2023), which suggests CATS can improve
inference througput. We test the generation throughput at a batch size of 1 and beam width
of 1, and record the latency from the first generated token to the last token. The throughput
is calculated by the generated length divided by latency. The final throughput is averaged
(geometric mean) over 50 samples from the RefinedWeb test dataset. CATS can accelerate
the generation stage by ∼18% for Llama2-7B and ∼21% for Mistral-7B at 50% sparsity.

Though we only test on Huggingface (Wolf et al., 2020), our methodology is orthogonal
to the framework and thus can be used in other LLM serving systems such as DeepSpeed
(Rajbhandari et al., 2022) and TensorRT-LLM (Nvidia, 2024).

6 Discussion and Conclusion

We presented CATS, a novel framework for inducing and exploiting activation sparsity
in LLMs. At the heart of our framework is the CATS activation, given in Equation 5, that
induces a controllable level of activation sparsity in LLMs. We also provide a custom GPU
kernel implementation that exploits CATS’s sparsity to achieve real wall-clock time gains in
inference latency.

CATS-based models demonstrate downstream task performance comparable to unmodified
base models and better than baseline models with no fine-tuning, even at sparsity levels as
high as 50%. CATS-based models also exhibit better behavior than ReLUfication at similar
levels of fine-tuning, and often achieve performance comparable to the base model at high
levels of sparsity, both with general and task-specific fine-tuning.

Limitations and Future Work: Our work leaves several opportunities for future work.
Most importantly, our empirical evaluations of CATS were restricted to the Mistral-7B and
Llama2-7B base models. While we suspect CATS would also apply to other, larger models,
we leave a precise empirical study to future studies. Future work may also investigate
how to apply techniques similar to CATS to other MLP architectures beyond Gated-MLP,
or to attention layers but without a task performance degradation. It may be possible, for
example, to use recent techniques to accelerate attention layers (such as those from Zhang
et al. (2022a) and Voita et al. (2019)) in conjunction with CATS.

10

Published as a conference paper at COLM 2024

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu,
and Irwin King. Binarybert: Pushing the limit of bert quantization. arXiv preprint
arXiv:2012.15701, 2020.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof
Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.
2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit
matrix multiplication for transformers at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of
language models with mixture-of-experts. In International Conference on Machine Learning,
pp. 5547–5569. PMLR, 2022.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep
learning. arXiv preprint arXiv:2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022b.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion
Parameter Models with Simple and Efficient Sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022c. ISSN 1533-7928. URL http://jmlr.org/papers/v23/21-0998.html.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately
pruned in one-shot. In International Conference on Machine Learning, pp. 10323–10337.
PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate
post-training quantization for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

Daniel Y. Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. Flashfftconv: Efficient
convolutions for long sequences with tensor cores, 2023a.

11

http://jmlr.org/papers/v23/21-0998.html

Published as a conference paper at COLM 2024

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller
language models towards multi-step reasoning, 2023b.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient
sparse training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5,
2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL
https://zenodo.org/records/10256836.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua
Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection
in the mixture of experts with applications to multi-task learning. Advances in Neural
Information Processing Systems, 34:29335–29347, 2021.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech
Gajewski, Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling trans-
formers. Advances in Neural Information Processing Systems, 34:9895–9907, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan
Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack
optimization of transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-
Thang Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for
efficient inference. arXiv preprint arXiv:2110.03742, 2021.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran,
Michael Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-
order pruning for large language models. arXiv preprint arXiv:2203.07259, 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base
layers: Simplifying training of large, sparse models. In International Conference on Machine
Learning, pp. 6265–6274. PMLR, 2021.

12

https://zenodo.org/records/10256836

Published as a conference paper at COLM 2024

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J
Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On
emergence of activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for
near-infinite context. arXiv preprint arXiv:2310.01889, 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali
Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual
sparsity for efficient llms at inference time. In International Conference on Machine Learning,
pp. 22137–22176. PMLR, 2023b.

Yuxuan Lou, Fuzhao Xue, Zangwei Zheng, and Yang You. Cross-token modeling with
conditional computation. arXiv preprint arXiv:2109.02008, 2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of
large language models. arXiv preprint arXiv:2305.11627, 2023.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting
activation sparsity in large language models. arXiv preprint arXiv:2310.04564, 2023.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby.
Multimodal contrastive learning with limoe: the language-image mixture of experts.
Advances in Neural Information Processing Systems, 35:9564–9576, 2022.

