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Figure 1: Visualization of ControlVAR for (a) joint control-image generation, (b) joint control-image
completion, (c) control-to-image generation, and (d) image-to-control prediction (visual perception
tasks). The yellow boxes denote the predicted images/controls.

ABSTRACT

Conditional visual generation has witnessed remarkable progress with the advent
of diffusion models (DMs), especially in tasks like control-to-image generation.
However, challenges such as expensive computational cost, high inference latency,
and difficulties of integration with large language models (LLMs) have necessi-
tated exploring alternatives to DMs. This paper introduces ControlVAR, a novel
framework that explores pixel-level controls in visual autoregressive (VAR) mod-
eling for flexible and efficient conditional generation. In contrast to traditional
conditional models that learn the conditional distribution, ControlVAR jointly
models the distribution of image and pixel-level conditions during training and
imposes conditional controls during testing. To enhance the joint modeling, we
adopt the next-scale AR prediction paradigm and unify control and image repre-
sentations. A teacher-forcing guidance strategy is proposed to further facilitate
controllable generation with joint modeling. Extensive experiments demonstrate
the superior efficacy and flexibility of ControlVAR across various conditional gen-
eration tasks against popular conditional DMs, e.g., ControlNet and T2I-Adaptor.

1 INTRODUCTION

In recent years, conditional image generation Zhang et al. (2023); Mou et al. (2023); Esser et al.
(2021); Tian et al. (2024); Nam et al. (2024) has attracted great attention and there have been sig-
nificant advancements in text-to-image generation Rombach et al. (2021); Chang et al. (2023); Gal
et al. (2022), image-to-image generation Zhang et al. (2023); Mou et al. (2023); Ruiz et al. (2023),
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⋯

(a) Pixel-conditioned next-token prediction (b) Controllable next-scale prediction

Teacher Forcing

⋯ ⋯

Figure 2: In contrast to previous methods Esser et al. (2021); Zhan et al. (2022) that leverage pre-
fix conditional tokens to impose controls, ControlVAR jointly models the pixel-level controls and
image during training and conducts the conditional generation tasks during testing with the teacher
forcing. Class and type tokens provide semantic and control type (mask, canny, depth and normal)
information respectively.

and even more complex tasks Nam et al. (2024); Li et al. (2023b; 2024). Most recent approaches,
e.g., ControlNet Zhang et al. (2023), leverage the powerful diffusion models (DMs) Rombach et al.
(2021); Peebles & Xie (2023) to model the large-scale image distribution and incorporate addi-
tional controls with classifier-free guidance Ho & Salimans (2022). However, the inherent nature
of the diffusion process imposes many challenges for the diffusion-based visual generation: (1) the
computational cost and inference time are significant due to the iterative diffusion steps Song et al.
(2020a); Ho et al. (2020) and (2) the incorporation in mainstream intelligent systems, i.e., large
language models (LLMs) Touvron et al. (2023); Achiam et al. (2023), is intricate due to the repre-
sentation difference. This motivates the community to find a replacement for DMs for high-quality
and efficient visual generation in the era of LLMs.

Inspired by the success of autoregressive (AR) language modeling Touvron et al. (2023); Achiam
et al. (2023), AR visual modeling Esser et al. (2021); Tian et al. (2024) has been investigated as
a counterpart to DMs given its strong scalability and generalizability Tian et al. (2024); Bai et al.
(2023). Several inspiring works, e.g., VQGAN Esser et al. (2021), DALL-E Ramesh et al. (2021a)
and VAR Tian et al. (2024), have demonstrated promising image generation results with AR mod-
eling. Nevertheless, compared to the prosperity of conditional DMs Zhang et al. (2023); Mou et al.
(2023); Chen et al. (2022); Xu et al. (2023); Qin et al. (2023); Ju et al. (2023), visual generation
with conditional AR modeling Zhan et al. (2022); Esser et al. (2021) remains significantly under-
explored. Different from DMs, where all the pixels are modeled simultaneously, AR models are
characterized by modeling sequential values based on their corresponding previous ones. This AR
approach naturally leads to a conditional model, providing potential flexibility when incorporating
additional controls. To leverage this property, teacher forcing is a popular approach that controls AR
prediction by replacing partially predicted tokens with ground truth ones Esser et al. (2021). Thanks
to this nature of AR modeling, we found that highly flexible conditional generation can be achieved
by teacher forcing partial AR sequence with proper model designs.

