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Abstract

In this work, we offer a theoretical analysis of two modern optimization techniques
for training large and complex models: (i) adaptive optimization algorithms, such
as Adam, and (ii) the model exponential moving average (EMA). Specifically, we
demonstrate that a clipped version of Adam with model EMA achieves the optimal
convergence rates in various nonconvex optimization settings, both smooth and
nonsmooth. Moreover, when the scale varies significantly across different coor-
dinates, we demonstrate that the coordinate-wise adaptivity of Adam is provably
advantageous. Notably, unlike previous analyses of Adam, our analysis crucially
relies on its core elements—momentum and discounting factors—as well as model
EMA, motivating their wide applications in practice.

1 Introduction

In neural network training, the training loss F : Rd → R is often optimized using an iterative
optimization algorithm which starts with the initial iterate x0 and then updates during each iteration
t = 1, 2, . . . as follows:

xt = xt−1 + zt ,

where zt denotes the increment chosen by the algorithm during the t-th iteration. One of the most
popular optimization algorithms is Adam [Kingma and Ba, 2014]. Adam has gained significant
attention due to its effectiveness in training Transformer-based language models [Zhang et al., 2020a,
Kunstner et al., 2023, Jiang et al., 2023, Pan and Li, 2023, Ahn et al., 2024a, Kunstner et al., 2024,
Zhang et al., 2024a].

The model exponential moving average (EMA) [Polyak and Juditsky, 1992, Ruppert, 1988] is
an optimization technique that has gained popularity in conjunction with Adam for various recent
applications. EMA maintains an exponential moving average of the model iterates, xt, which
contributes to the stabilization of these iterates. There has been a resurgence of interest in this
technique due to its effectiveness in training high-quality generative models [Yaz et al., 2018, Karras
et al., 2019, Song et al., 2021b, Dhariwal and Nichol, 2021, Nichol and Dhariwal, 2021, Song et al.,
2021a, Balaji et al., 2022, Karras et al., 2022, Rombach et al., 2022, Kang et al., 2023, Karras et al.,
2023]. Moreover, a recent work by Block et al. [2024] demonstrates the effectiveness of EMA for
both language modeling and imitation learning applications.

In this work, we theoretically study the effectiveness of these two modern optimization techniques.
Our main results can be informally summarized as follows.

Theorem 1 (Informal). CLIPPED-ADAM with the EMA on its iterates achieves the optimal conver-
gence rate for nonconvex optimization both for smooth and nonsmooth settings (Section 5). The
coordinate-wise adaptivity of Adam is particularly effective when the scale varies across different
coordinates (Section 6).
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Our main results are based on the online-to-nonconvex conversion framework of Cutkosky et al.
[2023], which chooses the increment zt based on an online learner of choice. In particular, our
approach is quite different than the previous analyses of Adam (see Section 1.1 below). Notably, our
analysis relies on the key components of Adam (momentum and adaptive learning rate) as well as
EMA of the iterates, offering new, theoretical insight into their success. See Section 7 for a more
detailed discussion.

At a high level, our analysis combines the main insights from the two recent works: Zhang and
Cutkosky [2024] and Ahn et al. [2024b]. We first carefully modify the discounted-to-nonconvex
conversion framework (Lemma 7) of Zhang and Cutkosky [2024] which converts an online learner
that achieves a good discounted regret (Definition 6) into a good noncovex optimizer. We then
combine it with the main insight of Ahn et al. [2024b] that an effective discounted online learner can
be designed based on scale-free Follow-the-Regularized-Leader (FTRL) [Orabona and Pál, 2018]. In
particular, the way we arrive at Adam is similar to Ahn et al. [2024b]: choosing a discounted version
of FTRL in the discounted-to-nonconvex conversion leads to Adam.

1.1 Related work

Even though Adam is widely used in deep learning, our theoretical understanding of its inner workings,
especially the importance of its core components—momentum and discounting factors—remains
incomplete, as pointed out by Ahn et al. [2024b]. Most theoretical work on Adam and its variations
focus on characterizing the convergence rate for convex or smooth nonconvex functions, where
methods like SGD already achieve the minimax optimal convergence rate. [Reddi et al., 2018, Zhou
et al., 2019, Chen et al., 2019, Zou et al., 2019, Alacaoglu et al., 2020, Guo et al., 2021, Défossez
et al., 2022, Zhang et al., 2022, Li et al., 2023, Wang et al., 2023]. In fact, even the most recent
results [Li et al., 2023, Wang et al., 2023] are not reflective of practice, in the sense that Adam’s
convergence rate worsens with momentum [Wang et al., 2023, §6] or is no better than that of SGD [Li
et al., 2023, §7]. A notable exception is Crawshaw et al. [2022], which demonstrates the advantages
of momentum under the generalized smoothness conditions of Zhang et al. [2020a]. However, the
algorithm they analyze is signSGD, which differs significantly from the original Adam. In contrast,
as we will explore in the subsequent sections, momentum and discounting factors are important in
our analysis. See Section 7 for more details.

We also highlight that our analysis relies on model EMA, a technique widely used in practice as
mentioned above (also see a recent work by Block et al. [2024]). It is worth noting that EMA (or
model averaging in general) has shown to have generalization benefits in practice [Tarvainen and
Valpola, 2017, Izmailov et al., 2018]. In this paper, we study EMA from an optimization perspective,
and show that the use of EMA leads to optimal guarantees for nonconvex optimization. Interestingly,
EMA naturally derives from the discounted-to-online conversion (see Algorithm 1), which, we
believe, provides new theoretical insights into this practical method.

The use of EMA also represents a significant departure from most non-convex optimization analyses.
While EMA is a classical technique in the convex setting, theoretical analyses in the non-convex
setting typically randomly select an iterate as the “final output” of the optimizer, rather than using
EMA. This random selection is intuitively extremely impractical (indeed, on average it actually
wastes half of the computation), and is never performed in real implementations.

Our analysis follows a line of work studying convergence guarantees for non-smooth non-convex
optimization. Our particular convergence criterion is similar to finding the Goldstein stationary points
[Goldstein, 1977] that were first studied in the context of modern machine learning by [Zhang et al.,
2020b], and has seen much subsequent interest [Tian and So, 2022, Jordan et al., 2023, Davis et al.,
2020]. Other notions of convergence are also reasonable—common alternatives involve the Moreau
envelope, or imposing a weak convexity condition [Davis et al., 2018, 2022a].

