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ABSTRACT

We consider the optimization problem of finding Nash Equilibrium (NE) for a
nonconvex function f(x) = f(x1,...,z,), where z; € R% denotes the i-th block
of the variables. Our focus is on investigating first-order gradient-based algo-
rithms and their variations such as the block coordinate descent (BCD) algorithm
for tackling this problem. We introduce a set of conditions, termed the n-sided
PL condition, which extends the well-established gradient dominance condition
a.k.a Polyak-t.ojasiewicz (PL) condition and the concept of multi-convexity. This
condition, satisfied by various classes of non-convex functions, allows us to an-
alyze the convergence of various gradient descent (GD) algorithms. Moreover,
our study delves into scenarios where the objective function only has strict saddle
points, and normal gradient descent methods fail to converge to NE. In such cases,
we propose adapted variants of GD that converge towards NE and analyze their
convergence rates.

1 INTRODUCTION

Optimization problems with nonconvex objectives appear in many applications from computer sci-
ence to economics (Intriligator, 2002) and more recently, in machine learning (Jain et al., |2017)),
such as training deep neural networks (Goodfellow et al., 2016)) or policy optimization in reinforce-
ment learning (Silver et al.| |2014)). On the other hand, the Gradient Descent (GD) algorithm and its
variants are driving the practical success of many machine learning approaches. Naturally, under-
standing the limits of such GD-based algorithms in the nonconvex setting has become an important
avenue of research in recent years (Jin et al.|, 2021} Zhou et al., 2024} Jordan et al.,2023)). Along this
line of research, we are interested in finding Nash Equilibrium z* = (7, - - - , 27 for the nonconvex
optimization f(x), i.e.

flafsaty) < flysat,), Yy € RY, @)
where f is a continuously differentiable but possibly nonconvex function. The variable = can be
partitioned into n blocks (z1, ..., %, ), where z; € R% is the i-th block and }_; , d; = d. This
optimization problem can be viewed as a potential game between n players. The objective of ¢-th
player is to minimize the function f(z;,z_;) when other players’ parameters are denoted by z_;.

From a game-theoretic perspective, this is a multi-agent potential game where the potential function
f captures the aggregate impact of all agents’ strategies {x; }*_; Monderer & Shapley|(1996). Each
agent minimizes f over its variables x;, assuming others’ strategies are fixed. However, privacy
concerns arise as strategies may reveal sensitive information. In decentralized settings, such as
network routing [Candogan et al.|(2010) or resource allocation (Zhang et al., |2021), agents optimize
independently without full knowledge of f or others’ strategies. Furthermore, convergence to an NE
is not always stable (Carmonal, 2013), as gradient descent may diverge.

For a general nonconvex differentiable function f : RY — R, finding its NE is PPAD-complete
(Daskalakis et al.,[2009). A straightforward approach to tackle this problem is to introduce additional
structural assumptions to achieve convergence guarantees. Within this scope, various relaxations of
convexity have been proposed, for example, weak strong convexity (Liu et al.| 2014), restricted
secant inequality (Zhang & Yin, 2013), error bound (Cannelli et al., 2020), quadratic growth (Cui
et all 2017), etc. Recently, there has been a surge of interest in analyzing nonconvex functions
with block structure. Multiple assumptions have been analyzed which is correlated to each block
when other blocks are fixed, for example, PL-strongly-concave (Guo et al., |2023), nonconvex-PL
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(Sanjabi et al.| 2018)), PL-PL (Daskalakis et al.| [2020; [Yang et al., [2020; |Chen et al., [2022) and
multi-convex (Xu & Yin, 2013} [Shen et al., 2017; |Wang et al.l 2019a; 2022b)). For instance, the
multi-convexity assumes the convexity of the function concerning each block (coordinate) when the
remaining blocks are fixed.On the other hand, the other aforementioned conditions are tailored for
objective functions comprising only two blocks. They are particularly defined for min-max type
optimizations rather than minimization tasks.

The nonconvex optimization realm has seen a growing interest in the gradient dominance condition
a.k.a. Polyak-Lojasiewicz (PL) condition. For instance, in analyzing linear quadratic games (Fazel
et al.| [2018), matrix decomposition (Li et al., [2018), robust phase retrieval (Sun et al., 2018)) and
training neural networks (Hardt & Mal 2017} |Charles & Papailiopoulos, 2018} |Liu et al.,[2022). This
is due to its ability to enable sharp convergence analysis of both deterministic GD and stochastic GD
algorithms while being satisfied by a wide range of nonconvex functions. More formally, a function
f satisfies the PL condition if there exists a constant & > 0 such that

IV£(2)1? 2 2u(f(2) — min f(y)),Vz € RY. )
yER

This was first introduced by [Polyak| (1963)); [Lojasiewicz| (1963)), who analyzed the convergence of
the GD algorithm under the PL condition and showed its linear convergence to the global minimum.
This condition can be perceived as a relaxation of strong convexity and as discussed in (Karimi
et al.| 2016), it is closely related to conditions such as weak-strong convexity (Necoara et al.,|2019),
restricted secant inequality (Zhang & Yin, |[2013)) and error bound(Luo & Tseng [1993).

As mentioned, the PL condition has been extended and applied to optimization problems with mul-
tiple coordinates. This extension is analogous to generalizing the concept of convexity (concavity)
to convex-concavity. For instance, the two-sided PL condition was introduced in (Yang et al., [2020)
for analyzing deterministic and stochastic alternating gradient descent ascent (AGDA) in min-max
games. It is noteworthy that most literature requires convexity or PL condition to establish the last-
iterate convergence rate to the NE (Scutari et al.l 2010; [Sohrabi & Azgomi, 2020; Jordan et al.
2024). This, however, may not hold even if the objective function is quadratic. A considerable re-
laxation is that the function satisfies strong convexity or PL condition when all variables except one
are fixed. Two natural questions arise:

Can similar results be achieved by extending the two-sided PL condition to accommodate optimiza-
tion problems in the form of equation[I] where the objective comprises n coordinates? And is there
an algorithm to guarantee convergence at a linear rate in such problems?

Furthermore, as highlighted by [Lee et al.| (2016); [Panageas & Piliouras| (2016); |/Ahn et al.| (2022),
GD with random initialization almost surely escapes the NE point when it is a strict saddle point.
Also, Xu & Yin| (2013} |2017) require the potential function to be lower-bounded to approach the NE
set rather than diverge to infinity. These prompt us to consider the following questions:

Is it possible to ensure the convergence to the NE set even though it only contains strict saddle points
or the function is not lower bounded by using first-order GD-based algorithms?

Motivated by the questions above, we introduce the notion of n-sided PLF_] condition (definition[2.6)),
which is an extension to the PL condition and shows that it holds in several well-known noncon-
vex problems such as n-player linear quadratic game, linear residual network, etc. It is noteworthy
that unlike the two-sided PL condition, which guarantees to converge to the unique Nash Equilib-
rium (NE) in min-max optimization (Yang et al., 2020; |Chen et al., [2022), functions satisfying the
n-sided PL (even 2-side PL) condition may have multiple NE points (see section [2.1] for exam-
ples). However, as we will discuss, the set of stationary points for such functions is equivalent to
their NE points. Moreover, unlike the two-sided PL condition, which ensures linear convergence
of the AGDA algorithm to the NE, the BCD algorithm exhibits varying convergence rates for dif-
ferent functions, all satisfying the n-sided PL condition. Similar behavior has been observed with
multi-convex functions (Xu & Yin, [2017; Wang et al.,|2019a)). Therefore, additional local or global
conditions are required to characterize the convergence rate under the n-sided PL condition.

In this work, we study the convergence of first-order GD-based algorithms such as the BCD, and pro-
pose different variants of BCD that are more suitable for the class of nonconvex functions satisfying

"We should emphasize that 2-sided PL and two-sided PL are slightly different conditions as the former is
suitable for min, , f(z,y) while the latter is for min, max, f(z,y).
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n-sided PL condition. We also introduce additional local conditions under which linear convergence
can be guaranteed and the convergence to NE still holds even only strict saddle points exist.

1.1 RELATED WORK

Block Coordinate Descent and its variants. Block coordinate descent (BCD) is an efficient and
reliable gradient-based method for optimization problems in [1| which has been used extensively for
optimization problems in machine learning (Nesterov, [2012;|Allen-Zhu et al.| 2016} Zhang & Brand,
2017; |Zeng et al., 2019; Nakamura et al., 2021). Numerous existing works have studied the con-
vergence of BCD and its variants for functions. Most of them require the assumptions of convexity,
PL condition, and their extensions (Beck & Tetruashvili, 2013} [Hong et al., 2017} |Lin et al.| 2023;
Chen et al.| 2023} (Chorobura & Necoaral 2023)). For instance, [ Xu & Yin| (2013} [2017) studied the
convergence of BCD for the regularized block multiconvex optimization. They established the last
iterate convergence under Kurdyka-t.ojasiewicz which might not hold for many functions globally.
The authors in (Lin et al.l [2023) considered the generalized Minty variational problem and applied
cyclic coordinate dual averaging with extrapolation to find its solution. Their algorithm is indepen-
dent of the dimension of the number of coordinates. However, their results rely on assuming the
monotonicity of the operators, which is often hard to satisfy. |Cai et al.|(2023)) considered composite
nonconvex optimization and applied cyclic block coordinate descent with PAGE-type variance re-
duced method. They proved linear and non-asymptotic convergence when the PL condition holds,
which is not valid for functions with multiple local minima.

PL condition in optimization. The PL condition was originally proposed to relax the strong con-
vexity in the minimization problem sufficient for achieving the global convergence for first-order
methods. For example, [Karimi et al.| (2016) showed that the standard GD algorithm admits a lin-
ear convergence to minimize an L-smooth and p-PL function. To be specific, in order to find an
e-approximate optimal solution & such that f(Z) — f* < ¢, GD requires the computational com-
plexity of the order O(% log %) Besides this, different proposed methods, such as the heavy ball
method and its accelerated version have been analyzed (Danilova et al.| [2020; [Wang et al., 2022a)).
The authors in (Yue et al.,2023)) proved the optimality of GD by showing that any first-order method
requires at least Q(ﬁ log i) gradient costs to find an e approximation of the optimal solution. Fur-
thermore, many studies focus on the sample complexity when the objective function has a finite-sum
structure, i.e., f(z) = % >or fi(z), e.g., (Leietal.,,|2017; Reddi et al., 2016; |Li et al., 2021} Wang
et al.,[2019b; Bai et al., 2024).

