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ABSTRACT

As large-scale graphs become ubiquitous in real-world applications, there is grow-
ing concern about the memory and time requirement to train a graph neural net-
work (GNN) model for such datasets. Storing the entire adjacency and node em-
bedding matrices in memory is infeasible in such a scenario. Standard sampling-
based methods for addressing the memory constraint suffer from the dependence
of the number of mini-batches on the graph size. Existing sketch-based meth-
ods and graph compression techniques operate at higher sketch ratios, with the
graph compression techniques showing poor generalization, implying that differ-
ent GNNss trained on the same synthetic graph have performance gaps. Sketch-
based methods necessitate online learning of sketches, further increasing the com-
plexity. In this paper, we propose a new sketch-based algorithm, PGNN, employ-
ing the Proper orthogonal decomposition (POD) method to craft update rules to
train GNNs, improving the memory requirement and training time without the
complication of updating the sketches during training. Experiments on standard
graph datasets show that PGNN can reach much lower sketch ratios without com-
promising the performance. We prove the optimality of the POD update rule for
the linearized GNN (SGC). Empirical findings validate our approach, demonstrat-
ing superior performance at reduced sketch ratios and adaptability across various
GNN architectures.

1 INTRODUCTION

Graph Neural Networks (GNNs) have proven to be powerful tools for graph learning across various
domains, excelling in tasks such as classification Kipf & Welling (2017), clustering Bianchi et al.
(2020), recommendation systems Wu et al. (2022), and social network analysis Fan et al. (2019).
Their strength lies in their ability to extract meaningful insights from local neighbourhoods within
graphs, thus creating effective representations of target nodes. However, the dependence of GNNs
on graph topology introduces significant challenges when scaling to larger graphs or deeper models
while maintaining computational and memory efficiency. Traditional full-batch training methods
necessitate storing the Laplacian matrix of the entire graph, resulting in a memory complexity of
O(m + ndL + d?L) for an n-node, m-edge graph, where node features have dimension d in an L-
layer graph convolutional network (GCN). This linear dependency on both n and m, combined with
the limited memory capacity of GPUs, restricts the scalability of training on large graphs (especially
large dense graphs with m being of the order of O(n?) in the worst case). To address these memory
constraints, research in this domain has broadly proposed two main approaches: sampling-based
strategies Hamilton et al. (2018); Chen et al. (2018a;b); Chiang et al. (2019); Zeng et al. (2020)
and historical embedding techniques Fey et al. (2021); Ding et al. (2021). Although these methods
improve memory efficiency, the computational complexity still increases linearly with n and m.

In the context of matrix approximation, a sketch of an arbitrary matrix A € R™"*? is defined as a
much reduced matrix B € R%*<, where ¢, denotes the sketch dimension which is significantly
smaller than A (i.e., cg < n) but still provides a good approximation Ghashami et al. (2015). Here,
co denotes the sketch dimension. The amount of compression achieved by sketching is best described
by the sketch ratio r = co/n. Proper orthogonal decomposition (POD) Rathinam & Petzold (2003),
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also known as the Karhunen—Loéve decomposition or principal component analysis, provides an
orthonormal basis representing the given data in an optimal least squares sense.

To achieve sublinear training time complexity with respect to n, Ding et al. Ding et al. (2022) pro-
pose a sketch-based algorithm named sketch-GNN, that trains the GNN on top of a few compact
sketches of both the convolution and node feature matrices. The authors propose an end-to-end
training protocol in the sketch space by approximating the non-linear activation function using poly-
nomial tensor-sketch (PTS) theory Pham & Pagh (2013).

As observed by the authors, the approximation of the non-linear activation limits the expressiveness,
which constrains the depth of GNNSs that can be trained due to error accumulation. Working with
dense matrices, even in the reduced sketch space, imposes a significant computational burden. De-
spite showing promise, the sketch-GNN algorithm needs to: (i) work at a higher sketch ratio which
results in a lower compression of the original graph and (ii) requires frequent updates of the sketches
during the training which triggers re-computation of all the sketches involved. It is worthwhile to
mention another technique which guarantees efficient training of GNNs using random spanning trees
Bonchi et al. (2024) and leverages the concept of effective resistance to enhance node classification
tasks. This method enhances GNN efficiency by creating path graphs from random spanning trees
to maintain essential graph features while minimizing complexity for faster training. This approach
is currently constrained to only the GCN architecture.

