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Abstract

Joint-Embedding Predictive Architectures (JEPAs) have recently emerged as a novel and
powerful technique for self-supervised representation learning. They aim to learn an energy-
based model by predicting the latent representation of a target signal y from the latent rep-
resentation of a context signal x. JEPAs bypass the need for negative and positive samples,
traditionally required by contrastive learning while avoiding the overfitting issues associated
with generative pretraining. In this paper, we show that graph-level representations can
be effectively modeled using this paradigm by proposing a Graph Joint-Embedding Predic-
tive Architecture (Graph-JEPA). In particular, we employ masked modeling and focus on
predicting the latent representations of masked subgraphs starting from the latent represen-
tation of a context subgraph. To endow the representations with the implicit hierarchy that
is often present in graph-level concepts, we devise an alternative prediction objective that
consists of predicting the coordinates of the encoded subgraphs on the unit hyperbola in the
2D plane. Through multiple experimental evaluations, we show that Graph-JEPA can learn
highly semantic and expressive representations, as shown by the downstream performance
in graph classification, regression, and distinguishing non-isomorphic graphs. The code is
available at https://github.com/geriskenderi/graph-jepa.

1 Introduction

Graph data is ubiquitous in the real world due to its ability to universally abstract various concepts and
problems (Ma & Tang, 2021; Veličković, 2023). To deal with this widespread data structure, Graph Neural
Networks (GNNs) (Scarselli et al., 2008; Kipf & Welling, 2016a; Gilmer et al., 2017; Veličković et al., 2017)
have established themselves as a staple solution. Nevertheless, most applications of GNNs usually rely
on ground-truth labels for training. The growing amount of graph data in fields such as bioinformatics,
chemoinformatics, and social networks makes manual labeling laborious, sparking significant interest in
unsupervised graph representation learning.

A particularly emergent area in this line of research is self-supervised learning (SSL). In SSL, alternative
forms of supervision are created stemming from the input signal. This process is then typically followed
by invariance-based or generative-based pretraining (Liu et al., 2023; Assran et al., 2023). Invariance-based
approaches optimize the model to produce comparable embeddings for different views of the input signal. A
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Figure 1: Illustration of the SSL approaches discussed in this paper: (a) Joint-Embedding (Contrastive)
Architectures learn to create similar embeddings for inputs x and y that are compatible with each other and
dissimilar embeddings otherwise. This compatibility is implemented in practice by creating different views of
the input data. (b) Generative Architectures reconstruct a signal y from an input signal x by conditioning the
decoder network on additional (potentially latent) variables z. (c) Joint-Embedding Predictive Architectures
act as a bridge: They utilize a predictor network that processes the context x and is conditioned on additional
(potentially latent) variables to predict the embedding of the target y in latent space.

common paradigm associated with this procedure is contrastive learning (Tian et al., 2020). Typically, these
alternative views are created by a data augmentation procedure. The views are then passed through their
respective encoder networks (which may share weights), as shown in Fig. 1a. Finally, an energy function,
usually framed as a distance, acts on the latent embeddings. In the graph domain, several works have
applied contrastive learning by designing graph-specific augmentations (You et al., 2020), using multi-view
learning (Hassani & Khasahmadi, 2020) and even adversarial learning (Suresh et al., 2021). Invariance-based
pretraining is effective but comes with several drawbacks i.e., the necessity to augment the data and process
negative samples, which limits computational efficiency. In order to learn semantic embeddings that are
useful for downstream tasks, the augmentations must also be non-trivial.

Generative-based pretraining methods, on the other hand, typically remove or corrupt portions of the in-
put and predict them using an autoencoding procedure (Vincent et al., 2010; He et al., 2022) or rely on
autoregressive modeling (Brown et al., 2020; Hu et al., 2020). Fig. 1b depicts the typical instantiation of
these methods: The input signal x is fed into an encoder network that constructs the latent representation,
and from it a decoder generates ŷ, the data corresponding to the target signal y. The energy function is
then applied in data space, often through a reconstruction error. Generative models generally display strong
overfitting tendencies (van den Burg & Williams, 2021) and can be non-trivial to train due to issues such as
mode collapse (Adiga et al., 2018). Moreover, the features they learn are not always useful for downstream
tasks (Meng et al., 2017). An intuitive explanation of this problem is that generative models have to estimate
a data distribution that is usually quite complex, so the latent representations must be directly descriptive
of the whole data space (Loaiza-Ganem et al., 2022). This can become even more problematic for graphs
because they live in a non-Euclidean and inhomogenous data space. Despite the aforementioned issues,
masked autoencoding has recently shown promising results also in the graph domain with appropriately
designed models (Hou et al., 2022; Tan et al., 2023).

Inspired by the innovative Joint-Embedding Predictive Architecture (JEPA) (LeCun, 2022; Assran et al.,
2023), we propose Graph-JEPA, a JEPA for the graph domain that can learn graph-level representations by
bridging contrastive and generative models. As illustrated in Fig. 1c, a JEPA has two encoder networks that
receive the input signals and produce the corresponding representations. The two encoders can potentially
be different models and don’t need to share weights. A predictor module outputs a prediction of the latent
representation of one signal based on the other, possibly conditioned on another variable. Graph-JEPA
does not require any negative samples or complex data augmentation, and by operating in the latent space
avoids the pitfalls associated with learning high-level details needed to fit the data distribution. However,
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the graph domain presents several challenges needed to properly design such an architecture: Context and
target extraction, designing a latent prediction task optimal for graph-level concepts, and learning expressive
representations. In response to these questions, we equip Graph-JEPA with a specific masked modeling
objective. The input graph is first divided into several subgraphs, and then the latent representation of
randomly chosen target subgraphs is predicted given a context subgraph. The subgraph representations are
consequently pooled to create a graph-level representation that can be used for downstream tasks.