2 Setting for nonconvex and nonsmooth optimization

Throughout this paper, unless specified otherwise, ∥·∥ denotes the L2 norm. Following [Cutkosky
et al., 2023], we consider optimizing a loss function F that satisfies the following conditions, accessing
information about F through a stochastic gradient oracle STOGRAD : Rd ×Z → Rd, for the set of
randomness Z .
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Assumption 2. Let F : Rd → R be a differentiable function with the following properties:

• Let ∆ := F (x0)− infx F (x).

• For any two points x and y, F (y)− F (x) =
∫ 1

0
⟨∇F (x+ t(y − x)),y − x⟩dt.

• Lipschitzness. F is G-Lipshitz, i.e., for any point x, ∥∇F (x)∥ ≤ G.

• Stochastic gradient variance. For any point x, the stochastic gradient g← STOGRAD(x, r) for
randomness r ∈ Z satisfies E[g] = ∇F (x) and E ∥g −∇F (x)∥2 ≤ σ2.

The Lipschitz continuity condition is a standard assumption in nonconvex nonsmooth settings.
However, as we will discuss in Section 6, one of the key insights from our results is that Adam
enables us to adapt to the Lipschitz constants coordinate-wise without requiring prior knowledge
of these constants. Note that we almost certainly need some form of structural assumption on the
“difficulty” of the loss function; thus, relaxing the Lipschitz assumption would likely come at the cost
of another assumption, such as smoothness.

The second condition, called well-behavedess in [Cutkosky et al., 2023, Definition 1], is a mild
regularity condition. For any locally Lipschitz function F , applying an arbitrarily small perturbation
to the function is sufficient to ensure this condition [Cutkosky et al., 2023, Proposition 2].

For the notion of optimality, we follow Zhang and Cutkosky [2024] and consider the following notion
of stationarity for nonconvex and nonsmooth functions. This notion is a slight relaxation of the notion
of a Goldstein stationarity point [Goldstein, 1977], which was further studied by recent works [Zhang
et al., 2020a, Davis et al., 2022b, Tian et al., 2022, Jordan et al., 2023].
Definition 3 ((λ, ε)-stationary point). Suppose F : Rd → R is differentiable. We say x is a
(λ, ε)-stationary point of F if ∥∇F (x)∥[λ] ≤ ε, where

∥∇F (x)∥[λ] := inf
p∈P(Rd),
Ey∼p[y]=x

{
∥E[∇F (y)]∥+ λ · E ∥y − x∥2

}
.

To further motivate this definition, we remark that (λ, ϵ)-stationary points retain the desirable prop-
erties of Goldstein stationary points. Specifically, the following result [Zhang and Cutkosky, 2024,
Lemma 2.3] demonstrates that, akin to Goldstein stationary points, (λ, ϵ)-stationary points can be
reduced to first-order stationary points with appropriate choices of λ when the objective function is
smooth or second-order smooth.
Lemma 4. If F is L-smooth, then an (L2ε−1, ε)-stationary point x of F satisfies ∥∇F (x)∥ ≤
2ε. Moreover, if F is H-second-order-smooth, then an (H/2, ε)-stationary point x of F satisfies
∥∇F (x)∥ ≤ 2ε.

Moreover, as shown by [Zhang and Cutkosky, 2024, Lemma 2.4], (λ, ε)-stationary points can also be
reduced to Goldstein stationary points when F is Lipschitz.
Lemma 5. Suppose F is G-Lipschitz. For any λ, ε, δ > 0, a (λ, ε)-stationary point is a (δ, ε′)-
Goldstein stationary point, where ε′ = (1 + 2G

λδ2 ) · ε.

Now we design algorithms that find (λ, ε)-stationary points efficiently.

3 Discounted-to-nonconvex conversion: online learning of increments

Our main results are built on the online-to-nonconvex conversion framework of Cutkosky et al. [2023].
At its core, this framework involves selecting the increment zt using an online learner, as discussed
by Ahn et al. [2024b]. Specifically, we follow a variant developed by Zhang and Cutkosky [2024],
which carefully incorporates the discounting factor in the conversion process. Note that we make
slight modifications to the version proposed by Zhang and Cutkosky [2024] as follows. Here Exp(1)
denotes the exponential random variable with mean 1.

Given Algorithm 1, it turns out we need to design an online learner that minimizes the discounted
regret, formally defined below. It is worth noting that discounted regret has been recently studied
with the goal of better adapting online learners to dynamic environments [Ahn et al., 2024b, Zhang
et al., 2024b, Jacobsen and Cutkosky, 2024].
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Algorithm 1 Discounted-to-nonconvex conversion (choosing increments via online learning)

Input: Initial point x0, T ∈ N, online learning algorithm A, and discounting factor β ∈ (0, 1)
for t = 1, 2 . . . , T do

Receive zt from A // choose the increment using an online learner
Update xt ← xt−1 + αtzt, where αt∼Exp(1) i.i.d.
Compute gt ← STOGRAD(xt, rt) with freshly sampled randomness rt
Send ℓ[β]t (z) := ⟨β−tgt, z⟩ to A
// Maintain exponential moving average (for output only):

Update xt ← β−βt

1−βt xt−1 +
1−β
1−βtxt (Equivalently, xt ← 1−β

1−βt

∑t
s=1 β

t−sxs)
end for

Definition 6 (Discounted regret). For a comparator u, the β-discounted regret is defined as

Regret[β]t (u) := βt ·
t∑

s=1

(ℓ[β]s (zs)− ℓ[β]s (u)) =

t∑
s=1

βt−s ⟨gs, zs − u⟩ .

The discounted regret of an online learner A can be used to upper bound the norm of averaged
gradients, as shown in the following result.