In addition to the minimization problem, extensions of the PL condition, such as two-sided con-
ditions, have been proposed to provide convergence guarantees to saddle points for gradient-based
algorithms when addressing minimax optimization problems. For example, the two-sided PL holds
when both h,(z) := f(x,y) and h,(y) := —f(x,y) satisfy the PL condition (Yang et al., 2020}
Chen et al., 2022), or one-sided PL condition holds when only h,,(x) satisfies the PL condition (Guo
et al.| [2023;|Yang et al.| [2022). Various types of first-order methods have been applied to such prob-
lems, for example, SPIDER-GDA (Chen et al.| 2022)), AGDA (Yang et al., [2020), Multi-step GDA
(Sanjabi et al.,[2018];Nouiehed et al., 2019). For additional information on the sample complexity of
the methods mentioned earlier and their comparisons, see (Chen et al.,|2022) and (Bai et al.| 2024).

2 n-SIDED PL CONDITION

Notations: Throughout this work, we use || - || to denote the Euclidean norm and the lowercase
letters to denote a column vector. In particular, we use x_; to denote the vector = without its ¢-th
block, where ¢ € [n] := {1,...,n}. The partial derivative of f(x) with respect to the variables in

its i-th block is denoted as V; f(z) := 8%1_ f(z;,2_;) and the full gradient is denoted as V f () that
is (V1 f(x),..., Vo f(z)). The partial second order derivative with respect to the i-th coordinate is
denoted as VZf(x) := a‘g—xif(zq;, x_;). The distance between a point = and a closed set S is given
by dist(z,S) = infses ||s — z||. The uniform sampling between a and b is denoted as U (a, b).

2.1 DEFINITIONS AND ASSUMPTIONS

Throughout this paper, we assume the function f(z) : R? — R belongs to C', i.e., it is continuously
differentiable. Furthermore, we assume it has a Lipschitz gradient.
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Assumption 2.1 (Smoothness). We assume the L-Lipschitz continuity of the derivative V f (),
IVf(z) = Vil < Lz —yll, Ve, y

where L > 0 is a constant. In this case, f(x) is also called L-smooth.

A slightly weaker assumption is coordinate-wise smoothness given below. Note that under the
Lipschitz gradient assumption, the coordinate-wise smoothness can be deduced.

Assumption 2.2 (Coordinate-wise Smoothness). We assume the coordinate-wise L.-Lipschitz con-
tinuity of the derivative V f (z),

IVif(wi,2—) — sz(x;7x—z)H < Lellz; — Z‘;H, Vl‘i,l‘;,l‘_i,Vi € [n],
where L. > 0 is a constant. In this case, f(x) is also called a coordinate-wise L.-smooth function.

Assumption 2.3 (Lower bounded). The function f(x) is lower bounded, i.e. inf ,cpa f(z) > —oc0.

We now define two notions of optimality for the minimization problem in eq. (I)); Nash Equilibrium
(NE) and Stationary point.

Definition 2.4 (Nash Equilibrium (NE)). Point ©* = (a7, ..., xz},) is called a Nash Equilibrium of
Sunction f(z) if

flar,z*,) < f(xi, %), Vi € [n],Va; € R%,
We denote the set of all Nash equilibrium points of f(x) by N'(f).

The other notion, stationary point, is related to the first-order condition of optimality and also rele-
vant for studying gradient-based algorithms.

Definition 2.5 (¢-Stationary point). Point & = (%1, ..., Z,) is called an e-stationary point of f(z)
if |Vf(@)]| < e. When € = 0, the point T is called a stationary point. We denote the set of all
e-stationary points and the set of all stationary points of f(z) by Sc(f) and S(f), respectively.

For general nonconvex minimization problems, the above two notions are not necessarily equiv-
alent, i.e., a stationary point may not be a NE. Nevertheless, for the remainder of this work, we
assume that the objective function f has at least one NE, i.e., N rF (. We also assume that
argmin,, cga, f(2;,2_;) is non-empty for any i € [n] and x_;, i.e., there exists a best response
to every x_;. Note that this is not a limiting assumption given that the function is lower bounded.
Below, we formally introduce the n-sided PL condition for the function f(x).

Definition 2.6 (n-sided PL Condition). We say a function f(x) = f(x1,...,xy) satisfies n-sided
wu-PL condition if there exists a positive constant p. > 0 such that

||sz(z,,z_,)|\2 > 2#(]0(117“517—1) - f;,i)a Vz € Rd,Vi € [TL], 3)
where f}_ = miny, f(y:,z_;).

We say a function f(x) is n-sided PL, if it satisfies the n-sided u-PL condition for some p > 0. It is
worth noting that the n-sided PL condition does not imply convexity or the gradient dominance (PL)
condition. It is an extension to the PL condition, as when f is independent of z_;, i.e., f(x;, x_;)
¢(x;) for some function ¢ satisfying the PL condition, then f satisfies the PL condition. Moreover,
it is considerably weaker than multi-strong convexity.

Next result shows that under the n-sided PL condition, the set of stationary points and the NE set
are equivalent. All proofs are presented in the Appendix [C} For instance, the set of stationary points
and the NE set of fy in Figure[]is {(—1,—1), (1, 1), (0,0)}.

Lemma 2.7. If f(z) = f(x1, ..., x,) satisfies the n-sided PL condition, then S(f) = N (f)

It is also important to emphasize that, unlike the n-sided PL, the two-sided PL condition is defined
such that the right-hand side of equation [3]is the difference between the function and its minimum
for one coordinate while for the other coordinate it is the difference between the function and its
maximum. As a consequence, under the two-sided condition, the stationary points are also global
minimax points. However, under the n-sided PL condition in definition[2.6] it is no longer possible
to ensure that the NE are global minimums. In fact, there could be multiple NEs with different
function values. For example, consider the functions fo(z, y) and f(z,y) illustrated in Figure[1} As
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Figure 1: Left is function fo(z,y) = (z — 1)%(y + 1)® + (z + 1)*(y — 1)? and right is function
fz,y) = folz,y) + exp(—(y — 1)*).

shown in Appendix [B] both functions are 2-sided PL, but their set of NE and the set of minimum
points are not equivalent. In particular, both functions have three NE points while, fo(x,y) has two
global minimums and a saddle point, and f(z,y) has a local, a global minimum, and a saddle point.

Remark 2.8. The n-sided PL condition is defined coordinated-wise, with the coordinates aligned
with the vectors {e1, ..., e, }, where e; belongs to R, such that the entries corresponding to the i-th
block are one and zero elsewhere. This condition can naturally be extended to n-sided directional
PL in which the i-th inequality is aligned with a designated vector v;. In this extension, the partial
gradient and [ . are replaced with their directional variants along vector v;. Note that the results
of this work will remain valid in the directional setting, provided that the definitions of NE and the
presented algorithms are adjusted to their respective directional variants.

3 ALGORITHMS AND CONVERGENCE ANALYSIS

Within this section, our initial focus is on studying the BCD algorithm for finding a stationary point
of equation [T] under the n-sided PL condition. Afterward, we propose different variants of BCD
algorithms that can provably achieve better convergence rates.

The BCD algorithm is a coordinate-wise approach that iteratively improves its current estimate
by updating a selected block coordinate using the first-order partial derivatives until it converges.
It is important to note that BCD algorithms typically
uphze the 'partlal gradient evaluated at thq latest es- Algorithm 1 Cyclic Block Coordinate De-
timated point to update the selected coordinate. De-

. . . scent (BCD)
pending on how the coordinates are chosen, various

types of BCD algorithms can be devised. For ex- Inpu.t: initial point 2° = (af,...,z}),
ample, coordinates can be selected uniformly at ran- learning rates {c;}

dom, random BCD, or in a deterministic cyclic se- for ¢ = 1tondo

quence, progressing one after another. Algorithm for lt = 1}2171 dot . i1
[T] presents the cyclic BCD algorithm with learning = —ogVif (@ 1,2, )
rates {af}. Moreover, to update the i-th block at end for

the ¢-th iteration, it employs V, f (x4, _,, 2! 1), where end for

(z},, 1,251 denotes the latest estimated point and it
is (zf,..,2t |, 27t ... xl~1). Next result shows that when the iterates of the BCD, {z'} are

: n
bounded, the outpilt converges to the NE set.
Theorem 3.1. Under the assumption and assumption if f(z) satisfies n-sided PL
condition, the iterates {x'} are bounded and the learning rates of = a < then

7 L7c’
The above result ensures the convergence of BCD to the NE set, but it does not necessarily indicate
whether the output converges to a point within the NE set. The convergence to a point within the
NE set can be established if further every point in the NE set is isolated, e.g., fo and f in Figure[T]

Theorem 3.2. Under the assumptions of theorem if N'(f) is the union of isolated points, i.e.,
there exists 1 > 0, such that miny, .c nr(s) |y — z|| > 1, then {x'} converges to a point in N'(f).
y#z

It is noteworthy that, following the results of [Lee et al.|(2016; 2019)); Panageas & Piliouras| (2016);
Ahn et al.[(2022), when the function is smooth, and the initial points are chosen randomly, the BCD
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algorithm avoids strict saddle points in the NE set almost surely. See the Appendix D] for formal
statements and proofs.