The nature of graph-level concepts is often assumed to be hierarchical (Ying et al., 2018). We conjecture
that the typical latent reconstruction objective used in current JEPA formulations is not enough to provide
optimal downstream performance. To this end, we design a prediction objective that starts by expressing
the target subgraph encoding as a high-dimensional description of the hyperbolic angle. The predictor
module is then tasked with predicting the location of the target in the 2D unit hyperbola. This prediction
is compared with the target coordinates obtained using the aforementioned hyperbolic angle. In this self-
predictive setting, we explain why the stop-gradient operation and a simple predictor parametrization are
useful to prevent representation collapse. To experimentally validate our approach, we evaluate Graph-
JEPA against established contrastive and generative graph-level SSL methods across various graph datasets
from different domains. Our proposed method demonstrates superior performance, outperforming most
competitors while maintaining efficiency and ease of training. Notably, we observe from our experiments
that Graph-JEPA can run up to 2.5x faster than Graph-MAE (Hou et al., 2022) and 8x faster than MVGRL
(Hassani & Khasahmadi, 2020). Finally, we empirically demonstrate Graph-JEPA’s ability to learn highly
expressive graph representations by showing that a linear classifier trained on the learned representations
almost perfectly distinguishes pairs of non-isomorphic graphs that the 1-WL test cannot differentiate.

2 Related work

2.1 Self-Supervised Graph Representation Learning

Graph Neural Networks (Wu et al., 2019; Scarselli et al., 2008; Kipf & Welling, 2016a; Veličković et al., 2017)
are now established solutions to different graph machine learning problems such as node classification, link
prediction, and graph classification. Nevertheless, the cost of labeling graph data is relatively high, given the
immense variability of graph types and the information they can represent. To alleviate this problem, SSL on
graphs has become a research frontier, where we can distinguish between two major groups of methods(Xie
et al., 2022b; Liu et al., 2023):

Contrastive Methods. Contrastive learning methods usually minimize an energy function (Hinton, 2002;
Gutmann & Hyvärinen, 2010) between different views of the same data. InfoGraph (Sun et al., 2019) maxi-
mizes the mutual information between the graph-level representation and the representations of substructures
at different scales. GraphCL (You et al., 2020) works similarly to distance-based contrastive methods in the
imaging domain. The authors first propose four types of graph augmentations and then perform contrastive
learning based on them. The work of (Hassani & Khasahmadi, 2020) goes one step further by contrasting
structural views of graphs. They also show that a large number of views or multiscale training does not seem
to be beneficial, contrary to the image domain. Another popular research direction for contrastive methods
is learning graph augmentations and how to leverage them efficiently (Suresh et al., 2021; Jin et al., 2021).
Contrastive learning methods typically require a lot of memory due to data augmentation and negative
samples. Graph-JEPA is much more efficient than typical formulations of these architectures, given that it
does not require any augmentations or negative samples. Another major difference is that the prediction in
latent space in JEPAs is done through a separate predictor network rather than using the common Siamese
structure (Bromley et al., 1993)(Fig. 1a vs. 1c).

Generative Methods. The goal of generative models is to recover the data distribution, an objective
that is typically implemented through a reconstruction process. In the graph domain, most generative
architectures that are also used for SSL are extensions of Auto-Encoder (AE) models (Hinton & Zemel,
1993) architectures. These models learn an embedding from the input data and then use a reconstruction
objective with (optional) regularization to learn the data distribution. Kipf & Welling (2016b) extended
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the framework of different AEs and Variational AEs (Kingma & Welling, 2013) to graphs by using a GNN
as an encoder and the reconstruction of the adjacency matrix as the training objective. However, the
results on downstream tasks with embeddings learned in this way are often unsatisfactory compared with
contrastive learning methods, a tendency also observed in other domains (Liu et al., 2023). A recent and
promising direction is masked autoencoding (MAE) (He et al., 2022), which has proved to be a very successful
framework for the image and text domains. GraphMAE (Hou et al., 2022) is an instantiation of MAEs in
the graph domain, where the node attributes are perturbed and then reconstructed, providing a paradigm
shift from the structure learning objective of GAEs. S2GAE (Tan et al., 2023) is one of the latest GAEs,
which focuses on reconstructing the topological structure but adds several auxiliary objectives and additional
designs. Our architecture differs from generative models in that it learns to predict directly in the latent
space, thereby bypassing the necessity of remembering and overfitting high-level details that help maximize
the data evidence (Fig. 1b vs. 1c).

2.2 Joint-Embedding Predictive Architectures

Joint-Embedding Predictive Architectures (LeCun, 2022) are a recently proposed design for SSL. The idea
is similar to both generative and contrastive approaches, yet JEPAs are non-generative since they cannot
directly predict y from x, as shown in Fig. 1c. The energy of a JEPA is given by the prediction error in
the embedding space, not the input space. These models can intuitively be understood as a way to capture
abstract dependencies between x and y, potentially given another latent variable z. It is worth noting that the
different models comprising the architecture may differ in terms of structure and parameters. An in-depth
explanation of Joint-Embedding Predictive Architectures and their connections to human representation
learning is provided by LeCun (2022). Some works acknowledged that latent self-predictive architectures
were effective (Grill et al., 2020; Chen & He, 2021) even before JEPAs effectively became synonymous with
this concept. Inspired by these trends, a number of related works have tried to employ latent prediction
objectives for graph SSL, showing advantages mostly compared to contrastive learning. Thakoor et al.
(2021) perform latent self-prediction on augmented views of a graph in a similar fashion to BYOL (Grill
et al., 2020), while Zhang et al. (2021) rely on ideas from Canonical Correlation Analysis to frame a learning
objective that preserves feature invariance and forces decorrelation when necessary. The work of Lee et al.
(2022) presents a model that learns latent positive examples through a k-NN and clustering procedure in the
transductive setting, while Xie et al. (2022a) combine instance-level reconstruction (generative pretraining)
and feature-level invariance (latent prediction). Given that these models learn using a latent self-predictive
objective, similar to ours, we will refer to them also using the term self-predictive in the rest of the paper.
Unlike previously proposed methods, Graph-JEPA operates exclusively in the latent space and implements
a novel training task without the need for data augmentation. At the current state of the art, the JEPA
framework has been implemented for images (Assran et al., 2023), video (Bardes et al., 2023b;a), and audio
(Fei et al., 2023). We propose the first architecture implementing the modern JEPA principles for the graph
domain and use it to learn graph-level representations.