Lemma 7 (Discounted-to-nonconvex conversion). Suppose that F satisfies Assumption 2. Then for
the comparator sequence chosen as ut := −D

∑t
s=1 β−s∇F (xs)

∥∑t
s=1 β−s∇F (xs)∥ , Algorithm 1 gives

E
t∼[T ]

E
∥∥∥∥Eyt

∇F (yt)

∥∥∥∥ ≤ ∆

DT
+

2G+ σ

(1− β)T
+ σ

√
1− β

+
1

DT

[
β · E

[
Regret[β]T (uT )

]
+ (1− β) ·

T∑
t=1

E
[
Regret[β]t (ut)

]]
,

where yt is distributed over {xs}ts=1 as P(yt = xs) = βt−s · 1−β
1−βt for s = 1, 2, . . . , t.

The proof combines the techniques of [Cutkosky et al., 2023, Theorem 7] and [Zhang and Cutkosky,
2024, Theorem 3.3]. See Appendix A for details.

We briefly explain how Lemma 7 can be used to find a (λ, ϵ)-stationary point (Definition 3). Recall
that (λ, ϵ)-stationarity essentially requires producing a point x = E[y] such that both ∥E[∇F (y)]∥
and E∥y − x∥2 are small.

Given this context, Lemma 7 states that as long as the discounted regret of the online learner A is
small, we can ensure that the EMA iterates x̄t = E[yt] serve as good candidates for (λ, ϵ)-stationarity,
since the term E ∥Eyt

∇F (yt)∥ can be kept small. The remaining task is to bound the variance term,
E ∥yt − xt∥2, which will be addressed later in Lemma 10.

Moreover, the comparator ut roughly models the update direction that an oracle algorithm with
perfect knowledge of the loss would select. In the proof of Lemma 7, we demonstrate that moving
along the ut direction effectively decreases the loss value, which forms the basis for establishing our
convergence guarantee.

Thanks to the discounted-to-nonconvex conversion, the task now reduces to designing an online
learner that achieves low discounted regret.

4 Scale-free Follow-the-Regularized-Leader (FTRL)

In this section, we introduce an algorithmic component, called the Followed-The-Regularized-Leader
(FTRL), a powerful online learning technique with various applications [Gordon, 1999, Kalai and
Vempala, 2005, Shalev-Shwartz and Singer, 2006, Abernethy et al., 2008, Nesterov, 2009, Hazan and
Kale, 2010].
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For the setting, consider the online linear optimization (OLO) setting, where during each round
t = 1, . . . , T , and online learner chooses zt, and then the linear loss ℓt(·) = ⟨vt, ·⟩ is revealed by the
environment. Here the goal of the online learner is to minimize the regret defined as

∑
t ⟨vt, zt − u⟩,

where u is the comparator in hindsight. For this setting, FTRL is presented in Algorithm 2.

Algorithm 2 Follow-the-Regularized-Leader (FTRL)

Require: Regularizers {ψt} : Rd → R, the domain D ⊆ Rd

1: for t = 1, 2, . . . , T do
2: Update zt ← argminz∈D

[
ψt(z) +

∑t−1
s=1 ℓs(z)

]
3: Receive the next loss ℓt(·) = ⟨vt, ·⟩
4: end for

The key insight of Ahn et al. [2024b] and Zhang et al. [2024b] is that in order to design an online
learner for discounted regret, it is important that the online learner is scale-free as described below. In
particular, following Ahn et al. [2024b], we consider a gradient adaptive scale-free FTRL algorithm
called scale-free FTRL [Orabona and Pál, 2018].

We will focus on the case where D = BD, the d-dimensional L2-ball of radius D > 0. Scale-free
FTRL is given by Algorithm 2 with the following choie:

ψt(·) =
1

ηt
∥·∥2 and ηt =

D√∑t−1
s=1 ∥vs∥2

.

Then using the clipping operator clipD(x) := xmin(D/∥x∥, 1), we can write down the update rule
more explicitly as follows:

zt ← argmin
z∈BD

[
1

ηt
∥z∥2 +

t−1∑
s=1

⟨vs, z⟩

]
= −clipD

D ∑t−1
s=1 vs√∑t−1
s=1 ∥vs∥2

 . (SCALE-FREE FTRL)

Here, if the denominator is zero, i.e., v1 = · · · = vt−1 = 0, then we set zt ← 0. Note that this
algorithm is scale-free in the sense that when the loss sequence is scaled by a scalar c > 0, the
updates remain the same.

Let us now present the regret bound of SCALE-FREE FTRL.
Lemma 8 (Gradient-adaptive regret bound). For any T > 0, loss sequence v1:T and comparator
u ∈ Rd s.t. ∥u∥ ≤ D, SCALE-FREE FTRL guarantees the following regret bound:

T∑
t=1

⟨vt, zt − u⟩ ≤ 4D

√√√√ T∑
t=1

∥vt∥2 .

We note that Lemma 8 follows (with a slightly worse constant) from [Orabona and Pál, 2018, Theorem
1], and the version we invoke is here due to [Ahn et al., 2024b, Theorem A.1].

Recall from Lemma 7 that an online learner for the discounted-to-nonconvex conversion (Algorithm 1)
needs to have a low discounted regret. To achieve this, following Ahn et al. [2024b] and Zhang et al.
[2024b], we simply substitute vt ← β−tgt into SCALE-FREE FTRL, resulting in the update

zt ← −clipD

D ∑t−1
s=1 β

−sgs√∑t−1
s=1 β

−2s ∥gs∥2

 . (β-FTRL)

Here again, if the denominator is zero, i.e., g1 = · · · = gt−1 = 0, then we set zt ← 0. Then, the
following result characterizes the discounted regret guarantee of β-FTRL.
Theorem 9 (Discounted regret bound). Let β ∈ (0, 1]. For any T > 0, loss sequence g1:T and
comparator u ∈ Rd s.t. ∥u∥ ≤ D, β-FTRL guarantees the following static regret bound

Regret[β]T (u) ≤ 4D

√√√√ T∑
t=1

β2(T−t) ∥gt∥2 .

We next use this result to design an algorithm for nonconvex optimization.
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5 Discounted-FTRL leads to adaptive nonconvex optimization

In this section, as a warm-up, let us see the implications of choosing A = β-FTRL in Algorithm 1.
First, let us obtain a bound on the expected discounted regret. By Theorem 9 together with Jensen’s
inequality, we have the following regret bound for any t = 1, 2, . . . , T :

E
[
Regret[β]t (ut)

]
≤ 4DE

√√√√ T∑
t=1

β2(T−t) ∥gt∥2 ≤ 4D

√√√√ T∑
t=1

β2(T−t) E ∥gt∥2 .