Although the above results ensure the convergence of BCD when the function is lower
bounded and also satisfies the n-sided PL, they do not specify the last-iterate convergence
rate. Unlike the two-sided PL condition that leads to linear convergence of AGDA to the
min-max, the n-sided PL condition does not necessarily lead to any specific convergence
rate of the BCD. To demonstrate this phenomena, we consider two 2-sided PL functions:
filz,y) = (x + y)? + exp(—1/(x — y)?) for (z,y) # (0,0) and zero otherwise and
fo(z,y) = (x + y)?. We applied the BCD algorithm to both these functions with small
enough| constant learning rates to find their NE points with different random initializations.
As it is illustrated in Figure [2] the BCD converges

linearly for the function fo while it converges sub-
linearly for f;. This example shows that characteriz- mz‘
ing the convergence rate of the BCIﬂ algorithm under
the n-sided PL condition and the smoothness might 5 .
not be feasible and further assumptions on the function = .
class are required. In what follows, we study one such
assumption that holds for a large class of non-convex
functions and characterize the convergence rate of ran- o]

dom BCD and GD under this additional assumption.

3.1 CONVERGENCE

Figure 2: The BCD algorithm applied to
UNDER AN ADDITIONAL ASSUMPTION

functions f;(z,y) and fs(x,y). The y-axis
To introduce our additional assumption, we need to 1S in log scale, thus the BCD demonstrates
define a quantity related to function f(z) denoted by linear convergence for f.

G(x) which plays a central role in analyzing the con-

vergence of coordinate-wise algorithms. That is the average of the best responses,

Gy(e) = 3 f(ai (a),a-0) @

where z; () denotes the best response to z_; that is the closest to z;, i.e., z} (z) € arg min,, {||y; —

zilllfys,z—i) < f(zi,2—;),Vz}. It is straightforward to see that f(x) — Gy(z) > 0 for all x.
Moreover, if * € Ny, the best response for every block is z*. Conversely, if f(z*) — Gy(z*) = 0,
then f(2*) = miny, f(x;, z* ), Vi, which implies 2* is a NE. As a result, we have

Theorem 3.3. z* is a NE if and only if f(x*) — G¢(2*) = 0.

The next result shows that G () is both differentiable and smooth under the n-sided PL condition.
See appendix [C.4] for a proof.

Lemma 3.4. If f(x) satisfies n-sided u-PL and satisfies assumption then VG f(x) exists and it
is L'-Lipschitz, where L' :== L + L/TZ

Note that if function f(x) is L-smooth and n-sided p-PL, then L > u (see Appendix . Below, we
introduce an additional assumption on f under which the random BCD algorithm achieves a linear
convergence rate. This is about how the gradients of f and G ¢ are aligned

Assumption 3.5. For a given set of points {x', 22, ...}, there exists 0 < k < 1 such that for all T,
(VGy(aT), Vf(z)) < 6]V f(2T)]* )

For instance, the function fo(z,y) depicted in Figure satisfies this assumption for all points within
{(z,y) : |z| > 0.75,]y| > 0.75}. Note that this set contains both local minimums of f;.

Theorem 3.6. Suppose f(x) is n-sided p-PL satisfying assumption and assumption|3.5|for all

. . t . 2(1—5) . . .
the iterates, then random BCD with o' := o < S+ (R)T achieves linear convergence rate, i.e.,

1—k)

B @) — Gt < (1 P =Yg gy a)

’Different learning rates were selected, all less than 1/ L., where L. is defined in assumption
3Similar behavior was also observed from the GD algorithms for these two functions.
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The expectation is taken over the randomness inherent in the procedure for selecting coordinates.

The GD algorithm, i.e., ' = 27! — o'V f(2'~1) can also achieve similar convergence rate.
Theorem 3.7. Suppose f(x) is n-sided p-PL and satisfies assumption and assumption |3.5| for

. . t._ 2(1—&) . . .
all the iterates, then GD with o .= a < SR T achieves linear convergence rate, i.e.,

Pt = G < (1= U (16 - 6y e)

Applying the Cauchy-Schwarz inequality, it is straightforward to see that a stronger assumption than
assumptionis that there exists 0 < x < 1, such that |[VGf(z')| < s[|Vf(z')]. On the other
hand, the following result shows that | VG || is always bounded from above by ||V f]| for n-sided
PL function f, but with a constant greater than one. Thus, for instance, if the function f is such that
this constant is less than one for the iterates of the random BCD algorithm, then linear convergence
can be guaranteed by theorem This is indeed the case for functions such as f, and the linear
residual network problem (see Section [d). Moreover, as we showed in Appendix [F| there exists a
neighborhood around every isolated local minimum of smooth functions such that, on average, the
condition in equation [5|holds for all iterates of the GD dynamics.

Lemma 3.8. For an n-sided p-PL function f(x) satisfying assumption let Cy := ﬁ +1, then
VG (@)l < CrlIVf ()|, for all x.

3.2 CONVERGENCE WITH THE EXACT BEST RESPONSES BUT WITHOUT ADDITIONAL
ASSUMPTION

Herein, we study the setting in which assumption [3.5] does not hold. As we discussed earlier, in
this setting, the BCD and GD algorithms may demonstrate different convergence rates. Thus, our
objective in the remainder of this section is to develop variants of the random BCD and GD algo-
rithms so that close to linear convergence is still achievable. We accomplish this objective, first by
designing algorithms equipped with the knowledge of the best responses, {z} (x")}, at each iteration
t. More precisely, we initially propose algorithms that presume access to the exact values of the best
responses at each iteration. Subsequently, we refine this assumption by integrating a sub-routine into
the proposed algorithms capable of approximating the best responses. For the sake of simplicity and
space, we describe our block coordinate variants here and the GD variants and their convergence
analysis are presented in the Appendix [G To present our theoretical result, we need the following
definition.

Definition 3.9 ((0, v)-PL condition). The function f with min, f(x) = 0 satisfies (0, v)-PL condi-
tion iff there exists 6 € [1,2) and v > 0 such that |V f(z)||? > (2v)%/2 f (z).

It has been proved by [Lojasiewicz| (1963) that for any C'! analytic function, there exists a neighbor-
hood U around the minimizer where (6, )-PL condition is satisfied.

Algorithm2]presents the steps of our modified version of the random BCD. In this algorithm, instead
of updating along the direction of —V ;¢ f(z), where i* denotes the chosen coordinate at iteration £,
a linear combination of V;: () and V,;+ G () is used to refine the updating directions. The coeffi-

cient of this linear combination, k!, is adaptively selected based on the current estimated point. It is
important to mention that VG ¢(z) can be computed using the gradient of f and the best responses.

VGi(z) = %ZVf(;r:(m),a:_i). (©6)

Theorem 3.10. For n-sided ji-PL function f(x) satisfying assumption by applying algorithm

* in Case I with a < % we have E[f(z'+1)—G s (at*) |2 < (17W)(f(xt)76‘f(xt))’

* in Case 2 with o < min{m, m}, we have

B[/ (=) - Gy '] < (1- EEEON (0 - 6y,
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Algorithm 2 Ideal Adaptive Randomized Block Coordinate Descent (IA-RBCD)
Input: initial point z° = (29, ..., 22), T, learning rates o, 0 < v < 1 and C' > 0
fort—OtoT—ldo

sample 7’ umformly from {1, 2, .

s
1f<VGfé ), V() <[V ()] then

(VG )2 (V f(«"),VG(z")))? :Case 1:
else if L <vf(wt),vG(wt’)>2 > C then
t— _ (VI VG (ah) . .
=2+ e eor :Case 2:
else
k=1 :Case 3:
end if
it =2l — oV f(at) + KV Gy(at)), it =atifi#dt
end for

e in Case 3 with o < L+L/, f — Gy is non-increasing. Furthermore, if f — Gy satisfies (8, v)-PL condition
and case 3 are satisfied from iterates t to t + k, we have

E[f(z%) — G (a"+*)[2!] < O(f(x ) —GGf(w ))

k2—0

The exact constant terms are provided in the proof.

According to this result, IA-RBCD in[2] demonstrates linear convergence for two out of three cases.
When the third case occurs finitely many times, for instance, if there exists a neighborhood around
an isolated NE point such that the third case does not occur (e.g., function f; in Figure [I)), then
linear converge is guaranteed by IA-RBCD. Since rigorously verifying these cases is intractable, we
empirically verify them for different well-known problems in the next section.

It is crucial to highlight that BCD requires assumption [2.3]to converge to the NE (Xu & Yin| 2013)
and almost surely avoids strict saddle points (Lee et al., 2016). However, theorem shows that
under the specified assumptions, IA-RBCD converges to the NE irrespective of these conditions.

3.3 CONVERGENCE WITH APPROXIMATED BEST RESPONSES AND WITHOUT ADDITIONAL
ASSUMPTION

Evaluating Gy at a given point requires the knowledge of the best responses at that point. Of-
ten, these best responses are not known a priori and they have to be computed at each iteration.
Fortunately, since in our study, f(z) satisfies the n-sided PL condition, the best responses can be
efficiently approximated, by applying GD algorithm with the partial gradients as a sub-routine. Al-
gorithm {4 presents the steps of this sub-routine and Algorithm [3| shows the steps of our adaptive
random BCD algorithm. The main difference between algorithms [2]and [3]is that at every iteration,
A-RBCD approximates the best response function by gradient descent. This is efficient as it con-
verges to the Gy at a linear rate. And interestingly, the number of steps for approximating G (),
T”, only depends on the function parameters and it is independent of the final precision of f — G/.

Theorem 3.11. For an n-sided p-PL functlon f(x) satisfying assumption by implementing
algorzthm@wtth B< 1andT' > log (162975’;6 )/ log( 1_1#5 ),

e in Case 1 with o < % we have E[f(z*1)—G(z*)]z!] < (1—%)(f(xt)_Gf(xt))y

( 3Cy )1/2 710~ 3y(L+L")p
/Oy \(13+127)Cp ) 2 GT6(LHL7)” (13+1087)LCT 2<L+L’
L+ L')ua?