In this paper, we explore the Controllable Visual AutoregRessive modeling with both token-level
and pixel-level conditions. A new conditional AR paradigm, ControlVAR is introduced, which per-
mits a highly flexible conditional image generation by embracing the next-scale prediction of joint
control and image (Fig. 2(b)). Previous wisdom Zhan et al. (2022); Esser et al. (2021) typically uti-
lizes prefix conditions (Fig. 2(a)) and mainly model images from raw pixel space in an AR manner.
Differently, we notice that if we jointly model the control and image, the learned joint prediction
can be easily guided by teacher forcing during inference. On the one hand, we unify the control and
image representations and reformulate the sequential variables for the AR process to enable effective
joint modeling. On the other hand, by analyzing the modeled probabilities, we introduce an effective
sampling strategy, named teacher forcing guidance (TFG) to facilitate conditional sampling. Re-
markably, a single ControlVAR model trained via TFG is capable of multiple meaningful tasks with
different input-output combinations between control and image: (a) joint control-image generation,
(b) control/image completion, (c) control-to-image generation, (d) image-to-control generation, as
demonstrated in Fig. 1. Beyond the image-control tasks that are jointly modeled during training,
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we observe that ControlVAR also emerges capabilities for unseen tasks, e.g., control-to-control gen-
eration, further enhancing its flexibility and versatility. Our contribution can be summarized in
three-fold:

• We present ControlVAR, a novel framework for controllable autoregressive image genera-
tion with strong flexibility for heterogeneous conditional generation tasks.

• We unify the image and control representations and reformulate the conditional generation
process to jointly model the image and control during training. To perform conditional
generation during inference, we introduce teacher-forcing guidance (TFG) that enables
controllable sampling.

• We conduct comprehensive experiments to investigate the impacts of each component of
ControlVAR and demonstrate that ControlVAR outperforms powerful DMs methods, e.g.,
ControlNet and T2I-Adapter on controlled image generation across several pixel-level con-
trols, i.e., mask, canny, depth and normal.

2 RELATED WORKS

2.1 DIFFUSION-BASED IMAGE GENERATION

The evolution of diffusion models, initially introduced by Sohl-Dickstein et al. Sohl-Dickstein et al.
(2015) and later expanded into image generation using fixed Gaussian noise diffusion processes Ho
et al. (2020); Song et al. (2020b), has witnessed significant advancements driven by various research
efforts. Nichol et al. Nichol & Dhariwal (2021) and Dhariwal et al. Dhariwal & Nichol (2021)
proposed techniques to enhance the effectiveness and efficiency of diffusion models, paving the
way for improved image generation capabilities. Notably, the paradigm shift towards modeling the
diffusion process in the latent space of pre-trained image encoders as a strong prior Van Den Oord
et al. (2017); Esser et al. (2021) rather than raw pixels spaces Vahdat et al. (2021); Rombach et al.
(2022); Peebles & Xie (2023) has been instrumental in achieving high-quality image generation
with reasonable inference speed. This approach has led to the development of foundational diffusion
models such as Glide Nichol et al. (2021), Cogview Ding et al. (2021; 2022); Zheng et al. (2024),
Make-a-scene Gafni et al. (2022b), Imagen Saharia et al. (2022), DALL.E Ramesh et al. (2021b),
Stable Diffusion Stability AI (2022), MidJourney MidJourney Inc. (2022), SORA OpenAI (2024),
among others, which are often pre-trained on large-scale data with conditions, typically text Gordon
et al. (2023); Webster et al. (2023); Elazar et al. (2023); Chen et al. (2024). Recent advancements
include consistency models derived from diffusion models Song et al. (2023); Song & Dhariwal
(2023); Luo et al. (2023), enabling generation with reduced inference steps. These foundational
diffusion models have not only opened doors to novel downstream applications like Text inversion
Gal et al. (2022), DreamBooth Ruiz et al. (2023), T2I-Adapter Mou et al. (2023), ControlNet Zhang
et al. (2023), but also inspired a plethora of research in controllable generation Meng et al. (2021);
Brooks et al. (2023); Huang et al. (2023d); Tumanyan et al. (2023); Voynov et al. (2023); Huang
et al. (2024; 2023a); Bashkirova et al. (2023); Bar-Tal et al. (2023); Li et al. (2023c); Qi et al. (2023);
Zhan et al. (2022) and other innovative areas.

2.2 AUTOREGRESSIVE IMAGE GENERATION.

Unlike diffusion-based models that typically leverage continuous image representation, autoregres-
sive models Huang et al. (2023c); Esser et al. (2021); Van den Oord et al. (2016); Tian et al. (2024)
leverage discrete image tokens. An image tokenizer Esser et al. (2021); Yu et al. (2023; 2024);
Huang et al. (2023b); Ge et al. (2023) is utilized to encode the image into a sequence of discrete to-
kens. VQGAN Esser et al. (2021) first patches the image and then employs a vector-quantization ap-
proach to discretize the image features. Following this paradigm, a series of following-up works im-
prove the image tokenization by using more powerful quantization operations Huang et al. (2023c);
Lee et al. (2022); Yu et al. (2023), reformulating the image representation Tian et al. (2024); Tschan-
nen et al. (2023) and modifying the network architecture Yu et al. (2021); Razavi et al. (2019). With
the discrete tokens, a transformer structure Radford et al. (2019) is leveraged to model the image
token sequences. RQ-GAN Lee et al. (2022) improves the modeling by incorporating a hierarchy
design and MQ-VAE Huang et al. (2023c) further utilizes StackTransformer to enhance the spatial
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focus. MUSE Chang et al. (2023) is a large-scale pre-trained text-to-image model where a low-
resolution image is first generated followed by a super-resolution transformer to refine the image.
Recently, VAR Tian et al. (2024) introduced a new next-scale autoregressive prediction paradigm
where the image representation is shifted from patch to scales. The new representation is featured
with the maintenance of spatial locality and much lower computational cost. In this paper, we follow
the next-scale autoregressive paradigm and explore the incorporation of additional controls into the
modeling process.