Since E ∥gt∥2 ≤ G2 + σ2 and 1√
1−β2

≤ 1√
1−β

, it follows that

E
[
Regret[β]t (ut)

]
≤ 4D(G+ σ)√

1− β2
≤ 4D(G+ σ)√

1− β
. (1)

5.1 From gradient-adaptive regret to nonconvex optimization

In order to obtain nonconvex optimization guarantees in terms of the (λ, ε)-stationarity (Definition 3),
we need to handle the variance term. Following [Zhang and Cutkosky, 2024, Lemma 3.2], the
variance term can be bounded as follows.
Lemma 10 (Variance bound). Using the notations of Lemma 7, for any t = 1, 2, . . . , T , β-FTRL
satisfies

E
t∼[T ]

E ∥yt − xt∥2 ≤ 12
D2

(1− β)2
.

Proof. From [Zhang and Cutkosky, 2024, Lemma 3.2], it follows that E
∑T

t=1 ∥yt − xt∥2 ≤
12

(1−β)2 E
∑T

t=1 ∥zt∥
2. Now since ∥zt∥ ≤ D for all t = 1, 2, . . . , T , after dividing each side by

T , we get the desired inequality.

Plugging the regret bound (1) into Lemma 7 and combining it with Lemma 10, we arrive at the
following optimization guarantee in terms of the (λ, ε)-stationarity. See Section B.1 for a proof.

Theorem 11. Suppose that F satisfies Assumption 2 and consider any λ > 0. For C > 0, choose
A = β-FTRL in Algorithm 1 with the following parameters:

β = 1−
( ε

10C

)2
, D =

(1− β)ε1/2

4λ1/2
, and T =

1

1− β
·max

{
4∆λ1/2

ε3/2
,
12C

ε

}
.

Then we have Et∼[T ] E ∥∇F (xt)∥[λ] ≤ (1+ G+σ
C )ε. In other words, a randomly chosen model EMA

xt is a (λ, (1 + G+σ
C )ε)-stationary point, in expectation.

5.2 Optimality and gradient adaptivity

Here, we discuss several notable aspects of the guarantee provided in Theorem 11.

5.2.1 Optimality

As shown in [Zhang and Cutkosky, 2024, Corollary 5.1], the lower bound on the iteration com-
plexity for finding a (λ, ε)-stationary point is Ω((G+ σ)2∆λ1/2ε−7/2), provided that λ ≤ G4

∆2 ε
−1.

Theorem 11 implies that setting C = G+ σ achieves this optimal iteration complexity.
Corollary 12. In Theorem 11, choosing C = G+ σ leads to the following iteration complexity for
finding a (λ, ε)-stationary point:

O

(
max

{
(G+ σ)2∆λ1/2

ε7/2
,
(G+ σ)3

ε3

})
.

In particular, treatingG, σ, and ∆ as constants, as long as λ ≳ ε, this leads to the optimal complexity
of O((G+ σ)2∆λ1/2ε−7/2).
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In light of Lemma 4, the above optimal complexity can be converted into the optimal complexities
for smooth settings.
Corollary 13 (Smooth settings). Corollary 12 implies the following optimal iteration complexity
for smooth settings. Choosing λ = O(ε−1), it implies the optimal complexity of O(ε−4) for smooth
loss functions [Arjevani et al., 2023]. Similarly, with λ = O(1), it achieves the optimal iteration
complexitiy of O(ε−7/2) for second-order smooth loss functions [Arjevani et al., 2020].

We next discuss the benefits of using the gradient-adaptive regret bound (Theorem 9) by considering
the case where we do not have knowledge of G, σ.

5.2.2 Gradient adaptivity

A remarkable consequence of Theorem 11 is that, due to the gradient-adaptive regret bound of
Theorem 9, the final convergence guarantee has a better dependence on G, σ in the case when we
do not have knowledge of them. For concreteness, in the following discussion, we treat G, σ,∆ as
constants, and focus on the regime λ ≳ ε.

First, our Theorem 11 with C = 1 (since we do not know G, σ) leads to the following iteration
complexity for finding a (λ, ε)-stationary point:

O
(
(G+ σ)7/2∆λ1/2ε−7/2

)
The price we pay for not knowing G, σ relative to the lower bound is a multiplicative factor of
(G+ σ)3/2. To see the benefit of this adaptive regret approach, let us consider the guarantees given
by Zhang and Cutkosky [2024]. Their approach is based on choosing online gradient descent for A
in Algorithm 1, when the learning rate is not properly tuned with the knowledge of G and σ, it would
lead to the following (suboptimal) discounted regret bound:

E
[
Regret[β]t (ut)

]
≤ O

(
D(G+ σ)2√

1− β

)
.

Then, the resulting iteration complexity becomes O(∆λ1/2( ε
(G+σ)2 )

−7/2), which is equal to

O
(
(G+ σ)7∆λ1/2ε−7/2

)
. This is larger than the complexity due to our adaptive approach by

a multiplicative factor of (G+ σ)7/2.

Next, we build on the results from this section and consider a better approach to design an adaptive
nonconvex optimizer.

6 Coordinate-wise adaptivity via (clipped-)Adam

In this section, we consider the setting where the Lipschitzness constants vary across different
coordinates, which is empirically observed to be reflective of practical neural network training (see,
e.g. [Crawshaw et al., 2022, Zhuang et al., 2022]). Formally, we consider the following setting.
Assumption 14. Under the same setting as Assumption 2, we replace the last two conditions with
the following coordinate-wise version:

• For each coordinate i = 1, 2, . . . , d, there is a Lipschitzness constant Gi > 0 and a variance
constant σi > 0 such that ∀x, |∂iF (x)| ≤ Gi and the stochastic gradient g ← STOGRAD(x, r)

satisfies E[g[i]] = ∂iF (xi) and E |g[i]− ∂iF (x)|2 ≤ σ2
i . (Here, ∂iF denotes the partial deriva-

tive of F w.r.t. the i-th coordinate.)

Let G := (G1, . . . , Gd) and σ := (σ1, . . . , σd). Then, the above condition implies the last two
conditions in Assumption 2 with G = ∥G∥2 and σ = ∥σ∥2.