B[ - Gt < (1 EEEIOY () gy,

* in Case 2 with a < min { —— } we have

. . : 1 13 V() =VGs ()|
in Case 3 with ozgrmn{ L+L”(12(1+Cf))1/3 it )ﬁ

thermore, if f —G satisfies (8, v)-PL condition and case 3 occurs from iterates t to t + k, then

E[f(ka) . Gf(xt+k)|xt] < O(f(wt)k—z%cjf(azt))

}, f—Gy is non-increasing. Fur-
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Algorithm 3 Adaptive randomized Block Coordinate Descent (A-RBCD)
Input: initial point 2° = (29, ...,2%), T, T, learning rates v, 3,0 < v < 1 and C' > 0
fort=0to7 — 1do
sample i uniformly from {1,2,...,n}
yt T =ABR(z!,T’, 3) :Algorithm
compute VGy(zt) = L 31, V" at)

it (VG (at), Vf(2h)) < (v = v55) |V f(2*)[? then

k=0 ) ~ ) :Case 1:
e (IVGs (@) =(Vf(2"), VG (2h)))
else if NRCEIR > C' then
Tt (Vf(z"),VGy(a")) . .
k'=-2+ NRGIE :Case 2:
else
kt=—1 :Case 3:
end if s
it =2l — (Vi f(at) + KV Gy(at)), it =zt ifi #£ 4
end for

———ARBCD
Ben

(@ (b)

Figure 3: (a) Performance of A-RBCD (blue) and BCD (red) on function f(z,y) shown in (b).

4  APPLICATIONS

Herein, we discuss two well-known nonconvex problems that satisfy the n-sided PL condition.

Function with only strict saddle point: We consider the quadratic function f(x,y) = (z — 1) +
4(x 4 0.1cos(x))y + (y + 0.1sin(y))?. The problem aims at finding the NE (z*, y*), i.e.,

[ y) < floy™), Ve, @5, y") < f(z",y),Vy. )

Figure [3] represents the convergence results of A-RBCD and BCD with 100 random initialization.
The iterates of A-RBCD always converge to the NE at a linear rate while BCD diverges. Note that
the NE is a strict saddle point.

Linear Residual Network: It aims at learning linear transformation R : R? — R< such that
y = Rx + &, where £ ~ N(0, I4) and I denotes the identity matrix of dimension d. The learned
model can be parameterized by a sequence of weight matrices Ay, ..., A,, € R4¥¢, such that hg = x,
hj = (I + Aj)hj_1,§ = hy,. Thus, the objective function of this problem is given by

F(Ar, o An) = E[llg = yl*) = E[ (] + An)...(] + A1)z — Re — €|*].

Even though (I + A,,) - - - (I + A;) is a linear map, the optimization problem over the factored vari-
ables (Aq, ..., Ay,) is non-convex (Hardt & Ma, 2017). More precisely, we considered two settings:
(1)d =3,n =5and (2) d = 5,n = 10 with covariance matrices ¥ = E[z2T] = I, and applied the
A-RBCD algorithm to both settings. Figure []illustrates the resulting error curves on a log-scaled
y-axis, obtained from 100 trials. Each trial is obtained by randomly selecting the diagonals of matrix
R according to U(0.5, 1.5) and initializing A;s with random entries according to U(—0.1,0.1).

Infinite Horizon n-player Linear-quadratic (LQR) Game: The objective function of this game
can be formulated as

+oo n
Ezo~p [Z[(mt)TQa:t + Z((uf)TRiuﬂ],
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@n=5d=3 (b)yn =10,d=5

Figure 4: The performance of the A-RBCD and RBCD on linear residual network problems for
different network sizes illustrates linear convergence, as advocated by theorem [3.6]

where x; denotes the state, u! is the input of i-th player at time ¢, and i € [n]. The state transition of
the system is characterized by z' ™! = Az’ + 3" | Byu!, where A € R*** and B € R**?. When

players apply linear feedback strategy, i.e., u! = —K;z",, the objective function becomes
400 n
J(Ki, Koi) = Bogun[ Y [(@)7Qa" + > ((Kiw))" RiKal]].
t=0 =1

If K;s are bounded and X = E,op[z°(2°)7] is full rank, the objective function f satisfies the
n-sided PL condition (see appendix for a proof). However, as it is discussed in [Fazel et al.
(2018), even the objective of one-player LQR is not convex. Subsequently, the objective function of
the n-player LQR game is not multi-convex. See appendix [E.2]for examples.

We applied our A-RBCD algorithm to this problem when A € R, B; € R'*? and the entries of
B;, Q and the diagonal entries of R; were sampled according to - U(0,1), U(0,1) and U(0,1),

respectively. We set the learning rate a= 0.05 and random initialization K; ~U (0, 1) for all 4. Fig.

demonstrates the resulting error curve, f(K')—Gf(K"), and p:= W- This shows

that during the updating procedure, the third case did not occur. Plots are obtained from 50 trials.

Y o 0 =™ F « = T« ax = ) E)

(@n=>5d=3 b n=10,d=5 (¢) n=20,d=10 @ p

Figure 5: The performance of the A-RBCD and RBCD on n-player LQR for different game sizes.
The y-axis of (a)-(c) are in the log scale.

5 CONCLUSION

In this paper, we identified a subclass of nonconvex functions called n-sided PL functions and stud-
ied the convergence of GD-based algorithms, particularly the BCD algorithm, for finding their NEs.
The n-sided PL condition is a reasonable extension of the gradient dominance condition, which
holds in various problems. We showed that the convergence rate of such first-order algorithms in
this subclass of functions depends on a local relation between the function f and the average of
the best responses G's. Subsequently, we proposed two novel algorithms, IA-RBCD and A-RBCD,
equipped with Gy, that provably converge to the NE set almost surely with random initialization
even if the function is not lower bounded and has strict saddle points. We hope this work can shed
some light on the understanding of nonconvex optimization.

10
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6 REPRODUCIBILITY STATEMENT

We affirm that all the result from this paper are reproducible. The detailed proof of lemma and theo-
rem are given in the appendix. The source code for the applications section is in the supplementary
materials.
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Appendix

A TECHNICAL LEMMAS

Lemma A.1. [Karimi et al.| (2016). If f(-) is l-smooth and it satisfies PL with constant p, then it
also satisfies error bound (EB) condition with L, i.e.

IVF@) = plley — ||, Ve,

where x), is the projection of x onto the optimal set, also it satisfies quadratic growth (QG) condition
with p, i.e.

f@) = min f(y) > 5}, — al”, V.

Conversely, if f(-) is l-smooth and satisfies EB with constant p, then it satisfies PL with constant .
Lemma A.2. If f(-) is L-smooth and it satisfies n-sided p-PL condition, then L > pu.

Proof. From L-smoothness, we have
IVif(zisz—i) = Vif (Y, o) < |V (@i, 2-i) = Vi, z-i) | < Ll — ill, Vi, vi-

It indicates,
L
Fisz—i) = flri,2—3) <(Vif(zi,v—3),yi — ) + 5”% — il
Lety; = x; — V;f(x;,2_;)/L. This leads to
. 1
f(@) = f(@i(zi),2-) = ﬁllvif(x)l\Q-
On the other hand, from the n-side PL, we get
i} 1
f(@) = f(a}(z=i),2-) < Ellvif(l“)\l?
Putting the above inequalities together concludes the result. O

Lemma A.3. If f(-) is L-smooth and it satisfies n-sided p-PL condition, then

1 2 1 2
- < -G < — .
5 IVI@° < f(z) = Gyla) < 2WIIVf(SC)II
Proof. This is a direct corollary from the last two inequalities of lemma[A.2] O

B EXAMPLES AND APPLICATION

B.1 FUNCTION fi(z,y) = (z — 1)?(y + 1)? + (z + 1)%(y — 1)?

Due to symmetry, we only show the condition for the first coordinate.
Vafi(z,y) =2(z — 1)(y+1)* +2(z + 1)(y — 1)* = da(y* + 1) - 8y,
fy =20 = 1°/(y* + 1),

(z> -1  (¥*-1)?

Gfl(xay): 22+ 1 1
2z (2P = 1) (2 +3) 2y (y* —1) (v* +3)
e - (LI 20723

Thus, the 2-sided PL holds iff 3y > 0, s.t. for all x and y
2
2((z = Dy + 12+ (@ + Dy - 1?)

- u((w —1)?(y+ 1)+ (e +1)°(y —1)* - 2(‘1;2;11)) > 0.
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The left-hand side is a quadratic equation with respect to « and for p = 2, it is

((y +1)2+(y—1)° - 1) (wz((y +1)2 4+ (y - 1)2) - 293((11 +1)2 = (y - 1)2))

(y =13y +1)? )
(y—1)2+(y+1)2/)

+(+ 102+ =12 = 1) (g + 12+ (- 1) — 4
The above expression is positive for all z and y.

Analysis of the origin: Although, the origin point is a stationary point of f; since the Hessian at
this point is not positive semi-definite, it is not a local minimum. However, it is straightforward to
see that (0, 0) is in fact a NE of f;(z,y). Note that the Hessian at the origin is

m00= Y 2o

B.2 FUNCTION fa(z,y) = (z — 1)*(y + 1) 4+ ( + 1)%(y — 1)* + exp —(y — 1)?
For this function, we have
Vafolw,y) =2(x — Dy +1)* +2(z + 1)(y — 1)*,
Vyfa(z,y) =2(y = 1)(z +1)* + 2(y + 1)(z — 1)* = 2(y — 1) exp(—(y — 1)*).
and
Vifola,y) =2(y +1)* +2(y — 1)* > 4,
Vi fa(z,y) = 2(x +1)2 +2(z = 1)* + 4(y — 1)*exp(—(y — 1)*) — 2exp(—(y — 1)*) > 2.

It is straightforward to see that this function is smooth as the second-order derivatives are upper-
bounded. Moreover, since both the second-order derivatives are strictly positive, then it is 2-sided
PL. It is noteworthy that (0, 0) is also an NE for this function but it is not a local minimum as the
Hessian at the origin is not positive semi-definite.