The primary motivation for using POD to address limitation (i) in sketch-GNN is that, in dynamical
systems, the effective number of eigenmodes required decreases as the system size increases, which
results in a lower sketch ratio (i.e., the sketch sizes are much smaller). Relevant works, such as
Choi et al. (2023), demonstrate a clear connection between message-passing methods and dynam-
ical systems. For limitation (ii), we theoretically establish bounds that constrain the deviations of
node representations when using the PGNN method. Additionally, we prove the optimality of the
POD update rule for the linearized GNN update rule, indicating that the best low-rank matrix for
the update rules can be predetermined, which completely eliminates the need for online learning via
frequent updates of sketches. To this end, our paper presents PGNN, a novel sketch-based method
for GNNs. This method diverges fundamentally from prior approaches that emphasize sketching
weights or gradients (see Liu et al. (2022), Chen et al. (2015), Kasiviswanathan et al. (2018), Lin
et al. (2019), Spring et al. (2019)). Drawing inspiration from the update rules of linearized GNNs
(SGC) Wu et al. (2019), we customize the message passing process to function within the linear
subspace formed by the columns of the augmented input node feature matrix. Experimental results,
as presented in section 5, demonstrate that the sketch ratio necessary for achieving optimal perfor-
mance decreases as the graph size increases. Despite its theoretical optimality limitations beyond
linearized GNN, the PGNN framework efficiently performs node classification in POD-derived lin-
ear subspaces, providing insights into GNN operational subspaces Lee et al. (2023).

Our contributions can be summarized as follows:

1. In section 3, we introduce specialized update rules designed to enhance the training ef-
ficiency of GNNs by operating within a reduced subspace. Utilizing the POD method,
we sketch the input node feature and convolution matrices into their lower-dimensional
approximations, thereby streamlining the computational process.

2. In Theorem 1, we establish the optimality of the POD method in the linearized update rule
of the GNN. Furthermore, in Lemma 2, we present bounds that quantify the deviation of
node representations when using the PGNN framework.

3. The versatility of PGNN is evaluated across different GNN architectures, including GCN
Kipf & Welling (2017), SGC Wu et al. (2019), GraphSAGE Hamilton et al. (2018), and
GAT Velickovic et al. (2018), with results detailed in section 5. Through extensive experi-
mentation, as demonstrated in section 5, we find that PGNN is able to work with reduced
sketch ratios. For instance, on the Reddit dataset, the state-of-the-art sketch-GNN frame-
work achieves its highest accuracy at a sketch ratio of 0.3, while we achieve a comparable
accuracy for a much lower sketch ratio of 0.05, which in turn results in a much faster
algorithm with lower memory requirement.
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2 PRELIMINARIES

BASIC NOTATIONS.

Let G = (V,E) denote a graph where V' = [n] := {1,...,n} is the set of n verticesand F C V' x V
is the set of m edges. Additionally, the input node feature matrix associated with G is denoted by
X(©) ¢ R™4 where d is the number of features. Let X(?) € R™*¢ and 7 denote the augmented
feature matrix and its mean vector, respectively. C' € R™*™ denotes the convolution matrix of graph
G and C(i,j) denotes its (i,7)-th entry. We represent the k*" order element-wise power of C' as
C“*. Additionally, C(i,:) denotes the i*" row and C(: ,j) denotes the j* column.

Considering a GNN, X () € R"*% denotes the node representations of layer I, where d; represents
the number of neurons at layer [. ||-|| denotes the Frobenius norm unless stated otherwise. o(-) is

the non-linear activation and ©(9) is the learnable weight matrix at layer [ for filter q.

RW R® . R( denote the k count-sketch matrices with dimension R *™, where k (a hyper-
parameter) denotes the number of sketches and ¢, is the fixed sketch dimension associated with all
of them. 3 denotes the upper bound on the number of elements in the set for unsketching.