As we mentioned before, the previous approaches [Cutkosky et al., 2023, Zhang and Cutkosky, 2024]
choose the online learner A to be online gradient descent, and hence choosing the learning rate
requires the knowledge of Gi, σi for all i. However, for neural network training, d is equal to the
number of parameters in the network, so tuning them individually is computationally infeasible. We
instead consider running β-FTRL coordinate-wise in Algorithm 1, which will automatically adapt
to each coordinate. We begin with an important observation that such an approach in fact leads to a
popular optimizer widely used in practice.
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6.1 Coordinate-wise discounted FTRL corresponds to (clipped-)Adam

For notational simplicity, fix a coordinate among i = 1, 2, . . . , d, and let us denote the iterate by xt,
the stochastic gradient by gt, and the update by zt. Then the resulting optimizer becomes:

zt+1 = −clipD

D ∑t
s=1 β

t−s
1 gs√∑t

s=1 β
t−s
2 g2s

 , (CLIPPED-ADAM)

where β1 = β and β2 = β2. Here, again if the denominator is zero, i.e., if g1 = · · · = gt = 0,
then we set the update to be zero, i.e., zt+1 = 0. Note that this is almost exactly the Adam
optimizer [Kingma and Ba, 2014], except that now we add clipping to control the variance of the
iterates relative to their EMA. Notably, CLIPPED-ADAM retains one of the most important properties
of Adam: it is scale-invariant. The scale invariance causes the optimizer to make updates of the same
magnitude on each coordinate even when the scale differs across different coordinates.

In practice, we expect that the clipping operation will effectively be a no-op. This is because, when
the algorithm is converging (even if the convergence is somewhat slow), the gradients are likely
to behave as approximately mean-zero random variables (due to factors such as stochastic noise,
unstable training trajectories, etc.). In such cases, standard concentration inequalities imply that∑t

s=1 β
t−sgs ≲

√∑t
s=1(β

t−sgs)2, and hence, the clipping has no effect.

We also remark that CLIPPED-ADAM does not consider the “bias correction” terms in the original
updates of Adam [Kingma and Ba, 2014]. However, note that the bias correction terms are coordinate-
independent, and they can be merged into the scalar D.

6.2 Nonconvex optimization guarantees of CLIPPED-ADAM

We next discuss the theoretical guarantees of CLIPPED-ADAM for nonconvex and nonsmooth opti-
mizaton. Inspired by [Duchi et al., 2010, McMahan and Streeter, 2010], where the coordinate-wise
online learners lead to regret bounds with respect to the L1 norms of stochastic gradients, we consider
the following variant of Definition 3, in the same vein as [Cutkosky et al., 2023, Section 4].

Definition 15 ((λ, ε)-L1-stationary point). Suppose F : Rd → R is differentiable. We say x is a
(λ, ε)-L1-stationary point of F if ∥∇F (x)∥[λ]1 ≤ ε, where

∥∇F (x)∥[λ]1 := inf
p∈P(Rd),
Ey∼p[y]=x

{
∥E[∇F (y)]∥1 + λ · E ∥y − x∥22

}
.

Using the fact ∥·∥1 ≤
√
d ∥·∥2, one can connect the two notions of (λ, ε)-stationary points.

Lemma 16. A (λ/
√
d, ε/
√
d)-stationary point is a (λ, ε)-L1-stationary point.

In order to obtain the guarantee in terms of L1-norm, we consider the coordinate-wise version of
discounted-to-online conversion, in the same vein as [Cutkosky et al., 2023, Appendix G]. See
Section A.1 for details.

Lemma 17 (L1-variant of Lemma 7). Suppose that F satisfies Assumption 14. Consider the
comparator sequence chosen as ut defined as ut[i] := −D

∑t
s=1 β−s∂iF (xs)

|∑t
s=1 β−s∂iF (xs)| for i = 1, 2, . . . , d.

Then, Algorithm 1 gives

E
t∼[T ]

E
∥∥∥∥Eyt

∇F (yt)

∥∥∥∥
1

≤ ∆

DT
+

2 ∥G+ σ∥1
(1− β)T

+ ∥σ∥1
√
1− β

+
1

DT

[
β · E

[
Regret[β]T (uT )

]
+ (1− β) ·

T∑
t=1

E
[
Regret[β]t (ut)

]]
,

where yt is distributed over {xs}ts=1 as P(yt = xs) = βt−s · 1−β
1−βt for s = 1, 2, . . . , t.

8



Next, let us consider the (expected) regret bound. Fix a coordinate i = 1, . . . , d. Then, by the
one-dimensional version of Theorem 9 together with Jensen’s inequality, we have the following regret
bound for any t = 1, 2, . . . , T :

E
[
Regret[β]t (ut[i])

]
≤ 4D

√√√√ T∑
t=1

β2(T−t) E |gt[i]|2 ≤
4D(Gi + σi)√

1− β
.

Hence, taking the sum over all coordinates i = 1, . . . , d, we obtain

E
[
Regret[β]t (ut)

]
≤

4D ∥G+ σ∥1√
1− β

. (2)

Combining these together, one get the following guarantee in terms of the L1 norm. See Section B.2
for a proof.

Theorem 18. Suppose that F satisfies Assumption 14 and consider any λ > 0. For C > 0, choose
the coordinate-wise optimizer CLIPPED-ADAM in Algorithm 1 with the following parameters:

β = 1−
( ε

10C

)2
, D =

(1− β)ε1/2

4d1/2λ1/2
, and T =

1

1− β
·max

{
4∆d1/2λ1/2

ε3/2
,
12C

ε

}
.

Then we have Et∼[T ] E ∥∇F (xt)∥[λ]1 ≤ (1 +
∥G+σ∥1

C )ε. In other words, a randomly chosen model
EMA xt is a (λ, (1 +

∥G+σ∥1

C )ε)-L1-stationary point, in expectation.

6.3 Benefits of coordinate-wise adaptivity of CLIPPED-ADAM

In this section, we discuss the benefits of coordinate-wise adaptivity by examining the guarantee from
Theorem 18 and compare it with that of Theorem 11. We begin with the (λ, ε)-L1-stationary point
guarantee due to Theorem 18. We consider the scenario where β is carefully tuned by making the
optimal choice of C.