2.3 CONDITIONAL IMAGE GENERATION

Though significant progress has been made in generating highly realistic images from textual de-
scriptions, describing every intricate detail of an image solely through text poses challenges. To
overcome this limitation, researchers have explored alternative approaches using various additional
inputs to effectively control image and video diffusion models. These inputs encompass bounding
boxes Li et al. (2023c); Yang et al. (2023), reference object images Ruiz et al. (2023); Li et al.
(2023a), segmentation maps Gafni et al. (2022a); Avrahami et al. (2023); Zhang et al. (2023),
sketches Zhang et al. (2023), and combinations thereof Kim et al. (2023); Qin et al. (2023); Zhao
et al. (2024); Wang et al. (2024); Mizrahi et al. (2024); Nam et al. (2024); Zhou et al. (2023).
However, fine-tuning the vast array of parameters in these diffusion models can be computationally
intensive. To address this, methods like ControlNet Zhang et al. (2023) have emerged, enabling
conditional control through parameter-efficient training strategies Zhang et al. (2023); Ryu (2022);
Mou et al. (2023). Notably, X-Adapter Ran et al. (2024) innovatively learns an adapter module to
adapt ControlNets pre-trained on smaller image diffusion models (e.g., SDv1.5) for larger models
(e.g., SDXL). SparseCtrl Guo et al. (2023) takes a different approach, guiding video diffusion mod-
els with sparse conditional inputs, such as few frames instead of full frames, to mitigate the data
collection costs associated with video conditions. However, the implementation of SparseCtrl ne-
cessitates training a new variant of ControlNet from scratch, as it involves augmenting ControlNet
with an additional channel for frame masks. Beyond traditional conditional image generation, the
in-context learning capability of conditional models has also been explored Safaee et al. (2023);
Mizrahi et al. (2024); Bai et al. (2023); Zhang et al. (2024). LVM Bai et al. (2023) investigates the
scaling learning capability of a large vision model without any linguistic data. 4M Mizrahi et al.
(2024) investigate the large-scale visual generation with multimodal data using masked image mod-
eling. Different from previous works which are mainly focusing on diffusion models, we aim to
explore adding additional control to the autoregressive visual generation process.

3 CONTROLVAR

ControlVAR is an autoregressive Transformer Vaswani et al. (2017) framework for conditional im-
age generation tasks, using the following as conditions: image I ∈ R3×H×W , pixel-level control
C ∈ R3×H×W and token-level control c ∈ RD where H,W and D denotes the image size and
dimension of control token respectively. We denote the set of N different types of controls as
C = {Cn}n∈[N ].

Problem formulation. Prior conditional approaches Zhang et al. (2023); Tian et al. (2024) have
often utilized distinct models for individual control type C, learning a conditional distribution in
the form of p(I|C, c), where each image I is encoded as a sequence of discrete tokens of length
T , denoted as (x1, x2, . . . , xT ). By employing autoregressive (AR) modeling, we can rewrite the
conditional probability p(I|C, c) as

p(I|C, c) = p(x1, x2, . . . , xT |C, c) =
T∏

t=1

p(xt|x<t, C, c) (1)

where each image token xt is conditioned on previous ones x<t at position t and prefix controls
C, c.

In this paper, we consider N different controls and reformulate the conditional AR generation to
model the joint distribution p(I, C|c) during training. Specifically, we uniformly sample one control
C ∈ C at each training iteration and leverage an additional type token ct to convey the control type
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Training Testing
[CLS] [TYP]: Start tokens

(a) Joint modeling of control and image

Start 
Tokens

𝑦! 𝑥! 𝑦" 𝑥"

𝑦!

𝑥!

𝑦"

𝑥"

Scale 1

Scale 2

Attention Mask

(c) Teaching force image (understanding)(b) Teaching force control (generation)

Figure 4: Illustration of ControlVAR. We jointly model the control and image during training with
start tokens [CLS] and [TYP] to specify the semantics and control type. We conduct conditional
generation by teacher forcing the AR prediction during testing.

information. Assuming the control tokens are of the same length as the image (which we will show
in the next section), we represent it as a sequence of discrete tokens C = (y1, y2, . . . , yT ). To jointly
model the image and control while not losing the autoregressive properties, we group the image and
control tokens as rt = (xt, yt) and model the joint distribution as:

p(I, C|c, ct) = p ((x1, y1), (x2, y2), . . . , (xT , yT )|c, ct) =
T∏

t=1

p(rt|r<t, c, ct). (2)

For inference, we introduce an innovative approach inspired by teacher forcing, which replaces the
predicted token with the ground truth to perform conditional generation tasks. We will discuss
the representation of rt in Sec. 3.1, joint control-image AR modeling in Sec. 3.2, and conditional
generation during inference in Sec. 3.3.