3 Method

Notation and General Overview. We consider graphs G defined as G = (V,E) where V = {v1 . . . vN }
is the set of nodes, with a cardinality |V | = N , and E = {e1 . . . eM } is the set of edges, with a cardinality
|E| = M . For simplicity of the exposition, we consider symmetric, unweighted graphs, although our method
can be generalized to weighted or directed graphs. In this setting, G can be represented by an adjacency
matrix A ∈ {0, 1}N×N , with Aij = 1 if nodes vi and vj are connected and 0 otherwise. Finally, let the
neighborhood of a node v be defined as N (v) = {u | (u, v) ∈ E}. Fig. 2 provides the overview of the
proposed architecture. The high-level idea of Graph-JEPA is to divide the input graph into subgraphs
(patches) (He et al., 2023) and then predict the representation of a randomly chosen target subgraph from
the representation of a single context subgraph (Assran et al., 2023). Again, we would like to stress that
this masked modeling objective is realized in latent space without the need for negative samples. The
subgraph representations are then pooled to create a vector representation for the whole graph, i.e., a
graph-level representation. Therefore, the learning procedure consists of a sequence of operations: i) Spatial
Partitioning; ii) Subgraph Embedding; iii) Context and Target Encoding; iv) Latent Target Prediction.
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Figure 2: A complete overview of Graph-JEPA. We first extract non-overlapping subgraphs (patches) (a.),
perform a 1-hop neighborhood expansion (b.), and encode the subgraphs with a GNN to learn feature
vectors for the context and target (c.). Afterward, the context and target feature vectors are fed into their
respective encoders (d.). The embeddings generated from the target encoder produce the target subgraphs
hyperbolic coordinates ψy. On the other hand, the encoded context is fed into a predictor network, which
is also conditioned on the positional embedding of the target subgraph, to then predict the coordinates ψ̂y

for the target subgraph (e.). A regression loss D, based on the distance in latent space, acts as the learning
objective (f.). Note that the extracted subgraphs in (a.) and (b.) are meant for illustrative purposes only,
as in practice, we use multiple target subgraphs for a given context. Furthermore, the number of nodes in
each subgraph can vary.

3.1 Spatial Partitioning

We base the initial part of our architecture on the recent work of (He et al., 2023), but similar ideas have
been proposed before for Graph SSL (Jin et al., 2020). This step consists of creating different subgraphs
(patches), similar to how Vision Transformers (ViT) (Dosovitskiy et al., 2020) operate on images. Supported
by experimental evidence in other data modalities (Assran et al., 2023; Fei et al., 2023), we conjecture that
a critical aspect of training JEPAs is building a self-predictive task that is non-trivial and aligned with the
characteristics of downstream problems. Therefore, we proceed by providing as input a graph partitioning,
i.e., a collection of p subsets, {V1, . . . , Vp} such that Vi ∩ Vj = ∅ for i ̸= j, |Vi| = N/k, and

⋃
i Vi = V (Fig.

2a). The rationale behind this choice is that the partition will inherently embed a notion of locality and
spatial awareness into the learned representation via the latent self-predictive task, which is beneficial for
downstream performance. In practice, we rely on the METIS (Karypis & Kumar, 1998) graph clustering
algorithm, which partitions the graph such that the number of intra-cluster links is much higher than inter-
cluster links, i.e., the number of edges whose incident vertices belong to different partitions is minimized.
METIS is a multilevel algorithm, meaning that it first coarsens the graph, then performs partitioning,
and finally, during an uncoarsening phase, projects the partitions back to the original graph, with their
boundaries refined to reduce edge cuts and enhance intra-cluster density. This way, we can adequately
embed local properties and community structure in the model input. It becomes pretty direct to see how
these properties, especially the multilevel nature of the partitioning, relate to the hierarchical nature of
graph-level concepts.

Note that having non-overlapping subgraphs can be problematic in practice since edges can be lost in this
procedure, and it is possible to end up with edgeless subgraphs. Furthermore, signal propagation over the
subgraphs becomes impossible due to the partitioning. Therefore, we implement a 1-hop neighborhood
expansion (Fig. 2b), where each partition is transformed into G′

i = (V ′
i , E

′
i), such that V ′

i = Vi ∩N (Vj),∀j ̸=
i and E′

i = {(u, v) |u, v ∈ V ′
i and (u, v) ∈ E}. Simply put, all corresponding neighboring nodes from

the original input graph are connected with each node in the subgraph. The model can then aggregate
information from neighboring regions by incorporating these overlaps when learning subgraph embeddings.
This enables it to capture broader graph-level patterns while retaining the properties of working with smaller,
localized subgraphs. Such a property is crucial for the next step of Graph-JEPA, described in the following
section.
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3.2 Subgraph Embedding

After partitioning the graph, we learn a representation for each subgraph through a GNN (Fig. 2c.). The
specific choice of the GNN is arbitrary and depends on what properties one wishes to induce in the represen-
tation. The learned node embeddings are mean pooled to create a vector representation for each subgraph:
{h1...hp}, h ∈ Rd. These embeddings will be used as context or target variables in the JEPA framework
(Fig. 1c.). Using only these embeddings can render the latent self-predictive too difficult, therefore, we in-
clude positional information for each subgraph. The positional embedding is implemented as the maximum
Random Walk Structural Embedding (RWSE) of all the nodes in that subgraph. In this way, each patch’s
position is characterized consistently and globally. Formally, a RWSE (Dwivedi et al., 2021) for a node v
can be defined as:

Pv = (Mii,M
2
ii, . . . ,M

k
ii), (1)

where Pv ∈ Rk, Mk = (D−1A)k is the random-walk transition matrix of order k, D is a diagonal matrix
containing the degrees of each node, and i is the index v in A. Mk

ii encodes the probability of node v landing
to itself after a k-step random walk. It is noteworthy to see that such an embedding defines a signal over the
graph, if we view the positional embedding as a function ϕ : V → Rk. Furthermore, under a few reasonable
assumptions, i.e., having connected, non-bipartite subgraphs with different connectomes, this function is
injective ϕ(u) = ϕ(v) ⇒ u = v, ∀u, v ∈ V . This property follows directly from the definition of Mk and the
stationary distribution of a graph random walk Lovász (1993). Given a subgraph l, we define its RWSE as:

Pl = max
v∈Vl

Pv, (2)

where the max operation is performed elementwise (on the nodes). From the above, we define the positional
information of each subgraph as being essentially contained in the node with the highest degree1, which will
act as an anchor reference when predicting the target subgraphs’ latent representations. Therefore, our choice
of positional embedding will provide a global context for the predictor network, as the positional embeddings
of these anchor nodes can identify the location of their respective subgraphs. Intuitively, knowing Pl is useful
for the prediction task because the features present in the most representative node will have been diffused
the most (by the GNN) into the subgraph.