Nvidia. Tensorrt-llm, 2024. URL https://nvidia.github.io/TensorRT-LLM/.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, and Jun Huang.
Meta-kd: A meta knowledge distillation framework for language model compression
across domains. arXiv preprint arXiv:2012.01266, 2020.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350, 2021.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro
Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay.
The refinedweb dataset for falcon llm: outperforming curated corpora with web data, and
web data only. arXiv preprint arXiv:2306.01116, 2023.

Markus N. Rabe and Charles Staats. Self-attention does not need o(n2) memory, 2022.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory
optimizations toward training trillion parameter models. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-
of-experts inference and training to power next-generation ai scale. In International
Conference on Machine Learning, pp. 18332–18346. PMLR, 2022.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 3505–3506, 2020.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse
models. Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

13

https://nvidia.github.io/TensorRT-LLM/

Published as a conference paper at COLM 2024

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu. Contrastive
distillation on intermediate representations for language model compression. arXiv
preprint arXiv:2009.14167, 2020.

Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński, and Kamil Adamczewski. Sadmoe:
Exploiting activation sparsity with dynamic-k gating. arXiv e-prints, pp. arXiv–2310, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Philippe Tillet and David Cox. Input-aware auto-tuning of compute-bound hpc kernels. In
Proceedings of the international conference for high performance computing, networking, storage
and analysis, pp. 1–12, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv
preprint arXiv:1905.09418, 2019.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models.
arXiv preprint arXiv:1910.04732, 2019.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. Hwang, Liwei Jiang, Ronan Le Bras,
Ximing Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general
language models to commonsense models, 2022.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, pp. 38–45, 2020.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and
accurate models. arXiv preprint arXiv:2204.00408, 2022.

Zhongming Yu, Guohao Dai, Shang Yang, Genghan Zhang, Hengrui Zhang, Feiwen Zhu,
June Yang, Jishen Zhao, and Yu Wang. Hypergef: A framework enabling efficient fusion
for hypergraph neural network on gpus. Proceedings of Machine Learning and Systems, 5,
2023.

14

Published as a conference paper at COLM 2024

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once
for all: Sparse pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Genghan Zhang, Yuetong Zhao, Yanting Tao, Zhongming Yu, Guohao Dai, Sitao Huang,
Yuan Wen, Pavlos Petoumenos, and Yu Wang. Sgap: towards efficient sparse tensor
algebra compilation for gpu. CCF Transactions on High Performance Computing, 5(2):210–
227, 2023.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Mixture of attention heads: Selecting attention heads per token. arXiv preprint
arXiv:2210.05144, 2022a.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. MoEfica-
tion: Transformer Feed-forward Layers are Mixtures of Experts. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computa-
tional Linguistics: ACL 2022, pp. 877–890. Association for Computational Linguistics,
2022b. doi: 10.18653/v1/2022.findings-acl.71. URL https://aclanthology.org/2022.
findings-acl.71.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang
Song, Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu 2 wins: Discovering efficient
activation functions for sparse llms. arXiv preprint arXiv:2402.03804, 2024.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai,
Quoc V Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances
in Neural Information Processing Systems, 35:7103–7114, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam
Shazeer, and William Fedus. St-moe: Designing stable and transferable sparse expert
models. arXiv preprint arXiv:2202.08906, 2022.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao,
and Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv
preprint arXiv:2110.04260, 2021.

A Additional Related Work

In this appendix, we discuss additional veins of related work.

Hardware-Aware Optimization that relies on customizing the algorithm implementation
for the underlying hardware can result in significant performance speedup Dao et al. (2022);
Fu et al. (2023a), especially for sparse kernels Gale et al. (2023); Yu et al. (2023). Recent
hardware-aware methods in LLMs have shown to be highly effective in lowering the cost of
attention operation Rabe & Staats (2022); Dao (2023); Liu et al. (2023a). Similar to attention
operation, MLP is also memory-bounded on highly parallel machines like GPU Kim et al.
(2023). The sparsity has the potential to expedite MLP because it can increase the arithmetic
intensity. Based on the Roofline analysis Williams et al. (2009), higher arithmetic intensity
means shorter wall-clock time for memory-bounded operations. In this work, we focus on
leveraging the sparsity to reduce the memory transfers associated with the MLP weights.
We do so by designing algorithmic optimizations that adaptively induce sparsity and
implementing hardware-aware optimizations that translate the achieved nominal sparsity
into actual wall-clock time speedup.

