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ABSTRACT

We consider the optimization problem of finding Nash Equilibrium (NE) for a
nonconvex function f(x) = f(x1, ..., xn), where xi ∈ Rdi denotes the i-th block
of the variables. Our focus is on investigating first-order gradient-based algo-
rithms and their variations such as the block coordinate descent (BCD) algorithm
for tackling this problem. We introduce a set of conditions, termed the n-sided
PL condition, which extends the well-established gradient dominance condition
a.k.a Polyak-Łojasiewicz (PL) condition and the concept of multi-convexity. This
condition, satisfied by various classes of non-convex functions, allows us to an-
alyze the convergence of various gradient descent (GD) algorithms. Moreover,
our study delves into scenarios where the objective function only has strict saddle
points, and normal gradient descent methods fail to converge to NE. In such cases,
we propose adapted variants of GD that converge towards NE and analyze their
convergence rates.

1 INTRODUCTION

Optimization problems with nonconvex objectives appear in many applications from computer sci-
ence to economics (Intriligator, 2002) and more recently, in machine learning (Jain et al., 2017),
such as training deep neural networks (Goodfellow et al., 2016) or policy optimization in reinforce-
ment learning (Silver et al., 2014). On the other hand, the Gradient Descent (GD) algorithm and its
variants are driving the practical success of many machine learning approaches. Naturally, under-
standing the limits of such GD-based algorithms in the nonconvex setting has become an important
avenue of research in recent years (Jin et al., 2021; Zhou et al., 2024; Jordan et al., 2023). Along this
line of research, we are interested in finding Nash Equilibrium x⋆ = (x⋆

1, · · · , x⋆
n) for the nonconvex

optimization f(x), i.e.
f(x⋆

i ;x
⋆
−i) ≤ f(yi;x

⋆
−i),∀yi ∈ Rdi , (1)

where f is a continuously differentiable but possibly nonconvex function. The variable x can be
partitioned into n blocks (x1, ..., xn), where xi ∈ Rdi is the i-th block and

∑n
i=1 di = d. This

optimization problem can be viewed as a potential game between n players. The objective of i-th
player is to minimize the function f(xi, x−i) when other players’ parameters are denoted by x−i.

From a game-theoretic perspective, this is a multi-agent potential game where the potential function
f captures the aggregate impact of all agents’ strategies {xi}ni=1 Monderer & Shapley (1996). Each
agent minimizes f over its variables xi, assuming others’ strategies are fixed. However, privacy
concerns arise as strategies may reveal sensitive information. In decentralized settings, such as
network routing Candogan et al. (2010) or resource allocation (Zhang et al., 2021), agents optimize
independently without full knowledge of f or others’ strategies. Furthermore, convergence to an NE
is not always stable (Carmona, 2013), as gradient descent may diverge.

For a general nonconvex differentiable function f : Rd → R, finding its NE is PPAD-complete
(Daskalakis et al., 2009). A straightforward approach to tackle this problem is to introduce additional
structural assumptions to achieve convergence guarantees. Within this scope, various relaxations of
convexity have been proposed, for example, weak strong convexity (Liu et al., 2014), restricted
secant inequality (Zhang & Yin, 2013), error bound (Cannelli et al., 2020), quadratic growth (Cui
et al., 2017), etc. Recently, there has been a surge of interest in analyzing nonconvex functions
with block structure. Multiple assumptions have been analyzed which is correlated to each block
when other blocks are fixed, for example, PL-strongly-concave (Guo et al., 2023), nonconvex-PL
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(Sanjabi et al., 2018), PL-PL (Daskalakis et al., 2020; Yang et al., 2020; Chen et al., 2022) and
multi-convex (Xu & Yin, 2013; Shen et al., 2017; Wang et al., 2019a; 2022b). For instance, the
multi-convexity assumes the convexity of the function concerning each block (coordinate) when the
remaining blocks are fixed.On the other hand, the other aforementioned conditions are tailored for
objective functions comprising only two blocks. They are particularly defined for min-max type
optimizations rather than minimization tasks.

The nonconvex optimization realm has seen a growing interest in the gradient dominance condition
a.k.a. Polyak-Łojasiewicz (PL) condition. For instance, in analyzing linear quadratic games (Fazel
et al., 2018), matrix decomposition (Li et al., 2018), robust phase retrieval (Sun et al., 2018) and
training neural networks (Hardt & Ma, 2017; Charles & Papailiopoulos, 2018; Liu et al., 2022). This
is due to its ability to enable sharp convergence analysis of both deterministic GD and stochastic GD
algorithms while being satisfied by a wide range of nonconvex functions. More formally, a function
f satisfies the PL condition if there exists a constant µ > 0 such that

∥∇f(x)∥2 ≥ 2µ(f(x)− min
y∈Rd

f(y)),∀x ∈ Rd. (2)

This was first introduced by Polyak (1963); Lojasiewicz (1963), who analyzed the convergence of
the GD algorithm under the PL condition and showed its linear convergence to the global minimum.
This condition can be perceived as a relaxation of strong convexity and as discussed in (Karimi
et al., 2016), it is closely related to conditions such as weak-strong convexity(Necoara et al., 2019),
restricted secant inequality(Zhang & Yin, 2013) and error bound(Luo & Tseng, 1993).

As mentioned, the PL condition has been extended and applied to optimization problems with mul-
tiple coordinates. This extension is analogous to generalizing the concept of convexity (concavity)
to convex-concavity. For instance, the two-sided PL condition was introduced in (Yang et al., 2020)
for analyzing deterministic and stochastic alternating gradient descent ascent (AGDA) in min-max
games. It is noteworthy that most literature requires convexity or PL condition to establish the last-
iterate convergence rate to the NE (Scutari et al., 2010; Sohrabi & Azgomi, 2020; Jordan et al.,
2024). This, however, may not hold even if the objective function is quadratic. A considerable re-
laxation is that the function satisfies strong convexity or PL condition when all variables except one
are fixed. Two natural questions arise:

Can similar results be achieved by extending the two-sided PL condition to accommodate optimiza-
tion problems in the form of equation 1, where the objective comprises n coordinates? And is there
an algorithm to guarantee convergence at a linear rate in such problems?

Furthermore, as highlighted by Lee et al. (2016); Panageas & Piliouras (2016); Ahn et al. (2022),
GD with random initialization almost surely escapes the NE point when it is a strict saddle point.
Also, Xu & Yin (2013; 2017) require the potential function to be lower-bounded to approach the NE
set rather than diverge to infinity. These prompt us to consider the following questions:

Is it possible to ensure the convergence to the NE set even though it only contains strict saddle points
or the function is not lower bounded by using first-order GD-based algorithms?

Motivated by the questions above, we introduce the notion of n-sided PL1 condition (definition 2.6),
which is an extension to the PL condition and shows that it holds in several well-known noncon-
vex problems such as n-player linear quadratic game, linear residual network, etc. It is noteworthy
that unlike the two-sided PL condition, which guarantees to converge to the unique Nash Equilib-
rium (NE) in min-max optimization (Yang et al., 2020; Chen et al., 2022), functions satisfying the
n-sided PL (even 2-side PL) condition may have multiple NE points (see section 2.1 for exam-
ples). However, as we will discuss, the set of stationary points for such functions is equivalent to
their NE points. Moreover, unlike the two-sided PL condition, which ensures linear convergence
of the AGDA algorithm to the NE, the BCD algorithm exhibits varying convergence rates for dif-
ferent functions, all satisfying the n-sided PL condition. Similar behavior has been observed with
multi-convex functions (Xu & Yin, 2017; Wang et al., 2019a). Therefore, additional local or global
conditions are required to characterize the convergence rate under the n-sided PL condition.

In this work, we study the convergence of first-order GD-based algorithms such as the BCD, and pro-
pose different variants of BCD that are more suitable for the class of nonconvex functions satisfying

1We should emphasize that 2-sided PL and two-sided PL are slightly different conditions as the former is
suitable for minx,y f(x, y) while the latter is for minx maxy f(x, y).
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n-sided PL condition. We also introduce additional local conditions under which linear convergence
can be guaranteed and the convergence to NE still holds even only strict saddle points exist.

1.1 RELATED WORK

Block Coordinate Descent and its variants. Block coordinate descent (BCD) is an efficient and
reliable gradient-based method for optimization problems in 1 which has been used extensively for
optimization problems in machine learning (Nesterov, 2012; Allen-Zhu et al., 2016; Zhang & Brand,
2017; Zeng et al., 2019; Nakamura et al., 2021). Numerous existing works have studied the con-
vergence of BCD and its variants for functions. Most of them require the assumptions of convexity,
PL condition, and their extensions (Beck & Tetruashvili, 2013; Hong et al., 2017; Lin et al., 2023;
Chen et al., 2023; Chorobura & Necoara, 2023). For instance, Xu & Yin (2013; 2017) studied the
convergence of BCD for the regularized block multiconvex optimization. They established the last
iterate convergence under Kurdyka-Łojasiewicz which might not hold for many functions globally.
The authors in (Lin et al., 2023) considered the generalized Minty variational problem and applied
cyclic coordinate dual averaging with extrapolation to find its solution. Their algorithm is indepen-
dent of the dimension of the number of coordinates. However, their results rely on assuming the
monotonicity of the operators, which is often hard to satisfy. Cai et al. (2023) considered composite
nonconvex optimization and applied cyclic block coordinate descent with PAGE-type variance re-
duced method. They proved linear and non-asymptotic convergence when the PL condition holds,
which is not valid for functions with multiple local minima.

PL condition in optimization. The PL condition was originally proposed to relax the strong con-
vexity in the minimization problem sufficient for achieving the global convergence for first-order
methods. For example, Karimi et al. (2016) showed that the standard GD algorithm admits a lin-
ear convergence to minimize an L-smooth and µ-PL function. To be specific, in order to find an
ϵ-approximate optimal solution x̂ such that f(x̂) − f⋆ ≤ ϵ, GD requires the computational com-
plexity of the order O(Lµ log 1

ϵ ). Besides this, different proposed methods, such as the heavy ball
method and its accelerated version have been analyzed (Danilova et al., 2020; Wang et al., 2022a).
The authors in (Yue et al., 2023) proved the optimality of GD by showing that any first-order method
requires at least Ω(Lµ log 1

ϵ ) gradient costs to find an ϵ approximation of the optimal solution. Fur-
thermore, many studies focus on the sample complexity when the objective function has a finite-sum
structure, i.e., f(x) = 1

n

∑n
i=1 fi(x), e.g., (Lei et al., 2017; Reddi et al., 2016; Li et al., 2021; Wang

et al., 2019b; Bai et al., 2024).

In addition to the minimization problem, extensions of the PL condition, such as two-sided con-
ditions, have been proposed to provide convergence guarantees to saddle points for gradient-based
algorithms when addressing minimax optimization problems. For example, the two-sided PL holds
when both hy(x) := f(x, y) and hx(y) := −f(x, y) satisfy the PL condition (Yang et al., 2020;
Chen et al., 2022), or one-sided PL condition holds when only hy(x) satisfies the PL condition (Guo
et al., 2023; Yang et al., 2022). Various types of first-order methods have been applied to such prob-
lems, for example, SPIDER-GDA (Chen et al., 2022), AGDA (Yang et al., 2020), Multi-step GDA
(Sanjabi et al., 2018; Nouiehed et al., 2019). For additional information on the sample complexity of
the methods mentioned earlier and their comparisons, see (Chen et al., 2022) and (Bai et al., 2024).

2 n-SIDED PL CONDITION

Notations: Throughout this work, we use ∥ · ∥ to denote the Euclidean norm and the lowercase
letters to denote a column vector. In particular, we use x−i to denote the vector x without its i-th
block, where i ∈ [n] := {1, ..., n}. The partial derivative of f(x) with respect to the variables in
its i-th block is denoted as ∇if(x) :=

∂
∂xi

f(xi, x−i) and the full gradient is denoted as ∇f(x) that
is (∇1f(x), ...,∇nf(x)). The partial second order derivative with respect to the i-th coordinate is
denoted as ∇2

i f(x) :=
∂2

∂2xi
f(xi, x−i). The distance between a point x and a closed set S is given

by dist(x, S) := infs∈S ∥s− x∥. The uniform sampling between a and b is denoted as U(a, b).

2.1 DEFINITIONS AND ASSUMPTIONS

Throughout this paper, we assume the function f(x) : Rd → R belongs to C1, i.e., it is continuously
differentiable. Furthermore, we assume it has a Lipschitz gradient.
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Assumption 2.1 (Smoothness). We assume the L-Lipschitz continuity of the derivative ∇f(x),

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y

where L > 0 is a constant. In this case, f(x) is also called L-smooth.

A slightly weaker assumption is coordinate-wise smoothness given below. Note that under the
Lipschitz gradient assumption, the coordinate-wise smoothness can be deduced.
Assumption 2.2 (Coordinate-wise Smoothness). We assume the coordinate-wise Lc-Lipschitz con-
tinuity of the derivative ∇f(x),

∥∇if(xi, x−i)−∇if(x
′
i, x−i)∥ ≤ Lc∥xi − x′

i∥, ∀xi, x
′
i, x−i,∀i ∈ [n],

where Lc > 0 is a constant. In this case, f(x) is also called a coordinate-wise Lc-smooth function.
Assumption 2.3 (Lower bounded). The function f(x) is lower bounded, i.e. infx∈Rd f(x) > −∞.

We now define two notions of optimality for the minimization problem in eq. (1); Nash Equilibrium
(NE) and Stationary point.
Definition 2.4 (Nash Equilibrium (NE)). Point x⋆ = (x⋆

1, ..., x
⋆
n) is called a Nash Equilibrium of

function f(x) if
f(x⋆

i , x
⋆
−i) ≤ f(xi, x

⋆
−i),∀i ∈ [n],∀xi ∈ Rdi .

We denote the set of all Nash equilibrium points of f(x) by N (f).

The other notion, stationary point, is related to the first-order condition of optimality and also rele-
vant for studying gradient-based algorithms.
Definition 2.5 (ε-Stationary point). Point x̃ = (x̃1, ..., x̃n) is called an ε-stationary point of f(x)
if ∥∇f(x̃)∥ ≤ ε. When ε = 0, the point x̃ is called a stationary point. We denote the set of all
ε-stationary points and the set of all stationary points of f(x) by Sε(f) and S(f), respectively.

For general nonconvex minimization problems, the above two notions are not necessarily equiv-
alent, i.e., a stationary point may not be a NE. Nevertheless, for the remainder of this work, we
assume that the objective function f has at least one NE, i.e., Nf ̸= ∅. We also assume that
argminxi∈Rdi f(xi, x−i) is non-empty for any i ∈ [n] and x−i, i.e., there exists a best response
to every x−i. Note that this is not a limiting assumption given that the function is lower bounded.
Below, we formally introduce the n-sided PL condition for the function f(x).
Definition 2.6 (n-sided PL Condition). We say a function f(x) = f(x1, ..., xn) satisfies n-sided
µ-PL condition if there exists a positive constant µ > 0 such that

∥∇if(xi, x−i)∥2 ≥ 2µ
(
f(xi, x−i)− f⋆

x−i

)
, ∀x ∈ Rd,∀i ∈ [n], (3)

where f⋆
x−i

:= minyi
f(yi, x−i).

We say a function f(x) is n-sided PL, if it satisfies the n-sided µ-PL condition for some µ > 0. It is
worth noting that the n-sided PL condition does not imply convexity or the gradient dominance (PL)
condition. It is an extension to the PL condition, as when f is independent of x−i, i.e., f(xi, x−i) =
ϕ(xi) for some function ϕ satisfying the PL condition, then f satisfies the PL condition. Moreover,
it is considerably weaker than multi-strong convexity.

Next result shows that under the n-sided PL condition, the set of stationary points and the NE set
are equivalent. All proofs are presented in the Appendix C. For instance, the set of stationary points
and the NE set of f0 in Figure 1 is {(−1,−1), (1, 1), (0, 0)}.
Lemma 2.7. If f(x) = f(x1, ..., xn) satisfies the n-sided PL condition, then S(f) = N (f)

It is also important to emphasize that, unlike the n-sided PL, the two-sided PL condition is defined
such that the right-hand side of equation 3 is the difference between the function and its minimum
for one coordinate while for the other coordinate it is the difference between the function and its
maximum. As a consequence, under the two-sided condition, the stationary points are also global
minimax points. However, under the n-sided PL condition in definition 2.6, it is no longer possible
to ensure that the NE are global minimums. In fact, there could be multiple NEs with different
function values. For example, consider the functions f0(x, y) and f(x, y) illustrated in Figure 1. As
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Figure 1: Left is function f0(x, y) = (x − 1)2(y + 1)2 + (x + 1)2(y − 1)2 and right is function
f(x, y) = f0(x, y) + exp(−(y − 1)2).

shown in Appendix B, both functions are 2-sided PL, but their set of NE and the set of minimum
points are not equivalent. In particular, both functions have three NE points while, f0(x, y) has two
global minimums and a saddle point, and f(x, y) has a local, a global minimum, and a saddle point.