3.3 Context and Target Encoding

Given the subgraph representations and their respective positional embeddings, we frame the Graph-JEPA
prediction task in a similar manner to I-JEPA (Assran et al., 2023). The goal of the network is to predict the
latent embeddings of randomly chosen target subgraphs, given one random context subgraph, conditioned on
the positional information of each target subgraph. At each training step, we choose one random subgraph
as the context x and m others as targets Y = {y1, . . . , ym}. Using a single context is arbitrary but provides
numerous advantages. Firstly, it guarantees that we can work with small and large graphs, as shown in Sec.
4.2. Secondly, it implicitly regularizes the model in learning long-range dependencies by predicting targets
that are far (in terms of shortest path distance) from the context. We empirically validate this second aspect
by testing for graph isomorphisms in Sec. 4.2. These subgraphs are processed by the respective context and
target encoders (Fig. 2d), which are parametrized by Transformer encoder blocks (without self-attention for
the context) where normalization is applied at first (Xiong et al., 2020). The target encoder uses Hadamard
self-attention (He et al., 2023), but other choices, such as the standard self-attention mechanism (Vaswani
et al., 2017), are perfectly viable. We can summarize this step as:

zx = Ec(x), Zy = Et(Y ), (3)

with zx ∈ Rd and Zy ∈ Rm×d. At this stage, we can use the predictor network to directly predict Zy from
zx. This is the typical formulation of JEPAs, followed by the popular work of Assran et al. (2023). We
argue that learning to organize concepts for abstract objects such as graphs or networks directly in Euclidean
space is suboptimal. In the following subsection, we propose a simple trick to bypass this problem using
the encoding and prediction mechanisms in Graph-JEPA. A discussion in Sec. 4.3 will provide additional
insights.

1The more suitable term would be in-degree, but there is no difference in the undirected case.
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3.4 Latent Target Prediction

Learning hierarchically consistent concepts (Deco et al., 2021) is considered a crucial aspect of human
learning, especially during infancy and young age (Rosenberg & Feigenson, 2013). Networks in the real
world often conform to some concept of hierarchy (Moutsinas et al., 2021), and this assumption is frequently
used when learning graph-level representations (Ying et al., 2018). Thus, we conjecture that Graph-JEPA
should operate in a hyperbolic space, where learned embeddings implicitly organize hierarchical concepts
(Nickel & Kiela, 2017; Zhao et al., 2023). This gives rise to another issue: commonly used hyperbolic
(Poincaré) embeddings are known to have several tradeoffs between dimensionality and performance (Sala
et al., 2018; Guo et al., 2022), which severely limits the expressive ability of the model. Given that graphs
can describe very abstract concepts, high expressivity in terms of model parameters is preferred. In simple
words, we would ideally like to have a high-dimensional latent code that has a concept of hyperbolicity built
into it.

To achieve this, we think of the target embedding as a high-dimensional representation of the hyperbolic
angle, which allows us to describe each target patch through its position in the 2D unit hyperbola. Formally,
given a target patch l, its embedding Zy

l and positional encoding Pl, we express the latent target as:

ψy
l =

 cosh(αy
l )

sinh(αy
l )

 , αy
l = 1

N

d∑
n=1

Zy
l

(n)
, (4)

where cosh(·) and sinh(·) are the hyperbolic cosine and sine functions respectively. The predictor module
is then tasked with directly locating the target in the unit hyperbola, given the context embedding and the
target patch’s positional encoding Fig 2e):

ψ̂y
l = W2(σ(W1(zx + Pl) + b1)) + b2, (5)

where Wn and bn represent the n-th weight matrix and bias vector (i.e., n-th fully connected layer), σ is an
elementwise non-linear activation function, and ψ̂y

l ∈ R2. This allows us to frame the learning procedure
as a low-dimensional regression problem, and the whole network can be trained end-to-end (Fig. 2f). In
practice, we use the smooth L1 loss as the distance function, as it is less sensitive to outliers compared to
the typical L2 loss (Girshick, 2015):

L(y, ŷ) = 1
N

N∑
n=1

sn, sn =
{

0.5(yn − ŷn)2/β, if |y − ŷ| < β

|y − ŷ| − 0.5β, otherwise
(6)

Thus, we are effectively measuring how far away the context and target patches are in the unit hyperbola of
the plane by first describing the subgraphs through a high dimensional latent code (Eq. 4). This representa-
tion balances the expressivity of high-dimensional embeddings and the hierarchical organization provided by
hyperbolic geometry. Intuitively, the hyperbolic angle α represents an aggregate measure of the subgraph’s
latent code, compressed into a scalar value. In high dimensions, this scalar value will concentrate around
one value, which provides the base level of the hierarchy. At the same time, the encoder networks have
the freedom to produce largely deviant latent codes that lead to higher hierarchy levels. A visualization of
this process is provided in the Appendix (Fig. 4). We explicitly show the differences between this choice
and using the Euclidean or (Poincaré) Hyperbolic distance as energy functions for the training procedure in
Sec. 4.3. Our proposed pretraining objective forces the context encoder to understand the differences in the
hyperbolic angle between the target patches, which can be thought of as establishing an implicit hierarchy
between them.