3.1 UNIFIED IMAGE AND CONTROL REPRESENTATION.

Images are generally represented in RGB, which is different from how pixel-level controls (e.g.,
mask, canny, and depth) are represented. Although using the original representation of respective
controls may be beneficial for information preservation, doing so would lead to a larger vocabulary
size of the predicted tokens thus hindering effective AR modeling. To this end, we aim to represent
the controls with the same RGB representation of images.

Control representation. We consider four popular control types - entity mask,
canny, depth, and normal in this paper. We notice that canny, depth, and nor-
mal can be easily converted to RGB by using simple transformations Zhang et al.
(2023). However, entity segmentation masks M ∈ {0, 1}N×H×W which com-
prises N class-agnostic binary masks (Fig. 3(b)) cannot be easily converted.

(b) Entity Masks (c) Colormap(a) Image

Position-aware Colorization 

Figure 3: Illustration of colormap representation.

Inspired by SOLO Wang et al. (2020), we
leverage a position-aware color map to en-
code the binary masks M into a colormap
M ′ ∈ [0, 255]3×H×W . To better distinguish
the color difference, we select 5 candidate
values {0, 64, 128, 192, 255} from each RGB
channel and combine them to 124 = 53 − 1
colors ((0, 0, 0) is preserved for background).
To apply the colormap, as shown in Fig. 3, we
divide the image into nh × nw regions where
each region represents a corresponding color.
We calculate the centeredness of each mask and
apply the colors to masks based on their cen-
teredness locations. Therein, we can convert the entity masks to a RGB colormap.

Tokenization. As the control and image share the same RGB representation, we can utilize the
same approach to tokenize them. To represent an RGB image as a sequence of discrete tokens
(x1, x2, . . . , xT ), patch-level Esser et al. (2021) and scale-level Tian et al. (2024) representations
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(a) Image quality with different output control types.

(b) Image quality with different guidance scales.

Figure 5: Joint control-image generation with (a) different output control types, (b) guidance scales.

have been explored. The patch-level tokenization process splits an image into T patches and repre-
sents each patch as a token xt where xt ∈ [V ]1 is an integer from a vocabulary of size V . Recently,
a scale-level representation has been introduced which decomposes the image into T scales where
each scale is represented by a set of tokens xt ∈ [V ]ht×wt (Fig. 2(b)). ht×wt denotes the size of the
t-th scale. Compared to patch-level representation, scale-level representation can better preserve the
spatial locality and capture global information which are desired for conditional image generation
tasks. This motivates us to adopt the scale-level representation in our approach. Specifically, we
obtain the image tokens and control tokens using the shared tokenizer Φ as

(x1, x2, . . . , xT ) = Φ(I), (y1, y2, . . . , yT ) = Φ(C). (3)

Here, xt ∈ [V ]ht×wt and yt ∈ [V ]ht×wt share the same vocabularies, which makes it easier for joint
control-image AR modeling.

3.2 JOINT CONTROL-IMAGE MODELING

We demonstrate the network details for joint modeling in this section. Following VAR Tian et al.
(2024), we leverage a GPT-2 style Transformer network architecture for our ControlVAR models.
As shown in Fig. 4 (a), we jointly model the control and image in each stage. A flatten operation
is adopted to convert the sequence of 2D features into 1D. Full attention is enabled for both control
and image tokens belonging to the same scale, which allows the model to maintain spatial locality
and to exploit the global context between control and image. A standard cross entropy loss is used
to supervise our autoregressive ControlVAR models.

Specifically, we employ two pre-defined special tokens c = [CLS] ∈ [Ncls]
1 and ct = [TYP] ∈

[Ntyp]
1 as the start tokens. Ncls and Ntpy denote the number of classes and control types respec-

tively. [CLS] token aims to provide semantic context for the generated image. [TYP] token is used
to select the type of pixel-level control to be generated along with the image. Following previous
works Chang et al. (2023); Tian et al. (2024), additional empty tokens are used to replace special to-
kens with a probability of δ during training to apply classifier-free guidance Ho & Salimans (2022).

3.3 SAMPLING WITH TEACHER-FORCING GUIDANCE.

Classifier-free guidance (CFG) Ho & Salimans (2022) was originally introduced to apply and en-
hance the effect of conditional controls on diffusion models without an explicit classifier. Exten-
sive studies Sanchez et al. (2023); Chang et al. (2023); Tian et al. (2024) have demonstrated that
classifier-free guidance also works for AR models.
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(b) Control-to-Image Generation 
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(a) Joint Control-Image Generation

Figure 6: Visualization of (a) joint control-image generation and (b) control-to-image generation.