Remark 2.8. The n-sided PL condition is defined coordinated-wise, with the coordinates aligned
with the vectors {e1, ..., en}, where ei belongs to Rd, such that the entries corresponding to the i-th
block are one and zero elsewhere. This condition can naturally be extended to n-sided directional
PL in which the i-th inequality is aligned with a designated vector vi. In this extension, the partial
gradient and f∗

x−i
are replaced with their directional variants along vector vi. Note that the results

of this work will remain valid in the directional setting, provided that the definitions of NE and the
presented algorithms are adjusted to their respective directional variants.

3 ALGORITHMS AND CONVERGENCE ANALYSIS

Within this section, our initial focus is on studying the BCD algorithm for finding a stationary point
of equation 1 under the n-sided PL condition. Afterward, we propose different variants of BCD
algorithms that can provably achieve better convergence rates.

The BCD algorithm is a coordinate-wise approach that iteratively improves its current estimate
by updating a selected block coordinate using the first-order partial derivatives until it converges.

Algorithm 1 Cyclic Block Coordinate De-
scent (BCD)

Input: initial point x0 = (x0
1, ..., x

0
n),

learning rates {αt
i}

for t = 1 to n do
for i = 1 to n do

xt
i = xt−1

i − αt
i∇if(x

t
1:i−1, x

t−1
i:n )

end for
end for

It is important to note that BCD algorithms typically
utilize the partial gradient evaluated at the latest es-
timated point to update the selected coordinate. De-
pending on how the coordinates are chosen, various
types of BCD algorithms can be devised. For ex-
ample, coordinates can be selected uniformly at ran-
dom, random BCD, or in a deterministic cyclic se-
quence, progressing one after another. Algorithm
1 presents the cyclic BCD algorithm with learning
rates {αt

i}. Moreover, to update the i-th block at
the t-th iteration, it employs ∇if(x

t
1:i−1, x

t−1
i:n ), where

(xt
1:i−1, x

t−1
i:n ) denotes the latest estimated point and it

is (xt
1, ..., x

t
i−1, x

t−1
i , ..., xt−1

n ). Next result shows that when the iterates of the BCD, {xt} are
bounded, the output converges to the NE set.

Theorem 3.1. Under the assumption 2.2 and assumption 2.3, if f(x) satisfies n-sided PL
condition, the iterates {xt} are bounded and the learning rates αt

i = α ≤ 1
Lc

, then
limt→+∞ dist

(
xt,N (f)

)
= 0.

The above result ensures the convergence of BCD to the NE set, but it does not necessarily indicate
whether the output converges to a point within the NE set. The convergence to a point within the
NE set can be established if further every point in the NE set is isolated, e.g., f0 and f in Figure 1.

Theorem 3.2. Under the assumptions of theorem 3.1, if N (f) is the union of isolated points, i.e.,
there exists η > 0, such that miny,z∈N (f)

y ̸=z

∥y − z∥ ≥ η, then {xt} converges to a point in N (f).

It is noteworthy that, following the results of Lee et al. (2016; 2019); Panageas & Piliouras (2016);
Ahn et al. (2022), when the function is smooth, and the initial points are chosen randomly, the BCD
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algorithm avoids strict saddle points in the NE set almost surely. See the Appendix D for formal
statements and proofs.

Although the above results ensure the convergence of BCD when the function is lower
bounded and also satisfies the n-sided PL, they do not specify the last-iterate convergence
rate. Unlike the two-sided PL condition that leads to linear convergence of AGDA to the
min-max, the n-sided PL condition does not necessarily lead to any specific convergence
rate of the BCD. To demonstrate this phenomena, we consider two 2-sided PL functions:
f1(x, y) = (x + y)2 + exp(−1/(x − y)2) for (x, y) ̸= (0, 0) and zero otherwise and
f2(x, y) = (x + y)2. We applied the BCD algorithm to both these functions with small
enough2 constant learning rates to find their NE points with different random initializations.

Figure 2: The BCD algorithm applied to
functions f1(x, y) and f2(x, y). The y-axis
is in log scale, thus the BCD demonstrates
linear convergence for f2.

As it is illustrated in Figure 2, the BCD converges
linearly for the function f2 while it converges sub-
linearly for f1. This example shows that characteriz-
ing the convergence rate of the BCD3 algorithm under
the n-sided PL condition and the smoothness might
not be feasible and further assumptions on the function
class are required. In what follows, we study one such
assumption that holds for a large class of non-convex
functions and characterize the convergence rate of ran-
dom BCD and GD under this additional assumption.

3.1 CONVERGENCE
UNDER AN ADDITIONAL ASSUMPTION

To introduce our additional assumption, we need to
define a quantity related to function f(x) denoted by
Gf (x) which plays a central role in analyzing the con-
vergence of coordinate-wise algorithms. That is the average of the best responses,

Gf (x) :=
1

n

n∑
i=1

f(x∗
i (x), x−i), (4)

where x∗
i (x) denotes the best response to x−i that is the closest to xi, i.e., x∗

i (x) ∈ argminyi
{∥yi−

xi∥|f(yi, x−i) ≤ f(zi, x−i),∀zi}. It is straightforward to see that f(x) − Gf (x) ≥ 0 for all x.
Moreover, if x∗ ∈ Nf , the best response for every block is x∗. Conversely, if f(x∗)−Gf (x

∗) = 0,
then f(x⋆) = minxi f(xi, x

⋆
−i), ∀i, which implies x⋆ is a NE. As a result, we have

Theorem 3.3. x⋆ is a NE if and only if f(x⋆)−Gf (x
⋆) = 0.

The next result shows that Gf (x) is both differentiable and smooth under the n-sided PL condition.
See appendix C.4 for a proof.
Lemma 3.4. If f(x) satisfies n-sided µ-PL and satisfies assumption 2.1, then ∇Gf (x) exists and it
is L′-Lipschitz, where L′ := L+ L2

µ .

Note that if function f(x) is L-smooth and n-sided µ-PL, then L ≥ µ (see Appendix A). Below, we
introduce an additional assumption on f under which the random BCD algorithm achieves a linear
convergence rate. This is about how the gradients of f and Gf are aligned
Assumption 3.5. For a given set of points {x1, x2, ...}, there exists 0 ≤ κ < 1 such that for all τ ,

⟨∇Gf (x
τ ),∇f(xτ )⟩ ≤ κ∥∇f(xτ )∥2. (5)

For instance, the function f0(x, y) depicted in Figure 1 satisfies this assumption for all points within
{(x, y) : |x| > 0.75, |y| > 0.75}. Note that this set contains both local minimums of f0.
Theorem 3.6. Suppose f(x) is n-sided µ-PL satisfying assumption 2.1 and assumption 3.5 for all
the iterates, then random BCD with αt := α ≤ 2(1−κ)

2L′+(1+κ)L achieves linear convergence rate, i.e.,

E[f(xt+1)−Gf (x
t+1)] ≤

(
1− µα(1− κ)

2

)
E[f(xt)−Gf (x

t)].

2Different learning rates were selected, all less than 1/Lc, where Lc is defined in assumption 2.2.
3Similar behavior was also observed from the GD algorithms for these two functions.
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The expectation is taken over the randomness inherent in the procedure for selecting coordinates.

The GD algorithm, i.e., xt = xt−1 − αt∇f(xt−1) can also achieve similar convergence rate.
Theorem 3.7. Suppose f(x) is n-sided µ-PL and satisfies assumption 2.1 and assumption 3.5 for
all the iterates, then GD with αt := α ≤ 2(1−κ)

2L′+(1+κ)L achieves linear convergence rate, i.e.,

f(xt+1)−Gf (x
t+1) ≤

(
1− nµα(1− κ)

2

)
(f(xt)−Gf (x

t)).

Applying the Cauchy-Schwarz inequality, it is straightforward to see that a stronger assumption than
assumption 3.5 is that there exists 0 ≤ κ < 1, such that ∥∇Gf (x

t)∥ ≤ κ∥∇f(xt)∥. On the other
hand, the following result shows that ∥∇Gf∥ is always bounded from above by ∥∇f∥ for n-sided
PL function f , but with a constant greater than one. Thus, for instance, if the function f is such that
this constant is less than one for the iterates of the random BCD algorithm, then linear convergence
can be guaranteed by theorem 3.6. This is indeed the case for functions such as f0 and the linear
residual network problem (see Section 4). Moreover, as we showed in Appendix F, there exists a
neighborhood around every isolated local minimum of smooth functions such that, on average, the
condition in equation 5 holds for all iterates of the GD dynamics.

Lemma 3.8. For an n-sided µ-PL function f(x) satisfying assumption 2.1, let Cf := L√
nµ

+1, then
∥∇Gf (x)∥ ≤ Cf∥∇f(x)∥, for all x.

3.2 CONVERGENCE WITH THE EXACT BEST RESPONSES BUT WITHOUT ADDITIONAL
ASSUMPTION

Herein, we study the setting in which assumption 3.5 does not hold. As we discussed earlier, in
this setting, the BCD and GD algorithms may demonstrate different convergence rates. Thus, our
objective in the remainder of this section is to develop variants of the random BCD and GD algo-
rithms so that close to linear convergence is still achievable. We accomplish this objective, first by
designing algorithms equipped with the knowledge of the best responses, {x∗

i (x
t)}, at each iteration

t. More precisely, we initially propose algorithms that presume access to the exact values of the best
responses at each iteration. Subsequently, we refine this assumption by integrating a sub-routine into
the proposed algorithms capable of approximating the best responses. For the sake of simplicity and
space, we describe our block coordinate variants here and the GD variants and their convergence
analysis are presented in the Appendix G. To present our theoretical result, we need the following
definition.

Definition 3.9 ((θ, ν)-PŁ condition). The function f with minx f(x) = 0 satisfies (θ, ν)-PL condi-
tion iff there exists θ ∈ [1, 2) and ν > 0 such that ∥∇f(x)∥θ ≥ (2ν)θ/2f(x).

It has been proved by Lojasiewicz (1963) that for any C1 analytic function, there exists a neighbor-
hood U around the minimizer where (θ, ν)-PL condition is satisfied.

Algorithm 2 presents the steps of our modified version of the random BCD. In this algorithm, instead
of updating along the direction of −∇itf(x), where it denotes the chosen coordinate at iteration t,
a linear combination of ∇itf(x) and ∇itGf (x) is used to refine the updating directions. The coeffi-
cient of this linear combination, kt, is adaptively selected based on the current estimated point. It is
important to mention that ∇Gf (x) can be computed using the gradient of f and the best responses.

∇Gf (x) =
1

n

n∑
i=1

∇f
(
x∗
i (x), x−i

)
. (6)

Theorem 3.10. For n-sided µ-PL function f(x) satisfying assumption 2.1, by applying algorithm 2,

• in Case 1 with α≤ 2(1−γ)
2L′+(1+γ)L , we have E[f(xt+1)−Gf (x

t+1)|xt]≤
(
1− µα(1−γ)

2

)
(f(xt)−Gf (x

t)),

• in Case 2 with α ≤ min{ 1
2(L+L′) ,

C
2(L+L′)}, we have

E[f(xt+1)−Gf (x
t+1)|xt] ≤

(
1− (L+ L′)µα2

2

)
(f(xt)−Gf (x

t)),

7
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Algorithm 2 Ideal Adaptive Randomized Block Coordinate Descent (IA-RBCD)
Input: initial point x0 = (x0

1, ..., x
0
n), T , learning rates α, 0 ≤ γ < 1 and C > 0

for t = 0 to T − 1 do
sample it uniformly from {1, 2, ..., n}
if ⟨∇Gf (x

t),∇f(xt)⟩ ≤ γ∥∇f(xt)∥2 then
kt = 0 :Case 1:

else if (∥∇Gf (x
t)∥2−⟨∇f(xt),∇G(xt)⟩)2

⟨∇f(xt),∇G(xt)⟩2 > C then

kt = −2 +
⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2 :Case 2:

else
kt = −1 :Case 3:

end if
xt+1
it = xt

it − α(∇itf(x
t) + kt∇itGf (x

t)), xt+1
i = xt

i if i ̸= it

end for

• in Case 3 with α ≤ 1
L+L′ , f −Gf is non-increasing. Furthermore, if f −Gf satisfies (θ, ν)-PL condition

and case 3 are satisfied from iterates t to t+ k, we have

E[f(xt+k)−Gf (x
t+k)|xt] ≤ O

(f(xt)−Gf (x
t)

k
θ

2−θ

)
.

The exact constant terms are provided in the proof.

According to this result, IA-RBCD in 2 demonstrates linear convergence for two out of three cases.
When the third case occurs finitely many times, for instance, if there exists a neighborhood around
an isolated NE point such that the third case does not occur (e.g., function f0 in Figure 1), then
linear converge is guaranteed by IA-RBCD. Since rigorously verifying these cases is intractable, we
empirically verify them for different well-known problems in the next section.

It is crucial to highlight that BCD requires assumption 2.3 to converge to the NE (Xu & Yin, 2013)
and almost surely avoids strict saddle points (Lee et al., 2016). However, theorem 3.10 shows that
under the specified assumptions, IA-RBCD converges to the NE irrespective of these conditions.

3.3 CONVERGENCE WITH APPROXIMATED BEST RESPONSES AND WITHOUT ADDITIONAL
ASSUMPTION

Evaluating Gf at a given point requires the knowledge of the best responses at that point. Of-
ten, these best responses are not known a priori and they have to be computed at each iteration.
Fortunately, since in our study, f(x) satisfies the n-sided PL condition, the best responses can be
efficiently approximated, by applying GD algorithm with the partial gradients as a sub-routine. Al-
gorithm 4 presents the steps of this sub-routine and Algorithm 3 shows the steps of our adaptive
random BCD algorithm. The main difference between algorithms 2 and 3 is that at every iteration,
A-RBCD approximates the best response function by gradient descent. This is efficient as it con-
verges to the Gf at a linear rate. And interestingly, the number of steps for approximating Gf (x),
T ′, only depends on the function parameters and it is independent of the final precision of f −Gf .
Theorem 3.11. For an n-sided µ-PL function f(x) satisfying assumption 2.1, by implementing
algorithm 3 with β ≤ 1

L and T ′ ≥ log
(
169nL2

µ2γ2α6

)
/ log( 1

1−µβ ),

• in Case 1 with α≤ 2(1−γ)
2L′+(1+γ)L , we have E[f(xt+1)−Gf (x

t+1)|xt]≤
(
1− µα(1−γ)

2

)
(f(xt)−Gf (x

t)),

• in Case 2 with α ≤ min
{

1√
Cf

, ( 3Cγ
(13+12γ)Cf

)1/2, 71Cγ2

676(L+L′) ,
3γ(L+L′)µ

(13+108γ)LC4
f
, 1

2(L+L′)

}
, we have

E[f(xt+1)−Gf (x
t+1)|xt] ≤

(
1− (L+ L′)µα2

4

)
(f(xt)−Gf (x

t)).

• in Case 3 with α≤min
{

1
L+L′ , (

13
12(1+Cf )

)1/3
∥∇f(xt)−∇Gf (x

t)∥
∥∇f(xt)∥

}
, f−Gf is non-increasing. Fur-

thermore, if f−Gf satisfies (θ, ν)-PL condition and case 3 occurs from iterates t to t+ k, then

E[f(xt+k)−Gf (x
t+k)|xt] ≤ O

(f(xt)−Gf (x
t)

k
θ

2−θ

)

8
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Algorithm 3 Adaptive randomized Block Coordinate Descent (A-RBCD)
Input: initial point x0 = (x0

1, ..., x
0
n), T, T

′, learning rates α, β, 0 < γ < 1 and C > 0
for t = 0 to T − 1 do

sample it uniformly from {1, 2, ..., n}
yt,T

′
=ABR(xt, T ′, β) :Algorithm 4

compute ∇̃Gf (x
t) = 1

n

∑n
l=1 ∇f(yt,T

′

l , xt
−l)

if ⟨∇̃Gf (x
t),∇f(xt)⟩ ≤ (γ − γ

α3
t

13 )∥∇f(xt)∥2 then
k̃t = 0 :Case 1:

else if (∥∇̃Gf (x
t)∥2−⟨∇f(xt),∇̃Gf (x

t)⟩)2

∥∇̃Gf (xt)∥4
> C then

k̃t = −2 +
⟨∇f(xt),∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

:Case 2:

else
k̃t = −1 :Case 3:

end if
xt+1
it = xt

it − α(∇itf(x
t) + k̃t∇̃itGf (x

t)), xt+1
i = xt

i, if i ̸= it

end for

(a) (b)

Figure 3: (a) Performance of A-RBCD (blue) and BCD (red) on function f(x, y) shown in (b).

4 APPLICATIONS

Herein, we discuss two well-known nonconvex problems that satisfy the n-sided PL condition.

Function with only strict saddle point: We consider the quadratic function f(x, y) = (x− 1)2 +
4(x+ 0.1 cos(x))y + (y + 0.1 sin(y))2. The problem aims at finding the NE (x⋆, y⋆), i.e.,

f(x⋆, y⋆) ≤ f(x, y⋆),∀x, f(x⋆, y⋆) ≤ f(x⋆, y),∀y. (7)

Figure 3 represents the convergence results of A-RBCD and BCD with 100 random initialization.
The iterates of A-RBCD always converge to the NE at a linear rate while BCD diverges. Note that
the NE is a strict saddle point.