Structural pruning techniques induce sparsity by setting certain weights to zero so their
corresponding activations need not be computed Wang et al. (2019); Kurtic et al. (2022); Xia
et al. (2022); Zafrir et al. (2021); Ma et al. (2023). However, applying such techniques naı̈vely
may not result in actual wall-clock time speedups if the resulting sparsity pattern does
not lower the number of General Matrix Multiplication (GEMM) calls. Furthermore, the
pruning pattern is determined at the model level and is not adaptive to the inputs, which
may result in a degradation in task performance.

15

https://aclanthology.org/2022.findings-acl.71
https://aclanthology.org/2022.findings-acl.71

Published as a conference paper at COLM 2024

Quantization and Knowledge Distillation from larger models to smaller models are other
popular forms of LLM inference optimization Bai et al. (2020); Frantar et al. (2022); Dettmers
et al. (2023); Sun et al. (2019; 2020); Pan et al. (2020); West et al. (2022); Fu et al. (2023b). These
methods often reduce the memory and computational complexity at the cost of performance
degradation or require extensive finetuning. Our work can be applied to quantized or
distilled models as well, although the achieved sparsity level on these models may differ.

B Accelerating Attention Layers

B.1 Method

In this section, we discuss how we can apply CATS to reduce the inference costs of attention
layers inside Transformer blocks. The basic operations of a Transformer block can be written
as:

MLPi(Attentioni(x)) (6)

where x is the hidden vector right before the i-th layer and where we have excluded
operations like batch normalization, positional embedding, residual connections, etc. for
simplicity. (For more details on the variants of Attention layers and those used in our
models, we refer the reader to Touvron et al. (2023) and Jiang et al. (2023).)

The new equation for i-th transformer layer, where we wrap the previous layer with CATS
activations, becomes:

MLPi(CATSti,1(Attentioni(CATSti,2(x)))) (7)
where ti,1 and ti,2 are the sparsification thresholds for the CATS operations applied before
the MLP and attention layers, respectively, in the i-th transformer layer.

We verify that this operation results in sparse activations in Appendix C.

B.2 Experimental Results

CATS can also be applied to accelerate the attention blocks of LLMs: We also apply CATS
to accelerate the computation of attention layers. Our approach is inspired by “Stage 2” of
ReLUficiation (Mirzadeh et al., 2023).

Due to space constraints, we only measure the performance of CATS-50% applied to the
base Mistral-7B model and measure zero-shot task performance. We fine-tune both models
for 2000 fine-tuning batches of 16 examples each. Stage 2 CATS, which appplies CATS to
both the MLP and Attention blocks, demonstrates an average downstream task performance
of 66.84% across the 8 different evaluation tasks from Section 5, whereas the base Mistral-7B
model demonstrates an average task performance of 69.94%. In contrast, the original CATS,
applied only to the MLP layers, demonstrates an average task performance of 69.21%.

Our results demonstrate that CATS can also be applied to the attention layers of LLMs,
albeit with a slight (4.3% relative) performance degradation. Future work may investigate
how to apply CATS in way that better preserves the performance of the model.

C Target sparsity vs. actual sparsity

Figure 5 demonstrates the the sparsity of each layer of Mistral-7B and Llama2-7B after
CATS has been applied and fine-tuning has been performed on the RefinedWeb dataset.
The average sparsity of each model (dashed lines) is roughly equal to the target sparsities
(indicated by the legend).

Table 4 demonstrates the average layer sparsity of each model after task-specific fine-tuning
on the 3 datasets used for this experimental setting in Section 5. The observed sparsity levels
are approximately equal to the target sparsity levels.

16

Published as a conference paper at COLM 2024

(a) Sparsity of Mistral-7B. (b) Sparsity of Llama2-7B.

Figure 5: CATS-based models still exhibit sparsity after general fine-tuning on the Refined-
Web dataset.

Dataset/Sparsity 0.5 0.7 0.9

Cola 49.629 68.926 87.6
BoolQ 49.196 68.444 87.571
SST2 48.727 68.738 87.882

Average 49.184 68.703 87.684

Table 4: CATS-based models’ final sparsity after specific fine-tuning on each task. They
continue to exhibit sparsity after task-specific fine-tuning.

Future work might focus on enforcing a minimum sparsity layer-wise, i.e., by zeroing out at
least enough neurons to enforce the desired sparsity level k for each layer. Such work could
investigate the tradeoffs between sparsity, latency, and downstream task performance.