Corollary 19. In Theorem 18, choosing C = ∥G+ σ∥1 leads to the following iteration complexity
for finding a (λ, ε)-L1-stationary point:

O

(
max

{
∥G+ σ∥21 ∆d1/2λ1/2

ε7/2
,
∥G+ σ∥31

ε3

})
.

In order to better appreciate the benefits of coordinate-wise adaptivity, let us compare the above
iteration complexity with that of Theorem 11.

For concreteness, we treat G = ∥G∥2 and σ = ∥σ∥2 as constants throughout, and more importantly,
we assume that the coordinates are heterogeneous in the sense that

∥G+ σ∥1 ≈ ∥G+ σ∥2 . (3)

The assumption (3) roughly says that a few coordinates of G+ σ take much larger values than the
rest; if all the coordinates of G+ σ have similar magnitudes, then ∥G+ σ∥1 ≈

√
d ∥G+ σ∥2. In

the case λ ≳ ε, Corollary 19 implies that the iteration complexity is

O(∥G+ σ∥21 ∆d
1/2λ1/2ε−7/2) . (4)

Next, let us consider the counterpart that does not adapt to each coordinate separately. In this
case, we apply Lemma 16, which tells us that to find a (λ, ε)-L1 stationary point it suffices
to find a (λ/

√
d, ε/
√
d)-stationary point. Then, from Corollary 12, the iteration complexity is

O(∥G+ σ∥22 ∆(λ/
√
d)1/2(ε/

√
d)−7/2), i.e.,

O(∥G+ σ∥22 ∆d
3/2λ1/2ε−7/2) . (5)

Hence, when (3) holds, (4) can be lower than (5) by a multiplicative factor of d, showing the benefits
of coordinate-wise adaptivity.
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7 Discussion

Our analyses of Adam based on the discounted-to-online conversion is quite different than the
previous ones. As discussed in Section 1.1, the previous analyses often result in guarantees that are
not quite reflective of practice—e.g., the rates get better without momentum and the rates are no
better than that of non-adaptive methods. In contrast, our analyses and results highlight the role of
the practical components as highlighted below.

• Momentum. In order to obtain a low discounted regret, any sensible online learner should integrate
the past history of stochastic gradients g1:t to make the decision zt+1. Such online learners under
the discounted-to-online conversion lead to momentum methods that integrate g1:t to obtain the
next increment zt+1. In particular, non-momentum methods would correspond to aggressive online
learners that only use the last gradient gt to make the decision zt+1. This perspective provides new
insights into understanding the role of momentum, as echoed by Ahn et al. [2024b].

• Adaptive learning rates. The adaptive learning rate due to β-FTRL leads to a gradient-adaptive
regret bound (Theorem 9), which is important to obtain a better Lipshitzness dependence (Sec-
tion 5.2) as well as the coordinate-wise adaptivity for high-dimension settings (Section 6.3). Our
analysis offers theoretical benefits of adaptive learning rate from a discounted regret perspective.

• Model EMA. Lastly, the discounted-to-nonconvex conversion (Algorithm 1) naturally leads to
guarantees in terms of the model EMA, xt. At a high level (see Appendix A precise details), this is
because for a dynamic environment, it is important to discount the losses such that online learners
adapt to changing environments. The appearance of model EMA in the discounted-to-nonconvex
conversion provides a new perspective on its role.

Our analyses and results have several limitations and raise several interesting questions. Firstly,
CLIPPED-ADAM does not precisely match the original Adam algorithm, warranting further investiga-
tion into the original Adam update. Specifically, our analysis suggests choosing β1 = β and β2 = β2,
which does not align with the commonly used practical choices. Understanding the exact roles of
these practical choices for β1 and β2 would be valuable.

In Section 5.2, we observed that our iteration complexity for finding a (λ, ε)-stationary point is
O(∆(G+ σ)7/2λ1/2ε−7/2) when G and σ are unknown. Investigating whether this complexity is
optimal presents another intriguing direction for future research.

Lastly, from a practical standpoint, developing a more advanced online learner for discounted regret
and designing an algorithm that surpasses Adam in practicality would have significant practical
implications.
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A Proof of discounted-to-nonconvex conversion (Lemma 7)

Note first that via a change of summation, we get

T∑
n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1)) =

T∑
t=1

T∑
n=t

βn−t(1− β)(F (xt)− F (xt−1))

=

T∑
t=1

(1− βT−t+1)(F (xt)− F (xt−1))

= F (xT )− F (x0)−
T∑

t=1

βT−t+1(F (xt)− F (xt−1)) .

Rearranging the above together with the fact F (x0)− F (xT ) ≤ F (x0)− infx F (x) =: ∆, we get

−∆ ≤ E

[
T∑

n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1))

]
︸ ︷︷ ︸

A

+E

[
T∑

t=1

βT−t+1(F (xt)− F (xt−1))

]
︸ ︷︷ ︸

B

.

We also recall the following fact about exponential random variable due to [Zhang and Cutkosky,
2024, Lemma 3.1].
Lemma 20. Let α ∼ Exp(λ) for some λ > 0, then

E
α
[F (x+ αz)− F (x)] = E

α
[⟨∇F (x+ αz), z⟩]/λ .

By Lemma 20 with λ = 1, together with xt = xt−1 + αtzt, it follows that

E[F (xt)− F (xt−1)] = E [⟨gt, zt⟩] .

This identity indicates that the function gap is exactly equal to the linearization of the function gap.
In this sense, the randomization renders the first-order Taylor approximation perfectly accurate.

Now, with this result, we will address each term separately.