B.3 FUNCTION f(z,y) = 22 + 4y 4 3sin? y + 4sin® zsin? y

We can derive that argmin,, f(z,y) = 0 and argmin,, f(x,y) = 0. Then compute the gradients:
V. f(z,y) = 2z + 3sin(2x) sin’(y),
V.f(z,y) = 8y + 3sin(2y) + 4sin®(z) sin(2y).

and
V2 £(,9)| = 12 + 6 cos(2a) sin?(y)| < 8,
2 . G2 .
|V, f(x,y)| = |8 4 6 cos(2y) + 8sin”(z) cos(2y)| < 22.

o f(+,y) is Li-smooth with L.; = 8 and f(x, -) is Lo-smooth with Ly = 22. Then note that

Vef(@,y)|l _ Vaf(z,y)| _ |22+ 3sin(2z) sin®(y)| S 1
|z —a*(y)] 2| || — 2
Vaf(@,9)| _ |Vyf(,y)| _ |8y + 3sin(2y) + 4sin’(x)sin(2y)| _ 9
|z — 2*(y)] lyl lyl T2
So f(-,y) satisfies EB with upp; = % and f(x,-) satisfies EB with ugps = 2. By Lemma

lemma we have e y) satisfies PL with yi; = 1= and .f(x., ) satisfies PL with pip = 2.
Moreover, this function satisfies Assumptlon@] as it is shown in Flgure@ Since G is not straight-
forward to compute for this function, we applied the A-RBCD algorithm, and the error is presented
in Figure 6]
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1000 2000 3000 4000 5000 6000 7000 8000 90CO 10000
t

(a) Convergence of RBCD for f(z,y) (b) The ratio
(VG (), Vf(2))/IVf(2)]?

Figure 6: Result of applying random BCD to the f(x,y) = x? + 4y> + 3sin®y 4 4sin® zsin y.
Right shows that the ratio is less than one for all points around (0,0), i.e., Assumption@holds true
for this function, and thus by Theorem [3.6} random BCD converges linearly as it is also shown in
the left plot.

Algorithm 4 Approximating Best Responses (ABR)
Input: Point z = (z1, ..., ), positive number 3 and T”
forj=1,...,ndo

y? =Tj
forr=0,..,7"—1do
yi T =yl — BV, (Y] T j)
end for
end for
Output: y*" = (4", ..., y7")

C TECHNICAL PROOFS

C.1 PROOF OF LEMMA[2.7]

Stationary point => Nash Equilibrium: If a point x satisfies V f (x) = 0, then the partial derivative
V. f(x) =0, Vi € [n]. From the definition of n-sided PL and f7_, we have

0= Vlf(x) > QM(f(xlvxfl) —fa ) >0,Vie [TL],

z_y

= f(zi,x-) = f;,i = Iginf(yi,x—i),Vi € [n],

— f(a:i,a:,i) < f(fi,l',i),Vfi,V’L’ S [n],

which means z satisfies the definition of Nash Equilibrium.

If f is differentiable, then Nash Equilibrium = Stationary point: If a point z is a Nash Equilibrium,

then f(x;,x_;) < f(&;,x_;),V%;, Vi € [n]. Based on the first order optimality condition, we have
Vif(zi,x—;) =0,Vi € [n],

which indicates V f (z) = 0.

17
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C.2 PROOF OF THEOREM [3.1]

From the Lipschitz gradient assumption, if o < 7-, we have
- L -
P 2i51) = F@hion 200 S (Vif @y 200,20 — o7 + Flles — 2071,
2L2
= —(a- %)Hx‘? P,
< - HV CEFIRTE ] i
In consequence,
t—1 t b1 o oL 0 g 8
f@lioy2i,) — f@a vii,) 2 HV f@lio,e )|| — Ml =l ®)

2

where the second inequality comes from the quadratic growth of the PL function and the third
inequality comes from the Lipschitzness of the gradient. By iterating over all blocks, we have

[ Zf 21, ) f(xizvx'tw_k%n)
2 2 )
aLl; — al. _
> Z—leﬁ Poal = et e,
. 2 2
where x° = 127, ..., L, ;. 1terating overall outer loops, we have
here ' = {zf,...,z},}. By iterating 1l loops, we h
T L2 T
J@%) = f@") =Y f@ )~ fat) 2 SN ot -t
t=1 t=1
Since f(x) is lower bounded by f = inf, f(z), we have
d 1 al? al? =
Dol —atP < () — £@") < FE(F@) — ) < e (10)

Since the sequence {x!}§° is bounded, there exists at least a limit point. For every limit point Z, we
denotes {xkt} as its corresponding subsequence such that lim;_, 4 2% = z. From eq. lD we

have lim;_, 4 oo ||24—1 — @] = 0. As a result, the subsequence {z* 1} also converge to Z. From
the block coordinate gradient descent, we know that

ok = b - aVv,f(z, fll, "), Vi € [n], Vt.

(2

Ast — +oo, :17;&4'1 — &; and xft — ;. We have

T; =% —aVy, f(T),Yi € [n],= V,f(Z) =0,Vi € [n].
It implies Z is a stationary point. From Lemma 2.7} it also implies that Z is a Nash Equilibrium. As
a result, every limit point of {z*} is also a Nash Equilibrium as long as {z;} is bounded.

If we assume that {z*} doesn’t converge to Nash Equilibrium, then there exists a positive constant ¢

a subsequence such that dist(:vkt ,N(f)) > €, Vt. Since this subsequence is also bounded, then this
subsequence must have a limit point Z € A/(f), which is a contradiction.

O

C.3 PROOF OF COROLLARY[3.2]

Since dist(x!, N') — 0, there exists an integer 77 > 0 such that z* € B(N, %), Vt > Ty, where
BN, 2) = {:E| mingen |2 —y|| < 3}. From theorem 3.1} we know that lim;_ 4 oo ||y — 2411 =
0. As a result, there exists an integer 75 > 0 such that ||z' — 2!+ < 2, Vt > T,

18
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We denote T = max{T}, T} and assume ||z — Z|| < 2, where z € . Notice that Z is a unique
point at every time ¢, because

_ _ n_ 2n
[z =yl > Iz =yl — 2" — 2| >n— 5 =

"
33 3

for any y € A and y # 7. Then,

R e R L R

For any y € N and y # T, we have

t4+1 > |7 — _ t+1 _ > i p——
[~y 2 17—yl — o 7 >y =]
So we always have ||z — Z|| < 2 forall t > T as we have 2 € B(N, 7). We conclude that {z'}
converge to the unique point Z as dist(zt,N') — 0.

O
C.4 PROOF OF LEMMA 3.4
Based on the Lipschitzness of the V f, we have that
IVif (@7 (y), 2ol = IVif (@] (y), 2—i) = Vif (27 (), y=o)ll < Lllz—i — y—il|-
Also, from n-sided PL condition and lemmal[AT]
IVif (27 (y), 2ol = pllai(y) — 27 (27 (y), 2|
From these two inequalities, we know that
* * * L
27 (y) — 27 (27 (y), 2 )| < ﬁllz—i —y-il.-
Then, we can show the smoothness of g;(z_;) := min,, f(x;, z_;).
IVgi(z—i) = Vgi(y—i)ll = Hv—if( F(@i (W), w—i), 2—i) — Vi f(27 (), y-a)ll,
= IV (@ (2} (y), 2—i), i) = V(@7 (), y-i)ll,
< IVF (@i (27 (), w i), x i) = V(@7 (27 (y), i), y-i)
+ V(@5 (@7 (y), =), y—i) — V(5 (), y-i)ll,
< Lljw—i =yl + Lllai (y) — 27 (27 (y), 2 ),
L2
< (245 o —uil.
I
The first equality is due to Lemma A.5 inNouiehed et al.| (2019). This leads to
IVGy(x) = VG )l = IV~ Zgl ~i) = V= Zgz
< - Z IVgi(z—i) = Vgi(y-i)|
L2
gf L+> Ti—Y—i S(L+> T =y
! g (z+ ) || =) e~
O
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C.5 PROOF OF THEOREM[3.6]

From the n-sided PL condition and by noticing that L-smoothness indicates the L-coordinate-wise
smoothness, for a < %, we get

S = S < (Tuef @), o = o) + S et =t P
L?

~(a- T%Hm»f(xt)n%

S LACICOlR

—pa(f(zt) — rglin f(yir, 2t 50)).

Ji

— (@)~ min f (g, 7)< (1= pa) (F) = min g 2L,

IN

IA

By taking the conditional expectation over it, we get

E[f(2"1) = min f(y;e, 210 ) 2] < (1 = pe)E[f () — min f(yir, 2%50)|2"].

Yt Yit
Then by rearranging terms, we have,

E[f(z"*) — min f(yess, 250 )[2f]
Yyt

i

< (1~ po)E[f(2") — min f(gie, 220 )le’] + Efmin £ (yst, 22) — min Flygesr, 2102

This is equivalent to say
E[f(z"*) = Gp(a"™)]z"] < (1 — pa)(f(z') — Gy(z")) + E[G(z") — Gy(z"*1)[a'].

From lemma we know Gy(x) has L' = L + %Z-Lipschitz gradient.

E[G)(2") — Gy(a*)]a!) < B[~ (VaGy(at). ™ —al) + 2 — at|Ple]
= BV Gy o), Vi () + S [V £ 1]
= L awe ). v + S Ivsah)?).

And
E[f(2") = f(a")] > E[~(Vie f(a"), 25" — af) — IIxt“ i |?|2"]

2
=Ela|[ Vi f(=")II* - gHVz‘tf(ﬂﬂt)HQth}

(anw >||2——|\Vf< HIF)
If (VGf(z?), Vf(z')) < k||Vf(z")|]?, then by choosing o < %, we have
2 /
E[G(xt) - Gy )|a'] < S ((VG(at), Vi) + SV £ (ah)]?)

o
= 3=

< 3 (alT AP - SSEIT A1)

<1+/€
- 2

E[f(a") = f(@")]a'] = RE[f (2") — f(="*)]2"],

where & = 152, As a result,

E[f(z") = Gy(a"™)|2'] <(1 = pa)(f(2") = Gy(a") + RE[f(2') — f(a"*)|2"].

20
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To write it differently,

(1 +RE[f (2 = Gp(a™)a']
<(1 = pa)(f(z') = Gy(a") + RE[Gf(2") — Gy(a")]a'] + RE[f (2") — Gy(a")]a']
=(1 - pa+R)(f(2") = Gp(a')) + RE[G (2") — Gp(a")la']
<(1 = pa+R)(f(z") = Gp(ah) + RZE[f(2") — f(a")]a'].