Here, we analyze how to achieve conditional generation by using the image generation task
p(I|C, c, ct) as an example. Given image I , pixel-level control C and token-level controls c, ct,
CFG Ho & Salimans (2022) leverages Bayesian rule to rewrite the conditional distribution as

p(I|C, c, ct) ∝ p(c|I, C, ct)p(ct|I, C)p(C|I)p(I). (4)

It can be seen that the class c and control type ct are independent. By applying the Bayesian rule
again, we have

p(c|I, C, ct) =
p(I, C|c, ct)p(c, ct)
p(I, C|ct)p(ct)

=
p(I, C|c, ct)p(c)

p(I, C|ct)
. (5)

Given the AR nature of ControlVAR, p(I, C|c, ct) and p(I, C|ct) can be induced by using the pixel-
level condition C to teacher-force ControlVAR during the AR prediction. Similarly, after rewriting
all terms in Eq. (4) to the form in Eq. (5), we derive an approach to sample with both pixel- and
token-level controls for image generation as

x∗ = x(↱∅|∅, ∅) + γcls(x(↱C|c, ct)− x(↱C|∅, ct))
+ γtyp(x(↱C|∅, ct)− x(↱C|∅, ∅))
+ γpix(x(↱C|∅, ∅)− x(↱∅|∅, ∅))

(6)

where γcls, γtyp, γpix are guidance scales for controlling the generation. As shown in Fig. 4 (b), x(↱
C|c, ct) denotes the image tokens obtained by prefix c, ct and teacher forcing with C. ∅ denotes an
empty token that avoids teacher forcing with c, ct and C respectively. After obtaining the predicted
tokens, the image can be decoded by a decoder as

I = Φ−1(x∗
1, x

∗
2, . . . , x

∗
T ). (7)

For the image-to-condition generation (Fig. 4 (c)), y∗ can be obtained similarly by teacher forcing
with I and decoded similarly with the shared decoder Φ−1. Since teacher forcing is leveraged in
the entire sampling process, we term the proposed strategy teacher-forcing guidance (TFG). More
analysis of TFG is available in the Appendix.

4 EXPERIMENT

4.1 EVALUATION SETTINGS

Dataset. We conduct all the experiments on the ImageNet Deng et al. (2009) dataset. To incorpo-
rate pixel-level controls, we leverage state-of-the-art image understanding models to pseudo-label
the images. Specifically, we label entity masks Kirillov et al. (2023), canny Canny (1986), depth
Ranftl et al. (2020) and normal Vasiljevic et al. (2019) for both training and validation sets. This
takes 500 Tesla V100 for about 4 days. We will release the pseudo-labeled datasets to facilitate the
community to further explore conditional image generation.
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(a) Conditional Image Inpainting (b) Control-to-Image Generation

Input Output

Figure 7: Visualization of conditional image inpainting (given pixel-level control and partial image).

Evaluation metrics. We utilize Fréchet Inception Distance (FID) Heusel et al. (2017), Inception
Score (IS) Salimans et al. (2016), Precision, and Recall as metrics for assessing the quality of image
generation. However, for the image-to-control prediction where ground truth is unavailable, we rely
on qualitative visualization to demonstrate the perceptual quality.

Implementation details. We follow VAR Tian et al. (2024) to use a GPT-2 Radford et al. (2019)
style transformer with adaptive normalization Zhang et al. (2018). A transformer layer depth from
12 to 30 is explored. We leverage the pre-trained VAR tokenizer Tian et al. (2024) to tokenize
both image and control. We initialize the model with the weights from VAR Tian et al. (2024)
to shorten the training process. For each depth, we train the model for 30 epochs with an Adam
optimizer. We follow the same learning rate and weight decay as VAR. During training, we sample
each control type uniformly. To apply the classifier-free guidance, we replace class and control type
conditions with empty tokens with 0.1 probability. We train the model with batchsize = 128 for all
the experiments. During inference, we utilize top-k top-p sampling with k = 900 and p = 0.96. We
utilize 256× 256 image size for all experiments. For simplicity, we leverage γcls = γtyp = γpix for
all the experiments.

4.2 PERFORMANCE ANALYSIS

Joint image-control generation. We demonstrate the performance of ControlVAR with different
output control types, model sizes and guidance scales as shown in Fig. 5 (a) and Fig. 5 (b). As
the model size increases, we notice ControlVAR performs better generation capability accordingly.
Among all control types, jointly generating canny and image leads to a slightly inferior performance
compared to other types. We consider the complex pattern of canny may impose difficulty in gen-
erating corresponding images thus leading to the degradation. In addition, we notice the optimum
FID can be achieved with a guidance scale between 2 to 3. Though further increasing the guidance
scale can still improve the IS, it will limit the mode diversity. We demonstrate qualitative visual-
ization of joint generation in Fig. 6 (a) which shows high-quality and aligned image-control pairs.

Depth 16 20 24 30
VAR 3.60 2.95 2.33 1.97

ControlVAR 4.25 3.25 2.69 1.98
Table 1: Image FID compared to VAR.

Furthermore, we compare the image FID with pure
image generation model VAR Tian et al. (2024) in
Tab 1. We notice that ControlVAR shows a slight
performance degradation compared to VAR which
can be due to the difficulty enrolled to incorporate
additional controls. As the model size increases, we notice the performance gap shrinks, indicating
joint modeling of image and control may require more network capacity compared to image-only
modeling.

Conditional image generation. We introduce two baseline methods - ControlNet Zhang et al.
(2023) and T2I-Adapter Mou et al. (2023) to compare the conditional generation capability. We train
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(b) Performance of ControlVAR with different control types.(a) Performance comparison against ControlNet & T2I-Adapter

Figure 8: Quantitative results of conditional image generation.