Analysis of A

Note that for each t ≤ n, since xt = xt−1 + αtzt for αt∼Exp(1), Lemma 20 yields

E[F (xt)− F (xt−1)] = E ⟨∇F (xt), zt⟩ = E ⟨∇F (xt),un⟩+ E ⟨∇F (xt), zt − un⟩
= E ⟨∇F (xt),un⟩+ E ⟨∇F (xt)− gt, zt − un⟩+ E ⟨gt, zt − un⟩
= E ⟨∇F (xt),un⟩︸ ︷︷ ︸

1

+E ⟨∇F (xt)− gt,−un⟩︸ ︷︷ ︸
2

+E ⟨gt, zt − un⟩︸ ︷︷ ︸
3

,

15



where the last line follows from the fact E[⟨∇F (xt)− gt, zt⟩] = 0. More specifically, note that
the randomness in the stochastic gradient oracle is independent of the randomness due to αt. Since
E[∇F (xt)− gt] = 0, it follows that

E[⟨∇F (xt)− gt, zt⟩] = E[⟨E[∇F (xt)− gt], zt⟩] = 0,

where the inner expectation is with respect to the randomness in the stochastic gradient oracle and
the outer is with respect to all other quantities.

Now let us handle each term.

1 : Note that using the definition of yn, we have

E
n∑

t=1

βn−t(1− β) ⟨∇F (xt),un⟩ = (1− β)E

〈
n∑

t=1

βn−t∇F (xt),−D
∑n

t=1 β
n−t∇F (xt)

∥
∑n

t=1 β
n−t∇F (xt)∥

〉

= (1− βn)E

〈
n∑

t=1

1− β
1− βn

βn−t∇F (xt),−D
∑n

t=1
1−β
1−βn β

n−t∇F (xt)∥∥∥∑n
t=1

1−β
1−βn βn−t∇F (xt)

∥∥∥
〉

= −D(1− βn)E
∥∥∥∥Eyn

∇F (yn)

∥∥∥∥ ≤ −DE
∥∥∥∥Eyn

∇F (yn)

∥∥∥∥+DGβn .

Therefore, summing over n = 1, . . . , T , we obtain:

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨∇F (xt),un⟩ ≤ −DE
T∑

t=1

∥∥∥∥Eyt

∇F (yt)

∥∥∥∥+ DG

1− β
.

2 : For the second term, using Cauchy-Schwartz inequality, we have

E
n∑

t=1

βn−t ⟨∇F (xt)− gt,−un⟩ ≤

√√√√E

∥∥∥∥∥
n∑

t=1

βn−t(∇F (xt)− gt)

∥∥∥∥∥
2

E ∥un∥2 .

Using the bounded variance assumption on the stochastic gradient oracle, we have

E

∥∥∥∥∥
n∑

t=1

βn−t(∇F (xt)− gt)

∥∥∥∥∥
2

= E
n∑

t=1

β2(n−t) ∥∇F (xt)− gt∥2 ≤
σ2

1− β2
.

Therefore, summing over n = 1, . . . , T , and using the fact that 1
1−β2 ≤ 1

1−β , we get the
following bound on the second term:

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨∇F (xt)− gt,−un⟩ ≤
T∑

n=1

(1− β) · σD√
1− β2

≤ σDT
√
1− β .

3 : Lastly, for the third term, we have

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨gt, zt − un⟩ = (1− β)E
T∑

n=1

[
n∑

t=1

E
〈
βn−tgt, zt − un

〉]

= (1− β)E
T∑

t=1

Regret[β]t (ut) .

Analysis of B

Note that for each t, since xt ← xt−1 + αtzt for αt∼Exp(1), Lemma 20 yields

E[F (xt)− F (xt−1)] = E ⟨∇F (xt), zt⟩ = E ⟨gt, zt⟩
= E ⟨gt, zt − uT ⟩+ E ⟨gt,uT ⟩ ≤ E ⟨gt, zt − uT ⟩+D(G+ σ) .
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Thus,

E

[
T∑

t=1

βT−t+1(F (xt)− F (xt−1))

]
= β E

T∑
t=1

[〈
βT−tgt, zt − uT

〉
+ βT−tD(G+ σ)

]
≤ β E[Regret[β]T (uT )] +

D(G+ σ)

1− β
.

Combining A and B

Combining the above analyses and rearranging, it follows that

DE
T∑

t=1

∥∥∥∥Eyt

∇F (yt)

∥∥∥∥ ≤ ∆+
DG

1− β
+ σDT

√
1− β + (1− β)E

T∑
t=1

[
Regret[β]t (ut)

]
+ β E[Regret[β]T (uT )] +

D(G+ σ)

1− β
.

Dividing both sides by DT , we get the desired result.

A.1 Proof of the coordinate-wise version (Lemma 17)

The proof closely follows that of Lemma 7. In particular, with ∆ := F (x0)− infx F (x), we have

−∆ ≤ E

[
T∑

n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1))

]
︸ ︷︷ ︸

A

+E

[
T∑

t=1

βT−t+1(F (xt)− F (xt−1))

]
︸ ︷︷ ︸

B

.

We begin with the term B . Using the same decomposition as before, we have

E[F (xt)− F (xt−1)] = E ⟨gt, zt − uT ⟩+ E ⟨gt,uT ⟩ = E ⟨gt, zt − uT ⟩+
d∑

i=1

Egt[i]uT [i]

≤ E ⟨gt, zt − uT ⟩+D

d∑
i=1

(Gi + σi) .

Thus,

E

[
T∑

t=1

βT−t+1(F (xt)− F (xt−1))

]
= β E

T∑
t=1

[〈
βT−tgt, zt − uT

〉
+ βT−t

d∑
i=1

D(Gi + σi)

]

≤ β E[Regret[β]T (uT )] +
D
∑d

i=1(Gi + σi)

1− β
.

Moving onto the term A , we again use the same decomposition:

E[F (xt)− F (xt−1)] = E ⟨∇F (xt),un⟩︸ ︷︷ ︸
1

+E ⟨∇F (xt)− gt,−un⟩︸ ︷︷ ︸
2

+E ⟨gt, zt − un⟩︸ ︷︷ ︸
3

.

As before, let us handle each term one by one separately.
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1 : Note that using the definition of yn, for each coordinate i = 1, . . . , d, we have

E
n∑

t=1

βn−t(1− β)∂iF (xt)un[i] = (1− β)E

[(
n∑

t=1

βn−t∇F (xt)

)(
−D

∑n
t=1 β

n−t∂iF (xt)

|
∑n

t=1 β
s−t∂iF (xt)|

)]

= (1− βn)E

( n∑
t=1

1− β
1− βn

βn−t∇F (xt)

)−D ∑n
t=1

1−β
1−βn β

n−t∇F (xt)∣∣∣∑n
t=1

1−β
1−βn βn−t∇F (xt)

∣∣∣


= −D(1− βn)E
∣∣∣∣Eyn

∂iF (yn)

∣∣∣∣ ≤ −DE
∣∣∣∣Eyn

∂iF (yn)

∣∣∣∣+DGiβ
n .