By iterating over this process,
(@) - Gyt o]

11—k

IN

(125 - me) () = Gtat),
— E[f(e) - Gy le’] < (1 - pa(l - B)(F') - Gy (a)),
(1= 220 ) - 65t

C.6 PROOF OF THEOREM [3.7]

From the PL condition, the smoothness assumption and o < 1/L, we get
[t < fah) - *IIVf( I
< f(&') = npa(f(z') = G¢(a")).

= f(="*) - Gf(wt) < (1= npa)(f(z') - Gy(a")).
This is equivalent to say

FE™) = Gp(a™) < (1= npa)(f(2') = Gy(a")) + Gy (') — Gy(a"™).
From lemma we know G(x) has L' = L + %—Lipschitz gradient.

Gy(z') = Gp(a'™) < ~(VGy(a), 2™ —af) + %’WH —at|?,
2L/
= a(VGy(z'), Vf(z")) + IV f (=)

And

Flat) = F@) 2 (V)2 — o) - St

a?L
= all V5@~ LEI I
If (VG (z"), Vf(zh)) < k[|[Vf(a?)|?, then by choosing o < %, we have

2L/

Gya') = Gy(a'™h) < a(VGy(a'), V f(a")) + IV£(")?,

271/
<CMMVf@nH2+9§EMVfuwn%

1 + K a’L .
< 25 (alwr)I? - SEITAEI?).
R - )
where & = 1. As a result,
FH) — Gy(a™) < (1 npa) (f(a) — Gy(a') + R(F (") — F(z")

To write it differently,
L+ R)(f(@) = Gp(a™) z') = Gy(a)

(
(f(z") = f@&"™)
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By iterating over this process,

UG - Gl < (15 e ) () - Glat)

— F(@') = Gy (at) < (1 = npa(l — &) (f(') — G4(a")),

f(:ntﬂ) _ Gf(xtJrl) < (1

C.7 PROOF OF LEMMA[3.8]

We have
IVG; (@)l = iivm:m,z_o
< |t 4:<Vf<x:<x>,xi> V@) + IV @]
<l Z IV (et (@), 2—i) = VI@) + V@)
<L Ja7(@) = @il + [V (@)

< \%J i 7 (x) = 2l + IV £ ()]

L n 5 B L
i\ TSI+ 197l = (2= 1) 1vswl

The fifth line comes from Cauchy-Schwartz inequality and the sixth line comes from the error bound
property. O

C.8 PROOF OF THEOREM[3.10)

Case 1: This is analogous to the proof of Theorem 3.6

Case 2: From the smoothness of the function, we get

7

L
f(xt+1) Sf(l‘t) 4 <V7ltf(xt)axff—~_1 — tht> —+ 5”%’5;"_1 — xEtHQ

= @) = 0T F@), T F0) + VG ) + Eo [V 0) 4 K0 G ()P
~ @) = (0 = )90 £@1) | = (k' — La®K) (Vi £(2"), VG a)
L) v st
Taking the expectation over it, we have
BIf(@™) - Gyt )a'] <) - G(e') - 2o = L9 pt)?

~ (k! — La?K) (V') VG (a'))
+ %IIV@(MIIQ +E[Gy(2') = Gy(="*1)].
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For G¢(x), we have

r
Gy(a") <Gp(a"™h) = (VaeGp(ah), ot = ai) + i = aie]?

=Gy(a't h+ a(Vith(x ), Vi f(2') + k:tVith(:Ut»
L'a?

IVie f (2") + K" Vi Gy (")
=G (@) + a(k) |V Gy (a")|* + (0 + L'a®k" ) (Vi Gy (a"), Ve f(2'))

L/a2 Lo 2 Kt
+ 2wt + EE vy,
Taking the expectation over i’ yields
ak! a+ L'a?k!
E[Gy(a") = Gy )|a"] <——[IVGy (2")|* + ————(VG;(a"), V("))
L/ 2 Lo 2 kt
e+ ZE ) a2,

As a result, we get

1 La?  L'a?

— t —_— R —
(2") = Gy(a") —(a—— 5
(k! — Lok — a — L'a®kN)(V f (!

NV fh)]?

JVGyah) D

E[f(a") = Gp(a™ )] <

kﬁ

:\H

(L' + L)a?(K")? + 20k") | VG ().

§\H

Now, we define
1
h(k') = — —(ak® — La®k' — a — L'a®k")(V f(2'), VG ¢ ("))
n
+ %((L’ + L)a?(k")? + 2ak") || VG (2h)] 2,

which is a convex function. Therefore, we have

2a — (L + L")a? 1 La? L’ 2
h(-1) =—2—||Vf(33t)—VGf(l‘t)ll2+* = — = IV f ()]
n n 2
1 La? L'a?

e P v 2,

<1 (o5 -5 ) Ivs@)
The function value h (k') at minimizer k! = k* = — ((L+Ll)’z;i)L<,Y§|"gg§>lfg”VGf“2 is less or equals
to zero if

(L+ L) (V1,VGy)2a® — 2L + L) (V£,VGp)a + (|VGy]* — (V£,VC))*

which is satisfied if ) )
1 _
» (VG| ~ (V5. 9G))? )
2(L+ L") (Vf, VGy)?

Since in this case (Hva(gJ:éVfo,)szf))? > C,eq. is satisfied if

C
< —— .
=L+ 1)

In consequence, if o < m, VA € [0, 1], we have

(A + (1= A)k) < Mh(—1) + (1 — Vh(k*) < % (a - LTQQ Ll

=) VAP
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By setting k = —1 + (VIE).VGrENIVG I _ _y | (1 — \)k*, we have

VG (=h)I?
Y V2 L et R R 7 VR
<= s DGy NG T e
and
' N 1 (L+ Lo La?  L'a? 9
) = ha+ (=8 < 1 (1= ) (a - 5 - 55 ) DA
As aresult,

E[f(a") = Gy(a")la']

o) 19 )P 4 0
1 (L+IL) La? L'a? 9
nl(L+L’)a(a_2_ )”Vf( )H
| (L+1)a

< fz') — Gy )—*WH (z

(1- 2R ) () - 6

<(1- @*“W) (f(a') - Gy(a).

< fa) = Gp(a') -

t HQ

IN

2

Case 3: In this case, notice that f — G is L + L’-smooth,
E[f(a"*1) — Gyp(z")[a"],
< f(a) — Gf(act) +E[(Vi f(2") — Vi G(xh), xf{”‘l —zh) +

— f(a') - Gy(a®) - <a—Li> E[[[Vie f(z') — Vi G(zt) 2],

< [ - Gylat) - éaﬂamvitf(x ) = VG|,
< Jat) - Gylat) — 5-allVi(at) - VG,

< f(@') = Gr(ah) = —(f(a") = Gp(a"))?.

From the Lemma 6 of |[Fatkhullin et al.| (2022), we have

L+ L
S e — o,

co\m

+

(2n)1 250 4 nxtog=sn 1 (o) (o) - Gy (a)
(Va(k—&—l))m

E[f(z""*) = Gy(a"M)]a'] <

C.9 PROOF OF THEOREM[3.11]

To approximate G ¢(z"), we need to estimate the best response of i-th block z}(z') when other
blocks are fixed. As the function f(x!) satisfies n-sided PL condition, the function f;(z;) =
f(x;, 2t ;) satisfies strong PL condition. Therefore by applying the gradient descent with partial
gradient V; f(z;, 2" ;), the best response can be approximated efficiently. For any § > 0,

/ 2
e (@) = "I < S (Pl k) — mlnf(xz,xt i)

1
<=1 =) (@) =~ min f(wy.a") (13)
1 / . 52 '
< U= IV S < SV
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it T > W log (% T 52) and 8 < % The first inequality comes from the quadratic growth
=

properties of the function f;(z;) = f(z;,x" ) since it satisfies the strong PL condition. The sec-
ond inequality comes from the convergence of gradient descent under the PL condition. The third
inequality comes from the definition of the n-sided PL condition.

IVG (') = VG (2"l =

Z ~Viy tT’ i)

= Z HVf(mt), e — VI ey)

IN

(14)
t T’

\ /\

S\FZHVf ) < 61V £ ()]

In the fourth line, we apply the eq. (I3). In the last line, we apply Cauchy-Schwartz inequality.

The second line comes from triangle inequality and the third line comes from the L-Lipschitz con-
tinuity of V f (Jit) Then, we denotes Z' 1! as the iterates in the ideal case, i.e.

ol - alVifah) £ KVGE), =,
€T. =
‘ ol ifi # it

Next, by choosing ¢ = 7?—; we show the convergence of f(z') — G (z"). To do so, we break it into

different cases.

Case 1: If (VG (), Vf(2')) < (v
(VGy(a2"), V(")
= (VGy(a') = VG ("), VF(") + (VGy(a"), Vf(ah))
< HVGf(It) = VG @)V f ()] + (VG (), V f (')

< ’Y*HVf( DI+ (VG ('), V(") <AV F)®.

(15)

V)V £(2t)]2, we have

By choosing kt = 0, from theorem 3.6 we have
E[f (") = Gy )2 = B[f (") — G(z")|2"]

< (1- 2207 ) - Gt

Case 2: (M _ 1)2 > C and <@G (Z‘t) Vf‘(xt)> > (,_y _ ’Yi)HVf(a:t)W We
TV (), VG (at)) = FACE > - _

firstly bound the difference of VG s () and VG ¢ (2!). From the assumption of case 2, we have

(¥, V1) > (175 ) IVFEIE = 19656 > (325 197!
This indicates

IVG ()| = IVG (@I < IVGy(at) = VG (a")l| < 8|V F(2")]

) 1,
< —— VGl < SIVE ()]l

3
. _ QB 3
In the last line, we apply a < (C)™1/2 < 1and § = r < . As aresult,
IVGy ()] e 9 ||VGf(93 )i
VG (x|l Ty —as (IVGEY”
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VG ()| : LS
and HVGfW < 2. These two inequalities imply

19G ()] I9G @Ol , ) (I¥G )]
—1] = +1 -1
iveiee = (et * e o
(WCA ) 0196, 68 125
IVGr @D )5 =5 NG = 5 =5 =

In the last inequality, we applied a < (C f)_l/ 2 < 1. Then we can bound the difference between k'
and k'.
It — | :‘ (Vf(z"), VGy(ah)) <Vf(~wt)ﬁGf(:vt)>‘
IVG ()] IVG ()2
<‘ (Vf('), VGs(a")) (V') VG(ah) ‘
VG Y IVG ()]
n ‘ (VI(@"), VGy(a")  (Vf("), VGy(ah)) ‘
VG (at)]? HVGf(It)HQ
1
<V VG ( -
IV IOV g o ~ Toe G
1
+HIV VG (') = VG ()i
” ! T IG )P
B ¢ ¢ IVGr@OIP (17)
=9IV g e |

VL IIVGy (') = VG (! )||m7

<£6||Vf( )||||VGf(xt)||m

+VFE)IIVGy (') ~ ?Gf(xt)nm

126C; IIVIEII® bt 119G s (2t — T (e b
TN )HQHI FEIIVG (") £ )”||@Gf(xt)||2

< Cpa® < 1.