Preventing Representation Collapse. JEPAs are based on a self-distillation procedure. Therefore,
they are by definition susceptible to representation collapse (Assran et al., 2023). This is due to the nature
of the learning process, where both the context and target representations have to be learned. We formalize
this intuition with an example and argue why there is a need to adopt two well-known training tricks
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that are prevalent in the literature to prevent representation collapse: i) The stop-gradient operation on
the target encoder followed by a momentum update (using an Exponential Moving Average (EMA) of the
context encoder weights) (Grill et al., 2020; Chen & He, 2021); ii) a simpler parametrization of the predictor
compared to the context and target networks (in terms of parameters)(Chen et al., 2020; Baevski et al.,
2022). Let us simplify the problem through the following assumptions: i) The predictor network is linear;
ii) There is a one-to-one correspondence between context and target patches (this holds in practice due to
Eq. 5); iii) The self-predictive task is a least-squares problem in a finite-dimensional vector space. Based on
these assumptions, we can rewrite the context features as X ∈ Rn×d, the target coordinates as Y ∈ Rn×2,
and the weights of the linear model as W ∈ Rd×2. The optimal weights of the predictor are given by solving:

arg min
W

∥XW − Y ∥2
, (7)

where ∥.∥ indicates the Frobenius norm. The (multivariate) OLS estimator can give the solution to this
problem by setting W to:

W = (XTX)−1XTY. (8)
Plugging Eq. 8 into Eq. 7 and factorizing Y , the least squares solution leads to the error:∥∥(X(XTX)−1XT − In)Y

∥∥2
. (9)

Thus, the optimality of a linear predictor is defined by the orthogonal projection of Y onto the orthogonal
complement of a subspace of Col(X). As is commonly understood, this translates to finding the linear
combination of X that is closest, in terms of ∥·∥2, to Y . Similarly to what was shown by Richemond et al.
(2023), we argue that this behavior unveils a key intuition: The target encoder, which estimates Y must
not share weights or be optimized via the same optimizer as the context encoder. If that were the case,
the easiest solution to Eq. 9 would be learning a representation that is orthogonal to itself, i.e., the 0
vector, leading to representation collapse. Using a well-parametrized EMA update is what allows us to
bypass this problem. In practice, even with the slower dynamics induced by the EMA procedure, it is
possible to immediately encounter a degenerate solution with a non-linear and highly expressive network.
For instance, consider a scenario where the target subgraphs are straightforward and similar. In this case,
if the predictor network is sufficiently powerful, it can predict the target representations even without a
well-learned context representation. Since the target encoder weights are updated via the EMA procedure,
the learned representations will tend to be uninformative. Therefore, implementing the predictor network
as a simpler and less expressive network is crucial to achieving the desired training dynamics.

4 Experiments

The experimental section introduces the empirical evaluation of the Graph-JEPA model in terms of down-
stream performance on different graph datasets and tasks, along with additional studies on the latent space’s
structure and the encoders’ parametrization. Furthermore, a series of ablation studies are presented in order
to elucidate the design choices behind Graph-JEPA.

4.1 Experimental Setting

We use the TUD datasets (Morris et al., 2020) as commonly done for graph-level SSL (Suresh et al., 2021; Tan
et al., 2023). We utilize seven different graph-classification datasets: PROTEINS, MUTAG, DD, REDDIT-
BINARY, REDDIT-MULTI-5K, IMDB-BINARY, and IMDB-MULTI. We report the accuracy of ten-fold
cross-validation for all classification experiments over five runs (with different seeds). It is worth noting
that we retrain the Graph-JEPA model for each fold without ever having access to the testing partition in
both the pretraining and fine-tuning stages. We use the ZINC dataset for graph regression and report the
Mean Squared Error (MSE) over ten runs (with different seeds), given that the testing partition is already
separated. To produce the unique graph-level representations, we feed all the subgraphs through the trained
target encoder and then use mean pooling, obtaining a single feature vector zG ∈ Rd that represents the
whole graph. This vector representation is then used to fit a linear model with L2 regularization for the
downstream task. Specifically, we employ Logistic Regression with L2 regularization on the classification
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datasets and Ridge Regression for the ZINC dataset. For the datasets that do not natively have node and
edge features, we use a simple constant (0) initialization. The subgraph embedding GNN (Fig. 2c.) consists
of the GIN operator with support for edge features (Hu et al., 2019), often referred to as GINE. The neural
network modules were trained using the Adam optimizer (Kingma & Ba, 2014) and implemented using
PyTorch (Paszke et al., 2019) and PyTorch-Geometric (Fey & Lenssen, 2019), while the linear classifiers
and cross-validation procedure were implemented through the Scikit-Learn library (Pedregosa et al., 2011).
All experiments were performed on Nvidia RTX 3090 GPUs. Tables 7 and 8 in the Appendix contain the
dataset statistics and the JEPA-specific hyperparameters used in the following experiments, respectively.

4.2 Downstream Performance

For the experiments on downstream performance, we follow Suresh et al. (2021) and also report the results
of a fully supervised Graph Isomorphism Network (GIN) (Xu et al., 2018), denoted F-GIN in Tab. 1.
We compare Graph-JEPA against four contrastive methods, two generative methods, and one latent self-
predictive method (Xie et al., 2022a) (which also regularizes through instance-level reconstruction). As can
be seen in Tab. 1, Graph-JEPA achieves competitive results on all datasets, setting the state-of-the-art as
a pretrained backbone on five different datasets and coming second on one (out of eight total). Overall, our
proposed framework learns semantic embeddings that work well on different graphs, showing that Graph-
JEPA can be utilized as a general pretraining method for graph-level SSL. Notably, Graph-JEPA works
well for both classification and regression and performs better than a supervised GIN on all classification
datasets. We also provide results with BGRL (Thakoor et al., 2021), a node-level latent self-predictive
strategy. We train this model using the official code and hyperparameters and then mean-pool the node
representations for the downstream task. The results are underwhelming compared to the models reporting
graph-level performance, which is to be expected considering that methods that also perform well on graph-
level learning are appropriately designed.

One notable aspect of the downstream performance of Graph-JEPA is the variance in the results. We
conjecture that this variance in the results is due to three main factors. First, the randomness inherent in
the subgraph partitioning process can lead to the selection of trivial context subgraphs, making it difficult
to accurately predict latent representations of the target subgraphs. Second, while the JEPA paradigm
has proven effective in the graph domain, it is susceptible to representation collapse, mainly when the
previously mentioned issue is combined with positional embeddings of smaller, similar subgraphs. This
would lead to nearly identical latent representations and, thus, reduced downstream performance. The issue
is also compounded due to the fact that we did not extensively tune hyperparameters, as our focus was on
demonstrating the architecture’s efficacy with a simple training regimen. Lastly, in contrast to standard
protocols that involve training on the entire dataset before fine-tuning, we trained the self-supervised model
exclusively on the training set to ensure fairness. Despite this, average-case performance remains the most
crucial aspect of our experimental validation.