Linear Residual Network: It aims at learning linear transformation R : Rd → Rd, such that
y = Rx + ξ, where ξ ∼ N (0, Id) and Id denotes the identity matrix of dimension d. The learned
model can be parameterized by a sequence of weight matrices A1, ..., An ∈ Rd×d, such that h0 = x,
hj = (I +Aj)hj−1, ŷ = hn. Thus, the objective function of this problem is given by

f(A1, ..., An) := E[∥ŷ − y∥2] = E
[
∥(I +An)...(I +A1)x−Rx− ξ∥2

]
.

Even though (I +An) · · · (I +A1) is a linear map, the optimization problem over the factored vari-
ables (A1, ..., An) is non-convex (Hardt & Ma, 2017). More precisely, we considered two settings:
(1) d = 3, n = 5 and (2) d = 5, n = 10 with covariance matrices Σ = E[xxT ] = Id, and applied the
A-RBCD algorithm to both settings. Figure 4 illustrates the resulting error curves on a log-scaled
y-axis, obtained from 100 trials. Each trial is obtained by randomly selecting the diagonals of matrix
R according to U(0.5, 1.5) and initializing Ais with random entries according to U(−0.1, 0.1).

Infinite Horizon n-player Linear-quadratic (LQR) Game: The objective function of this game
can be formulated as

Ex0∼D
[ +∞∑

t=0

[(xt)TQxt +

n∑
i=1

((ut
i)

TRiu
t
i]
]
,

9
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(a) n = 5, d = 3 (b) n = 10, d = 5

Figure 4: The performance of the A-RBCD and RBCD on linear residual network problems for
different network sizes illustrates linear convergence, as advocated by theorem 3.6.

where xt denotes the state, ut
i is the input of i-th player at time t, and i ∈ [n]. The state transition of

the system is characterized by xt+1 = Axt +
∑n

i=1 Biu
t
i, where A ∈ Rk×k and B ∈ Rk×d. When

players apply linear feedback strategy, i.e., ut
i = −Kix

t,, the objective function becomes

f(Ki,K−i) = Ex0∼D
[ +∞∑

t=0

[(xt)TQxt +

n∑
i=1

((Kix
t
i)

TRiKix
t
i]
]
.

If Kis are bounded and Σ0 = Ex0∼D[x
0(x0)T ] is full rank, the objective function f satisfies the

n-sided PL condition (see appendix E.1 for a proof). However, as it is discussed in Fazel et al.
(2018), even the objective of one-player LQR is not convex. Subsequently, the objective function of
the n-player LQR game is not multi-convex. See appendix E.2 for examples.

We applied our A-RBCD algorithm to this problem when A ∈ R, Bi ∈ R1×d and the entries of
Bi, Q and the diagonal entries of Ri were sampled according to 1

ndU(0, 1), U(0, 1) and U(0, 1),
respectively. We set the learning rate α= 0.05 and random initialization Ki∼U(0, 1)d for all i. Fig.
5 demonstrates the resulting error curve, f(Kt)−Gf (K

t), and ρ :=
⟨∇f(Kt),∇Gf (K

t)⟩
∥∇f(Kt)∥2 . This shows

that during the updating procedure, the third case did not occur. Plots are obtained from 50 trials.

(a) n = 5, d = 3 (b) n = 10, d = 5 (c) n = 20, d = 10 (d) ρ

Figure 5: The performance of the A-RBCD and RBCD on n-player LQR for different game sizes.
The y-axis of (a)-(c) are in the log scale.

5 CONCLUSION

In this paper, we identified a subclass of nonconvex functions called n-sided PL functions and stud-
ied the convergence of GD-based algorithms, particularly the BCD algorithm, for finding their NEs.
The n-sided PL condition is a reasonable extension of the gradient dominance condition, which
holds in various problems. We showed that the convergence rate of such first-order algorithms in
this subclass of functions depends on a local relation between the function f and the average of
the best responses Gf . Subsequently, we proposed two novel algorithms, IA-RBCD and A-RBCD,
equipped with Gf , that provably converge to the NE set almost surely with random initialization
even if the function is not lower bounded and has strict saddle points. We hope this work can shed
some light on the understanding of nonconvex optimization.

10
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6 REPRODUCIBILITY STATEMENT

We affirm that all the result from this paper are reproducible. The detailed proof of lemma and theo-
rem are given in the appendix. The source code for the applications section is in the supplementary
materials.
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abilistic gradient estimator for nonconvex optimization. In International conference on machine
learning, pp. 6286–6295. PMLR, 2021.

Cheuk Yin Lin, Chaobing Song, and Jelena Diakonikolas. Accelerated cyclic coordinate dual av-
eraging with extrapolation for composite convex optimization. In International Conference on
Machine Learning, pp. 21101–21126. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.
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Appendix

A TECHNICAL LEMMAS

Lemma A.1. Karimi et al. (2016). If f(·) is l-smooth and it satisfies PL with constant µ, then it
also satisfies error bound (EB) condition with µ, i.e.

∥∇f(x)∥ ≥ µ∥xp − x∥,∀x,
where xp is the projection of x onto the optimal set, also it satisfies quadratic growth (QG) condition
with µ, i.e.

f(x)−min
y

f(y) ≥ µ

2
∥xp − x∥2,∀x.

Conversely, if f(·) is l-smooth and satisfies EB with constant µ, then it satisfies PL with constant µ
l .

Lemma A.2. If f(·) is L-smooth and it satisfies n-sided µ-PL condition, then L ≥ µ.

Proof. From L-smoothness, we have

∥∇if(xi, x−i)−∇if(yi, x−i)∥ ≤ ∥∇f(xi, x−i)−∇f(yi, x−i)∥ ≤ L∥xi − yi∥,∀xi, yi.

It indicates,

f(yi, x−i)− f(xi, x−i) ≤ ⟨∇if(xi, x−i), yi − xi⟩+
L

2
||xi − yi||2.

Let yi = xi −∇if(xi, x−i)/L. This leads to

f(x)− f(x∗
i (x−i), x−i) ≥

1

2L
||∇if(x)||2.

On the other hand, from the n-side PL, we get

f(x)− f(x∗
i (x−i), x−i) ≤

1

2µ
||∇if(x)||2.

Putting the above inequalities together concludes the result.

Lemma A.3. If f(·) is L-smooth and it satisfies n-sided µ-PL condition, then

1

2nL
∥∇f(x)∥2 ≤ f(x)−Gf (x) ≤

1

2nµ
∥∇f(x)∥2.

Proof. This is a direct corollary from the last two inequalities of lemma A.2.

B EXAMPLES AND APPLICATION

B.1 FUNCTION f1(x, y) = (x− 1)2(y + 1)2 + (x+ 1)2(y − 1)2

Due to symmetry, we only show the condition for the first coordinate.

∇xf1(x, y) = 2(x− 1)(y + 1)2 + 2(x+ 1)(y − 1)2 = 4x(y2 + 1)− 8y,

f∗
y = 2(y2 − 1)2/(y2 + 1),

Gf1(x, y) =
(x2 − 1)2

x2 + 1
+

(y2 − 1)2

y2 + 1
,

∇Gf1(x, y) =
(2x (x2 − 1

) (
x2 + 3

)
(x2 + 1)

2 ,
2y

(
y2 − 1

) (
y2 + 3

)
(y2 + 1)

2

)
Thus, the 2-sided PL holds iff ∃µ > 0, s.t. for all x and y

2
(
(x− 1)(y + 1)2 + (x+ 1)(y − 1)2

)2

− µ
(
(x− 1)2(y + 1)2 + (x+ 1)2(y − 1)2 − 2

(y2 − 1)2

y2 + 1

)
≥ 0.
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The left-hand side is a quadratic equation with respect to x and for µ = 2, it is(
(y + 1)2 + (y − 1)2 − 1

)(
x2

(
(y + 1)2 + (y − 1)2

)
− 2x

(
(y + 1)2 − (y − 1)2

))
+
(
(y + 1)2 + (y − 1)2 − 1

)(
(y + 1)2 + (y − 1)2 − 4

(y − 1)2(y + 1)2

(y − 1)2 + (y + 1)2

)
.

The above expression is positive for all x and y.

Analysis of the origin: Although, the origin point is a stationary point of f1 since the Hessian at
this point is not positive semi-definite, it is not a local minimum. However, it is straightforward to
see that (0, 0) is in fact a NE of f1(x, y). Note that the Hessian at the origin is

Hf (0, 0) =

[
4 −8
−8 4

]
̸⪰ 0.

B.2 FUNCTION f2(x, y) = (x− 1)2(y + 1)2 + (x+ 1)2(y − 1)2 + exp−(y − 1)2

For this function, we have

∇xf2(x, y) = 2(x− 1)(y + 1)2 + 2(x+ 1)(y − 1)2,

∇yf2(x, y) = 2(y − 1)(x+ 1)2 + 2(y + 1)(x− 1)2 − 2(y − 1) exp(−(y − 1)2).

and

∇2
xf2(x, y) = 2(y + 1)2 + 2(y − 1)2 ≥ 4,

∇2
yf2(x, y) = 2(x+ 1)2 + 2(x− 1)2 + 4(y − 1)2 exp(−(y − 1)2)− 2 exp(−(y − 1)2) ≥ 2.

It is straightforward to see that this function is smooth as the second-order derivatives are upper-
bounded. Moreover, since both the second-order derivatives are strictly positive, then it is 2-sided
PL. It is noteworthy that (0, 0) is also an NE for this function but it is not a local minimum as the
Hessian at the origin is not positive semi-definite.

B.3 FUNCTION f(x, y) = x2 + 4y2 + 3 sin2 y + 4 sin2 x sin2 y

We can derive that argminx f(x, y) = 0 and argminy f(x, y) = 0. Then compute the gradients:

∇xf(x, y) = 2x+ 3 sin(2x) sin2(y),

∇xf(x, y) = 8y + 3 sin(2y) + 4 sin2(x) sin(2y).

and
|∇2

xf(x, y)| = |2 + 6 cos(2x) sin2(y)| ≤ 8,

|∇2
yf(x, y)| = |8 + 6 cos(2y) + 8 sin2(x) cos(2y)| ≤ 22.

so f(·, y) is L1-smooth with L1 = 8 and f(x, ·) is L2-smooth with L2 = 22. Then note that

|∇xf(x, y)|
|x− x⋆(y)|

=
|∇xf(x, y)|

|x|
=

|2x+ 3 sin(2x) sin2(y)|
|x|

≥ 1

2
,

|∇xf(x, y)|
|x− x⋆(y)|

=
|∇yf(x, y)|

|y|
=

|8y + 3 sin(2y) + 4 sin2(x) sin(2y)|
|y|

≥ 9

2
.

So f(·, y) satisfies EB with µEB1 = 1
2 and f(x, ·) satisfies EB with µEB2 = 9

2 . By Lemma
lemma A.1, we have f(·, y) satisfies PL with µ1 = 1

16 and f(x, ·) satisfies PL with µ2 = 9
44 .

Moreover, this function satisfies Assumption 3.5 as it is shown in Figure 6. Since Gf is not straight-
forward to compute for this function, we applied the A-RBCD algorithm, and the error is presented
in Figure 6.
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(a) Convergence of RBCD for f(x, y) (b) The ratio
⟨∇Gf (x),∇f(x)⟩/∥∇f(x)∥2

Figure 6: Result of applying random BCD to the f(x, y) = x2 + 4y2 + 3 sin2 y + 4 sin2 x sin2 y.
Right shows that the ratio is less than one for all points around (0,0), i.e., Assumption 3.5 holds true
for this function, and thus by Theorem 3.6, random BCD converges linearly as it is also shown in
the left plot.

Algorithm 4 Approximating Best Responses (ABR)
Input: Point x = (x1, ..., xn), positive number β and T ′

for j = 1, ..., n do
y0j = xj

for τ = 0, ..., T ′ − 1 do
yτ+1
j = yτj − β∇jf(y

τ
j , x−j)

end for
end for
Output: yT

′
= (yT

′

1 , ..., yT
′

n )

C TECHNICAL PROOFS

C.1 PROOF OF LEMMA 2.7

Stationary point =⇒ Nash Equilibrium: If a point x satisfies ∇f(x) = 0, then the partial derivative
∇xi

f(x) = 0, ∀i ∈ [n]. From the definition of n-sided PL and f⋆
x−i

, we have

0 = ∇if(x) ≥ 2µ(f(xi, x−i)− f⋆
x−i

) ≥ 0,∀i ∈ [n],

=⇒ f(xi, x−i) = f⋆
x−i

= min
yi

f(yi, x−i),∀i ∈ [n],

=⇒ f(xi, x−i) ≤ f(x̃i, x−i),∀x̃i,∀i ∈ [n],

which means x satisfies the definition of Nash Equilibrium.

If f is differentiable, then Nash Equilibrium =⇒ Stationary point: If a point x is a Nash Equilibrium,
then f(xi, x−i) ≤ f(x̃i, x−i),∀x̃i,∀i ∈ [n]. Based on the first order optimality condition, we have

∇if(xi, x−i) = 0,∀i ∈ [n],

which indicates ∇f(x) = 0.
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C.2 PROOF OF THEOREM 3.1

From the Lipschitz gradient assumption, if α ≤ 1
Lc

, we have

f(xt
1:i, x

t−1
i+1:n)− f(xt

1:i−1, x
t−1
i:n ) ≤ ⟨∇if(x

t
1:i−1, x

t−1
i:n ), xt

i − xt−1
i ⟩+ Lc

2
∥xt

i − xt−1
i ∥2,

= −(α− α2L2
c

2
)∥xt

i − xt−1
i ∥2,

≤ −α

2
∥∇if(x

t
1:i−1, x

t−1
i:n )∥2.

In consequence,

f(xt
1:i−1, x

t−1
i:n )− f(xt

1:i, x
t−1
i+1:n) ≥

α

2
∥∇if(x

t
1:i−1, x

t−1
i:n )∥2 =

αL2
c

2
∥xt−1

i − xt
i∥2. (8)

where the second inequality comes from the quadratic growth of the PL function and the third
inequality comes from the Lipschitzness of the gradient. By iterating over all blocks, we have

f(xt−1)− f(xt) =

n∑
i=1

f(xt
1:i−1, x

t−1
i:n )− f(xt

1:i, x
t−1
i+1:n)

≥
n∑

i=1

αL2
c

2
∥xt−1

i − xt
i∥2 =

αL2
c

2
∥xt−1 − xt∥2,

(9)

where xt = {xt
1, ..., x

t
n}. By iterating overall outer loops, we have

f(x0)− f(xT ) =

T∑
t=1

f(xt−1)− f(xt) ≥ αL2
c

2

T∑
t=1

∥xt−1 − xt∥2.

Since f(x) is lower bounded by f̄ = infx f(x), we have

T∑
t=1

∥xt−1 − xt∥2 ≤ αL2
c

2
(f(x0)− f(xT )) ≤ αL2

c

2
(f(x0)− f̄) < +∞. (10)

Since the sequence {xt}∞0 is bounded, there exists at least a limit point. For every limit point x̄, we
denotes {xkt} as its corresponding subsequence such that limt→+∞ xkt

= x̄. From eq. (10), we
have limt→+∞ ∥xt−1 − xt∥ = 0. As a result, the subsequence {xkt+1} also converge to x̄. From
the block coordinate gradient descent, we know that

xkt+1
i = xkt

i − α∇if(x
kt+1
1:i−1, x

kt

i:n),∀i ∈ [n],∀t.

As t → +∞, xkt+1
i → x̄i and xkt

i → x̄i. We have

x̄i = x̄i − α∇xi
f(x̄),∀i ∈ [n],=⇒ ∇if(x̄) = 0,∀i ∈ [n].

It implies x̄ is a stationary point. From Lemma 2.7, it also implies that x̄ is a Nash Equilibrium. As
a result, every limit point of {xt} is also a Nash Equilibrium as long as {xt} is bounded.

If we assume that {xt} doesn’t converge to Nash Equilibrium, then there exists a positive constant ϵ
a subsequence such that dist(xkt

,N (f)) ≥ ϵ, ∀t. Since this subsequence is also bounded, then this
subsequence must have a limit point x̄ ∈ N (f), which is a contradiction.

C.3 PROOF OF COROLLARY 3.2

Since dist(xt,N ) → 0, there exists an integer T1 > 0 such that xt ∈ B(N , η
3 ), ∀t ≥ T1, where

B(N , η
3 ) = {x|miny∈N ∥x− y∥ < η

3}. From theorem 3.1, we know that limt→+∞ ∥xt−xt+1∥ =

0. As a result, there exists an integer T2 > 0 such that ∥xt − xt+1∥ < η
3 , ∀t ≥ T2.
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We denote T = max{T1, T2} and assume ∥xT − x̄∥ ≤ η
3 , where x̄ ∈ N . Notice that x̄ is a unique

point at every time t, because

∥xt − y∥ ≥ ∥x̄− y∥ − ∥xt − x̄∥ > η − η

3
=

2η

3
>

η

3
,

for any y ∈ N and y ̸= x̄. Then,

∥xt+1 − x̄∥ ≤ ∥xt+1 − xt∥+ ∥xt − x̄∥ <
2η

3
.

