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Abstract

Recent progress in Spoken Language Modeling001
has demonstrated the feasibility of learning lan-002
guage directly from speech. Generating speech003
through a pipeline that operates at the text level004
typically loses nuances, intonations, and non-005
verbal vocalizations. Modeling directly from006
speech opens up the path to more natural and007
expressive systems. On the other hand, speech-008
only systems tend to trail behind text-based009
language models in terms of their semantic010
abilities. We show that fine-tuning speech rep-011
resentation models on phoneme classification012
leads to more context-invariant representations,013
which in turn improve downstream language014
modeling performance.015

1 Introduction and related work016

Recent advances in Self-supervised Speech Repre-017

sentation Learning (SSL) (Mohamed et al., 2022;018

Chen et al., 2022; Hsu et al., 2021; Baevski et al.,019

2020) have enabled the development of label-free020

representations that are valuable for various down-021

stream tasks (wen Yang et al., 2021). These repre-022

sentations can be discretized and treated as pseudo-023

text, allowing for the training of language models024

directly from raw audio (Lakhotia et al., 2021),025

which capture both prosody and linguistic con-026

tent (Kharitonov et al., 2022). Applications of027

these audio-based language models include dia-028

logue modeling (Nguyen et al., 2023b), emotion029

conversion (Polyak et al., 2021), and direct speech-030

to-speech translation (Lee et al., 2022). They can031

be trained not only on discretized SSL represen-032

tations but also on continuous word-size tokens033

(Algayres et al., 2023) or a combination of acoustic034

and semantic tokens (Borsos et al., 2023). How-035

ever, these models still lag behind their text-based036

counterparts in terms of capturing semantics when037

trained with similar data quantity (Nguyen et al.,038

2020). Recent approaches tackled this issue by039
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Figure 1: Trade-off between language modeling and
expressive resynthesis. *: embeddings initialized from
unit centroids.

jointly training speech and text Language Mod- 040

els (LMs) (Nguyen et al., 2024; Maiti et al., 2024; 041

Chou et al., 2023) or by using existing LMs as a 042

warm initialization (Hassid et al., 2023). 043

Unfortunately, SSL units are not invariant to ir- 044

relevant acoustic variations, which hinders down- 045

stream language modeling. Recent works have 046

addressed this issue for background noise (Chen 047

et al., 2022), speech rate change (Gat et al., 2023), 048

and speaker change (Qian et al., 2022; Chang et al., 049

2023; Chang and Glass, 2023). However, contex- 050

tual variations due to coarticulation remain a chal- 051

lenge (Hallap et al., 2023): SSL units align more 052

closely with contextual phone states (Young et al., 053

1994) rather than linguistic units (Dunbar et al., 054

2022), which may affect the LM’s capacity to learn 055

higher-order representations of language. 056

Here, we test a simple idea: using supervised 057

fine-tuning from a phoneme classification task to 058

help the model remove its contextual dependency. 059

We first show that fine-tuned models learn represen- 060

tations that are much more context-invariant than 061

the original SSL representations, even with as little 062

as a few hours of labels. Next, we show that these 063

representations can be used to train an LM that 064

outperforms the standard approach. We then eval- 065

uate whether the fine-tuned representations have 066

retained their expressive power by measuring the 067

distortion when resynthesizing expressive speech. 068
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Figure 2: ABX error rate averaged across subset (dev-clean, dev-other) and speaker (within, across) conditions.