~ =

2
S<125c*f 5) IV/@)I* 1260, 5 _ 138C;
IVGe@@)|2 = ra a” ra

where Cy = ﬁ + 1. The fourth line comes from Cauchy-Schwartz inequality. The eighth line

comes from eq. . The sixth 11ne comes from lemma [3.8] The ninth line comes from eq. (T4).

The last line comes from § = W and a < (Cy)~ 1/2_ Also, the absolute value of k* and k* can be
bounded.

i V(') VGy(a')) IV £ ()] ady -1 13
= |2+ B <24 e S22t <24, (18
* ’ VG (xt)]? VG (zt)]| (7 713) 12y (18)
and
S 1
kY = |k" — k' + K < |k — kt\+|k*|<3+% (19)
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As aresult,

IKVGy (') = BV G ()| = KV G (') = K'VGy(at) + KV, (') — BV G(at)]
< [K'VGr(at) = KVG; ()] + VG (") = KV Gy (at)]|
< |k = IV G @) + KV Gy (') = VG (@)
< Cra? VG, )] + (2+ 15 ) IVGya') = Vst

< CRa? IV + (2+ 552 )dIV S

(27 + 13)a?
Rl
3703

< CF?|IVf ()| + === IV f(2")]] < 2CFa®|[V f(")]].

156
(20)
The fourth line is from eq. and eq. (I8). The fifth and sixth lines come from eq. (T4) and

_ yo®
o= 13

< C3a?||Vf(2")]| +

, respectively.

In the case of one of ideal settings, we need « to satisfy eq. (I2). However, we only have the
estimation VG (z"). Next, we show that eq. is satisfied if « is small enough. Then we can
make sure the linear convergence of the ideal case and further bound the difference of f — Gy
between the ideal case and the practical case.

({760, 56sa) _y:

VG (at)[]?
:<<Vf(gct)ﬁGf(:vt)> _q o, VSED, VG <Vf(g:t)ﬁGf(:rt)>)2
HVGf(Nxt)HQ VG (t)|]? VG (at)|]?
(e Y
f X
3 2’ (Vf(a"),VG(ah)) 1‘ . ’ (Vf(a"),VGy(ah)) (Vf(a"),VG(ah) ’
VG f(at)]|? VG (at)]? VG (at)|?
(TS SIS |
r\x 1z
(Vf(a'), VGy(a")) 1Y a2 (V@]
*( IVG s (at)|2 ) ! (IIVGf(xt)II i )
(Vf(2"), VG (ath)) 2 13 13 C
>( WGf(mt)fu? 1) ~2Csa? (ﬁ +1) > 0 - 20507 (m +1) >

In the fifth line, we applies eq. 1.i In the last line, we used a? < o and

30y
(13+127)C5

= 12’y
VG () > (v - 7 )IIVf( 1=
As a result, we obtain

( IVGy(t)]? 1)2 (Vf(fvt)NGf(fﬂt»il)?( IVGy(h)]? )2
(Vf(xt), VG (at)) IVG s ()] (VI(x"), VG (at))

Q(HVGf(fﬂt)H)2 _ CIVGE)|? — 2IVG(a) = VG ()|
2

IV~ 2|V f(at)|I?
C /7272 9 C 72+ 72a6
> —
( 169 -0 ) 2 ( 169 169 )
7107
> 2(L+ L'
— 338 2 AL+ Lo
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In the second line, we applied ||z[|? > $||y[*> — |lz — y[|, Y,y € R% In the third line, we used
the fact that [[VG («)]| = 3|IVf(a")|| and [VG (") — VG ()| < 6V f(a")| and applied
0= Ws . The last line comes from o < W Since eq. lb is satisfied, it indicates h(k*) < 0.
And we can apply the result from the ideal case. From lemma[3.4]and eq. (13)), we have
E[f(a") = Gy(2")|a'] - E[f(z) - G¢(z")]2"]
t+1 i1y il 1y, L + L LR gt
SE[Vie f(Z777) = VG (), 207 —207) + —— 7 %]
=E[(V;e f(2') = Vi Gy (@ ), a(k' Vi Gy (a') kt VirGy(2")))]a']
L + r

+E| la(k* Vi Gy (a") = K Vi Gy (")) ?]2]

B ) = ViGi(a"), a(FTuGr(a') — KVuGy(a")e']
FEITa S G = Vit ) = Ve Gy@H) 4 VGra), 0tk TGy o) ~ KV Gy e’

L+L

+E[ Ha(lzrt@ith(xt) — K'ViuGr(a")?|2"].

The first term is

[V, f(2") = Vi Gy (a'), a0 Gplat) - KV Gy () e

H{VF) VG (a), alf VG (at) ~ KVG ()
< CIVF) - VG IF T () ~ FTG )]
< (VI + 196 @))2C507 IV F )]

1

< —207(1+ Cp)a® |V f ()]

3

In the fourth line, we apply the triangle inequality and the eq. (20). The second term is

E[(Vie /(@) = Vie (&) = VaGp(@' ) + Vi Gp(at), alk' Vi Gy (a") — KV Gy (ah)))]a"]
<E[|[Vie f(") = Vi f(2') = Vi G(@H) + Vi Gy (@) |k Vir Gy (') — k'Vi Gy (a))|| ']
<E[(L + Loz — ab|[|K Vi Gy(a") — 'V Gy(at)||2']

< E[(L + L)o?([ Vi f(2") + K"V Gp(a") 1KV G (a") — KV G (a")]|2]

% D ML+ L)a?|Vif(a') + k'ViG () [IIFViG () = VG ()]

i=1

l(L +LNa?|V f(a) + KV G (@) ||[K'VGy(a') — k' VG ()|

<
< %(L + L)a([V 1) + KNIV G @)DIE VG at) - VG ()]
< o0+ 90 (14 (34 550 ) O IV FOIIETG ') — K VG )]
< 2L+ L)CHat (14 (3+ 150 )OIV AP

< Cha? (1+ (34 15 ) €y ) IV P

< 03 (e +405)a IV )
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In the sixth line, we apply Cauchy-Schwartz inequality. The eighth line comes from eq. (I9). The
ninth line comes from eq. (20). The third term is

L+L’

E[ (k' Vi Gp(a') — KV Gp(ah))|?|2"]
1L+L’
. (k' VG (a') = K'VG ()]
1L+L’ )

< -= 2C7° |V f(h)])?

1 1
= 2L+ LG8V f(z")|* < EC}LOPHVf(mt)HQ-
In the third line, we apply eq. (20). In conclusion,
E[f(2") = Gy(a")[2"] — E[f (@) — Gp(z"1)]a"]

1 1 13
<2902 3 N 3 (|2
<2051+ CaP VTP + L OF (5o + 4 )oY 7 )]

1
+ fcﬁa"’nww)n? o
1
Sﬁ(<2 12+ )Cf+60f+of> YV )P
13 .
< (o T )Cha* IV P

and
E[f(«") — Gp(a"1)]a']
=E[f(Z") = Gp(@)|2"] + E[f (=) = Gp(a")|2"] = E[f(z") — Gp (") |2")

S@f%)(ﬂngaf@t» (9+7)C; 5V £t

<(1 - M) (f(z') — Gy(ah) + (18 + )LC Y(f(a") = Gy(a")

<(1 - IO 0ty — )

In the second line, we apply theorem [3.10/and eq. || In the last line we apply a < %.

Case 3: From eq. and eq. with k* = —1, we know that

BIf () - Gy (#*)a'] < f(a)  Gylat) — (o - 200 - 12

=) IVt = VG )

o
< fa') = Gy(a') - %va(wt) - VGf(x )P
(22)
The second line comes from o < I + —7. From lemma we have

BLf () — Gy )la) ~ BISE) - Gy @)
< E[Vie () = Vi Gp(atH), atf = )y + E2 Dl - al Pl
(T A 940y 5T ) - TGy
L+L v t t 20 ,.t
BP9 (at) - Vi) Pl

=E[(Vif(a") = Vi Gy(a"), (Vi Gy(a') — Vi Gy (ah))) 2]
+ B[V f(@T) = Vie f(a?) — Vie G + Vie G (ah), (Vi Gy (2') — Vi Gy (2h))) 2]
L+

+E| la(VitGr(a') = Vi Gy (a))|||2"].
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The first term is
E[(Vi f(z') = VieGy(a'), (Vi Gy(a') — Vi Gy (a')))]2']

= (V) - VG (), (VG (at) ~ VG (a))
1

< o] VF(") = VG ()| [VG (") = VG ()]
< %a(HVf(wt)Il +[VGa)DIVGr (') = VG (ah)]

IN

1+ CPal VTG ) - VG| < 151+ Cpla V().