For any y ∈ N and y ̸= x̄, we have

∥xt+1 − y∥ ≥ ∥x̄− y∥ − ∥xt+1 − x̄∥ > η − 2η

3
=

η

3
.

So we always have ∥xt − x̄∥ ≤ η
3 for all t ≥ T as we have xt ∈ B(N , η

3 ). We conclude that {xt}
converge to the unique point x̄ as dist(xt,N ) → 0.

C.4 PROOF OF LEMMA 3.4

Based on the Lipschitzness of the ∇f , we have that

∥∇if(x
⋆
i (y), x−i)∥ = ∥∇if(x

⋆
i (y), x−i)−∇if(x

⋆
i (y), y−i)∥ ≤ L∥x−i − y−i∥.

Also, from n-sided PL condition and lemma A.1,

∥∇if(x
⋆
i (y), x−i)∥ ≥ µ∥x⋆

i (y)− x⋆
i (x

⋆
i (y), x−i)∥.

From these two inequalities, we know that

∥x⋆
i (y)− x⋆

i (x
⋆
i (y), x−i)∥ ≤ L

µ
∥x−i − y−i∥.

Then, we can show the smoothness of gi(x−i) := minxi f(xi, x−i).

∥∇gi(x−i)−∇gi(y−i)∥ = ∥∇−if(x
⋆
i (x

⋆
i (y), x−i), x−i)−∇−if(x

⋆
i (y), y−i)∥,

= ∥∇f(x⋆
i (x

⋆
i (y), x−i), x−i)−∇f(x⋆

i (y), y−i)∥,
≤ ∥∇f(x⋆

i (x
⋆
i (y), x−i), x−i)−∇f(x⋆

i (x
⋆
i (y), x−i), y−i)∥,

+ ∥∇f(x⋆
i (x

⋆
i (y), x−i), y−i)−∇f(x⋆

i (y), y−i)∥,
≤ L∥x−i − y−i∥+ L∥x⋆

i (y)− x⋆
i (x

⋆
i (y), x−i)∥,

≤
(
L+

L2

µ

)
∥x−i − y−i∥.

The first equality is due to Lemma A.5 in Nouiehed et al. (2019). This leads to

∥∇Gf (x)−∇Gf (y)∥ = ∥∇ 1

n

n∑
i=1

gi(x−i)−∇ 1

n

n∑
i=1

gi(y−i)∥

≤ 1

n

n∑
i=1

∥∇gi(x−i)−∇gi(y−i)∥

≤ 1

n

n∑
i=1

(
L+

L2

µ

)
∥x−i − y−i∥ ≤

(
L+

L2

µ

)
∥x− y∥.
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C.5 PROOF OF THEOREM 3.6

From the n-sided PL condition and by noticing that L-smoothness indicates the L-coordinate-wise
smoothness, for α ≤ 1

L , we get

f(xt+1)− f(xt) ≤ ⟨∇itf(x
t), xt+1

it − xt
it⟩+

L

2
∥xt+1

it − xt
it∥2,

= −(α− L2α

2
)∥∇if(x

t)∥2,

≤ −α

2
∥∇if(x

t)∥2,

≤ −µα(f(xt)−min
yit

f(yit , x
t
−it)).

=⇒ f(xt+1)−min
yit

f(yit , x
t
−it) ≤ (1− µα)(f(xt)−min

yit

f(yit , x
t
−it)).

By taking the conditional expectation over it, we get

E[f(xt+1)−min
yit

f(yit , x
t
−it)|xt] ≤ (1− µα)E[f(xt)−min

yit

f(yit , x
t
−it)|xt].

Then by rearranging terms, we have,

E[f(xt+1)− min
yit+1

f(yit+1 , xt+1
−it+1)|xt]

≤ (1− µα)E[f(xt)−min
yit

f(yit , x
t
−it)|xt] + E[min

yit

f(yit , x
t
−it)− min

yit+1

f(yit+1 , xt+1
−it+1)|xt].

This is equivalent to say

E[f(xt+1)−Gf (x
t+1)|xt] ≤ (1− µα)(f(xt)−Gf (x

t)) + E[Gf (x
t)−Gf (x

t+1)|xt].

From lemma 3.4, we know Gf (x) has L′ = L+ L2

µ -Lipschitz gradient.

E[Gf (x
t)−Gf (x

t+1)|xt] ≤ E[−⟨∇itGf (x
t), xt+1

it − xt
it⟩+

L′

2
∥xt+1

it − xt
it∥2|xt]

= E[α⟨∇itGf (x
t),∇itf(x

t)⟩+ α2L′

2
∥∇itf(x

t)∥2|xt]

=
1

n

(
α⟨∇Gf (x

t),∇f(xt)⟩+ α2L′

2
∥∇f(xt)∥2

)
.

And

E[f(xt)− f(xt+1)] ≥ E[−⟨∇itf(x
t), xt+1

it − xt
it⟩ −

L

2
∥xt+1

it − xt
it∥2|xt]

= E[α∥∇itf(x
t)∥2 − α2L

2
∥∇itf(x

t)∥2|xt]

=
1

n

(
α∥∇f(xt)∥2 − α2L

2
∥∇f(xt)∥2

)
.

If ⟨∇Gf (x
t),∇f(xt)⟩ ≤ κ∥∇f(xt)∥2, then by choosing α ≤ 2(1−κ)

2L′+(1+κ)L , we have

E[Gf (x
t)−Gf (x

t+1)|xt] ≤ 1

n
(α⟨∇Gf (x

t),∇f(xt)⟩+ α2L′

2
∥∇f(xt)∥2)

≤ 1 + κ

2n

(
α∥∇f(xt)∥2 − α2L

2
∥∇f(xt)∥2

)
≤ 1 + κ

2
E[f(xt)− f(xt+1)|xt] = κ̃E[f(xt)− f(xt+1)|xt],

where κ̃ = 1+κ
2 . As a result,

E[f(xt+1)−Gf (x
t+1)|xt] ≤(1− µα)(f(xt)−Gf (x

t)) + κ̃E[f(xt)− f(xt+1)|xt].
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To write it differently,

(1 + κ̃)E[f(xt+1)−Gf (x
t+1)|xt]

≤(1− µα)(f(xt)−Gf (x
t)) + κ̃E[Gf (x

t)−Gf (x
t+1)|xt] + κ̃E[f(xt)−Gf (x

t)|xt]

=(1− µα+ κ̃)(f(xt)−Gf (x
t)) + κ̃E[Gf (x

t)−Gf (x
t+1)|xt]

≤(1− µα+ κ̃)(f(xt)−Gf (x
t)) + κ̃2E[f(xt)− f(xt+1)|xt].

By iterating over this process,

1

1− κ̃
E[f(xt+1)−Gf (x

t+1)|xt] ≤
(

1

1− κ̃
− µα

)
(f(xt)−Gf (x

t)),

=⇒ E[f(xt+1)−Gf (x
t+1)|xt] ≤ (1− µα(1− κ̃))(f(xt)−Gf (x

t)),

=

(
1− µα(1− κ)

2

)
(f(xt)−Gf (x

t)).

C.6 PROOF OF THEOREM 3.7

From the PL condition, the smoothness assumption and α ≤ 1/L, we get

f(xt+1) ≤ f(xt)− α

2
∥∇f(xt)∥2

≤ f(xt)− nµα(f(xt)−Gf (x
t)).

=⇒ f(xt+1)−Gf (x
t) ≤ (1− nµα)(f(xt)−Gf (x

t)).

This is equivalent to say

f(xt+1)−Gf (x
t+1) ≤ (1− nµα)(f(xt)−Gf (x

t)) +Gf (x
t)−Gf (x

t+1).

From lemma 3.4, we know Gf (x) has L′ = L+ L2

µ -Lipschitz gradient.

Gf (x
t)−Gf (x

t+1) ≤ −⟨∇Gf (x
t), xt+1 − xt⟩+ L′

2
∥xt+1 − xt∥2,

= α⟨∇Gf (x
t),∇f(xt)⟩+ α2L′

2
∥∇f(xt)∥2.

And
f(xt)− f(xt+1) ≥ −⟨∇f(xt), xt+1 − xt⟩ − L

2
∥xt+1 − xt∥2

= α∥∇f(xt)∥2 − α2L

2
∥∇f(xt)∥2

If ⟨∇Gf (x
t),∇f(xt)⟩ ≤ κ∥∇f(xt)∥2, then by choosing α ≤ 2(1−κ)

2L′+(1+κ)L , we have

Gf (x
t)−Gf (x

t+1) ≤ α⟨∇Gf (x
t),∇f(xt)⟩+ α2L′

2
∥∇f(xt)∥2,

≤ ακ∥∇f(xt)∥2 + α2L′

2
∥∇f(xt)∥2,

≤ 1 + κ

2

(
α∥∇f(xt)∥2 − α2L

2
∥∇f(xt)∥2

)
,

= κ̃(f(xt)− f(xt+1))

where κ̃ = 1+κ
2 . As a result,

f(xt+1)−Gf (x
t+1) ≤ (1− nµα)(f(xt)−Gf (x

t)) + κ̃(f(xt)− f(xt+1))

To write it differently,

(1 + κ̃)(f(xt+1)−Gf (x
t+1)) ≤ (1− nµα+ κ̃)(f(xt)−Gf (x

t)) + κ̃(Gf (x
t)−Gf (x

t+1))

≤ (1− nµα+ κ̃)(f(xt)−Gf (x
t)) + κ̃2(f(xt)− f(xt+1))
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By iterating over this process,

1

1− κ̃
(f(xt+1)−Gf (x

t+1)) ≤
(

1

1− κ̃
− nµα

)
(f(xt)−Gf (x

t)),

=⇒ f(xt+1)−Gf (x
t+1) ≤ (1− nµα(1− κ̃))(f(xt)−Gf (x

t)),

f(xt+1)−Gf (x
t+1) ≤

(
1− nµα(1− κ)

2

)
(f(xt)−Gf (x

t)).

C.7 PROOF OF LEMMA 3.8

We have

∥∇Gf (x)∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇f(x⋆
i (x), x−i)

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

(∇f(x⋆
i (x), x−i)−∇f(x))

∥∥∥∥∥+ ∥∇f(x)∥

≤ 1

n

n∑
i=1

∥∇f(x⋆
i (x), x−i)−∇f(x)∥+ ∥∇f(x)∥

≤ L

n

n∑
i=1

∥x⋆
i (x)− xi∥+ ∥∇f(x)∥

≤ L√
n

√√√√ n∑
i=1

∥x⋆
i (x)− xi∥2 + ∥∇f(x)∥

≤ L

µ
√
n

√√√√ n∑
i=1

∥∇if(x)∥2 + ∥∇f(x)∥ =

(
L

µ
√
n
+ 1

)
∥∇f(x)∥.

The fifth line comes from Cauchy-Schwartz inequality and the sixth line comes from the error bound
property.

C.8 PROOF OF THEOREM 3.10

Case 1: This is analogous to the proof of Theorem 3.6.

Case 2: From the smoothness of the function, we get

f(xt+1) ≤f(xt) + ⟨∇itf(x
t), xt+1

it − xt
it⟩+

L

2
∥xt+1

it − xt
it∥2

=f(xt)− α⟨∇itf(x
t),∇itf(x

t) + kt∇itGf (x
t)⟩+ Lα2

2
∥∇itf(x

t) + kt∇itGf (x
t)∥2

=f(xt)− (α− Lα2

2
)∥∇itf(x

t)∥2 − (αkt − Lα2kt)⟨∇itf(x
t),∇itGf (x

t)⟩

+
Lα2(kt)2

2
∥∇itGf (x

t)∥2.

Taking the expectation over it, we have

E[f(xt+1)−Gf (x
t+1)|xt] ≤f(xt)−Gf (x

t)− 1

n
(α− Lα2

2
)∥∇f(xt)∥2

− 1

n
(αkt − Lα2kt)⟨∇f(xt),∇Gf (x

t)⟩

+
Lα2(kt)2

2n
∥∇Gf (x

t)∥2 + E[Gf (x
t)−Gf (x

t+1)].
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For Gf (x), we have

Gf (x
t) ≤Gf (x

t+1)− ⟨∇itGf (x
t), xt+1

it − xt
it⟩+

L′

2
∥xt+1

it − xt
it∥2

=Gf (x
t+1) + α⟨∇itGf (x

t),∇itf(x
t) + kt∇itGf (x

t)⟩

+
L′α2

2
∥∇itf(x

t) + kt∇itGf (x
t)∥2

=Gf (x
t+1) + α(kt)∥∇itGf (x

t)∥2 + (α+ L′α2kt)⟨∇itGf (x
t),∇itf(x

t)⟩

+
L′α2

2
∥∇itf(x

t)∥2 + L′α2(kt)2

2
∥∇itGf (x

t)∥2.

Taking the expectation over it yields

E[Gf (x
t)−Gf (x

t+1)|xt] ≤αkt

n
∥∇Gf (x

t)∥2 + α+ L′α2kt

n
⟨∇Gf (x

t),∇f(xt)⟩

+
L′α2

2n
∥∇f(xt)∥2 + L′α2(kt)2

2n
∥∇Gf (x

t)∥2.

As a result, we get

E[f(xt+1)−Gf (x
t+1)|xt] ≤ f(xt)−Gf (x

t)− 1

n
(α− Lα2

2
− L′α2

2
)∥∇f(xt)∥2

− 1

n
(αkt − Lα2kt − α− L′α2kt)⟨∇f(xt),∇Gf (x

t)⟩

+
1

2n
((L′ + L)α2(kt)2 + 2αkt)∥∇Gf (x

t)∥2.

(11)

Now, we define

h(kt) :=− 1

n
(αkt − Lα2kt − α− L′α2kt)⟨∇f(xt),∇Gf (x

t)⟩

+
1

2n
((L′ + L)α2(kt)2 + 2αkt)∥∇Gf (x

t)∥2,

which is a convex function. Therefore, we have

h(−1) = −2α− (L+ L′)α2

2n
∥∇f(xt)−∇Gf (x

t)∥2 + 1

n

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2

≤ 1

n

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2.

The function value h(kt) at minimizer kt = k⋆ = − ((L+L′)α−1)⟨∇f,∇Gf ⟩+∥∇Gf∥2

(L+L′)α∥∇Gf∥2 is less or equals
to zero if

(L+ L′)2⟨∇f,∇Gf ⟩2α2 − 2(L+ L′)⟨∇f,∇Gf ⟩2α+ (∥∇Gf∥2 − ⟨∇f,∇Gf ⟩)2 ≥ 0.

which is satisfied if

α ≤ 1

2(L+ L′)

(∥∇Gf∥2 − ⟨∇f,∇Gf ⟩)2

⟨∇f,∇Gf ⟩2
. (12)

Since in this case (∥∇Gf∥2−⟨∇f,∇Gf ⟩)2
⟨∇f,∇Gf ⟩2 ≥ C, eq. (12) is satisfied if

α ≤ C

2(L+ L′)
.

In consequence, if α ≤ 1
2C(L+L′) , ∀λ ∈ [0, 1], we have

h(−λ+ (1− λ)k⋆) ≤ λh(−1) + (1− λ)h(k⋆) ≤ λ

n

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2
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By setting kt = −1 +
⟨∇f(xt),∇Gf (x

t)⟩−∥∇Gf (x
t)∥2

∥∇Gf (xt)∥2 = −λ+ (1− λ)k⋆, we have

0 ≤ λ = 1− (L+ L′)α(kt + 1)∥∇Gf∥2

(1− (L+ L′)α)(⟨∇f,∇Gf ⟩ − ∥∇Gf∥2)
= 1− (L+ L′)α

1− (L+ L′)α
< 1.

and

h(kt) = h(−λ+ (1− λ)k⋆) ≤ 1

n

(
1− (L+ L′)α

1− (L+ L′)α

)(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2.

As a result,
E[f(xt+1)−Gf (x

t+1)|xt]

≤ f(xt)−Gf (x
t)− 1

n

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2 + h(kt)

≤ f(xt)−Gf (x
t)− 1

n

(L+ L′)α

1− (L+ L′)α

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2

≤ f(xt)−Gf (x
t)− 1

2n

(L+ L′)α2

1− (L+ L′)α
∥∇f(xt)∥2

≤
(
1− (L+ L′)µα2

1− (L+ L′)α

)
(f(xt)−Gf (x

t))

≤
(
1− (L+ L′)µα2

2

)
(f(xt)−Gf (x

t)).

Case 3: In this case, notice that f −Gf is L+ L′-smooth,
E[f(xt+1)−Gf (x

t+1)|xt],

≤ f(xt)−Gf (x
t) + E[⟨∇itf(x

t)−∇itG(xt), xt+1
it − xt

it⟩+
L+ L′

2
∥xt+1

it − xt
it∥2],

= f(xt)−Gf (x
t)− (α− Lα2

2
)E[∥∇itf(x

t)−∇itG(xt)∥2],

≤ f(xt)−Gf (x
t)− 1

2
αE[∥∇itf(x

t)−∇itG(xt)∥2],

≤ f(xt)−Gf (x
t)− 1

2n
α∥∇f(xt)−∇G(xt)∥2,

≤ f(xt)−Gf (x
t)− αν

n
(f(xt)−Gf (x

t))
2
θ .