2 Method069

2.1 Phoneme classification070

We started from the pretrained HuBERT (Hsu et al.,071

2021) Base model, with 95M parameters, and fine-072

tuned it on a phoneme classification task. Instead073

of using a CTC objective (Graves et al., 2006), we074

resorted to frame-level phoneme classification. Our075

main focus is not the quality of the phonemic tran-076

scription of the audio. Our goal is that individual077

representations are well aligned with the phone-078

mic content of the audio source. By operating at079

the frame level, we impose a strong condition on080

each frame and do not lose the temporal compo-081

nent. Such an approach comes at the cost of need-082

ing forced alignments from the training dataset,083

when using CTC only demands sentence-level tran-084

scripts. We added one fully connected layer on085

top of the HuBERT backbone that maps the 768-086

dimensional representation to our phoneme space087

of dimension 40. We fine-tuned this model on088

LibriSpeech train-clean-100 (Panayotov et al.,089

2015). We also reported results for models fine-090

tuned on LibriLight Limited 10 h, 1 h, and 10min091

(Kahn et al., 2020). The forced alignments are092

those used in Nguyen et al. (2020), obtained with093

the Abkhazia library1. The fine-tuning hyperpa-094

rameters are derived from those used in Hsu et al.095

(2021) for ASR. We trained for 20 000 steps with a096

batch size of 32 on a single NVIDIA V100 GPU.097

2.2 Quantization098

We selected the best layer in terms of Triphone099

ABX score for the standard HuBERT base and100

the model fine-tuned on train-clean-100. We101

trained k-means models on the features of a 10 h102

subset of train-clean-100 extracted from those103

layers, with k = 500. We also quantized the logits104

of the fine-tuned model by simply setting the labels105

as the predicted phonemes for each frame.106

1https://github.com/bootphon/abkhazia

2.3 Language modeling 107

Finally, we trained LMs on the discretized units. 108

The language model is a 3-layer LSTM, following 109

the low-budget baseline of Nguyen et al. (2020), 110

only changing the embedding dimension from 200 111

to 768. It was trained on the discrete units of 112

LibriSpeech 960 h, for 30 000 steps on a single 113

NVIDIA V100 GPU. This 26M parameters lan- 114

guage model is two orders of magnitude smaller 115

both in terms of number of parameters and hours of 116

training data than Spoken LMs like TWIST (Hassid 117

et al., 2023) or SpiRit-LM (Nguyen et al., 2024). 118

Our fine-tuned units can in principle benefit any 119

other LM, including these larger ones. 120

2.4 Speech resynthesis 121

For speech resynthesis, we trained a HiFi-GAN 122

(Kong et al., 2020; Polyak et al., 2021) on the 123

EXPRESSO dataset (Nguyen et al., 2023a), con- 124

ditioned on the HuBERT discrete speech units 125

and one-hot speaker embeddings from one of EX- 126

PRESSO’s voices. We trained for 250 000 steps on 127

two NVIDIA V100 GPUs and followed the other 128

hyperparameters used in EXPRESSO. In this setup 129

the HiFi-GAN has a different training domain than 130

the HuBERT, the k-means, and the LM, which were 131

trained on the audiobooks of LibriSpeech. 132

2.5 Evaluation metrics 133

We evaluate continuous and discrete units using 134

ABX discriminability (Schatz et al., 2013; Schatz, 135

2016). This task quantifies the discriminability 136

between two sound categories, A and B, as the 137

probability that a token x of category A will be 138

closer to another a ∈ A than to a b ∈ B. The 139

dissimilarity function is the dynamic time-warping 140

aligned angular distance between the model’s rep- 141

resentations of two sounds. The ABX error rate is 142

calculated by averaging the discriminabilities for 143

all pairs of categories and subtracting it from 1. In 144

the standard evaluation, each token is a triphone 145

and triphones differ only by the central phoneme 146
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Triphone
ABX ↓

Phoneme ABX ↓

W/in ctx Any ctx

Continuous
wav2vec 2.0 Base L6 5.41 3.78 11.55
WavLM Base L11 3.57 2.54 8.26
ContentVec100 L12 3.84 2.54 6.89
HuBERT + Spin2048 L12 3.05 2.31 7.63

Continuous
Base L11 4.20 2.98 9.04
FT 100h L12 1.20 0.87 1.87
FT 100h L13 1.05 0.88 2.14

Centroid
Base L11 4.54 3.84 7.34
FT 100h L12 1.65 1.92 2.76

One-hot
Base L11 7.81 12.23 30.00
FT 100h L12 4.02 6.51 26.88
FT 100h L13 4.08 4.78 5.40