The POD projection matrix which is the matrix of the linear projection expressed in the original
coordinate system in R™ is given by P = p”'p € R"*"™, We refer to the submatrix p as the factor of
P. We represent a matrix comprising of b n-dimensional column vectors y € R™ as [y],,xp-

COUNT SKETCH.

Matrix multiplication is crucial in machine learning and scientific computation, with efficient tech-
niques developed in works like Paszke et al. (2017), Guennebaud et al. (2010), and Abadi et al.
(2016). Count sketch, a potent dimensionality reduction technique introduced in Charikar et al.
(2002) and Weinberger et al. (2010), projects an n-dimensional vector u into a ci-dimensional space
using a random hash function & : [n] — [c] and a binary Rademacher variable s : [n] — {—1,1}.
The dimension reduction transformation C'S(u); = »p,;—; $(j)u; = R(i,:)u involves a count

sketch matrix R € R X",

LOCALITY SENSITIVE HASHING.

Locality Sensitive Hashing (LSH) exploits hash functions, denoted as H : R — [cg], to map closely
positioned vectors into the same bucket with high probability. SimHash, an instance of LSH, uses
a random matrix P € R°/2%4 o define a hash function H(u) = arg max ([Pu || Pu]) Charikar
ct al. (2002). This method is efficient for large vector batches Andoni et al. (2015). We use the LSH
technique Chen et al. (2020) without online updates to the hash matrix P.

PROPER ORTHOGONAL DECOMPOSITION.
Given the input node feature matrix X ) — [x1,x2,...,24], where x; € R™. Then the best
approximating affine subspace representing these data points and passing through the mean (z =
é Zle x;) is given by the leading eigenvectors of the centred covariance matrix (see Rathinam &
Petzold (2003) for a detailed explanation)

oLy ) (s — 5)7
= m;(xl—x)(xl—x) .

The factor p € R*™ of projection P is given by the leading eigenvectors of R, where ¢y < n. The
sketch Z(0) = p(X(©) — [Z],,xq) € R*? of input node feature matrix X () represents the sketch

of X in the affine subspace. To know more about POD, refer to (Rathinam & Petzold (2003),
Holmes et al. (1996), Lall et al. (1999), Moore (1981)).



Under review as a conference paper at ICLR 2025

UNIFIED FRAMEWORK OF GNNSs.

For a GNN, Message passing between layers can happen differently, like that of spatial convolution
(GCN)Kipf & Welling (2017), self-attention (GAT) Velickovi¢ et al. (2018), and Weisfeiler-Lehman
(WL) alignment, see Xu et al. (2019). The general rule according to Balcilar et al. (2021) for
message passing is given by,

XU — & (Z C(lyq)X(l)@(lvq)> , (1)

q

where C'(h9) € R™ ™ is the g-th convolution support at layer I that defines how the node features
are propagated to the neighbouring nodes, X (V) is the node representations at layer [, and ©(-%) are
the trainable weights. The input node feature matrix is given by X (©) ¢ R7*4,

The gradient involved in the back-propagation rule for GNNs, as shown in Ding et al. (2021) for the
loss function ¢, is given by the following:

Vol =3 (C00) " (Vxuint o M) (000 @)
q

MWD = ¢ (=1 (X(+D)). This formulation embodies the essence of the message-passing

paradigm. Here, o and o~ denote the derivative and the inverse of the activation function o,
respectively. The term V yai1)f © o (a‘l (X (“‘1))) represents the gradients propagated back
through the non-linearity. In essence, this rule captures the flow of information and updates dynam-
ics within GNNs during the backward pass.

3 POD SKETCH BASED METHOD ON GNNS

Problem and Insights. The runtime complexity of the update rules of GNNs on a complete graph
is O(n?), and the memory complexity involved is O(n + m). The POD sketch-based method for
GNNs approximates the GNN’s update rule and utilizes sketches of both the convolution matrix and
the input node feature matrix for training. Initially, the input node feature matrix (X (?)) and the
convolution matrix (C' = D~*/2AD~1/2) are of sizes n x d and n x n, respectively. These matrices
are then transformed into low-dimensional sketches of size ¢y x d and ¢y X ¢, respectively. The
sketch Z(%) of the input node feature matrix X (*) and the convolution matrix sketch (S¢) are given
by:
Z© = p(X© —[z],xa), Sc=pCp".