From the Lemma 6 of Fatkhullin et al. (2022), we have

E[f(xt+k)−Gf (x
t+k)|xt] ≤

(2n)
θ

2−θ 2−θ
θ

− θ+2
2−θ + n

θ
2−θ θ−

θ
2−θ + (να)

θ
2−θ (f(xt)−Gf (x

t))

(να(k + 1))
θ

2−θ

C.9 PROOF OF THEOREM 3.11

To approximate Gf (x
t), we need to estimate the best response of i-th block x⋆

i (x
t) when other

blocks are fixed. As the function f(xt) satisfies n-sided PL condition, the function fi(xi) =
f(xi, x

t
−i) satisfies strong PL condition. Therefore by applying the gradient descent with partial

gradient ∇if(xi, x
t
−i), the best response can be approximated efficiently. For any δ > 0,

∥x⋆
i (x

t)− yt,T
′

i ∥2 ≤ 2

µ
(f(yt,T

′

i , xt
−i)−min

xi

f(xi, x
t
−i))

≤ 2

µ
(1− µβ)T

′
(f(xt)−min

xi

f(xi, x
t
−i))

≤ 1

µ2
(1− µβ)T

′
∥∇if(x

t)∥2 ≤ δ2

nL2
∥∇if(x

t)∥2.

(13)
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if T ′ ≥ 1
log( 1

1−µβ )
log( nL2

µ2δ2 ) and β ≤ 1
L . The first inequality comes from the quadratic growth

properties of the function fi(xi) = f(xi, x
t
−i) since it satisfies the strong PL condition. The sec-

ond inequality comes from the convergence of gradient descent under the PL condition. The third
inequality comes from the definition of the n-sided PL condition.

∥∇Gf (x
t)− ∇̃Gf (x

t)∥ =

∥∥∥∥∥
n∑

i=1

1

n
∇f(x⋆

i (x
t), x−i)−

n∑
i=1

1

n
∇f(yt,T

′

i , x−i)

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥∥∥∇f(x⋆
i (x

t), x−i)−∇f(yt,T
′

i , x−i)
∥∥∥

≤ L

n

n∑
i=1

∥∥∥x⋆
i (x

t)− yt,T
′

i

∥∥∥
≤ δ√

n

n∑
i=1

∥∇if(x
t)∥ ≤ δ∥∇f(xt)∥.

(14)

In the fourth line, we apply the eq. (13). In the last line, we apply Cauchy-Schwartz inequality.

The second line comes from triangle inequality and the third line comes from the L-Lipschitz con-
tinuity of ∇f(xt). Then, we denotes x̄t+1 as the iterates in the ideal case, i.e.

x̄t+1
i =

{
xt
i − α(∇if(x

t) + kt∇iG(xt)), ifi = it,

xt+1
i , ifi ̸= it.

(15)

Next, by choosing δ = γ α3

13 we show the convergence of f(xt)−Gf (x
t). To do so, we break it into

different cases.

Case 1: If ⟨∇̃Gf (x
t),∇f(xt)⟩ ≤ (γ − γ α3

13 )∥∇f(xt)∥2, we have

⟨∇Gf (x
t),∇f(xt)⟩

= ⟨∇Gf (x
t)− ∇̃Gf (x

t),∇f(xt)⟩+ ⟨∇̃Gf (x
t),∇f(xt)⟩

≤ ∥∇Gf (x
t)− ∇̃Gf (x

t)∥∥∇f(xt)∥+ ⟨∇̃Gf (x
t),∇f(xt)⟩

≤ γ
α3

13
∥∇f(xt)∥2 + ⟨∇̃Gf (x

t),∇f(xt)⟩ ≤ γ∥∇f(xt)∥2.

By choosing kt = 0, from theorem 3.6, we have

E[f(xt+1)−Gf (x
t+1)|xt] = E[f(x̄t+1)−Gf (x̄

t+1)|xt]

≤
(
1− µα(1− γ)

2

)
(f(xt)−Gf (x

t)).

Case 2:
(

∥∇̃Gf (x
t)∥2

⟨∇f(xt),∇̃Gf (xt)⟩ − 1
)2

≥ C and ⟨∇̃Gf (x
t),∇f(xt)⟩ ≥

(
γ − γ α3

13

)
∥∇f(xt)∥2. We

firstly bound the difference of ∇Gf (x
t) and ∇̃Gf (x

t). From the assumption of case 2, we have

⟨∇̃Gf (x
t),∇f(xt)⟩ ≥

(
γ − γ

α3

13

)
∥∇f(xt)∥2, =⇒ ∥∇̃Gf (x

t)∥ ≥
(
γ − γ

α3

13

)
∥∇f(xt)∥.

This indicates

|∥∇Gf (x
t)∥ − ∥∇̃Gf (x

t)∥| ≤ ∥∇Gf (x
t)− ∇̃Gf (x

t)∥ ≤ δ∥∇f(xt)∥

≤ δ

γ − γ α3

13

∥∇̃Gf (x
t)∥ ≤ 1

2
∥∇̃Gf (x

t)∥.

In the last line, we apply α ≤ (Cf )
−1/2 < 1 and δ = γα3

13 ≤ γ−γ α3

13

2 . As a result,∣∣∣∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
− 1

∣∣∣ ≤ δ

γ − γ α3

13

· ∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
,
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and ∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥ ≤ 2. These two inequalities imply

∣∣∣∥∇̃Gf (x
t)∥2

∥∇Gf (xt)∥2
− 1

∣∣∣ = (∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
+ 1

)∣∣∣∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
− 1

∣∣∣
≤

(∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
+ 1

) δ

γ − γ α3

13

∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
≤ 6δ

γ − γ α3

13

≤ 12δ

γ
.

(16)

In the last inequality, we applied α ≤ (Cf )
−1/2 < 1. Then we can bound the difference between kt

and k̃t.

|kt − k̃t| =
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≤
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt),∇Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

+
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≤∥∇f(xt)∥∥∇Gf (x
t)∥

∣∣∣ 1

∥∇̃Gf (xt)∥2
− 1

∥∇Gf (xt)∥2
∣∣∣

+ ∥∇f(xt)∥∥∇Gf (x
t)− ∇̃Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

=∥∇f(xt)∥∥∇Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2
∣∣∣∥∇̃Gf (x

t)∥2

∥∇Gf (xt)∥2
− 1

∣∣∣
+ ∥∇f(xt)∥∥∇Gf (x

t)− ∇̃Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2
,

≤12δ

γ
∥∇f(xt)∥∥∇Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

+ ∥∇f(xt)∥∥∇Gf (x
t)− ∇̃Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

≤12δCf

γ

∥∇f(xt)∥2

∥∇̃Gf (xt)∥2
+ ∥∇f(xt)∥∥∇Gf (x

t)− ∇̃Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2

≤
(12δCf

γ
+ δ

) ∥∇f(x)∥2

∥∇̃Gf (xt)∥2
≤ 12δCf

γα
+

δ

α
≤ 13δCf

γα
≤ Cfα

2 ≤ 1.

(17)

where Cf = L√
nµ

+ 1. The fourth line comes from Cauchy-Schwartz inequality. The eighth line
comes from eq. (16). The sixth line comes from lemma 3.8. The ninth line comes from eq. (14).
The last line comes from δ = γα3

13 and α ≤ (Cf )
−1/2. Also, the absolute value of kt and k̃t can be

bounded.

|k̃t| =
∣∣∣− 2 +

⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣ ≤ 2 +

∥∇f(xt)∥
∥∇̃Gf (xt)∥

≤ 2 +
(
γ − γ

α3

13

)−1

≤ 2 +
13

12γ
, (18)

and

|kt| = |kt − k̃t + k̃t| ≤ |kt − k̃t|+ |k̃t| ≤ 3 +
13

12γ
. (19)
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As a result,

∥kt∇Gf (x
t)− k̃t∇̃Gf (x

t)∥ = ∥kt∇Gf (x
t)− k̃t∇Gf (x

t) + k̃t∇Gf (x
t)− k̃t∇̃Gf (x

t)∥
≤ ∥kt∇Gf (x

t)− k̃t∇Gf (x
t)∥+ ∥k̃t∇Gf (x

t)− k̃t∇̃Gf (x
t)∥

≤ |kt − k̃t|∥∇Gf (x
t)∥+ |k̃t|∥∇Gf (x

t)− ∇̃Gf (x
t)∥

≤ Cfα
2∥∇Gf (x

t)∥+
(
2 +

13

12γ

)
∥∇Gf (x

t)− ∇̃Gf (x
t)∥,

≤ C2
fα

2∥∇f(xt)∥+
(
2 +

13

12γ

)
δ∥∇f(xt)∥

≤ C2
fα

2∥∇f(xt)∥+
(2γ + 13

12 )α
3

13
∥∇f(xt)∥

≤ C2
fα

2∥∇f(xt)∥+ 37α3

156
∥∇f(xt)∥ ≤ 2C2

fα
2∥∇f(xt)∥.

(20)
The fourth line is from eq. (17) and eq. (18). The fifth and sixth lines come from eq. (14) and
δ = γα3

13 , respectively.

In the case of one of ideal settings, we need α to satisfy eq. (12). However, we only have the
estimation ∇̃Gf (x

t). Next, we show that eq. (12) is satisfied if α is small enough. Then we can
make sure the linear convergence of the ideal case and further bound the difference of f − Gf

between the ideal case and the practical case.( ⟨∇f(xt),∇Gf (x
t)⟩

∥∇Gf (xt)∥2
− 1

)2

=
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1 +
⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
)2

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2
∣∣∣ ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
∣∣∣ · ∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
∣∣∣ ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
∣∣∣

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
( ∥∇f(xt)∥
∥∇̃Gf (xt)∥

+ 1
)

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
( 13

12γ
+ 1

)
≥ C − 2Cfα

2
( 13

12γ
+ 1

)
≥ C

2
.

In the fifth line, we applies eq. (17). In the last line, we used α2 ≤ 3Cγ
(13+12γ)Cf

and

∥∇̃Gf (x
t)∥ ≥

(
γ − γ

α3

13

)
∥∇f(xt)∥ ≥ 12γ

13

As a result, we obtain( ∥∇Gf (x
t)∥2

⟨∇f(xt),∇Gf (xt)⟩
− 1

)2

=
( ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− 1
)2( ∥∇Gf (x

t)∥2

⟨∇f(xt),∇Gf (xt)⟩

)2

≥ C

2

(∥∇Gf (x
t)∥

∥∇f(xt)∥

)2

≥ C

2

∥∇̃Gf (x
t)∥2 − 2∥∇Gf (x

t)− ∇̃Gf (x
t)∥2

2∥∇f(xt)∥2

≥ C

2

(72γ2

169
− δ2

)
=

C

2

(72γ2

169
− γ2α6

169

)
≥ 71Cγ2

338
≥ 2(L+ L′)α.
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In the second line, we applied ∥x∥2 ≥ 1
2∥y∥

2 − ∥x − y∥2, ∀x, y ∈ Rd. In the third line, we used
the fact that ∥∇̃Gf (x

t)∥ ≥ γ
2 ∥∇f(xt)∥ and ∥∇Gf (x

t) − ∇̃Gf (x
t)∥ ≤ δ∥∇f(xt)∥ and applied

δ = γα3

13 . The last line comes from α ≤ 71Cγ2

676(L+L′) . Since eq. (12) is satisfied, it indicates h(k⋆) ≤ 0.
And we can apply the result from the ideal case. From lemma 3.4 and eq. (15), we have

E[f(xt+1)−Gf (x
t+1)|xt]− E[f(x̄t+1)−Gf (x̄

t+1)|xt]

≤E[⟨∇itf(x̄
t+1)−∇itGf (x̄

t+1), xt+1
it − x̄t+1

it ⟩+ L+ L′

2
∥xt+1

it − x̄t+1
it ∥2|xt]

=E[⟨∇itf(x̄
t+1)−∇itGf (x̄

t+1), α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))⟩|xt]

+ E[
L+ L′

2
∥α(k̃t∇̃itGf (x

t)− kt∇itGf (x
t))∥2|xt]

=E[⟨∇itf(x
t)−∇itGf (x

t), α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))⟩|xt]

+ E[⟨∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t), α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))⟩|xt]

+ E[
L+ L′

2
∥α(k̃t∇̃itGf (x

t)− kt∇itGf (x
t))∥2|xt].

The first term is

E[⟨∇itf(x
t)−∇itGf (x

t), α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))⟩|xt]

=
1

n
⟨∇f(xt)−∇Gf (x

t), α(k̃t∇̃Gf (x
t)− kt∇Gf (x

t))⟩

≤ α

n
∥∇f(xt)−∇Gf (x

t)∥∥kt∇Gf (x
t)− k̃t∇̃Gf (x

t)∥

≤ α

n
(∥∇f(xt)∥+ ∥∇Gf (x

t)∥)2C2
fα

2∥∇f(xt)∥

≤ 1

n
2C2

f (1 + Cf )α
3∥∇f(xt)∥2.

In the fourth line, we apply the triangle inequality and the eq. (20). The second term is

E[⟨∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t), α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))⟩|xt]

≤ E[∥∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t)∥∥α(k̃t∇̃itGf (x
t)− kt∇itGf (x

t))∥|xt]

≤ E[(L+ L′)α∥x̄t+1
it − xt

it∥∥k̃t∇̃itGf (x
t)− kt∇itGf (x

t)∥|xt]

≤ E[(L+ L′)α2∥∇itf(x
t) + kt∇itGf (x

t)∥∥k̃t∇̃itGf (x
t)− kt∇itGf (x

t)∥|xt]

=
1

n

n∑
i=1

[(L+ L′)α2∥∇if(x
t) + kt∇iGf (x

t)∥∥k̃t∇̃iGf (x
t)− kt∇iGf (x

t)∥]

≤ 1

n
(L+ L′)α2∥∇f(xt) + kt∇Gf (x

t)∥∥k̃t∇̃Gf (x
t)− kt∇Gf (x

t)∥

≤ 1

n
(L+ L′)α2(∥∇f(xt)∥+ |kt|∥∇Gf (x

t)∥)∥k̃t∇̃Gf (x
t)− kt∇Gf (x

t)∥

≤ 1

n
(L+ L′)α2

(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥∥k̃t∇̃Gf (x

t)− kt∇Gf (x
t)∥

≤ 1

n
2(L+ L′)C2

fα
4
(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥2

≤ 1

n
C2

fα
3
(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥2

≤ 1

n
C2

f

( 13

12γ
+ 4Cf

)
α3∥∇f(xt)∥2.
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In the sixth line, we apply Cauchy-Schwartz inequality. The eighth line comes from eq. (19). The
ninth line comes from eq. (20). The third term is

E[
L+ L′

2
∥α(k̃t∇̃itGf (x

t)− kt∇itGf (x
t))∥2|xt]

=
1

n

L+ L′

2
∥α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))∥2

≤ 1

n

L+ L′

2
(2C2

fα
3∥∇f(xt)∥)2

=
1

n
2(L+ L′)C4

fα
6∥∇f(xt)∥2 ≤ 1

n
C4

fα
5∥∇f(xt)∥2.

In the third line, we apply eq. (20). In conclusion,

E[f(xt+1)−Gf (x
t+1)|xt]− E[f(x̄t+1)−Gf (x̄

t+1)|xt]

≤ 1

n
2C2

f (1 + Cf )α
3∥∇f(xt)∥2 + 1

n
C2

f

( 13

12γ
+ 4Cf

)
α3∥∇f(xt)∥2

+
1

n
C4

fα
5∥∇f(xt)∥2

≤ 1

n

((
2 +

13

12γ

)
C2

f + 6C3
f + C4

f

)
α3∥∇f(xt)∥2

≤ 1

n

(
9 +

13

12γ

)
C4

fα
3∥∇f(xt)∥2.

(21)

and

E[f(xt+1)−Gf (x
t+1)|xt]

=E[f(x̄t+1)−Gf (x̄
t+1)|xt] + E[f(xt+1)−Gf (x

t+1)|xt]− E[f(x̄t+1)−Gf (x̄
t+1)|xt]

≤
(
1− (L+ L′)µα2

2

)
(f(xt)−Gf (x

t)) +
1

n

(
9 +

13

12γ

)
C4

fα
3∥∇f(xt)∥2

≤
(
1− (L+ L′)µα2

2

)
(f(xt)−Gf (x

t)) +
(
18 +

13

6γ

)
LC4

fα
3(f(xt)−Gf (x

t))

≤
(
1− (L+ L′)µα2

4

)
(f(xt)−Gf (x

t)).

In the second line, we apply theorem 3.10 and eq. (21). In the last line we apply α ≤ 3γ(L+L′)µ
(13+108γ)LC4

f
.