We further explore the performance of our model on the synthetic EXP dataset (Abboud et al., 2020),
compared to end-to-end supervised models. This experiment aims to empirically verify if Graph-JEPA can
learn highly expressive graph representations (in terms of the commonly used WL hierarchy (Morris et al.,
2019)) without relying on supervision. The results in Tab. 2 show that our model is able to perform much
better than commonly used GNNs. Given its local and global exchange of information, this result is to be
expected. Most importantly, Graph-JEPA almost matches the flawless performance achieved by He et al.
(2023), who train fully supervised.

4.3 Exploring the Graph-JEPA Latent Space

As discussed in Sec. 3.4, the choice of energy function has a big impact on the learned representations. Given
the latent prediction task of Graph-JEPA, we expect the latent representations to display hyperbolicity. The
predictor network is linearly approximating the behavior of the unit hyperbola such that it best matches
the generated target coordinates (Eq. 6). Thus, the network is actually trying to estimate a space that can
be considered a particular section of the hyperboloid model (Reynolds, 1993), where hyperbolas appear as
geodesics. We are, therefore, evaluating our energy in a restricted part of hyperbolic space. As mentioned
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Table 1: Performance of different graph SSL techniques on various TUD benchmark datasets, ordered by
pretraining type: contrastive, generative, and self-predictive. F-GIN is an end-to-end supervised GIN and
serves as a reference for the performance values. The results of the competitors are taken as the best values
from (Hassani & Khasahmadi, 2020; Suresh et al., 2021; Tan et al., 2023). "-" indicates missing values from
the literature. The best results are reported in boldface, and the second best are underlined. For the sake
of completeness, we also report the training and evaluation results of GraphMAE on the DD, REDDIT-M5,
and ZINC datasets in italics, along with the results of a node-level self-predictive method (BGRL), which
does not originally report results on graph-level tasks.

Model PROTEINS ↑ MUTAG ↑ DD ↑ REDDIT-B ↑ REDDIT-M5 ↑ IMDB-B ↑ IMDB-M ↑ ZINC ↓
F-GIN 72.39 ± 2.76 90.41 ± 4.61 74.87 ± 3.56 86.79 ± 2.04 53.28 ± 3.17 71.83 ± 1.93 48.46 ± 2.31 0.254 ± 0.005
InfoGraph (Sun et al., 2019) 72.57 ± 0.65 87.71 ± 1.77 75.23 ± 0.39 78.79 ± 2.14 51.11 ± 0.55 71.11 ± 0.88 48.66 ± 0.67 0.890 ± 0.017
GraphCL (You et al., 2020) 72.86 ± 1.01 88.29 ± 1.31 74.70 ± 0.70 82.63 ± 0.99 53.05 ± 0.40 70.80 ± 0.77 48.49 ± 0.63 0.627 ± 0.013
MVGRL (Hassani & Khasahmadi, 2020) - - - 84.5 ± 0.6 - 74.2 ± 0.7 51.2 ± 0.5 -
AD-GCL-FIX (Suresh et al., 2021) 73.59 ± 0.65 89.25 ± 1.45 74.49 ± 0.52 85.52 ± 0.79 53.00 ± 0.82 71.57 ± 1.01 49.04 ± 0.53 0.578 ± 0.012
AD-GCL-OPT (Suresh et al., 2021) 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 85.52 ± 0.79 54.93 ± 0.43 72.33 ± 0.56 49.89 ± 0.66 0.544 ± 0.004
GraphMAE (Hou et al., 2022) 75.30 ± 0.39 88.19 ± 1.26 74.27 ± 1.07 88.01 ± 0.19 46.06 ± 3.44 75.52 ± 0.66 51.63 ± 0.52 0.935 ± 0.034
S2GAE (Tan et al., 2023) 76.37 ± 0.43 88.26 ± 0.76 - 87.83 ± 0.27 - 75.76 ± 0.62 51.79 ± 0.36 -
BGRL (Thakoor et al., 2021) 70.99 ± 3.86 74.99 ± 8.83 71.52 ± 2.97 50 ± 0 20 ± 0.1 0.5 ± 0 0.33 ± 0 1.2 ± 0.011
LaGraph (Xie et al., 2022a) 75.2 ± 0.4 90.2 ± 1.1 78.1 ± 0.4 90.4 ± 0.8 56.4 ± 0.4 73.7 ± 0.9 - -
Graph-JEPA 75.68 ± 3.78 91.25 ± 5.75 78.64 ± 2.35 91.99 ± 1.59 56.73 ± 1.96 73.68 ± 3.24 50.69 ± 2.91 0.434 ± 0.014

Table 2: Classification accuracy on the synthetic EXP dataset (Abboud et al., 2020), which contains 600
pairs of non-isomorphic graphs that are indistinguishable by the 1-WL test. Note that the competitor models
are all trained with end-to-end supervision. The best result is reported in boldface, and the second best is
underlined. Performances for all competitor models are taken from (He et al., 2023).

Model Accuracy ↑
GCN (Kipf & Welling, 2016a) 51.90 ± 1.96
GatedGCN (Bresson & Laurent, 2017) 51.73 ± 1.65
GINE (Xu et al., 2018) 50.69 ± 1.39
GraphTransformer (Dwivedi & Bresson, 2020) 52.35 ± 2.32
Graph-MLP-Mixer (He et al., 2023) 100.00 ± 0.00
Graph-JEPA 98.77 ± 0.99

before, we find this task to offer great flexibility as it is straightforward to implement and it is computationally
efficient compared to the hyperbolic distance used to typically learn hyperbolic embeddings in the Poincaré
ball model (Nickel & Kiela, 2017). Tab. 3 provides empirical evidence for our conjectures regarding the
suboptimality of Euclidean or Poincaré embeddings on 4 out of the 8 datasets initially presented in Tab. 1,
where we make sure to choose different graph types for a fair comparison. The results reveal that learning
the distance between patches in the 2D unit hyperbola provides a simple way to get the advantages of both
embedding types. Hyperbolic embeddings must be learned in lower dimensions due to stability issues (Yu
& De Sa, 2021), while Euclidean ones do not properly reflect the dependencies between subgraphs and the
hierarchical nature of graph-level concepts. Our results suggest that the hyperbolic (Poincaré) distance is
generally a better choice than the Euclidean distance in lower dimensions, but it is computationally unstable
and expensive in high dimensions. The proposed approach provides the best overall results. We provide a
qualitative example of how the embedding space is altered from our latent prediction objective in Fig. 3.