Recall that p is the factor of P, representing the singular vectors of the augmented input node feature
matrix X (© after normalization (see Algorithm 1).

3.1 APPROXIMATE UPDATE RULES WITH PGNN
Our primary goal is to sketch the forward propagation
XU = o (CX“)@“)) .

We project the node representations at layer [ onto the subspace spanned by the columns of the factor
matrix p, giving us

=1 1 _ l 7
Z+1) — po | C pTZ( ) + [x]nxd(Hl) e® | — [p‘r]coxd(l+1)
——
T U

We denote the bias factor induced by this projection as U = [pZ],, xdq4,,- The dependence of the
convolution matrix on 7 is not removed; hence, we project and inverse project for terms inside the
non-linear activation to obtain equation 3. For ease of notation, let

T=[Tea, s WO = (5020 + M), M=[pCal,,,,.

4
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720D — 4y (pT {W(l)@(l) - U} + T) U 3)
The general update rule for the PGNN framework is:

ZUHD) = po (pT (Z {W(l’q)@(l*q) -~ U}) + T) U 4

q

where W) = (Sg’q)Z(l) + M(l’q)) 069 and M9 = [pC(lvq):f]cOX,i. The mean of the

augmented input feature matrix X(© (See Algorithm 1) is denoted by Z. The sketch of the g¢-th
convolution matrix at layer [ is given by Sca.a) = pC“9 pT, and the node representations at layer
I given by the PGNN method is denoted by Z() € R*%  The weight matrix at layer [, filter
q is denoted by ©(-9) € R%u*d+1 where d;, d;4; denotes the hidden layer dimensions at layers
l,1+ 1. The intricacies of how message passing happens for the PGNN framework in various GNN
architectures like SGC, GCN, GraphSAGE, and GAT are explained in Appendix B. Two challenges
must be addressed for the approximate update rule proposed equation 4.

Challenge (1). Dependence of matrix p on the number of vertices 7 is a bottleneck. |

Addressing challenge (1) The rise in popularity of approximate matrix multiplication (AMM) stems
from its adaptability to large-scale datasets, rendering matrix computation more feasible. The count-
sketch method discussed in section 2 is one such method. Using this concept, we modify p in terms
of the count sketch matrix as shown below,

P~ pR(k)TR(k) = pR®,

Each column of the count-sketch matrix R*) € R *" has a value of +1 at a random row. Storing
the count-sketch matrix in memory is not an overhead because of its inherent sparse nature. To illus-
trate, for the ogbn-products dataset, a single count-sketch matrix consumes approximately 88 MB of
memory for a count-sketch ratio of 0.1. The count-sketch ratio’s dependence on the approximation’s
quality is addressed in Lemma 4. However, an additional storage cost of O(cgcy) is incurred to store
the sketches  and R(*). In practise, the count-sketch matrices are sparse, with one non-zero entry
per column. The update rule equation 4 is now modified as,

70 —prW g (R““)TﬁT ( > {WW“ - U}) + T) ~U ®)
q

Challenge (2) Unsketching of a matrix G € R4 at layer [ from the sketch dimension ¢, to
n involves O(con) computations and O(n) memory.

unsketch(G) = R®)" (7 G) + [Z]nxa,

Addressing challenge (2): The challenge at hand involves determining an efficient method for
identifying active neurons at a layer [ without incurring the linear cost of computing all activations
for a given input. This issue has been explored in previous literature (Chen et al. (2020), Chen
et al. (2021)). The work presented in Chen et al. (2020) introduces an algorithm SLIDE which
samples neurons at each layer, ensuring a sparse feed-forward propagation. SLIDE addresses this
challenge by leveraging recent advancements in Maximum inner product search (MIPS) using
asymmetric Locality-sensitive hashing (LSH) Shrivastava & Li (2014). The SLIDE algorithm Chen
et al. (2020) introduces three parameters (K, L, B), where L denotes the number of hash tables and
K determines the number of hashcodes used for each hash table to select the bucket. B denotes
the input batch size. By utilizing a Locality-Sensitive Hashing algorithm parameterized by K and
L, along with MIPS hashing proposed by Shrivastava and Li in 2014 Shrivastava & Li (2014), a
candidate set S can be generated, where |S| < 8. This approach incurs a one-time linear cost to
preprocess the input set of vectors into hash tables. Subsequent adaptive sampling for a query
requires only a minimal number of hash lookups without the additional overhead of updating the
hashtable weights, as the count sketches are fixed. The hash tables HT are generated for the count
sketch matrices R*), and given a query which represents the node representations in the sketch
space at layer [, activations are computed only for these active neurons in layer [ + 1 given by set
S. While LSH offers sublinear guarantees for approximate near-neighbour search, its query time
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Table 1: Comparison of node representations
between the PGCN method and the Taylor series
approximation of the GCN update rule.