Case 3: From eq. (11) and eq. (15) with kt = −1, we know that

E[f(x̄t+1)−Gf (x̄
t+1)|xt] ≤ f(xt)−Gf (x

t)− 1

n

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)−∇Gf (x

t)∥2

≤ f(xt)−Gf (x
t)− α

2n
∥∇f(xt)−∇Gf (x

t)∥2.
(22)

The second line comes from α ≤ 1
L+L′ . From lemma 3.4, we have

E[f(xt+1)−Gf (x
t+1)|xt]− E[f(x̄t+1)−Gf (x̄

t+1)|xt]

≤ E[⟨∇itf(x̄
t+1)−∇itGf (x̄

t+1), xt+1
it − x̄t+1

it ⟩+ L+ L′

2
∥xt+1

it − x̄t+1
it ∥2|xt]

= E[⟨∇itf(x̄
t+1)−∇itGf (x̄

t+1), α(∇̃itGf (x
t)−∇itGf (x

t))⟩|xt]

+ E[
L+ L′

2
∥α(∇̃itGf (x

t)−∇itGf (x
t))∥2|xt]

= E[⟨∇itf(x
t)−∇itGf (x

t), α(∇̃itGf (x
t)−∇itGf (x

t))⟩|xt]

+ E[⟨∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t), α(∇̃itGf (x
t)−∇itGf (x

t))⟩|xt]

+ E[
L+ L′

2
∥α(∇̃itGf (x

t)−∇itGf (x
t))∥2|xt].
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The first term is

E[⟨∇itf(x
t)−∇itGf (x

t), α(∇̃itGf (x
t)−∇itGf (x

t))⟩|xt]

=
1

n
⟨∇f(xt)−∇Gf (x

t), α(∇̃Gf (x
t)−∇Gf (x

t))⟩

≤ 1

n
α∥∇f(xt)−∇Gf (x

t)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

n
α(∥∇f(xt)∥+ ∥∇Gf (x

t)∥)∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

n
(1 + Cf )α∥∇f(xt)∥∥∇̃Gf (x

t)−∇Gf (x
t)∥ ≤ 1

13n
γ(1 + Cf )α

4∥∇f(xt)∥2.

In the last line, we apply eq. (14) and δ = γα3

13 . The second term is

E[⟨∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t), α(∇̃itGf (x
t)−∇itGf (x

t))⟩|xt]

≤ E[∥∇itf(x̄
t+1)−∇itf(x

t)−∇itGf (x̄
t+1) +∇itGf (x

t)∥∥α(∇̃itGf (x
t)−∇itGf (x

t))∥|xt]

≤ E[(L+ L′)α∥x̄t+1
it − xt

it∥∥∇̃itGf (x
t)−∇itGf (x

t)∥|xt]

≤ E[(L+ L′)α2∥∇itf(x
t)−∇itGf (x

t)∥∥∇̃itGf (x
t)−∇itGf (x

t)∥|xt]

≤ 1

n

n∑
i=1

[(L+ L′)α2∥∇if(x
t)−∇iGf (x

t)∥∥∇̃iGf (x
t)−∇iGf (x

t)∥]

≤ 1

n
(L+ L′)α2∥∇f(xt)−∇Gf (x

t)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

n
(L+ L′)α2(∥∇f(xt)∥+ ∥∇Gf (x

t)∥)∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

n
(L+ L′)(1 + Cf )α

2∥∇f(xt)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

13n
γ(L+ L′)(1 + Cf )α

5∥∇f(xt)∥2 ≤ 1

13n
γ(1 + Cf )α

4∥∇f(xt)∥2.

In the sixth line, we apply Cauchy-Schwartz inequality. In the ninth line, we apply eq. (14) and
δ = γα3

13 . The third term is

E[
L+ L′

2
∥α(∇̃itGf (x

t)−∇itGf (x
t))∥2|xt]

=
L+ L′

2n
∥α(∇̃Gf (x

t)−∇Gf (x
t))∥2 ≤ L+ L′

338n
γ2α8∥∇f(xt)∥2 ≤ 1

338n
γ2α7∥∇f(xt)∥2.

In the second line, we applied eq. (14) and δ = γα3

13 . Overall, we obtain

E[f(xt+1)−Gf (x
t+1)|xt]− E[f(x̄t+1)−Gf (x̄

t+1)|xt]

≤ 2

13n
γ(1 + Cf )α

4∥∇f(xt)∥2 + 1

338n
γ2α7∥∇f(xt)∥2 ≤ 3

13n
γ(1 + Cf )α

4∥∇f(xt)∥2.

and,

E[f(xt+1)−Gf (x
t+1)|xt]

= E[f(x̄t+1)−Gf (x̄
t+1)|xt] + E[f(xt+1)−Gf (x

t+1)|xt]− E[f(x̄t+1)−Gf (x̄
t+1)|xt]

≤ f(xt)−Gf (x
t)− 1

2n
α∥∇f(xt)−∇Gf (x

t)∥2 + 3

13n
γ(1 + Cf )α

4∥∇f(xt)∥2

≤ f(xt)−Gf (x
t)− α

4n
∥∇f(xt)−∇Gf (x

t)∥2,

≤ f(xt)−Gf (x
t)− αν

2n
(f(xt)−Gf (x

t))
2
θ .

In the last two line, we apply eq. (22) and α ≤ ( 13
12(1+Cf )

)1/3
∥∇f(xt)−∇Gf (x

t)∥
∥∇f(xt)∥ .

From Lemma 6 of Fatkhullin et al. (2022), we have
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E[f(xt+k)−Gf (x
t+k)|xt] ≤

(4n)
θ

2−θ 2−θ
θ

− θ+2
2−θ + (2n)

θ
2−θ θ−

θ
2−θ + (να)

θ
2−θ (f(xt)−Gf (x

t))

(να(k + 1))
θ

2−θ

.

D ALMOST SURELY CONVERGENCE TO LOCAL MINIMUM

Let the function g, g1, ..., gn to be (x′
i, x

′
−i) = gi(xi, x−i) = (xi − α∇if(xi, x−i), x−i) and g =

gn ◦ gn−1 ◦ · · · ◦ g1. Then, we have xt+1 = g(xt).
Theorem D.1. Under assumption 2.2, if f is twice continuously differentiable, g is locally diffeo-
morphism for α < 1

Lc
.

Proof. To show g is bijective, we only need to show gi is bijective for all i. We firstly show gi is
injective for α < 1

Lc
. If gi(xi, x−i) = gi(yi, y−i), we must have x−i = y−i from the definition of

gi. Then, ∥xi − yi∥ = α∥∇if(xi, x−i) − ∇if(yi, y−i)∥ = α∥∇if(xi, x−i) − ∇if(yi, x−i)∥ ≤
αLc∥xi − yi∥. As α < 1

L , we have xi = yi.

To show g is surjective, we consider the following problem,

min[
1

2
∥xi − yi∥2 − αf(xi, x−i)].

For α < 1
L , this function is strongly convex when x−i are fixed. So there is a unique minimizer xyi

such that yi = xyi −α∇if(xyi , x−i) for all x−i. By setting x−i = y−i, we would have y = gi(xy)
where the j-th block of xy is xyi if j = i and is yj if j ̸= i. We have already shown gi is bijective.
Because g = gn ◦ gn−1 ◦ · · · ◦ g1, g is also bijective and also invertible.

As f is twice continuously differentiable, gi is continuously differentiable. Because the composition
of continuously differentiable functions is continuously differentiable, g is continuously differen-
tiable. From the definition of g, the Jacobian of g is

Dg(x) = Dgn(gn−1:1(x))Dgn−1(gn−2:1(x)) . . . Dg2(g1(x))Dg1(x).

and the Jacobian of gi is
Dgi(x) = I − Ei∇2f(x)

where the i-th diagonal block of Ei = Idi×di and 0 elsewhere. It can be easily observed that the
fixed point of g is equivalent to the Nash Equilibrium point of f . For any Nash Equilibrium point
x⋆ with λmin[∇2f(x⋆)] < 0, we can represent Dg(x⋆)

Dg(x⋆) = (I − αEn∇2f(gn−1:1(x
⋆)))(I − αEn−1∇2f(gn−2:1(x

⋆))) · · ·
· · · (I − αE2∇2f(g1(x

⋆)))(I − αE1∇2f(x⋆)),

= (I − αEn∇2f(x⋆))(I − αEn−1∇2f(x⋆)) . . . (I − αE2∇2f(x⋆))(I − αE1∇2f(x⋆)).

Since α < 1
L and I − α∇2

i,if(x
⋆) > 0, det(I − αEi∇2f(x⋆)) = det|I − α∇2

i,if(x
⋆)| ≠ 0. As a

result, (I − αEi∇2f(x⋆)) is invertible for all i. So Dg(x⋆) is also invertible. Overall g is locally
diffeomorphism.

Theorem D.2. Let C be the set of strict saddle points, i.e., λmin < 0. If C has at most countably
infinite cardinality and α < 1

Lc
under BCD and f is twice continuously differentiable, then

Pr(lim
t

xt ∈ C) = 0.

Proof. Since λmin[∇2f(x⋆)] < 0 and the set W cs
loc is a manifold equal to the number of non-

negative eigenvalues of ∇2f(x⋆), this manifold has measure zero. Let B be the neighborhood of
x⋆. If xt converge to the x⋆, then there exists a T such that gt(x) ∈ B for all t ≥ T . This means
that gt(x) ∈

⋂∞
k=0 g

−k(B) ⊆ W cs
loc. Then we have the global stable set of W s(x⋆) satisfies

W s(x⋆) ⊆
∞⋃
k=0

g−k(W cs
loc).
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which indicates W s(x⋆) also has measure zero. And for the set C,

Pr(lim
t

xt ∈ C) =
∑
x⋆∈C

Pr(lim
t

xt = x⋆) = 0.

E PROOFS OF THE APPLICATION SECTION

E.1 PROOF OF N -SIDED PL CONDITION FOR MULTI-PLAYER LINEAR QUADRATIC GAME

The system can be written down as

xt+1 = Axt +

N∑
i=1

Biu
t
i = Axt +

N∑
i=1

BiKix
t = (A−

∑
j ̸=l

BjKj)x
t +BlKlx

t,

and the system can be written down as

f(Kl,K−l) = Ex0∼D[

+∞∑
t=0

[(xt)TQxt +

N∑
i=1

((xt
i)

TKT
i RiKix

t
i]]

= Ex0∼D[

+∞∑
t=0

[(xt)T (Q+
∑
j ̸=l

KT
j RjKj)x

t + (xt
l)

TKT
l RlKlx

t
l ]].

Define ΣK as the state correlation matrix, i.e.

ΣK = Ex0∼D

∞∑
t=0

xt(xt)T .

From the Corollary 5 of Fazel et al. (2018), we have

f(Kl,K−l)−min
K′

l

f(K ′
l ,K−l) ≤

∥∥∥ΣK⋆
l,K−l

,K−l

∥∥∥
σmin(Σ0)2σmin(Rl)

∥∇Kl
f(Kl,K−l)∥2F ,∀l

where K⋆
l,K−l

∈ argminK′
l
f(K ′

l ,K−l). Since K is bounded and σmin(Σ0) > 0, then 0 < κ <

+∞, and f satisfies N -sided PL condition.

E.2 COUNTEREXAMPLE OF MULTI-CONVEXITY FOR N -PLAYER LINEAR-QUADRATIC GAME

Here, we only need to prove that there exists K1, K ′
1 and K2 such that

f(K1,K2) + f(K ′
1,K2) ≤ 2f(

K1 +K ′
1

2
,K2).

where f(K1,K2) is the objective function of the 2-player potential quadratic game. We denote A
and B to be 3× 3 identity matrix and

K1 =

[
0 0 −10
−1 0 0
0 0 0

]
andK ′

1 =

[
0 −10 0
0 0 0
−1 0 0

]
andK2 =

[
1 0 0
0 1 0
0 0 1

]
.

The matrices A − B(K1 + K2) and A − B(K ′
1 + K2) are both stable, however, the matrix A −

B(K1+K2

2 ) is unstable. As a result, the objective function f(K1,K2), f(K
′
1,K2) < +∞ and

f(
K1+K′

1

2 ,K2) = +∞.

E.3 PROOF OF PL CONDITION FOR LINEAR RESIDUAL NETWORKS

From Hardt & Ma (2017), we have

f(A) = ∥EΣ1/2∥2F + C,
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and

∥∂f(A)

∂Ai
∥2F = ∥(I +AT

i+1) · · · (I +AT
l )EΣ(I +AT

1 )(I +AT
i−1)∥2F

≥ 4(1− τ)2(l−1)σmin(Σ)∥EΣ1/2∥2F .
where Σ = E[xxT ], E = (I +Al)...(I +A1)−R, τ = maxi ∥Ai∥ < 1 and C is a constant. Then,
we have

∥∂f(A)

∂Ai
∥2F ≥ 4(1− τ)2(l−1)σmin(Σ)(f(A)− C)

≥ 4(1− τ)2(l−1)σmin(Σ)(f(A)−min
B

f(B))

≥ 4(1− τ)2(l−1)σmin(Σ)(f(A)−min
Bi

f(Bi, A−i)).

(23)

where the last step comes from minBi
f(Bi, A−i) ≥ min f(A) ≥ C, ∀i. Notice that (I + Ai)

is invertible, therefore the best response of i-th weight matrix A⋆
i (A) always exists, where others

blocks are fixed to be A−i. Because ∂f(A⋆
i (A),A−i)
∂Ai

= 0, from eq. (23), the function value at best
response f(A⋆

i (A), A−i) = minB f(B). From the optimality condition, the full gradient

∇f(A⋆
i (A), A−i) = 0,∀i.

As a result,

∇Gf (A) =
1

n

n∑
i=1

∇f(A⋆
i (A), A−i) = 0,

which indicates ⟨∇G(A),∇f(A)⟩ = 0 ≤ κ∥∇f(A)∥2F by setting κ = 0.

F DISCUSSION ON ASSUMPTION 3.5

We have the following theorem which shows correlation with assumption 3.5 in the continuous
dynamic, i.e., there exists a neighborhood around every isolated local minimum of a locally strongly
convex and smooth functions such that, on average, the condition in equation 5 holds for all iterates
of the GD algorithm.
Theorem F.1. If x⋆ is the isolated local minimum in U and Gf exists, then there exists a radius
r > 0 s.t. ∀x0 ∈ B(x⋆, r) ⊆ U , such that by following the dynamics

r(0) = x0 ∈ U,

ṙ(t) = −∇f(x)|x=r(t),
(24)

we have ∫ +∞

0

⟨Gf (x),∇f(x)⟩)|x=r(t)dt ≤
∫ +∞

0

∥∇f(x)∥2|x=r(t)dt,

if further ∇2f(x⋆) is positive definite, ∇2f is continuous and f is L-smooth,∫ +∞

0

⟨Gf (x),∇f(x)⟩|x=r(t)dt ≤
∫ +∞

0

(
1− λ2

min(∇2f(x⋆))

2nL2

)
∥∇f(x)∥2|x=r(t)dt.

Proof. Since x⋆ is the isolated local minimum in U , f(x) is a positive definite function on U . As a
result,

ḟ(r(t)) = ⟨∇f(x)|x=r(t), ṙ(t)⟩ = −∥∇f(x)|x=r(t)∥2 < 0,

for all r(t) ∈ U , r(t) ̸= x⋆. This indicates x⋆ is asymptotically stable. Then, there exists a radius
r > 0 such that B = B(x⋆, r) ⊆ U . And, if r(0) ∈ B, then limt→+∞ r(t) = x⋆. Now consider any
r(0) = x ∈ B, we have

f(x⋆)− f(x0) =

∫ +∞

0

⟨∇f(x)|x=r(t), ṙ(t)⟩dt,

and

Gf (x
⋆)−Gf (x0) =

∫ +∞

0

⟨∇Gf (x)|x=r(t), ṙ(t)⟩dt.
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From these two equations, we have

Gf (x
⋆)−Gf (x0)− (f(x⋆)− f(x0)) = f(x0)−Gf (x0) ≥

1

2nL
∥∇f(x0)∥2 ≥ 0.

As a result

f(x0)−Gf (x0) =

∫ +∞

0

⟨∇(Gf (x)− f(x))|x=r(t), ṙ(t)⟩dt,

=

∫ +∞

0

⟨∇(f(x)−Gf (x)),∇f(x)⟩|x=r(t)dt,

=

∫ +∞

0

(∥∇f(x)∥2 − ⟨Gf (x),∇f(x)⟩)|x=r(t)dt ≥ 0.

(25)

If ∇2f(x⋆) > 0, then defines

F (x) = f(x)−Gf (x)−
1

2nL
∥∇f(x)∥2 ≥ 0 = F (x⋆).

Its Hessian is positive semidefinite at x⋆, i.e.

∇2F (x⋆) = ∇2f(x⋆)−∇2Gf (x
⋆)− 1

nL
(∇2f(x⋆))2 ⪰ 0,

=⇒ ∇2f(x⋆)−∇2Gf (x
⋆) ⪰ 1

nL
(∇2f(x⋆))2 ≻ 0.

In consequence, there exists a radius r′ ≤ r such that

∇2f(x)−∇2Gf (x) ⪰
1

2nL
(∇2f(x))2,∀x ∈ B(x⋆, r′).

So the function f(x) − Gf (x) is locally convex around the neighborhood of x⋆. And for r(0) =
x0 ∈ B(x⋆, r′)

f(x0)−Gf (x0) ≥
λ2
min(∇2f(x⋆))

4nL
∥x0 − x⋆∥2,

≥ λ2
min(∇2f(x⋆))

2nL2
(f(x0)− f(x⋆)),

= −λ2
min(∇2f(x⋆))

2nL2

∫ +∞

0

⟨∇f(x)|x=r(t), ṙ(t)⟩dt,

=
λ2
min(∇2f(x⋆))

2nL2

∫ +∞

0

∥∇f(x)∥2|x=r(t)dt.