Control 1.5 2.0 2.5 3.0 3.5 4.0
Guidance Scale

Figure 9: Visualization of images generated with different guidance scales.

both baselines on the same datasets as ours with the Diffuser von Platen et al. (2022) implementation
(for a fair comparison, ImageNet-pretrained LDM Rombach et al. (2021) is used as the base model).
We compare the image generation quality in terms of FID and speed in Fig. 8. We notice that
ControlVAR achieves obvious superior FID compared to baselines. We evaluate the inference speed
with batchsize = 1 on a single H100 GPU. We notice that ControlVAR inference is at least 5
times faster than the compared methods. We further explore the generation capability with different
model sizes as shown in Fig. 8 (b), we notice that the model’s generation capability keeps improving
as the model size increases. Similar to the joint image-control generation, we notice that canny-
conditioned generation shows an inferior performance due to its complex pattern.

Method VQ-GAN IQ-VAE ControlVAR
FID 35.5 29.77 9.72

Table 2: FID comparison on ADE20K.

We further compare ControlVAR with con-
ditional AR models - VQ-GAN Esser et al.
(2021) and IQ-VAE Zhan et al. (2022). We fine-
tune ControlVAR on ADE 20K for 1 epoch and
report the FID of the generated images in Tab 2. ControlVAR demonstrates superior performance
compared to previous AR methods.

Conditional image inpainting. ControlVAR can support more complex image generation tasks
by teacher-forcing with partial image/control. As shown in Fig. 7 (a), we showcase the conditional
image inpainting results where pixel-level control and partial image are given to complete the miss-
ing part of the image. We notice that the contents align well with both the given control and image.

Image-to-control prediction. ControlVAR is also capable of image understanding tasks by
teacher-forcing with images during inference. As shown in Fig. 7 (b), we demonstrate the visualiza-
tion of the generated controls given images. Since the pseudo labels that we use during training and
inference are mediocre in quality, we do not focus on the understanding capability of ControlVAR
in this paper and leave it for future work instead.

4.3 ABLATION EXPERIMENTS

Module effectiveness. We conduct ablation experiments to validate the effectiveness of compo-
nents in ControlVAR. We start with a depth 16 baseline which models the control and image in
different scales without joint modeling. Tab 3 shows the impact of adding each component. We
notice an obvious performance improvement by using joint modeling. Unlike the baseline setting,
joint modeling enables both control and image to interact with each other on the same scale leading
to better pixel-level alignment for the teacher forcing during inference. In addition, with the multi-
control training and teacher forcing guidance, ControlVAR achieves 5.19 and 15.21 FID for joint

9
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ID Method Joint Control-Image Control-to-Image
FID↓ IS↑ FID↓ IS↑

1 Baseline (w/o joint modeling) 12.23 119.65 35.92 42.50
2 + Joint modeling 9.74−2.49 142.08+22.43 17.44−18.48 77.38+34.88

3 + Multi-control training 5.19−4.55 223.10+81.02 16.33−1.11 98.62+21.24

4 + Teacher-forcing guidance - - 15.21−1.12 95.44 +3.18

5 + Guidance scaling 4.35−0.84 253.08+29.98 12.97−2.24 96.42+0.98

6 + Larger model size 2.09−2.26 337.86+84.78 6.57−6.40 173.02+76.6

Table 3: Ablation study on components in ControlVAR. We evaluate the FID and IS on the ImageNet
validation set with masks as the target controls.

control-image and control-to-image generation respectively. During inference, we linearly anneal
the guidance scale using γ · t

T (where t is the iteration number, T is the total AR iterations, and γ
is a constant hyperparameter) which brings another 0.84 and 2.24 FID gains. Lastly, by scaling the
model size to depth 30, we achieve the best results of 2.09 and 6.57 FID.

Teacher forcing guidance. Given the same mask control, we further visualize the images gener-
ated with different guidance scales in Fig. 9. As the guidance scale increases, the generated contents
align more with the given control, indicating that the TFG can effectively enhance the guidance
effect.

Input Output

Figure 10: Mask-to-Canny.

Generalization to unseen tasks. As shown in Fig. 10, we conduct
an unseen task by teacher-forcing a mask in the AR prediction and
setting the type token to predict the canny. We notice ControlVAR can
successfully generate aligned results. We optimize ControlVAR with
the joint distribution between the image and controls

∑
n p(I, Cn)

during training which can be assumed as an alternating optimization
of p(I, {Cn}). We consider this to explain the observed zero-shot
capability with unseen control-to-control tasks. More visualizations
are available in the Appendix.

5 CONCLUSION

In this paper, we present ControlVAR, an autoregressive (AR) approach for conditional generation.
Unlike traditional conditional generation models that leverage prefix pixel-level controls, e.g., mask,
canny, normal, and depth, ControlVAR jointly models image and control conditions during train-
ing and enables flexible conditional generation during testing by teacher forcing. Inspired by the
classifier-free guidance, we introduce a teacher-forcing guidance strategy to facilitate controllable
sampling. Comprehensive and systematic experiments are conducted to demonstrate the effective-
ness and characteristics of ControlVAR, showcasing its superiority over powerful DMs in handling
multiple conditions for diverse conditional generation tasks.