Table 1: ABX error rate on selected layers averaged
across subset and speaker conditions. Without quantiza-
tion, when considering the k-means centroid and with
one-hot encoding. For each condition, the best score is
in bold and the second best is underlined.

in a triplet. In the “within speaker” condition, a,147

b, and x come from the same speaker, while in the148

“across speaker” condition, a and b come from the149

same speaker, and x from another one.150

Following Hallap et al. (2023), we also evaluate151

our models on the Phoneme ABX task, where each152

token is a phoneme. We examine two conditions:153

“within context” (constant preceding and follow-154

ing phonemes) and “any context” (no constraints155

on context). This task assesses context-invariance156

in speech representations, revealing that current157

self-supervised systems struggle with context in-158

dependence. Notably, in Hallap et al. (2023) the159

performance drop when removing the constant con-160

text condition is larger than the gaps observed in161

speaker independence or clean versus less-clean162

speech conditions. By fine-tuning at a frame level163

without taking into account the context, our ap-164

proach is a way to directly tackle this issue.165

We evaluate spoken language modeling at the166

lexical and syntactic levels using the sWUGGY167

and sBLIMP metrics from the ZeroSpeech 2021168

challenge (Nguyen et al., 2020). sWUGGY is169

a “spot-the-word” task, where the network is pre-170

sented with a word and a matching non-word, and171

evaluated on its ability to assign a higher proba-172

bility to the true word. We also report results for173

“in-vocab” pairs, which only contains words from174

LibriSpeech. sBLIMP assesses the network’s abil-175

ity to prefer grammatically correct sentences over176

incorrect ones, given a pair of matching sentences.177

We evaluate content preservation in resynthe- 178

sized speech by following (Nguyen et al., 2023a) 179

and running wav2vec 2.0 Large ASR (Baevski 180

et al., 2020) on the resynthesized speech, report- 181

ing the Word Error Rate (WER). We assess this 182

on EXPRESSO-READ the reading subset of EX- 183

PRESSO – in-domain for the vocoder but out-of- 184

domain for the HuBERT backbone and the k-means 185

module – and on LibriSpeech, which is out-of- 186

domain for the vocoder. On EXPRESSO the target 187

voice is the same as the input voice, while on Lib- 188

riSpeech the target voice is sampled from the four 189

voices. We also compute the mel cepstral distortion 190

(MCD) (Kubichek, 1993) between the original and 191

resynthesized samples of EXPRESSO-READ using 192

Sternkopf and Taubert (2024). 193

3 Results 194

3.1 Results at the phonemic level 195

As shown in Figure 2, we computed the ABX error 196

rate for each Transformer layer of the base model 197

and the fine-tuned models, including the added 198

fully connected layer (layer 13). We calculated 199

both triphone- and phoneme-level ABX error rates. 200

Fine-tuning mainly improves the last layers’ ABX 201

error rates, with near-perfect scores for the 10h 202

and 100h fine-tuned models in the “within context” 203

condition. SSL representations generally struggle 204

more in the “any context” condition: there the gain 205

in error rate is the most significant, dropping from 206

9.4% to 2.4% after fine-tuning on as little as 10 min- 207

utes. Fine-tuning pushes representations to become 208

more context-independent. 209

We selected the best layers for the base model 210

(layer 11) and fine-tuned 100h model (layer 12) 211

based on the Triphone ABX score, as well as the 212

last layer of the fine-tuned 100h model (layer 13). 213

We trained k-means on these representations and re- 214

port the results in Table 1. We compare these to the 215

ABX error rates of the best layers of wav2vec 2.0 216

(Baevski et al., 2020), WavLM (Chen et al., 2022), 217

ContentVec100 (Qian et al., 2022) and HuBERT 218

+ Spin2048 (Chang et al., 2023). For the centroid 219

scores, each representation is replaced by the con- 220

tinuous representation of the closest centroid in 221

k-means. For the one-hot scores, each representa- 222

tion is replaced by a one-hot vector with a 1 at its 223

label position. We use the same distance to com- 224

pute the ABX as for continuous representations. In 225

the case of the base model’s layer 11 (Base L11) 226

and the fine-tuned 100h model’s layer 12 (FT 100h 227

3



WER ↓ MCD ↓

dev-clean dev-other test-clean test-other EXPRESSO-READ EXPRESSO

Original audio 1.69 3.55 1.86 3.89 11.90 -
Base L11 3.82 11.37 4.12 11.26 20.93 7.32
FT 100h L12 4.36 10.75 4.62 10.90 23.03 7.97
FT 100h L13 5.78 11.90 5.97 12.12 23.80 8.85