Dataset | Method | () Layer 1 ¢® Layer 2
Cora PGCN 0.7612 0.9096
Cora Taylor 0.8487 1.1447

Citeseer | PGCN 0.81 1.1760

Citeseer | Taylor 0.9959 1.3237

Figure 1: A t-SNE plot of the computed
feature representations of the pre-trained
PGCN at the first layer on the Cora dataset.
Node colours denote classes.

efficiency is theoretically known to be inefficient due to the use of random hash functions. The core
concept of employing LSH for adaptive sampling of neurons is elucidated in Chen et al. (2020).
The paper discusses three strategies for sampling active neurons: 1) Vanilla sampling, 2) Top-k
sampling, and 3) Hard thresholding.

Theorem 1 Let P be the set of all orthogonal projection matrices of rank cy < n. The optimal
projection matrix QQ € P for the update rule

XD = Q0 ("2 + [7)4xa,)O

is identified as the POD projection matrix, which is expressed as Q = p* p (See proof in Appendix
A).

Error bound on the node representations at each layer [.

Lemma2 Let X and X1 represent the actual and approximate node representations for the
PGNN method with the linearized GNN architecture at a layer |. Following the update rule X !+1) =

(+1) _ % (1)
CXWOW, the normalized error e+ = B X | at layer I + 1 caused by the PGNN

e
method is given by,
0 < [lo -]+ < eullo® ]+ 7

where T = ||(I — P)[Z]nxdg, || and the equivalent convolution matrix for the PGNN method
Ceq = PC, P = pTp. (See proof in Appendix A).

Theorem 1 suggests that the POD method offers an optimal projection matrix for the Linearized
GNN update rule. Lemma 2 indicates the quality of approximations made by the PGNN method
depends on the equivalence of matrices C' and C,,. The qualitative assessment of the learned fea-
ture representations can be conducted by visualizing the t-SNE transformed features from the first
layer of a pre-trained PGCN model on the Cora dataset (Figure 1). The visualization reveals dis-
tinct clusters in the 2D projected space. These clusters align with the seven labels of the dataset,
demonstrating the model’s ability to distinguish between the seven topic classes in Cora effectively.
Appendix D.1 is dedicated to empirical validation, wherein a series of experiments are conducted to
ascertain the congruence of the convolution matrices for the Cora dataset.

4 RELATED WORK

The scalability of GNNs has been predominantly addressed through mini-batching strategies, which,
despite mitigating memory bottlenecks, often fail to reduce epoch training time. Recent work in
graph compression, such as Graph Coarsening Loukas (2018) and dataset condensation Zhao et al.
(2021), aims for sublinear training times by condensing the graph, thus reducing node and edge
counts Huang et al. (2021), Jin et al. (2022). These methods, however, face significant challenges:
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the preprocessing overheads often exceed O(n), reducing practical benefits, and the efficacy of the
trained model varies with the GNN architecture used Jin et al. (2022), Ding et al. (2022). Scalable
GNN approaches fall into several categories: (A) full-graph training, which is memory and time-
intensive; (B) sampling-based methods like GraphSAGE Hamilton et al. (2018), FastGCN Chen
et al. (2018b), and GraphSAINT Zeng et al. (2020), which employ various sampling strategies to
reduce computational load; (C) historical-embedding methods, such as GNNAutoScale Fey et al.
(2021) and VQ-GNN Ding et al. (2021), which store embeddings but incur high memory costs; (D)
linearized GNNs Bojchevski et al. (2020), Wu et al. (2019), Frasca et al. (2020), which offer compu-
tational efficiency at the risk of oversimplification; (E) methods using random spanning trees Bonchi
et al. (2024), which reduce computational load by transforming graphs into sparse path graphs; and
(F) sketch-based methods like Sketch-GNN Ding et al. (2022), which approximate non-linear ac-
tivations but struggle with error accumulation and high computational demands. Each approach
presents trade-offs in terms of computational complexity and model expressiveness, addressing dif-
ferent constraints in GNN applications.