Therefore, summing over i = 1, . . . , d and then n = 1, . . . , T , we obtain:

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨∇F (xt),un⟩ ≤ −DE
T∑

t=1

∥∥∥∥Eyt

∇F (yt)

∥∥∥∥
1

+
D
∑

i=1Gi

1− β
.

2 : For each coordinate i = 1, . . . , d, we have

E
n∑

t=1

βn−t(∂iF (xt)− gt[i])(−un[i]) ≤

√√√√E

∣∣∣∣∣
n∑

t=1

βn−t(∂iF (xt)− gt[i])

∣∣∣∣∣
2

E |un[i]|2 .

Using the coordinate-wise bounded variance assumption on the stochastic gradient oracle,

E

∣∣∣∣∣
n∑

t=1

βn−t(∂iF (xt)− gt[i])

∣∣∣∣∣
2

= E
n∑

t=1

β2(n−t) |∂iF (xt)− gt[i]|2 ≤
σ2
i

1− β2
.

Therefore, summing over n = 1, . . . , T , and using the fact that 1
1−β2 ≤ 1

1−β , we get the
following bound on the second term:

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨∇F (xt)− gt,−un⟩ ≤
T∑

n=1

(1− β) ·
D
∑d

i=1 σi√
1− β2

≤ DT

(
d∑

i=1

σi

)√
1− β .

3 : We use the same manipulation as before:

E
T∑

n=1

n∑
t=1

βn−t(1− β) ⟨gt, zt − un⟩ = (1− β)E
T∑

t=1

Regret[β]t (ut) .

Combining the above, we get the desired result in Lemma 17.

B Proof of main theorems

B.1 Proof of Theorem 11

By Definition 3, since E[yt] = xt, it holds that

E
t∼[T ]

∥∇F (xt)∥[λ] ≤ E
t∼[T ]

[∥∥∥∥Eyt

∇F (yt)

∥∥∥∥+ λ E
yt

∥yt − xt∥2
]
.

We begin with the second term (the variance term). By Lemma 10, we have

λ E
t∼[T ]

E
yt

∥yt − xt∥2 ≤ 12
λD2

(1− β)2
.
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Hence, by choosing D = (1−β)ε1/2

4λ1/2 , it follows that λ · Et∼[T ] Eyt
∥yt − xt∥2 ≤ ε.

Next consider the first term (the norm of the averaged gradients). Plugging the regret bound (1) into
Lemma 7, we get

E
t∼[T ]

∥∥∥∥Eyt

∇F (yt)

∥∥∥∥ ≤ ∆

DT
+

2G+ σ

(1− β)T
+ σ

√
1− β +

4(G+ σ)

T
√
1− β

+ 4(G+ σ)
√
1− β

≤ 4∆λ1/2

(1− β)ε1/2T
+

6G+ 5σ

(1− β)T
+ (4G+ 5σ)

√
1− β ,

where the last line follows since 1√
1−β
≤ 1

1−β and D = (1−β)ε1/2

4λ1/2 . Choosing β = 1− ( ε
10C )2, the

last term is bounded by G+σ
2C ε. Moreover, choosing T = (1−β)−1 ·max

{
4∆λ1/2ε−3/2, 12Cε−1

}
,

the first and second terms are bounded by ε and G+σ
2C ε, respectively. This concludes the proof.

B.2 Proof of Theorem 18

By Definition 15, since E[yt] = xt, it holds that

E
t∼[T ]

∥∇F (xt)∥[λ]1 ≤ E
t∼[T ]

[∥∥∥∥Eyt

∇F (yt)

∥∥∥∥
1

+ λ E
yt

∥yt − xt∥22

]
.

We begin with the second term (the variance term). This time, given that now each coordinate
of update zt is bounded by D, i.e., |zt[i]| ≤ D, applying the variance bound due to Lemma 10
coordinate-wise implies:

λ E
t∼[T ]

E
yt

∥yt − xt∥22 ≤ 12
λdD2

(1− β)2
.

Hence, by choosing D = (1−β)ε1/2

4d1/2λ1/2 , it follows that λEt∼[T ] Eyt
∥yt − xt∥2 ≤ ε.

Next consider the first term (the L1-norm of the averaged gradients). Plugging the regret bound (2)
into Lemma 17, and doing similar manipulations as the proof of Theorem 11, we get

E
t∼[T ]

∥∥∥∥Eyt

∇F (yt)

∥∥∥∥
1

≤ ∆

DT
+
∥6G+ 5σ∥1
(1− β)T

+ ∥4G+ 5σ∥1
√

1− β

=
4∆d1/2λ1/2

(1− β)ε1/2T
+
∥6G+ 5σ∥1
(1− β)T

+ ∥4G+ 5σ∥1
√
1− β ,

where the last line follows since D = (1−β)ε1/2

4d1/2λ1/2 . Choosing β = 1− ( ε
10C )2, the last term is bounded

by ∥G+σ∥1

2C · ε. Moreover, choosing T = (1− β)−1 ·max
{
4∆d1/2λ1/2ε−3/2, 12Cε−1

}
, the first

and second terms are bounded by ε and ∥G+σ∥1

2C · ε, respectively. This concludes the proof.

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions regarding
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Guidelines:
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: The paper discuss the limitations of the work in Section 7.
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preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions and the proofs are provided both in the main text and the appendix.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
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• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.
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4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper is a theory paper and does not have any experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: This paper is a theory paper and does not have any experiments.
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• The answer NA means that paper does not include experiments requiring code.
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the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
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• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: This paper is a theory paper and does not have any experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper is a theory paper and does not have any experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.
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symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: This paper is a theory paper and does not have any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper is a theory paper, and we do not forsee any direct societal implications
arising from the research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: This paper is a theory paper and does not have any experiments.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The paper accurately credits the existing results by citing the papers that inspired the
techniques used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of
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• If assets are released, the license, copyright information, and terms of use in the package should
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some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.
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• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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