Table 2: Resynthesis evaluation. WER is computed using a wav2vec 2.0 ASR system on the resynthetized output.
MCD compares the cepstral representation of the inputs and outputs.

SWUGGY ↑ SBLIMP ↑

all in-vocab

GSLM (6k h) - 68.7 57.1
AudioLM (60k h) 71.5 83.7 64.7
TWIST-7B (150k h) 74.6 84.4 62.1

Base L11 64.26 70.87 54.87
FT 100h L12 68.18 77.55 55.82
FT 100h L13 73.37 85.20 61.10
Gold phonemes 81.58 94.75 62.77

Init from centroids
Base L11 64.78 71.56 54.83
FT 100h L12 68.85 78.66 56.17

Table 3: Zero-shot language comprehension scores (in
%), for LMs with an embedding table either initialized
randomly or from the unit centroids.

L12), the representations are of dimension 768,228

while for the fine-tuned 100h model’s layer 13 (FT229

100h L13) they have a dimension of only 40. Fine-230

tuning improves both triphone and phoneme ABX231

scores, particularly in reducing the context effect in232

the “any context” condition, as observed earlier. In233

the case of the ABX of one-hot representations, the234

error rates increase across all conditions, but the235

highest increase is when the context is not shared236

between the phones in the triplet. This is a sign that237

the k-means clusters not only are organized accord-238

ing to the phonemes but also to the surrounding239

context. Clusters are grouped according to their240

most probable phoneme, and within each group,241

clusters encode different contexts. By going from242

centroid representations to one-hot representations,243

all 500 clusters are now equidistant, which leads to244

the dramatic loss in “any context” compared to the245

more modest ones in the other two conditions.246

3.2 Results above the phonemic level247

We report in Table 3 the zero-shot sWUGGY (lexi-248

cal level) and sBLIMP (syntactic level) scores for249

the base and fine-tuned models, as well as for an250

LSTM trained on the gold phonemes. Following251

the observation regarding the ABX error rates of 252

the centroids, which remained within 1 percentage 253

point of the standard continuous units, we train 254

LSTMs by initializing their embedding table di- 255

rectly with the associated centroid representation 256

of dimension 768. Apart from this change, the 257

training process is the same between the two con- 258

ditions. As can be seen, fine-tuning for phoneme 259

classification improves spoken language modeling 260

in terms of zero-shot comprehension evaluations. 261

Overall, the gap between training from speech and 262

training with golden phonemes is now halved. Fine- 263

tuning for phoneme classification results in models 264

that are on par in terms of lexical comprehension 265

with much larger baselines, which were trained on 266

orders of magnitude more of data. 267

However, Table 2 shows that this comes at the 268

cost of the quality of resynthesis. Notably, there 269

is a cost in content preservation, illustrated by the 270

WER. It exists both for the LibriSpeech dataset and 271

for the EXPRESSO-READ, while these two datasets 272

correspond to the training domain of different com- 273

ponents of our pipeline. Figure 1 makes directly 274

visible the trade-off between language modeling 275

and speech generation quality. 276

4 Conclusion 277

We showed that fine-tuning SSL representations 278

with a phoneme classification task is an effective 279

and simple procedure to improve context indepen- 280

dence. This leads to improvements in the perfor- 281

mance of LMs trained on these units. And we also 282

found that initializing the embeddings of the dis- 283

crete tokens of the LMs with the centroids of the 284

units further helps with LM scores. This shows that 285

the units found are meaningfully placed relative to 286

one another in this representation space. Our work 287

also highlights the trade-off between language mod- 288

eling (which works best with abstract units), and 289

speech generation (which works best with specific 290

units). Fine-tuning on phoneme classification can 291

adjust this trade-off. 292
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5 Limitations293