5 EXPERIMENTS.

In this section, we evaluate the proposed PGNN algorithm against existing graph compression tech-
niques, including the Graph Coarsening approach (Coarsening Cai et al. (2021)) and the dataset
condensation approach (GCond Jin et al. (2022)), both of which benefit from sublinear training
time. Additionally, we compare PGNN with other sampling-based methods such as GraphSAINT
Zeng et al. (2020), VQ-GNN Ding et al. (2021), and Sketch-GNN Ding et al. (2022). The perfor-
mance of the PGNN framework is compared to these methods, with detailed experimental results
provided in section 5. The graph datasets used for evaluation include C'ora, Cliteseer, Pubmed,
ogbn — arziv, Reddit, and ogbn — products. Furthermore, we present several ablation studies to
analyse our method’s effectiveness further. The PGNN update rules for various GNN architectures
discussed in this section are detailed in Appendix B.

(1) Evaluating the Quality of Node Representations at each Layer. In Table 1, we compare the
representations obtained without sketching (using the Taylor series) and with sketching, using the
PGNN method, with the GCN architecture and it can be seen that error at the individual layers for the
PGCN method is less when compared to the Taylor series method. The Taylor series approximation
of the node representations and the node representations obtained from the PGCN method is utilized
|x®-% 0|

to compute e (
P X0,

) . For the first layer, we have:

x@ = (T(CX(O)@(O)).

The Taylor series approximations of the node representations at layer one and i—th col-
umn are given by o(CX©@ (0O + AQ)).; = CX©OO (. i) + CX©DAO(:,i). The ap-
proximate node representations in the graph dimension m by the PGCN method is X() =
[Po (PCXOOO (I~ P)al, . 0,) + (I~ Pl 0, }

(2) Comparing performance improvements obtained when using jumping knowledge net-
works. As the depth of GNNs increases, there is a tendency for the node representations to converge
to a standard value, a phenomenon called “over-smoothing” Li et al. (2018). A widely adopted miti-
gation approach in the literature is to bypass intermediate layers and directly contribute to the future
layers by combining the Jumping Knowledge framework with models like GCN and GraphSAGE.
Jumping Knowledge framework (Xu et al. (2018), Sun et al. (2024)) discusses various neighbour-
hood aggregation techniques and architecture changes, which help in finding better node represen-
tations and discuss theoretical guarantees about the general performance. In PGNN, as the depth of
the GNN s increases, there is an accumulation of error, as shown for the linearized GNN in Lemma 2
affecting the downstream task. We use the skip-connections in the Jumping Knowledge framework
as shown in Figure 5 while presenting the classification loss for the convergence aspect in Figure
4. Empirically, we find that the loss in accuracy due to depth for the Cora dataset was compensated
by introducing skip connections as described in the Jumping Knowledge architecture in Figure 5.
In the final layer of our model, we employed a layer aggregation technique. The layer aggregation
process utilizes the formula

= (2000, 0, 1D, 1), O € RS X50

)
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Figure 4: Classification loss when using Figure 5: Jumping Knowledge network ar-
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GNN on the Cora dataset.

to effectively combine the information from the various layers. 7n.;,sses denotes the number of
output categories specific to the dataset. desr = d1 + d2 + ds.