(26)

From eq. (25) and eq. (26), we have∫ +∞

0

(∥∇f(x)∥2 − ⟨Gf (x),∇f(x)⟩)|x=r(t)dt ≥
λ2
min(∇2f(x⋆))

2nL2

∫ +∞

0

∥∇f(x)∥2|x=r(t)dt,

=⇒
∫ +∞

0

((
1− λ2

min(∇2f(x⋆))

2nL2

)
∥∇f(x)∥2 − ⟨Gf (x),∇f(x)⟩

)
|x=r(t)dt ≥ 0.

Theorem F.2. If f(x) satisfies the assumption of theorem 3.10, then, by denoting S(γ,C) as the set
of non-NE points that don’t satisfy case 1 and case 2, we have,

lim
γ→1,C→0

|S(γ,C)| = 0, (27)

where |S(γ,C)| is the measure of S(γ,C), if S(γ,C) is non-empty,

lim
γ→1,C→0

max
x∈S(γ,C)

f(x)−Gf (x) = 0. (28)
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Proof. Suppose case 1 and case 2 don’t satisfy, then the iterates satisfy,

⟨∇f(xt),∇Gf (x
t) > γ∥∇f(xt)∥2,

(∥∇Gf (x
t)∥2 − ⟨∇f(xt),∇G(xt)⟩)2

⟨∇f(xt),∇G(xt)⟩2
< C.

(29)

By simplifying the second equation and consider ⟨∇f(xt),∇Gf (x
t)⟩ > γ∥∇f(xt)∥2 > 0, we have

⟨∇f(xt),∇Gf (x
t)⟩ > γ∥∇f(xt)∥2,

(1−
√
C)⟨∇f(xt),∇Gf (x

t)⟩ < ∥∇Gf (x
t)∥2 < (1 +

√
C)⟨∇f(xt),∇Gf (x

t)⟩.
(30)

In consequence,

∥∇f(xt)−∇Gf (x
t)∥2 = ∥∇f(xt)∥2 − 2⟨∇f(xt),∇Gf (x

t)⟩+ ∥∇Gf (x
t)∥2,

< (1 + (1 +
√
C)2)∥∇f(xt)∥2 − 2⟨∇f(xt),∇Gf (x

t)⟩,
< (1 + (1 +

√
C)2 − 2γ)∥∇f(xt)∥2,

< 2(1 + (1 +
√
C)2 − 2γ)Ln(f(xt)−Gf (x

t)).

(31)

and f(xt)−Gf (x
t) satisfies,

f(xt)−Gf (x
t) <

∥∇f(xt)−∇Gf (x
t)∥θ

(2ν)θ/2
,

< (
2(1 + (1 +

√
C)2 − 2γ)Ln

2ν
)θ/2(f(xt)−Gf (x

t))θ/2.

(32)

The above inequality brings the upper bound for f(xt)−Gf (x
t) and ∥∇f(xt)∥,

f(xt)−Gf (x
t) < (

2(1 + (1 +
√
C)2 − 2γ)Ln

2ν
)

θ
2−θ , (33)

and

∥∇f(xt)∥2 ≤ 2Ln(f(xt)−Gf (x
t)) < 2Ln(

2(1 + (1 +
√
C)2 − 2γ)Ln

2ν
)

θ
2−θ . (34)

As C → 0 and γ → 1, f(xt) − Gf (x
t) < ϵ , ∀ϵ > 0. Notice that we consider the non-NE point,

which implies

0 < ∥∇f(xt)∥2 < 2Ln(
2(1 + (1 +

√
C)2 − 2γ)Ln

2ν
)

θ
2−θ . (35)

As a result, as C → 0 and γ → 1, the point that satisfies case 3 has its measure converge to 0.

G ADAPTIVE GD ALGORITHMS

G.1 IDEAL ADAPTIVE GRADIENT DESCENT

Theorem G.1. For an n-side µ-PL function f(x) satisfying assumption 2.1, by applying algo-
rithm 5,

• in Case 1 with α ≤ 2(1−γ)
2L′+(1+γ)L , we have

f(xt+1)−Gf (x
t+1) ≤

(
1− nµα(1− γ)

2

)
(f(xt)−Gf (x

t)),

• in Case 2 with α ≤ min{ 1
2(L+L′) ,

C
2(L+L′)}, we have

f(xt+1)−Gf (x
t+1) ≤

(
1− n(L+ L′)µα2

2

)
(f(xt)−Gf (x

t)),

• in Case 3 with α ≤ 1
L+L′ , f − Gf is non-increasing. Furthermore, if f − Gf satisfies

(θ, ν)-PL condition and case 3 are satisfied from iterates t to t+ k, we have

f(xt+1)−Gf (x
t+1) ≤

(2)
θ

2−θ 2−θ
θ

− θ+2
2−θ + θ−

θ
2−θ + (να)

θ
2−θ (f(xt)−Gf (x

t))

(να(k + 1))
θ

2−θ
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Algorithm 5 Ideal Adaptive Gradient Descent (IA-GD)
Input: initial point x0 = (x0

1, ..., x
0
n), learning rate α, 0 ≤ γ < 1 and C > 0

for t = 0 to T − 1 do
if ⟨∇Gf (x

t),∇f(xt)⟩ ≤ γ∥∇f(xt)∥2 then
kt = 0

else if (∥∇Gf (x
t)∥2−⟨∇f(xt),∇G(xt)⟩)2

⟨∇f(xt),∇G(xt)⟩2 > C then

kt = −2 +
⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

else
kt = −1

end if
xt+1 = xt − α(∇f(xt) + kt∇Gf (x

t))
end for

Proof. Case 1: This is analogous to the proof of Theorem 3.7.

Case 2: From the smoothness assumption, we get

f(xt+1) ≤f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2

=f(xt)− α⟨∇f(xt),∇f(xt) + kt∇Gf (x
t)⟩+ Lα2

2
∥∇f(xt) + kt∇itGf (x

t)∥2

=f(xt)− (α− Lα2

2
)∥∇f(xt)∥2 − (αkt − Lα2kt)⟨∇f(xt),∇Gf (x

t)⟩

+
Lα2(kt)2

2
∥∇Gf (x

t)∥2.

For Gf (x), we have

Gf (x
t) ≤Gf (x

t+1)− ⟨∇Gf (x
t), xt+1 − xt⟩+ L′

2
∥xt+1 − xt∥2,

=Gf (x
t+1) + α⟨∇Gf (x

t),∇f(xt) + kt∇Gf (x
t)⟩

+
L′α2

2
∥∇f(xt) + kt∇Gf (x

t)∥2,

=Gf (x
t+1) + αkt∥∇Gf (x

t)∥2 + (α+ L′α2kt)⟨∇Gf (x
t),∇f(xt)⟩

+
L′α2

2
∥∇f(xt)∥2 + L′α2(kt)2

2
∥∇Gf (x

t)∥2.

As a result, we get

f(xt+1)−Gf (x
t+1) ≤ f(xt)−Gf (x

t)− (α− Lα2

2
− L′α2

2
)∥∇f(xt)∥2

− (αkt − Lα2kt − α− L′α2kt)⟨∇f(xt),∇Gf (x
t)⟩

+
1

2
((L′ + L)α2(kt)2 + 2αkt)∥∇Gf (x

t)∥2.

(36)

Now, we define

h(kt) :=− (αkt − Lα2kt − α− L′α2kt)⟨∇f(xt),∇Gf (x
t)⟩

+
1

2
((L′ + L)α2(kt)2 + 2αkt)∥∇Gf (x

t)∥2,

which is a convex function. We have

h(−1) = −2α− (L+ L′)α2

2
∥∇f(xt)−∇Gf (x

t)∥2 +
(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2,

≤
(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2.
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The function value h(kt) at minimizer kt = k⋆ = − ((L+L′)α−1)⟨∇f,∇Gf ⟩+∥∇Gf∥2

(L+L′)α∥∇Gf∥2 is less or equals
to zero if

(L+ L′)2⟨∇f,∇Gf ⟩2α2 − 2(L+ L′)⟨∇f,∇Gf ⟩2α+ (∥∇Gf∥2 − ⟨∇f,∇Gf ⟩)2 ≥ 0.

α ≤ 1

2(L+ L′)

(∥∇Gf∥2 − ⟨∇f,∇Gf ⟩)2

⟨∇f,∇Gf ⟩2
. (37)

Since in this case (∥∇Gf∥2−⟨∇f,∇Gf ⟩)2
⟨∇f,∇Gf ⟩2 ≥ C, eq. (37) is satisfied if

α ≤ C

2(L+ L′)
.

In consequence, if α ≤ C
2(L+L′) , ∀λ ∈ [0, 1], we have

h(−λ+ (1− λ)k⋆) ≤ λh(−1) + (1− λ)h(k⋆) ≤ λ
(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2

By setting kt = −1 +
⟨∇f(xt),∇Gf (x

t)⟩−∥∇Gf (x
t)∥2

∥∇Gf (xt)∥2 = −λ+ (1− λ)k⋆ and α ≤ 1
2(L+L′) , we have

0 ≤ λ = 1− (L+ L′)α(kt + 1)∥∇Gf∥2

(1− (L+ L′)α)(⟨∇f,∇Gf ⟩ − ∥∇Gf∥2)
= 1− (L+ L′)α

1− (L+ L′)α
< 1.

and

h(kt) = h(−λ+ (1− λ)k⋆) ≤ (1− (L+ L′)α

1− (L+ L′)α
)
(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2.

As a result,

f(xt+1)−Gf (x
t+1)

≤ f(xt)−Gf (x
t)−

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2 + h(kt)

≤ f(xt)−Gf (x
t)− (L+ L′)α

1− (L+ L′)α

(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)∥2

≤ f(xt)−Gf (x
t)− 1

2

(L+ L′)α2

1− (L+ L′)α
∥∇f(xt)∥2

≤
(
1− n(L+ L′)µα2

1− (L+ L′)α

)
(f(xt)−Gf (x

t))

≤
(
1− n(L+ L′)µα2

2

)
(f(xt)−Gf (x

t)).

Case 3: In this case, notice that f −Gf is L+ L′-smooth,

f(xt+k)−Gf (x
t+k)

≤ f(xt)−Gf (x
t) + ⟨∇f(xt)−∇G(xt), xt+1 − xt⟩+ L+ L′

2
∥xt+1 − xt∥2,

= f(xt)−Gf (x
t)− (α− Lα2

2
)∥∇f(xt)−∇G(xt)∥2,

≤ f(xt)−Gf (x
t)− 1

2
α∥∇f(xt)−∇G(xt)∥2,

≤ f(xt)−Gf (x
t)− να(f(xt)−∇G(xt))2/θ

The result follows directly from Lemma 6 of Fatkhullin et al. (2022).
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Algorithm 6 Adaptive Gradient Descent (A-GD)
Input: initial point x0 = (x0

1, ..., x
0
n), learning rates α, β, 0 < γ < 1 and C > 0

for t = 0 to T − 1 do
yt,T

′
=ABR(xt, T ′, β) :Algorithm 4

compute ∇̃Gf (x
t) := 1

n

∑n
l=1 ∇f(yt,T

′

l , xt
−l)

if ⟨∇̃Gf (x
t),∇f(xt)⟩ ≤ (γ − γ α3

13 )∥∇f(xt)∥2 then
k̃t = 0

else if (∥∇̃Gf (x
t)∥2−⟨∇f(xt),∇̃Gf (x

t)⟩)2

∥∇̃Gf (xt)∥4
> C then

k̃t = −2 +
⟨∇f(xt),∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

else
k̃t = −1

end if
xt+1 = xt − α(∇f(xt) + k̃t∇̃Gf (x

t))
end for

G.2 ADAPTIVE GRADIENT DESCENT

Theorem G.2. For an n-sided PL function f(x) satisfying assumption 2.1, by implementing algo-
rithm 6 with β ≤ 1

L and T ′ ≥ 1
log( 1

1−µβ )
log

(
169nL2

µ2γ2α6

)
,

• in Case 1 with α ≤ 2(1−γ)
2L′+(1+γ)L , we have

f(xt+1)−Gf (x
t+1) ≤

(
1− nµα(1− γ)

2

)
(f(xt)−Gf (x

t))

• in Case 2 with α ≤ min
{
(Cf )

−1/2, ( 3Cγ
(13+12γ)Cf

)1/2, 71Cγ2

676(L+L′) ,
3γ(L+L′)µ

(13+108γ)C4
f
, 1

2(L+L′)

}
, we

have

f(xt+1)−Gf (x
t+1) ≤

(
1− n(L+ L′)µα2

4

)
(f(xt)−Gf (x

t)).

• in Case 3 with α≤min
{

1
L+L′ , (

13
12(1+Cf )

)1/3
∥∇f(xt)−∇Gf (x

t)∥
∥∇f(xt)∥

}
, f−Gf is non-increasing.

Furthermore, if f−Gf satisfies (θ, ν)-PL condition and case 3 occurs from iterates t to
t+ k, then

f(xt+1)−Gf (x
t+1) ≤

(4)
θ

2−θ 2−θ
θ

− θ+2
2−θ + (2)

θ
2−θ θ−

θ
2−θ + (να)

θ
2−θ (f(xt)−Gf (x

t))

(να(k + 1))
θ

2−θ

..

Proof. To approximate Gf (x
t), we need to estimate the best response of i-th block x⋆

i (x
t) when

other blocks are fixed. As the function f(xt) satisfies n-sided PL condition, the function fi(xi) =
f(xi, x

t
−i) satisfies strong PL condition. Therefore by applying the gradient descent with partial

gradient ∇if(xi, x
t
−i), the best response can be approximated efficiently. For any δ > 0,

∥x⋆
i (x

t)− yt,T
′

i ∥2 ≤ 2

µ
(f(yt,T

′

i , xt
−i)−min

xi

f(xi, x
t
−i))

≤ 2

µ
(1− µβ)T

′
(f(xt)−min

xi

f(xi, x
t
−i))

≤ 1

µ2
(1− µβ)T

′
∥∇if(x

t)∥2 ≤ δ2

nL2
∥∇if(x

t)∥2.

(38)

if T ′ ≥ 1
log( 1

1−µβ )
log( nL2

µ2δ2 ). The first inequality comes from the quadratic growth properties of the

function fi(xi) = f(xi, x
t
−i) since it satisfies the strong PL condition. The second inequality comes

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

from the convergence of gradient descent under the PL condition. The third inequality comes from
the definition of the n-sided PL condition.

∥∇Gf (x
t)− ∇̃Gf (x

t)∥ =

∥∥∥∥∥
n∑

i=1

1

n
∇f(x⋆

i (x−i), x−i)−
n∑

i=1

1

n
∇f(yt,T

′

i , x−i)

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥∥∥∇f(x⋆
i (x

t), x−i)−∇f(yt,T
′

i , x−i)
∥∥∥

≤ L

n

n∑
i=1

∥∥∥x⋆
i (x

t)− yt,T
′

i

∥∥∥
≤ δ√

n

n∑
i=1

∥∇if(x
t)∥ ≤ δ∥∇f(xt)∥.

(39)

In the fourth line, we apply the eq. (38). In the last line, we apply Cauchy-Schwartz inequality.

The second line comes from triangle inequality and the third line comes from the L-Lipschitz con-
tinuity of ∇f(xt).Then, we denotes x̄t+1 as the iterates in the ideal case, i.e.

x̄t+1
i =

{
xt
i − α(∇if(x

t) + kt∇iG(xt)), ifi = it,

xt+1
i , ifi ̸= it.

(40)

Next, by choosing δ = γ α3

13 we show the convergence of f(xt)−Gf (x
t). To do so, we break it into

different cases.

Case 1: If ⟨∇̃Gf (x
t),∇f(xt)⟩ ≤ (γ − γ α3

13 )∥∇f(xt)∥2, we have

⟨∇Gf (x
t),∇f(xt)⟩

= ⟨∇Gf (x
t)− ∇̃Gf (x

t),∇f(xt)⟩+ ⟨∇̃Gf (x
t),∇f(xt)⟩

≤ ∥∇Gf (x
t)− ∇̃Gf (x

t)∥∥∇f(xt)∥+ ⟨∇̃Gf (x
t),∇f(xt)⟩

≤ γ
α3

13
∥∇f(xt)∥2 + ⟨∇̃Gf (x

t),∇f(xt)⟩ ≤ γ∥∇f(xt)∥2.

By choosing kt = 0, from theorem 3.6, we have

f(xt+1)−Gf (x
t+1) = f(x̄t+1)−Gf (x̄

t+1)

≤
(
1− nµα(1− γ)

2

)
(f(xt)−Gf (x

t)).