4.4 Additional Insights and Ablation Studies

Model Efficiency. In an attempt to characterize the efficiency of our proposed model, we perform a simple
experimental check. In Tab. 4, we compare the total training time needed for different Graph-SSL strategies
to provide a representation that performs optimally on the downstream task. We show results on the datasets
with the largest graphs from Tab. 1: IMDB and REDDIT-M5. Since runtime is hardware-dependent, all
experiments are performed on the same machine. Graph-JEPA displays superior efficiency and promising
scaling behavior. The presented runtime is naturally dependent on the self-supervised scheme used in each
model, so we do not regard it as a definitive descriptor but rather an indicator of the potential of entirely
latent self-predictive models.
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Euclidean Objective Ours

b.a.

Figure 3: 3D t-SNE(Van der Maaten & Hinton, 2008) of the latent representations used to train the linear
classifier on the DD dataset. The change in the curvature of the embedding using the Graph-JEPA objective
(b.) is noticeable. Best viewed in color.

Table 3: Comparison of Graph-JEPA performance for different distance functions. The optimization for
Poincaré embeddings in higher dimensions is problematic, as shown by the NaN loss on the IMDB-B dataset.
LD stands for Lower Dimension, where we use a smaller embedding size. The best result is reported in
boldface.

Dataset Ours Euclidean Hyperbolic Euclidean (LD) Hyperbolic (LD)
MUTAG 91.25 ± 5.75 87.04 ± 6.01 89.43 +- 5.67 86.63 ± 5.9 86.32 ± 5.52
REDDIT-M 56.73 ± 1.96 56.55 ± 1.94 56.19 +- 1.95 54.84 ± 1.6 55.07 ± 1.83
IMDB-B 73.68 ± 3.24 73.76 ± 3.46 NaN 72.5 ± 3.97 73.4 ± 4.07
ZINC 0.434 ± 0.01 0.471 ± 0.01 0.605 +- 0.01 0.952 ± 0.05 0.912 ± 0.04

MLP Parametrization. Tab. 5 contains the results of parametrizing the whole architecture, other than
the initial GNN encoder, through Multilayer Perceptrons (MLPs). This translates to not using the Attention
mechanism at all. For this experiment, and also the following ablations, we consider 4 out of the 8 datasets
initially presented in Tab. 1, making sure to choose different graph domains for a fair comparison. Graph-

Table 4: Total training time and model parameters of MVGRL, GraphMAE, and Graph-JEPA for pretraining
(single run) based on the optimal configuration for downstream performance. OOM stands for Out-Of-
Memory. The best result is reported in boldface.

Dataset Model Num. parameters Training time
IMDB MVGRL 3674118 ∼ 7 min

GraphMAE 2257193 ∼ 1.5 min (1min 36sec)
Graph-JEPA 19219460 < 1min (56 sec)

REDDIT-M5 MVGRL 4198406 OOM
GraphMAE 2784555 ∼ 46 min
Graph-JEPA 19245060 ∼ 18 min
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Table 5: Performance when parametrizing the context and target encoders through MLPs vs using the
proposed Transformer encoders. The best result is reported in boldface.

Dataset Transformer Encoders MLP Encoders
MUTAG 91.25 ± 5.75 90.5 ± 5.99
REDDIT-M5 56.73 ± 1.96 56.21 ± 2.29
IMDB-B 73.68 ± 3.24 74.26 ± 3.56
ZINC 0.434 ± 0.01 0.472 ± 0.01

Table 6: (a) Performance when extracting subgraphs with METIS vs. using random subgraphs. (b) Perfor-
mance when using node-level vs patch-level RWSEs. The best result is reported in boldface.

(a)

Dataset METIS Random
MUTAG 91.25 ± 5.75 91.58 ± 5.82
REDDIT-M5 56.73 ± 1.96 56.08 ± 1.69
IMDB-B 73.68 ± 3.24 73.52 ± 3.08
ZINC 0.434 ± 0.01 0.43 ± 0.01

(b)

Dataset Node RWSE Patch RWSE
MUTAG 91.25 ± 5.75 91.23 ± 5.86
REDDIT-M5 56.73 ± 1.96 56.01 ± 2.1
IMDB-B 73.68 ± 3.24 73.58 ± 4.47
ZINC 0.434 ± 0.01 0.505 ± 0.005

JEPA still manages to perform well, showing the flexibility of our architecture, even though using the
complete Transformer encoders leads to better overall performance and less variance in the predictions.

Positional Embedding. Following He et al. (2023), it is possible to use the RWSE of the patches as
conditioning information. Formally, let B ∈ {0, 1}p×N be the patch incidence matrix, such that Bij = 1 if
vj ∈ pi. We can calculate a coarse patch adjacency matrix A′ = BBT ∈ Rp×p, where each A′

ij contains the
node overlap between pi and pj . The positional embedding can be calculated for each patch using the RWSE
described in Eq. 1 on A′. We call such an embedding relative, as it can only capture positional differences in
a relative manner between patches. We test Graph-JEPA with these relative positional embeddings and find
that they still provide good performance but consistently fall behind the node-level (global) RWSE that we
employ in our formulation (Tab. 6b). An issue of these relative patch RWSEs is that the number of shared
neighbors can obscure the local peculiarities of each patch, rendering the context given to the predictor more
ambiguous.