5.1 PROOF OF CONCEPT EXPERIMENTS

This section presents the experimental results of the PGNN framework, showcasing its performance
on multiple datasets and its comparison with existing graph compression algorithms and sketch-
GNN. The two-layer GNN setup of PGNN, with 128 hidden channels each, is evaluated using the
update rule in equation 4 and the low-rank matrix decomposition Ye et al. (2016) of the matrix p.
The evaluation, conducted on benchmark graph datasets, emphasizes classification accuracy. The
efficiency of PGNN is compared with algorithms like Gcond Jin et al. (2022) and Graph Coarsening
Cai et al. (2021). Detailed comparisons of node classification accuracies and sketch ratios across
datasets provide insights into PGNN’s efficiency in memory utilization and computational resources.
Figures 2 and 3 highlight the sublinear memory complexity and training time complexities of PGNN,
respectively, demonstrating its scalability and practical applicability. The results underscore the
effectiveness and computational efficiency of the PGNN framework in graph-based learning tasks.

5.2 PERFORMANCE OF PGNN

We compare the PGNN framework’s performance with Sketch-GNN and other sublinear training
methods like graph coarsening Cai et al. (2021) and graph condensation Jin et al. (2022). The results,
presented in Tables 2, 3 and 4, show that PGNN outperforms these methods, closely matching full-
graph training performance on the Cora and Citeseer datasets with lower sketch ratios. GCond,
while effective, has scalability issues and longer processing times, as seen with the Reddit dataset.
When comparing PGNN across GNN architectures (SGC, GAT, and GraphSAGE) for the Cora
and Citeseer datasets, we observe an accuracy loss, which is the same for the Pubmed, ogbn-arxiv
and Reddit dataset (Tables 5, 6 and 4). In Table 6, we observe that PGNN, when applied to the
ogbn-arxiv dataset, gave a 5% accuracy drop when using GraphSAGE on the full-graph and for the
Reddit dataset a 0.9% accuracy drop with the sketch-GNN framework. There is however only an
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accuracy drop of approximately 1% when using SGC on ogbn-arxiv (Table 2). We can observe that
the training time per epoch for the Reddit dataset when using PSGC is less when compared to SGC
method (Figure 3), which has a relative training time less than GCN, GraphSAGE and GAT Wu et al.
(2019). With a low sketch ratio, PGNN maintains high classification accuracy, even outperforming
SGC “Full-graph” on the Pubmed dataset (Table 2). As the graph size increases, the required sketch
ratio to maintain full graph classification accuracy decreases. An important implementation aspect is
the use of tensor sketch Pham & Pagh (2013) in the sketch-GNN framework, which has limitations
with sparse tensors and less expressive power for non-linear activations. We address the propagation
of error in deep GNNs and show that using the Jumping Knowledge framework Xu et al. (2018) on
PGNN compensates for accuracy loss and ensures faster convergence.

5.3 EFFICIENCY OF PGNN

The comparative analysis reveals PGNN’s efficiency through its notably reduced sketch ratio com-
pared to established sketch-based methods like sketch-GNN, as evidenced in Table 2. For example,
when examining the Reddit dataset with GCN architecture, while sketch-GNN required a sketch
ratio of 0.3 to achieve a classification accuracy of around 92, PGNN achieved similar accuracy with
a mere 0.05 sketch ratio. Importantly, PGNN eliminates the necessity for updating LSH hash ta-
bles, a process inherent in sketch-GNN. When evaluated against the ogbn-products dataset using
the SGC architecture (refer to Table 2), PGNN experienced only a 1 percentage accuracy reduc-
tion. Moreover, despite PGNN’s preprocessing time not being linear, it remains approximately
one-sixth of the time consumed by graph compression algorithms like Gcond Jin et al. (2022).

Table 3: Performance comparison of the PGCN method on the Cora and Citeseer datasets with
Sketch-GNN Ding et al. (2022), GCond Jin et al. (2022), Coarsening Cai et al. (2021). The sketch
ratio for the PGCN method for Cora and Citeseer is kept at 0.02 and 0.018, while the results for the
remaining methods are for a sketch ratio of 0.026.

Benchmark Cora Citeseer
Sketch-ratio (r = ¢o/n) 0.026 0.018
GNN Model GCN

”Full-Graph” (Oracle) 0.8119 + 0.0023 0.7191 + 0.0018
Coarsening 0.6518 £ 0.0051 0.5908 £ 0.0045
GCond 0.8002 + 0.0075 0.7059 + 0.0087
Sketch-GNN 0.8035 + 0.0071 0.7114 + 0.0059
PGCN 0.8039 -+ 0.0038 0.7197 £ 0.0004

Table 2: Performance comparison of the PSGC and the SGC method with 2 layers. The classifica-
tion accuracies of the SGC method are referenced from Wu et al. (2019) and Ding et al. (2022).