Limitations. In spite of ControlVAR’s high performance on image generation with heterogeneous
pixel-level controls, it does not support text prompts and therefore cannot be directly leveraged with
natural language guidance. Developing text-guided capability can be achieved by replacing the class
token with the language token, e.g., CLIP token Radford et al. (2021), which is left as our future
focus.
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Image Mask Canny Depth Normal Image Mask Canny Depth Normal

Figure A: Example of image and corresponding controls in the pseudo-labeled dataset.

A DATASET CREATION

Type Mask Canny Depth Normal
# Sample 1277548 1277653 1277636 1277639

Table A: Statistics of the generated dataset.

We conduct all the experiments on
the ImageNet Deng et al. (2009)
dataset. To incorporate pixel-level
controls, we leverage state-of-the-art
image understanding models to pseudo-label the images. Specifically, we label entity masks Kir-
illov et al. (2023), canny Canny (1986), depth Ranftl et al. (2020) and normal Vasiljevic et al. (2019)
for both training and validation sets. This takes 500 Tesla V100 for about 4 days. We demonstrate
the label number after filtering in Tab A. In addition, we also manually check the quality of the
pseudo labels. We show a visualization of the generated datasets in Fig. A. We notice that image
understanding models predict reasonable results on ImageNet images.

B DISCUSSION OF THE TEACHER FORCING GUIDANCE

Inspired by the classifier-free guidance Ho & Salimans (2022) from diffusion models, we empirically
find a similar form of guidance that can be used for autoregressive sample conditional images based
on teacher forcing. In this section, we aim to analyze the spirit of classifier-free guidance (CFG) and
analogy it to our teacher-forcing guidance (TFG).

B.1 CLASSIFIER-FREE GUIDANCE

For the image generation task p(I|C, c, ct), given image I , pixel-level control C and token-level
controls cc, ct, CFG leverages Bayesian rule to rewrite the conditional distribution as

p(I|C, c, ct) =
p(c|I, C, ct)p(ct|I, C)p(C|I)p(I)

p(C, c, ct)

=⇒ log p(I|C, c, ct) = log p(c|I, C, ct) + log p(ct|I, C) + log p(C|I) + log p(I)− log p(C, c, ct)

=⇒ ∇I log p(I|C, c, ct) = ∇I log p(c|I, C, ct) +∇I log p(ct|I, C) +∇I log p(C|I) +∇I log p(I)

By applying the Bayesian rule again, we have

p(c|I, C, ct) =
p(I|c, ct, C)p(c, ct, C)

p(I|ct, C)p(ct, C)

=⇒ ∇I log p(c|I, C, ct) = ∇I log p(I|c, ct, C)−∇I log p(I|ct, C).

Similarly, by applying the Bayesian rule to all terms, we have

∇I log p(I|c, ct, C) =∇I log p(I)

+∇I log p(I|c, ct, C)−∇I log p(I|ct, C)

+∇I log p(I|ct, C)−∇I log p(I|C)

+∇I log p(I|C)−∇I log p(I)
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In the diffusion models, ∇I log p(I|∗) is represented by the logits outputted by the diffusion-UNet.
In this way, during inference, the classifier-free guidance can be calculated as

x∗ =x(∅, ∅, ∅)
+γc(x(c, ct, C)− x(∅, ct, C))

+γct(x(∅, ct, C)− x(∅, ∅, C))

+γC(x(∅, ∅, C)− x(∅, ∅, ∅))
where γC , γc, γct are the guidance scales that are used to adjust the amplitude to apply the condi-
tional guidance. ∅ denotes leveraging a special empty token to replace the original token to disable
the additional conditional information Ho & Salimans (2022).

B.2 TEACHER FORCING GUIDANCE

Classifier-free guidance has been proven to be effective in AR models Chang et al. (2023); Tian et al.
(2024) which take the same form as diffusion models as

p(I|C, c, ct) ∝ p(c|I, C, ct)p(ct|I, C)p(C|I)p(I).
In ControlVAR, we model the joint distribution of the controls and images. Therefore, we leverage
a different extension of the probabilities as

p(c|I, C, ct) =
p(I, C|c, ct)p(c, ct)
p(I, C|ct)p(ct)

=
p(I, C|c, ct)p(c)

p(I, C|ct)
where p(I, C|c, ct) and p(I, C|c, ct) can be found from the output of ControlVAR. We follow pre-
vious works Tian et al. (2024); Esser et al. (2021) to ignore the constant probabilities p(c). By
rewriting all terms with Baysian rule, we have

log p(I|C, c, ct) ∝ log p(I)

+ log p(I, C|c, ct)− log p(I, C|ct)
+ log p(I, C|ct)− log p(I, C)

+ log p(I, C)− log p(I).