Random Partitioning. A natural question in our framework is how to design the spatial partitioning
procedure. Using a structured approach like METIS (Karypis & Kumar, 1998) is intuitive and leads to
favorable results. Another option would be to extract random, non-empty subgraphs as context and targets.
As seen in Tab. 6a, the random patches also provide strong performance, showing that the proposed
JEPA architecture is not reliant on the initial input, which is the case for many methods that rely on data
augmentation for view generation (Lee et al., 2022). Even though our results show that using a structured
way to extract the patches might not be necessary, it is an idea that generalizes well to different graph
types and sizes. Thus, we advocate extracting subgraphs with METIS as it is a safer option in terms of
generalizability across different graphs and the inductive bias it provides.

5 Conclusion

In this work, we introduce a new Joint Embedding Predictive Architecture (JEPA) for graph-level Self-
Supervised Learning (SSL). An appropriate design of the model, both in terms of data preparation and
pretraining objective, reveals that it is possible for a neural network to self-organize the semantic knowledge
embedded in a graph, demonstrating competitive performance in different graph data and tasks. Future
research directions include extending the proposed method to node and edge-level learning, theoretically
exploring the expressiveness of Graph-JEPA, and gaining more insights into the optimal geometry of the
latent space for general graph SSL.
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6 Appendix

6.1 Dataset Statistics and Model Hyperparameters

Table 7: Descriptive statistics of the TUD datasets used for the main experiments.

Dataset Num. Graphs Num. Classes Avg. Nodes Avg. Edges
PROTEINS 1113 2 39.06 72.82
MUTAG 188 2 17.93 19.79
DD 1178 2 284.32 715.66
REDDIT-B 2000 2 429.63 497.75
REDDIT-M5 4999 5 508.52 594.87
IMDB-B 1000 2 19.77 96.53
IMDB-M 1500 3 13.00 65.94
ZINC 12000 0 23.2 49.8

Table 8: Values of Graph-JEPA specific hyperparameters for each dataset.

Hyperparameter PROTEINS MUTAG DD REDDIT-B REDDIT-M5 IMDB-B IMDB-M ZINC
Num. Subgraphs 32 32 32 128 128 32 32 32
Num. GNN Layers 2 2 3 2 2 2 2 2
Num. Encoder Blocks 4 4 4 4 4 4 4 4
Embedding size 512 512 512 512 512 512 512 512
RWSE size 20 15 30 40 40 15 15 20
Num. context - Num. targets 1 - 2 1 - 3 1 - 4 1 - 4 1 - 4 1- 4 1- 4 1- 4

6.2 Additional Figures

Spatial Partitioning Target Encoding

b.a.

Target

Context

Figure 4: Visualization of the partition of a small graph from the MUTAG dataset used as input (a.) and
the corresponding (learned) target embeddings in the hyperbolic plane by Graph-JEPA (b.) Best viewed in
color.
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6.3 Additional Experimental Results

To gain additional empirical insight into Graph-JEPA and its components, we evaluate the model in two
complex long-range tasks from the LRGB benchmark (Dwivedi et al., 2022), consisting of predictive tasks
over short chains of amino acids called peptides:

• Peptides-struct is a multi-label graph regression dataset based on the 3D structure of the peptides.
It can, therefore, be treated as a multivariate regression problem where the dependent variable is
11-dimensional.

• Peptides-func is a multi-label graph classification dataset, given that a peptide can be considered to
belong to several classes simultaneously. There are 10 labels in total, and they are imbalanced. It
consists of the same graphs as Peptides-struct, therefore it gives us the ability to evaluate how good
the representation learning model is in learning specific downstream tasks.

For both datasets, we follow the work of Dwivedi et al. (2022) and perform four runs with different seeds.
The results are presented in Tab. 9. To have a baseline against which to compare, we also list both GNN
and Transformer-based models trained in a supervised fashion. Two main takeaways arise:

1. The design choices of the positional embedding (Sec. 3.2) and the proposed self-predictive task (Sec.
3.4) are both beneficial for downstream performance, even in long-range tasks.

2. The type of downstream task can significantly affect the judgment of how good the learned repre-
sentations are. Remember that both datasets in Tab. 9 present the same graphs, yet the regression
task shows highly competitive performance. In contrast, the multi-label classification task presents
an enormous drop in performance. We argue that this is due to the nature of the task. Consid-
ering how little correlation there is between the labels, localized, specific interactions are key to
achieving optimal performance. This was also reported by Dwivedi et al. (2022), where the authors
showed how using a Transformer with the fully connected graph as input would provide optimal
performance. Graph-JEPA excels at capturing smooth global features (helpful for Peptides-struct)
but fails to capture localized, specific interactions (crucial for Peptides-func) due to the nature of
the subgraph self-predictive task. Nevertheless, the previous observation regarding the value of the
different elements of our design holds even in the case when downstream performance is suboptimal.

We hope these additional results can inspire future research directions in JEPAs and graph SSL, as we are
still far away from an optimal and general architecture that can learn well across different graph types and
tasks.
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Table 9: (a) Performance of Graph-JEPA compared to supervised baselines on the two peptide datasets
from the Long Range Graph Benchmark (LRGB). (a) Graph regression performance (3D properties of
peptides) (b) Multilabel graph classification performance (peptide function). The best results are reported
in boldface, and the second best are underlined. The baselines are taken from Dwivedi et al. (2022), and
they are all supervised models. † represents our model without the PE described in Sec. 3.2, while ‡ is
both without the PE and using the Euclidean latent objective. The results are reported over four runs with
different seeds, as commonly done in the literature.

(a)

Model Test MAE ↓ Train R2 ↑
GCN 0.350 ± 0.001 0.651 ± 0.008
GatedGCN + RWSE 0.3357 ± 0.001 0.720 ± 0.015
SAN + RWSE 0.2545 ± 0.001 0.711 ± 0.005
Graph-JEPA ‡ 0.313 ± 0.003 0.703 ± 0.002
Graph-JEPA † 0.308 ± 0.002 0.73 ± 0.005
Graph-JEPA 0.305 ± 0.002 0.731 ± 0.003

(b)

Model Test AP ↑
GCN 0.593 ± 0.002
GatedGCN + RWSE 0.607 ± 0.004
SAN + RWSE 0.644 ± 0.008
Graph-JEPA † 0.24 ± 0.002
Graph-JEPA ‡ 0.252 ± 0.002
Graph-JEPA 0.263 ± 0.003
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