Further work is needed to improve on the trade-294

off, perhaps by combining SSL, resynthesis, and295

fine-tuning objectives concurrently. More compre-296

hensive studies could explore the role of the en-297

coder in the spoken language modeling pipeline by298

examining the impact of fine-tuning methods on299

downstream language modeling, comparing vari-300

ous SSL and supervised speech models. Another301

important direction to consider is the application of302

this method in a multilingual setting. The benefits303

of fine-tuning are visible after training on as little304

as a few hours of aligned data, making it applicable305

to low resource languages.306
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A Appendix526

A.1 Fine Tuning Results527

Table 5 presents the frame-level accuracy and528

Phone Error Rate (PER) for models fine-tuned529

on increasing labeled data quantity. The PER530

was computed by deduplicating consecutive pre-531

dictions, without using a Language Model. For532

reference, the HuBERT base in SUPERB (wen533

Yang et al., 2021), trained with the CTC objective534

and with a frozen backbone, has a PER of 5.41%535

on test-clean.536

dev-clean dev-other test-clean test-other

Frame Classification Accuracy ↑
FT 10min 88.80 83.78 88.80 84.29
FT 1h 91.36 87.35 91.24 87.66
FT 10h 93.01 89.03 92.96 89.31
FT 100h 94.36 90.36 94.28 90.75

Phone Error Rate ↓
FT 10min 8.45 15.82 8.87 15.30
FT 1h 4.68 9.59 5.15 9.25
FT 10h 3.64 8.70 4.02 8.38
FT 100h 2.83 7.53 3.15 7.07

Table 5: Fine Tuning Results (in %)

A.2 Discrete units quality537

In addition to the ABX scores reported in Section538

3.1, the quality of the discrete units and their rela-539

tionship to phonemes can also be assessed with the540

three metrics proposed in Hsu et al. (2021): Clus-541

ter Purity, Phone Purity, and PNMI. Cluster purity542

is the conditional probability of a k-means label543

given a phone label, phone purity is the conditional544
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Figure 3: Difference between the MCD of the fine-tuned
models and Base L11 on EXPRESSO for each style.

probability of a phone label given a k-means label, 545

and PNMI is the phone-normalized mutual infor- 546

mation between units and phone labels. The units 547

are obtained from the cluster assignments given by 548

the k-means with 500 clusters trained on the output 549

of the considered model. The evaluation is done 550

on the combination of LibriSpeech dev-clean and 551

dev-other. We have for the Base L11 and FT 100h 552

L12 models: a PNMI of 0.669 and 0.846, Cluster 553

Purity of 0.093 and 0.131, and Phone Purity of 554

0.685 and 0.858, respectively. 555

A.3 Resynthesis evaluation with another ASR 556

system 557

We report Table 4 the Word Error Rate for resyn- 558

thesis on the evaluation datasets using Whisper 559

large-v3 (Radford et al., 2023) instead of wav2vec 560

2.0 as the ASR system. The differences between 561

models are consistent with those in Table 2. 562

A.4 Resynthesis quality by expressive style 563

The drop in resynthesis quality by going from the 564

standard model to the fine-tuned ones is further 565

detailed is Figure 3. For each expressive style in 566

EXPRESSO, the fine-tuned models exhibit a higher 567

MCD compared to Base L11. The difference is 568

the most prominent for styles capturing more non- 569

verbal vocalizations such as “whisper” or “bored”. 570

dev-clean dev-other test-clean test-other EXPRESSO-READ

Original audio 2.07 3.76 2.03 3.91 3.33
Base L11 3.84 11.61 4.03 11.38 6.58
FT 100h L12 4.24 10.97 4.34 10.67 7.95
FT 100h L13 5.72 11.76 5.68 11.84 9.68

Table 4: WER using Whisper large-v3 (in %)
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