D Details on Custom GPU Kernel Design

The previous subsections describe the procedure by which we sparsify the activations of
an LLM, obviate some computations, and reduce the required number of FLOPs. Though
significant recent work has focused on FLOPs as a proxy for inference cost, other work
has demonstrated that reducing FLOPs is not sufficient to reduce real wall-clock inference
latency Liu et al. (2023b). However, predictable sparsity patterns can be exploited to reduce
floating point operations (FLOPs) during inference. We now translate the reduction in
FLOPs to an actual wall-clock latency reduction via several custom GPU kernel optimization
techniques.

The operations of the Gated-MLP with the CATS activation functions are:

v = CATS(SiLU(xWgate)) (8)
Mask = 1{|v|>t} (elementwise) (9)

y = (v′ ∗ (xW ′up))W
′
down (10)

where v′, W ′up, and W ′down are v, Wup, and Wdown masked by Mask (for the matrices Wup
and Wdown, the entire column j is 0 if Maskj = 0, i.e., the mask is broadcast across columns).

If Mask is sparse, then Equation (10) performs two sparse matrix multiplications. In fact,
only coordinates (respectively, rows) of v (respectively, Wup and Wdown) corresponding
to nonzero coordinates of Mask need to be loaded into memory. Since the MLP layer at
inference time is known to be memory-bound Kim et al. (2023), the latency can be reduced

17

Published as a conference paper at COLM 2024

if the memory access is reduced. We exploit these observations to translate the reduction in
FLOPs to a real wall-clock time reduction in inference.

Custom GPU Kernel 2 MLP using CATS

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← CATS (SiLU(xWgate))
3: Mask← 1 if |v| ≥ t else 0
4: idcs← indices where Mask = 1
5: x1 ← (xWup[idcs] ∗ v[idcs])
6: y← x1Wdown[idcs]

Custom GPU Kernel 3 MLP using CATS
without atomic operations

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← CATS (SiLU(xWgate))
3: Mask← 1 if |v| ≥ t else 0
4: x1 ← (xWup[Mask] ∗ v[Mask])
5: y← x1Wdown[Mask]

Algorithms 2 and 3 describe Equations (8)-(10) in lower-level pseudocode. Algorithms 2
and 3 contain several optimizations.

Optimization 1: We fuse the element-wise multiplication of v[idcs] into each tiling of
xWup[idcs] as shown in Line 5 of Algorithm 2. We use an efficient algorithm from Deja
Vu Liu et al. (2023b) to compute x1 = xWup[idcs] without the element-wise multiplication
by v[idcs]. In this manner, we fuse several operations and save the memory operations for
storing and loading x1 several times.

The atomic operations in Line 4 of 2, however, introduce extra overhead. Line 4 compresses
a one-hot mask to a compressed coordinate array and requires atomically appending to the
idcs. GPUs, however, cannot efficiently perform such atomic operations because of their
massively parallel nature.

Optimization 2: We therefore introduce another optimization in Algorithm 3 to reduce the
memory loading incurred by the atomic operations. In Algorithm 3, we directly use Mask to
control which parts of weight matrices to load, instead of the condensed idcs. Algorithm 3
has more operations than Algorithm 2 because it directly assigns the unloaded elements
to zero instead of squeezing out the zero values before computation. Algorithm 3 does
not skip the zero operations in a fine-grained way because the sparsity in this problem is
not asymptotically high Zhang et al. (2023), which means the operation reduction does not
compensate for the performance loss caused by complex control logic. Figure 6 the ablation
experiment results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

La
te

nc
y(

m
s)

Dense
Optimal
CATS-with-Custom-Kernel
Baseline

(a) CATS of Mistral-7B’s MLP.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

La
te

nc
y(

m
s)

Dense
Optimal
CATS-with-Custom-Kernel
Baseline

(b) CATS of Llama2-7B’s MLP.

Figure 6: Ablation study on kernel optimizations.