Dataset Nodes | Edges(m) | SXel | poie SGC

(n) ratio (r)
Cora 2,708 10,556 0.02 0.8019+0.0034 | 0.81 £ 0.00
Citeseer 3312 4732 0.018 0.7174 £0.002 | 0.719 % 0.001
Pubmed 10717 | 44,338 0.01 0.7944+0.0013 | 0.789 £ 0.00
ogbn-arxiv 169,343 | 1,166,243 | 0.06 0.6813+0.0017 | 0.6944=L0.0005
Reddit 232,965 | 114,615,892] 0.05 0.9272+0.0006 | 0.9464+£0.0011
ogbn-products | 2,449,029 61,859,140 | 0.001 0.6564 £ 0.00 | 0.6638L£0.0029

Table 5: Performance comparison of the PSGC, PGCN, PSAGE with a sketch ratio » = 0.01
with GCN, GAT, and other standard GNN architectures for the Pubmed dataset.

Method GCN GAT FastGCN GIN SGC PSGC
Pubmed 79.0+04 785+03 77.44+03 T77.0£12 789+0.0 79.44=+0.1

PGCN
77.3£0.1

PSAGE
76.1£0.1
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Table 4: Comparison of PSGC, PGAT, PSAGE method with Gcond Jin et al. (2022) for Cora and
Citeseer.

Dataset Methods SGC GAT SAGE
Cora Gceond (r = 0.026) 76.1 - 76.0

PGNN (r = 0.02) 80.19 + 0.34 77.1+£00 78.42+0.33
Citeseer Gcond 71.6 - 69.2

PGNN (r = 0.018) 71.7 + 0.7 70.2 69.2

Table 6: Performance comparison of PGNN method with Graph-SAINT Zeng et al. (2020), VQ-
GNN Ding et al. (2021), sketch-GNN Ding et al. (2022), Graph Coarsening Cai et al. (2021) and
linearized GNN (SGC Wu et al. (2019)) on Reddit and ogbn-arxiv.

Benchmark ogbn-arxiv Reddit

SGC 0.6944 + 0.0005 0.9464 + 0.0011

GNN Model GCN GraphSAGE GCN GraphSAGE
”Full-Graph” (Oracle) 0.7174 4+ 0.0029 0.7149 + 0.0027 - -
Graph-SAINT 0.7079 + 0.0057 0.6987 = 0.0039 0.9225 + 0.0057 0.9581 + 0.0057
Coarsening 0.6892 £+ 0.0035 0.7048 + 0.0080 - -
VQ-GNN 0.7055 £ 0.0033 0.7028 £ 0.0047 0.9399 £ 0.0021 0.9449 + 0.0024
Sketch Ratio (r = ¢/n) r=04 r=0.3

Sketch-GNN 0.7028 + 0.0087 0.7048 = 0.0080 0.9280 + 0.0034 0.9485 £ 0.0061
PGNN r =0.06 r =0.05

0.6785 £ 0.0020 0.66 £ 0.0050 0.9271 £ 0.0006 0.9302 + 0.0014

6 CONCLUSION

In conclusion, we present PGNN, a novel sketch-based framework for addressing graph-based learn-
ing tasks. Through proof-of-concept experiments and comparative analyses, we have demonstrated
PGNN’s capability to achieve competitive classification accuracies with significantly reduced sketch
ratios compared to established sketch-based methods. Furthermore, the sublinear memory complex-
ity and running time of PGNN underscore its scalability and practical applicability in efficiently
managing large-scale graph data. The results presented in this work offer valuable insights into
the potential of PGNN to streamline graph-based learning processes, mitigating challenges posed
by memory limitations and computational resources. Future research directions include adapting
the PGNN framework to streaming graph scenarios and developing efficient techniques for creating
synthetic bases for sketch matrices in graph learning.
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