This corresponds to the image logits as discussed in the Eq. (6)

x∗ = x(↱∅|∅, ∅) + γcls(x(↱C|c, ct)− x(↱C|∅, ct))
+ γtyp(x(↱C|∅, ct)− x(↱C|∅, ∅))
+ γpix(x(↱C|∅, ∅)− x(↱∅|∅, ∅))

(8)

where γcls, γtyp, γpix are guidance scales for controlling the generation.

C FULL RESULTS OF PERFORMANCE ANALYSIS

C.1 DETAILS OF EVALUATION METRICS

Fréchet Inception Distance (FID) Heusel et al. (2017). FID measures the distance between real
and generated images in the feature space of an ImageNet-1K pre-trained classifier Szegedy et al.
(2016), indicating the similarity and fidelity of the generated images to real images.

Inception Score (IS) Salimans et al. (2016). IS also measures the fidelity and diversity of generated
images. It consists of two parts: the first part measures whether each image belongs confidently to
a single class of an ImageNet-1K pre-trained image classifier Szegedy et al. (2016) and the second
part measures how well the generated images capture diverse classes.

Precision and Recall Kynkäänniemi et al. (2019). The real and generated images are first converted
to non-parametric representations of the manifolds using k-nearest neighbors, on which the Precision
and Recall can be computed. Precision is the probability that a randomly generated image from
estimated generated data manifolds falls within the support of the manifolds of estimated real data
distribution. Recall is the probability that a random real image falls within the support of generated
data manifolds. Thus, precision measures the general quality and fidelity of the generated images,
and recall measures the coverage and diversity of the generated images.
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(b) Canny-conditioned Image Generation

(c) Depth-conditioned Image Generation

(d) Normal-conditioned Image Generation

(a) Mask-conditioned Image Generation

Figure B: Performance of joint image-control generation for different control types. The perfor-
mance is evaluated on the ImageNet validation set with our created pseudo labels.

C.2 JOINT CONTROL-IMAGE GENERATION

We demonstrate more detailed results for each control type for joint control-image generation in
Fig. B. As the model size increases, ControlVAR demonstrates better performance. The control
generated along with the image shows a minor impact on the image quality.

C.3 CONTROL-TO-IMAGE GENERATION

We demonstrate more results when comparing with baseline models - ControlNet and T2I-Adapter
in Fig. C and Fig. I. The performance is evaluated on the ImageNet validation set with our created
pseudo labels. We notice that ControlVAR demonstrates a superior performance for different tasks.
Specifically, we notice that ControlNet outperforms ControlVAR for canny-conditioned image gen-
eration. We consider this to be due to the difficulty of handling the joint modeling of the complex
canny and image. In addition, we notice that when the guidance scale increases, ControlNet and T2I-
Adapter demonstrate a superior inception score and an inferior FID, we consider this attributed to
the increasing mode collapse resulting from the larger guidance scale. In contrast, the performance
of ControlVAR is more robust.
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(b) Canny-conditioned Image Generation

(c) Depth-conditioned Image Generation

(d) Normal-conditioned Image Generation

(a) Mask-conditioned Image Generation

Figure C: Performance of conditional generation for different condition types. We first introduce two
baseline methods - ControlNet Zhang et al. (2023) and T2I-Adapter Mou et al. (2023) to compare
the conditional generation capability. We train both baselines on the same datasets as ours with the
Diffuser von Platen et al. (2022) implementation (for a fair comparison, ImageNet-pretrained LDM
Rombach et al. (2021) is used as the base model). The performance is evaluated on the ImageNet
validation set with our created pseudo labels.

D MORE VISUALIZATION

We demonstrate more qualitative visualization for joint control-image generation (Fig. F), im-
age/control completion (Fig. G), image perception (Fig. H), conditional image generation (Fig. I)
and unseen control-to-control generation (Fig. E).
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(b) Performance of ControlVAR with different control types and model sizes.

(a) Performance comparison against ControlNet & T2I-Adapter

Figure D: Performance of conditional generation for different condition types. We first introduce two
baseline methods - ControlNet Zhang et al. (2023) and T2I-Adapter Mou et al. (2023) to compare
the conditional generation capability. We train both baselines on the same datasets as ours with the
Diffuser von Platen et al. (2022) implementation (for a fair comparison, ImageNet-pretrained LDM
Rombach et al. (2021) is used as the base model). The performance is evaluated on the ImageNet
validation set with our created pseudo labels.

Input

Output

Input

Output

(a) Mask to other controls (c) Depth to other controls

Input

Output

Input

Output

(b) Canny to other controls (d) Normal to other controls

Figure E: Qualitative visualization for zero-shot condition understanding task. The yellow boxes
denote the predicted controls.
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Output Output

Output Output

Output Output

Output

Output

Output

Output

Figure F: Qualitative visualization for joint control-image generation task. The yellow boxes denote
the predicted images & controls.
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Figure G: Qualitative visualization for image/control inpainting task. The yellow boxes denote the
predicted images/controls.
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Input Output

Input Output

Input Output

Input Output

Input Output

Input Output

Input Output

Input Output

Input Output

Input Output

Figure H: Qualitative visualization for image understanding task. The yellow boxes denote the
predicted controls.
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Figure I: Qualitative visualization for conditional image generation task. The yellow boxes denote
the predicted images.
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