18

Published as a conference paper at COLM 2024

1 # PyTorch
2 import triton.language as tl
3 V = SiLU(X @ W_gate)
4 Mask = torch.abs(V) >= threshold
5
6 # Triton 1: x_1 = (x @ W_up[Mask]) * v[Mask]
7 # Input
8 X: [N]
9 V: [M]

10 W_up: [M,N] # Stored in column-major
11 Mask: [M]
12 # Output
13 X_1: [M]
14 # Tunable parameters
15 BLOCK_M = {4,8,16,32}
16 BLOCK_N = {256,512,1024}
17 # Configuration
18 grid = (M // BLOCK_M,)
19 # Kernel[grid]
20 start_m = tl.program_id(0)
21 rm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
22 rn = tl.arange(0, BLOCK_N)
23 Mask = Mask + rm
24 flag = tl.load(Mask) > 0
25 W_up = W_up + (rm[:,None] * N + rn[None,:])
26 X = X + rn
27 acc = tl.zeros((BLOCK_M,), dtype=tl.float32)
28 i_mask = flag[:,None]
29 for _ in range(N, 0, -BLOCK_N):
30 w = tl.load(W_up, mask=i_mask, other=0.0)
31 x = tl.load(X)
32 acc += tl.sum(w * x[None,:], 1).to(tl.float32)
33 W_up += BLOCK_N

34 X += BLOCK_N
35 V = V + rm
36 v = tl.load(V, mask=flag, other=0.0)
37 acc = acc * v.to(tl.float32)
38 X_1 = X_1 + rm
39 tl.store(X_1, acc.to(tl.float16), mask=rm < M)
40
41 # Triton 2: y = x_1 @ W_down[Mask]
42 # Input
43 X_1: [M]
44 W_down: [M,N]
45 Mask: [M]
46 # Output
47 Y: [N]
48 # Tunable parameters
49 BLOCK_M = {16,32,64,128}
50 BLOCK_N = {128,256,512,1024}
51 # Configuration
52 grid = (M // BLOCK_M, N // BLOCK_N)
53 # Kernel[grid]
54 start_m = tl.program_id(0)
55 start_n = tl.program_id(1)
56 rm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
57 rn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
58 Mask = Mask + rm
59 flag = tl.load(Mask) > 0
60 W_down = W_down + (rm[:,None] * N + rn[None,:])
61 X_1 = X_1 + rm
62 w = tl.load(W_down, mask=flag[:,None], other=0.0)
63 x = tl.load(X_1)
64 acc = tl.sum(a * x[:,None], 0).to(tl.float32)
65 Y = Y + rn
66 tl.atomic_add(Y, acc.to(tl.float16))

Figure 7: Triton pseudo-code for Algorithm 1.

E Additional Experiments

We conducted an additional experiment to test whether this trend holds for larger models.
We evaluated the Llama 13B model on the same downstream tasks and observed that
the performance degradation becomes even more minimal. This leads to the tentative
conclusion that CATS becomes more effective for larger models.

Additionally, we compared the performance of CATS with Wanda Sun et al. (2023), a method
that prunes weights on a per-output basis based on the product of weight magnitudes and
input activation norms. As Wanda achieves unstructured sparsity of weights, it is important
to note that this approach may not lead to wall-clock time improvements in practice.

Model WG PIQA SciQ QA HS BoolQ Arc-E Arc-C Avg

Llama2-13B 0.7230 0.7905 0.9460 0.3520 0.6006 0.8055 0.7946 0.4838 0.6870

CATS 50% 0.7111 0.7884 0.9480 0.3540 0.6057 0.7706 0.7870 0.4812 0.6805
CATS 70% 0.6946 0.7862 0.9310 0.3360 0.5987 0.7419 0.7546 0.4497 0.6616
CATS 90% 0.5596 0.6828 0.5820 0.2080 0.3960 0.6416 0.4726 0.3029 0.4807
ReLUfication 0.4933 0.5522 0.2660 0.1440 0.2648 0.4355 0.2757 0.2483 0.3350
Wanda 0.7079 0.7873 0.9450 0.3200 0.5710 0.8122 0.7605 0.4300 0.6667

Table 5: Zero-shot performance of 13B-based models, CATS-based models for varying levels
of sparsity, ReLUfication, and Wanda 50% across different benchmark datasets. CATS 50%
significantly outperforms other techniques, which suggests CATS scales well with model
size.

19

	Introduction
	Related Work
	Background
	Method: Contextually-Aware Thresholding for Sparsification (CATS)
	Stage 1: Determining Cutoff Threshold
	Stage 2: Sparsifying Gate-MLP Blocks
	Custom Kernel Design

	Experiments
	Downstream Task Performance
	Generation task performance
	Wall-clock Time Speedups for Inference

	Discussion and Conclusion
	Additional Related Work
	Accelerating Attention Layers
	Method
	Experimental Results

	Target sparsity vs. actual sparsity
	Details on Custom GPU Kernel Design
	Additional Experiments