Case 2:
(

∥∇̃Gf (x
t)∥2

⟨∇f(xt),∇̃Gf (xt)⟩ − 1
)2

≥ C and ⟨∇̃Gf (x
t),∇f(xt)⟩ ≥

(
γ − γ α3

13

)
∥∇f(xt)∥2. We

firstly bound the difference of ∇Gf (x
t) and ∇̃Gf (x

t). From the assumption of case 2, we have

⟨∇̃Gf (x
t),∇f(xt)⟩ ≥

(
γ − γ

α3

13

)
∥∇f(xt)∥2, =⇒ ∥∇̃Gf (x

t)∥ ≥
(
γ − γ

α3

13

)
∥∇f(xt)∥.

This indicates

|∥∇Gf (x
t)∥ − ∥∇̃Gf (x

t)∥| ≤ ∥∇Gf (x
t)− ∇̃Gf (x

t)∥ ≤ δ∥∇f(xt)∥

≤ δ

γ − γ α3

13

∥∇̃Gf (x
t)∥ ≤ 1

2
∥∇̃Gf (x

t)∥.

In the last line, we apply δ = γα3

13 ≤ γ−γ α3

13

2 . As a result,∣∣∣∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
− 1

∣∣∣ ≤ δ

γ − γ α3

13

· ∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
,
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and ∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥ ≤ 2. These two inequalities imply

∣∣∣∥∇̃Gf (x
t)∥2

∥∇Gf (xt)∥2
− 1

∣∣∣ = (∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
+ 1

)∣∣∣∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
− 1

∣∣∣
≤

(∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
+ 1

) δ

γ − γ α3

13

∥∇̃Gf (x
t)∥

∥∇Gf (xt)∥
≤ 6δ

γ − γ α3

13

≤ 12δ

γ
.

(41)

In the last inequality, we applied α ≤ (Cf )
−1/2 < 1. Then we can bound the difference between kt

and k̃t.

|kt − k̃t| =
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≤
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt),∇Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

+
∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≤∥∇f(xt)∥∥∇Gf (x
t)∥

∣∣∣ 1

∥∇̃Gf (xt)∥2
− 1

∥∇Gf (xt)∥2
∣∣∣

+ ∥∇f(xt)∥∥∇Gf (x
t)− ∇̃Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

=∥∇f(xt)∥∥∇Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2
∣∣∣∥∇̃Gf (x

t)∥2

∥∇Gf (xt)∥2
− 1

∣∣∣
+ ∥∇f(xt)∥∥∇Gf (x

t)− ∇̃Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2
,

≤12δ

γ
∥∇f(xt)∥∥∇Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

+ ∥∇f(xt)∥∥∇Gf (x
t)− ∇̃Gf (x

t)∥ 1

∥∇̃Gf (xt)∥2

≤12δCf

γ

∥∇f(xt)∥2

∥∇̃Gf (xt)∥2
+ ∥∇f(xt)∥∥∇Gf (x

t)− ∇̃Gf (x
t)∥ 1

∥∇̃Gf (xt)∥2

≤
(12δCf

γ
+ δ

) ∥∇f(x)∥2

∥∇̃Gf (xt)∥2
≤ 12δCf

γα
+

δ

α
≤ 13δCf

γα
≤ Cfα

2 ≤ 1.

(42)

where Cf = L√
nµ

+1. The third line comes from Cauchy-Schwartz inequality. The sixth line comes
from eq. (41). The eighth line comes from lemma 3.8. The ninth line comes from eq. (39). The
last two lines come from δ = γα3

13 and α ≤ (Cf )
−1/2. Also, the absolute value of kt and k̃t can be

bounded.

|k̃t| =
∣∣∣− 2 +

⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣ ≤ 2 +

∥∇f(xt)∥
∥∇̃Gf (xt)∥

≤ 2 +
(
γ − γ

α3

13

)−1

≤ 2 +
13

12γ
, (43)

and

|kt| = |kt − k̃t + k̃t| ≤ |kt − k̃t|+ |k̃t| ≤ 3 +
13

12γ
. (44)
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As a result,

∥kt∇Gf (x
t)− k̃t∇̃Gf (x

t)∥ = ∥kt∇Gf (x
t)− k̃t∇Gf (x

t) + k̃t∇Gf (x
t)− k̃t∇̃Gf (x

t)∥
≤ ∥kt∇Gf (x

t)− k̃t∇Gf (x
t)∥+ ∥k̃t∇Gf (x

t)− k̃t∇̃Gf (x
t)∥

≤ |kt − k̃t|∥∇Gf (x
t)∥+ |k̃t|∥∇Gf (x

t)− ∇̃Gf (x
t)∥

≤ Cfα
2∥∇Gf (x

t)∥+
(
2 +

13

12γ

)
∥∇Gf (x

t)− ∇̃Gf (x
t)∥,

≤ C2
fα

2∥∇f(xt)∥+
(
2 +

13

12γ

)
δ∥∇f(xt)∥

≤ C2
fα

2∥∇f(xt)∥+
(2γ + 13

12 )α
3

13
∥∇f(xt)∥

≤ 2C2
fα

2∥∇f(xt)∥.
(45)

The fourth line comes from eq. (42) and eq. (43). The fifth line comes from eq. (39). The sixth line
comes from δ = γα3

13 .

In the case of one of ideal settings, we need α to satisfy eq. (37). However, we only have the
estimation ∇̃Gf (x

t). Next, we show that eq. (37) is satisfied if α is small enough. Then we can
make sure the linear convergence of the ideal case and further bound the difference of f − Gf

between the ideal case and the practical case.( ⟨∇f(xt),∇Gf (x
t)⟩

∥∇Gf (xt)∥2
− 1

)2

=
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1 +
⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
)2

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2
∣∣∣ ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
∣∣∣ · ∣∣∣ ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− ⟨∇f(xt), ∇̃Gf (x
t)⟩

∥∇̃Gf (xt)∥2
∣∣∣

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
∣∣∣ ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
∣∣∣

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
( ∥∇f(xt)∥
∥∇̃Gf (xt)∥

+ 1
)

≥
( ⟨∇f(xt), ∇̃Gf (x

t)⟩
∥∇̃Gf (xt)∥2

− 1
)2

− 2Cfα
2
( 13

12γ
+ 1

)
≥ C − 2Cfα

2
( 13

12γ
+ 1

)
≥ C

2
.

In the fifth line, we apply eq. (42). In the sixth line, we apply ∥∇̃Gf (x
t)∥ ≥

(
γ − γ α3

13

)
∥∇f(xt)∥.

In the last line, we apply α2 ≤ 3Cγ
(13+12γ)Cf

. As a result, we obtain( ∥∇Gf (x
t)∥2

⟨∇f(xt),∇Gf (xt)⟩
− 1

)2

=
( ⟨∇f(xt),∇Gf (x

t)⟩
∥∇Gf (xt)∥2

− 1
)2( ∥∇Gf (x

t)∥2

⟨∇f(xt),∇Gf (xt)⟩

)2

≥ C

2

(∥∇Gf (x
t)∥

∥∇f(xt)∥

)2

≥ C

2

∥∇̃Gf (x
t)∥2 − 2∥∇Gf (x

t)− ∇̃Gf (x
t)∥2

2∥∇f(xt)∥2

≥ C

2

(72γ2

169
− δ2

)
≥ C

2

(72γ2

169
− γ2α6

169

)
≥ 71Cγ2

338
≥ 2(L+ L′)α.

In the second line, we applied ∥x∥2 ≥ 1
2∥y∥

2 − ∥x − y∥2, ∀x, y ∈ Rd. In the third line, we used
the fact that ∥∇̃Gf (x

t)∥ ≥ γ
2 ∥∇f(xt)∥ and ∥∇Gf (x

t) − ∇̃Gf (x
t)∥ ≤ δ∥∇f(xt)∥ and applied
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δ = γα3

13 . The last line comes from α ≤ 71Cγ2

676(L+L′) . Since eq. (37) is satisfied, it indicates h(k⋆) ≤ 0.
And we can apply the result from the ideal case. From lemma 3.4 and eq. (40), we have

f(xt+1)−Gf (x
t+1)− (f(x̄t+1)−Gf (x̄

t+1))

≤⟨∇f(x̄t+1)−∇Gf (x̄
t+1), xt+1 − x̄t+1⟩+ L+ L′

2
∥xt+1 − x̄t+1∥2

=⟨∇f(x̄t+1)−∇Gf (x̄
t+1), α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))⟩

+
L+ L′

2
∥α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))∥2

=⟨∇f(xt)−∇Gf (x
t), α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))⟩

+ ⟨∇f(x̄t+1)−∇f(xt)−∇Gf (x̄
t+1) +∇Gf (x

t), α(k̃t∇̃Gf (x
t)− kt∇Gf (x

t))⟩

+
L+ L′

2
∥α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))∥2.

The first term is
⟨∇f(xt)−∇Gf (x

t), α(k̃t∇̃Gf (x
t)− kt∇Gf (x

t))⟩
≤ α∥∇f(xt)−∇Gf (x

t)∥∥kt∇Gf (x
t)− k̃t∇̃Gf (x

t)∥
≤ α(∥∇f(xt)∥+ ∥∇Gf (x

t)∥)2C2
fα

2∥∇f(xt)∥
≤ 2C2

f (1 + Cf )α
3∥∇f(xt)∥2.

In the fourth line, we apply the triangle inequality and the eq. (45). The second term is
⟨∇f(x̄t+1)−∇f(xt)−∇Gf (x̄

t+1) +∇Gf (x
t), α(k̃t∇̃Gf (x

t)− kt∇Gf (x
t))⟩

≤ ∥∇f(x̄t+1)−∇f(xt)−∇Gf (x̄
t+1) +∇Gf (x

t)∥∥α(k̃t∇̃Gf (x
t)− kt∇Gf (x

t))∥
≤ (L+ L′)α∥x̄t+1 − xt∥∥k̃t∇̃Gf (x

t)− kt∇Gf (x
t)∥

≤ (L+ L′)α2∥∇f(xt) + kt∇Gf (x
t)∥∥k̃t∇̃Gf (x

t)− kt∇Gf (x
t)∥

≤ (L+ L′)α2(∥∇f(xt)∥+ |kt|∥∇Gf (x
t)∥)∥k̃t∇̃Gf (x

t)− kt∇Gf (x
t)∥

≤ (L+ L′)α2

(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥∥k̃t∇̃Gf (x

t)− kt∇Gf (x
t)∥

≤ 2(L+ L′)C2
fα

4

(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥2

≤ C2
fα

3

(
1 +

(
3 +

13

12γ

)
Cf

)
∥∇f(xt)∥2

≤ C2
f

(
13

12γ
+ 4Cf

)
α3∥∇f(xt)∥2.

In the sixth line, we apply Cauchy-Schwartz inequality. The eighth line comes from eq. (44). The
ninth line comes from eq. (45). The third term is

L+ L′

2
∥α(k̃t∇̃itGf (x

t)− kt∇itGf (x
t))∥2

≤ L+ L′

2
(2C2

fα
3∥∇f(xt)∥)2

= 2(L+ L′)C4
fα

6∥∇f(xt)∥2 ≤ C4
fα

5∥∇f(xt)∥2.
In the third line, we apply eq. (45). In conclusion,

f(xt+1)−Gf (x
t+1)− (f(x̄t+1)−Gf (x̄

t+1))

≤2C2
f (1 + Cf )α

3∥∇f(xt)∥2 + C2
f

( 13

12γ
+ 4Cf

)
α3∥∇f(xt)∥2

+ C4
fα

5∥∇f(xt)∥2

≤
((

2 +
13

12γ

)
C2

f + 6C3
f + C4

f

)
α3∥∇f(xt)∥2

≤
(
9 +

13

12γ

)
C4

fα
3∥∇f(xt)∥2.

(46)

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

and

f(xt+1)−Gf (x
t+1)

=f(x̄t+1)−Gf (x̄
t+1) + f(xt+1)−Gf (x

t+1)− (f(x̄t+1)−Gf (x̄
t+1))

≤
(
1− n(L+ L′)µα2

2

)
(f(xt)−Gf (x

t)) +
(
9 +

13

12γ

)
C4

fα
3∥∇f(xt)∥2

≤
(
1− n(L+ L′)µα2

2

)
(f(xt)−Gf (x

t)) +
(
18 +

13

6γ

)
nLC4

fα
3(f(xt)−Gf (x

t))

≤
(
1− n(L+ L′)µα2

4

)
(f(xt)−Gf (x

t)).

In the second line, we apply theorem 3.10 and eq. (46). In the last line we apply α ≤ 3γ(L+L′)µ
(13+108γ)LC4

f
.

Case 3: From eq. (36) and eq. (40) with kt = −1, we know that

f(x̄t+1)−Gf (x̄
t+1) ≤ f(xt)−Gf (x

t)−
(
α− Lα2

2
− L′α2

2

)
∥∇f(xt)−∇Gf (x

t)∥2

≤ f(xt)−Gf (x
t)− α

2
∥∇f(xt)−∇Gf (x

t)∥2.
(47)

The second line comes from α ≤ 1
L+L′ . From lemma 3.4, we have

f(xt+1)−Gf (x
t+1)− (f(x̄t+1)−Gf (x̄

t+1))

≤ ⟨∇f(x̄t+1)−∇Gf (x̄
t+1), xt+1 − x̄t+1⟩+ L+ L′

2
∥xt+1 − x̄t+1∥2

= ⟨∇f(x̄t+1)−∇Gf (x̄
t+1), α(∇̃Gf (x

t)−∇Gf (x
t))⟩

+
L+ L′

2
∥α(∇̃Gf (x

t)−∇Gf (x
t))∥2

= ⟨∇f(xt)−∇Gf (x
t), α(∇̃Gf (x

t)−∇Gf (x
t))⟩

+ ⟨∇f(x̄t+1)−∇f(xt)−∇Gf (x̄
t+1) +∇Gf (x

t), α(∇̃Gf (x
t)−∇Gf (x

t))⟩

+
L+ L′

2
∥α(∇̃Gf (x

t)−∇Gf (x
t))∥2.

The first term is

⟨∇f(xt)−∇Gf (x
t), α(∇̃Gf (x

t)−∇Gf (x
t))⟩

≤ α∥∇f(xt)−∇Gf (x
t)∥∥∇̃Gf (x

t)−∇Gf (x
t)∥

≤ α(∥∇f(xt)∥+ ∥∇Gf (x
t)∥)∥∇̃Gf (x

t)−∇Gf (x
t)∥

≤ (1 + Cf )α∥∇f(xt)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥ ≤ 1

13
γ(1 + Cf )α

4∥∇f(xt)∥2.

In the last line, we apply eq. (39) and δ = γα3

13 . The second term is

⟨∇f(x̄t+1)−∇f(xt)−∇Gf (x̄
t+1) +∇Gf (x

t), α(∇̃Gf (x
t)−∇Gf (x

t))⟩
≤ ∥∇f(x̄t+1)−∇f(xt)−∇Gf (x̄

t+1) +∇Gf (x
t)∥∥α(∇̃Gf (x

t)−∇Gf (x
t))∥

≤ (L+ L′)α∥x̄t+1 − xt∥∥∇̃Gf (x
t)−∇Gf (x

t)∥
≤ (L+ L′)α2∥∇f(xt)−∇Gf (x

t)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥
≤ (L+ L′)α2(∥∇f(xt)∥+ ∥∇Gf (x

t)∥)∥∇̃Gf (x
t)−∇Gf (x

t)∥
≤ (L+ L′)(1 + Cf )α

2∥∇f(xt)∥∥∇̃Gf (x
t)−∇Gf (x

t)∥

≤ 1

13
γ(L+ L′)(1 + Cf )α

5∥∇f(xt)∥2 ≤ 1

13
γ(1 + Cf )α

4∥∇f(xt)∥2.
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In the sixth line, we apply Cauchy-Schwartz inequality. In the ninth line, we apply eq. (39) and
δ = γα3

13 . The third term is

L+ L′

2
∥α(∇̃Gf (x

t)−∇Gf (x
t))∥2

≤ L+ L′

338
γ2α8∥∇f(xt)∥2 ≤ 1

338
γ2α7∥∇f(xt)∥2.

In the second line, we applied eq. (39) and δ = γα3

13 . Overall, we obtain

f(xt+1)−Gf (x
t+1)− (f(x̄t+1)−Gf (x̄

t+1))

≤ 2

13
γ(1 + Cf )α

4∥∇f(xt)∥2 + 1

338
γ2α7∥∇f(xt)∥2 ≤ 3

13
γ(1 + Cf )α

4∥∇f(xt)∥2.

and,

f(xt+1)−Gf (x
t+1)

= f(x̄t+1)−Gf (x̄
t+1) + f(xt+1)−Gf (x

t+1)− (f(x̄t+1)−Gf (x̄
t+1))

≤ f(xt)−Gf (x
t)− 1

2
α∥∇f(xt)−∇Gf (x

t)∥2 + 3

13
γ(1 + Cf )α

4∥∇f(xt)∥2

≤ f(xt)−Gf (x
t)− 1

2
α∥∇f(xt)−∇Gf (x

t)∥2,

≤ f(xt)−Gf (x
t)− ν

2
α(f(xt)−∇Gf (x

t))
2
θ

In the last two line, we apply eq. (47) and α ≤ ( 13
12(1+Cf )

)1/3
∥∇f(xt)−∇Gf (x

t)∥
∥∇f(xt)∥ . The result follows

directly from Lemma 6 of Fatkhullin et al. (2022).
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