In the last line, we apply eq. 1i and 6 = “’a . The second term is
E[(Vir f(z71) = Va f(a') = Vi Gy (371) + Va Gy (o), (Vz‘fo( ") = Vi Gp(ah)))la']
S E[|Vi f(@h) = Vi f(a') = Vi G (@) + Vi G (@) || Ve Gy () = Vi Gy (")) | |']
< E[(L+ L)al|zit —ab||[Vie Gy (a') = VieGy (') |"]
< E[(L + L)a? ||V f(a') = Vi Gp(@)[[IVie Gy (o) — Ve Gy (") 2]

- Z[(L +L)a?||Vif(a") = ViGp(a") | ViGp(a) — ViGy(a")]]]

L(L A L)a?[V1(t) - VG (@) [V (') ~ V()|

<
< %(L + LN (IVf (@) + VG @N)IDIVG () = VG ()]
S%(L+L')(1+Cf) IVFEDIIVG(at) = VG|

< (L4 D)1+ O VP < o1+ Cpat VS

In the s1xth line, we apply Cauchy-Schwartz inequality. In the ninth line, we apply eq. (I4) and
0= 70‘ . The third term is

L (92 Gy (at) - Vi G Pl
= S22 a6 (0") - VG I £ T 2ad VS < s el IV )P,

In the second line, we applied eq. and § = 70‘ . Overall, we obtain
E[f(z"") — Gp(a")|2"] - E[f(z"") — Gy(a")[a"]

< 21+ Ot V)2 + 207 VA ()2 < —y(1+ Cp)a [V ()]

= 13n 338n ' 13n
and,
E[f(a"") - Gy (") a']
= E[f(z') = Gy (@) a') + E[f (2") = Gr(a™D)la'] ~ E[f (@) = Gy (2" a']
< ) = Gplat) = 5l V') = VG + o-r(1 + Cp)at [V £ P
< f(a) = Grla®) = IV (') = VG ()],
< J(@') = Gyt = - (f(@') = Gy (")),

In the last two line, we apply eq. li and a < (12(1 3Cf) )1/3 I\Vf(ﬁ"v);(zglf‘(mf)\l )

From Lemma 6 of [Fatkhullin et al.| (2022), we have
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E[f(z""*) = Gp(a"M)]a’] <

D ALMOST SURELY CONVERGENCE TO LOCAL MINIMUM

Let the function g, g1, ..., g, to be (24, 2" ;) = gi(zs,2—;) = (x; — oV, f (v, 2_;),2—;) and g =
Gn © gn_10 -0 gy. Then, we have zt*! = g(x?).

Theorem D.1. Under assumption if f is twice continuously differentiable, g is locally diffeo-
morphism for o < %

Proof. To show g is bijective, we only need to show g; is bijective for all i. We firstly show g; is
injective for o < % If g;(z;, ;) = ¢i(yi, y—i), we must have 2_;, = y_; from the definition of
gi- Then, |[z; — yill = || Vif (@i, 2—i) = Vif(yi,y-i)ll = al|Vif (@i, 2—i) = Vif(yi, z)| <
alc|z; — yil|. As a < ., we have z; = y;.

To show g is surjective, we consider the following problem,
.1
min( 2 — il — af (zi, 22)]

For a < %, this function is strongly convex when x_; are fixed. So there is a unique minimizer x,,
such that y; = z,, — oV, f(z,,,x_;) forall z_;. By setting x_; = y_;, we would have y = g;(x,)
where the j-th block of x,, is x,, if j = 4 and is y; if 7 # 7. We have already shown g; is bijective.
Because g = g, 0 gn—1 © - - 0 g1, g is also bijective and also invertible.

As f is twice continuously differentiable, g; is continuously differentiable. Because the composition
of continuously differentiable functions is continuously differentiable, g is continuously differen-
tiable. From the definition of g, the Jacobian of g is

Dg(z) = Dgn(9n—-1:1(2)) Dgn-1(9n—-2:1(2)) - .. Dg2(g1(x)) Dy ().
and the Jacobian of g; is
Dg;(z) =1 — E;V?f(z)
where the i-th diagonal block of E; = I%*% and 0 elsewhere. It can be easily observed that the
fixed point of g is equivalent to the Nash Equilibrium point of f. For any Nash Equilibrium point
x* with A\yin [V2 f(2*)] < 0, we can represent Dg(z*)

Dy(a*) = (I = aByV? f(gn-1:1(2")))(I = aBp_1V? f(gn-2.1(2"))) -

(I = aBaV2 f(gi(a"))) I — aB1 V2 f(z*)),

(= BV F (T — aB r V21 (@) . (T — aBaV2 ) (I — aBr V(o).
Since a < T and I — V3, f(z*) > 0, det(I — aE; V2 f(2*)) = det|I — oV, f(z*)| # 0. Asa

result, (I — aFE; V2 f(z*)) is invertible for all i. So Dg(x*) is also invertible. Overall g is locally
diffeomorphism. O

Theorem D.2. Let C be the set of strict saddle points, i.e., A, < 0. If C has at most countably
infinite cardinality and o < - under BCD and f is twice continuously differentiable, then

P?"(hgnm eC)=

Proof. Since Apin[V2f(2*)] < 0 and the set W5, is a manifold equal to the number of non-
negative eigenvalues of V2 f(x*), this manifold has measure zero. Let B be the neighborhood of
x*. If 2 converge to the x*, then there exists a 1" such that g*(x) € B for all ¢ > T. This means

that g'(x) € Npey g~ ¥(B) C Wes.. Then we have the global stable set of W*(z*) satisfies

loc®
U g loc
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which indicates W*(z*) also has measure zero. And for the set C,

: t _ : do_ ok
Pr(h%nm eC)= ;C PT(]I{H.’L =1z*)=0.

E PROOFS OF THE APPLICATION SECTION

E.1 PROOF OF N-SIDED PL CONDITION FOR MULTI-PLAYER LINEAR QUADRATIC GAME

The system can be written down as

N N
o = Ax' + ) Bl = A2' + Y BiKia' = (A=Y B;K;)z' + BiK;a',
i=1 i=1 G#l

and the system can be written down as

“+o00 N
FEi, K_1) = Eqpen[> ()7 Qe + 3 (2" KT R it
t=0 =1
+oo
=Epop)_[(@)7(Q+ ) K RjK))a' + ()" K[ RiKix]]].
t=0 J#l

Define Y i as the state correlation matrix, i.e.
oo
Yk =Epoup Z zt(z)T.
t=0

From the Corollary 5 of [Fazel et al.| (2018)), we have

*
L,K_; 7Kfl

HvKlf(Kl7K—l)||2F7VZ

by
K, K_;) — mi K. K ;)< H
f( b l) HIl{ll/nf( b l) o Umin(20)2amin(Rl)

where Ky | € argminK{f(Kl’,K_l). Since K is bounded and 0,,;,(3¢) > 0, then 0 < K <
400, and f satisfies IV-sided PL condition.

E.2 COUNTEREXAMPLE OF MULTI-CONVEXITY FOR N-PLAYER LINEAR-QUADRATIC GAME

Here, we only need to prove that there exists K7, K} and K> such that

K, + K]

%7 Ks).

where f(K7, K) is the objective function of the 2-player potential quadratic game. We denote A
and B to be 3 x 3 identity matrix and

0 0 -10 0 —-10 O 100
-1 0 0 |andK;=|0 0 Oland K= |0 1 O0f.
0 0 O -1 0 0 0 01

The matrices A — B(K; + K») and A — B(K{ + K>) are both stable, however, the matrix A —
B(£1152) s unstable. As a result, the objective function f(K1, K>), f(K{, K2) < 4oc and

f(&%[anQ) = +o0.

f(Ky, Ka) + f(K7, Ka) < 2f(

K =

E.3 PROOF OF PL CONDITION FOR LINEAR RESIDUAL NETWORKS

From Hardt & Ma (2017)), we have
f(A) =|EX'?|} + C,
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and

(9f( )2

| HF =+ Af) - (T + ADES( + AN+ A7)

> 41 = 720 Do (D) | ESY22.

where ¥ = E[z2T], E = (I + A})...(I + A}) — R, 7 = max; || 4;]| < 1 and C is a constant. Then,
we have
6f( ) 12

= = 401 = 1) Domn()(f(4) = €)
> 4(1 = 7)* V0w (8)(f(A) — min £(B)) (23)
> 4(1 = 7)1 Vo (2)(F(A) — min £(Bi, A)).

where the last step comes from ming, f(B;, A_;) > min f(A4) > C, Vi. Notice that (I + A;)

is invertible, therefore the best response of i-th weight matrix A’ (A) always exists, where others
9f (A7 (A) A_i)

blocks are fixed to be A_;. Because = 0, from eq. lb the function value at best
response f(Ar(A),A_;) = ming f(B). From the optimality condition, the full gradient

V(A (A),A_;) =0,Vi.
As aresult,

VG (A) = - S VI(AI(A),A ) =0,
i=1

which indicates (VG(A), Vf(A)) =0 < ||V f(A)||% by setting k = 0.

F DISCUSSION ON ASSUMPTION [3.3]

We have the following theorem which shows correlation with assumption in the continuous
dynamic, i.e., there exists a neighborhood around every isolated local minimum of a locally strongly
convex and smooth functions such that, on average, the condition in equation E]holds for all iterates
of the GD algorithm.

Theorem F.1. If z* is the isolated local minimum in U and G exists, then there exists a radius
r > 0s.t. Yoo € B(a*,r) C U, such that by following the dynamics

r(O)szEU

F(t) =~ () arie @9

we have oo oo
/ (G (2), VI@) eyt < / IV £ (@) 2oyt
0 0

if further V2 f (x*) is positive definite, V? f is continuous and f is L-smooth,
+o00 +o00 mm v2f
[ V@t < [ (1= 22 I o gt

Proof. Since x* is the isolated local minimum in U, f(z) is a positive definite function on U. As a

result,

Fr(®) = (VF(@)la=r()s 7)) = =V (@) a=r(n > < O
for all »(t) € U, r(t) # «*. This indicates z* is asymptotically stable. Then, there exists a radius
r > 0 such that B = B(z*, r) CU. And, if r(0) € B, then lim;_, ; o 7(t) = =*. Now consider any
r(0) =z € B, we have

—+oo
F(@*) = fao) = / (V@) ooy, #(0))
and oo
Gy(a*) — Gylo) = / (VG ()], #(0)) .
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From these two equations, we have

Gy(z") = Gy(xo) = (f(z") = f(wo)) = f(xo) — Gy(w0) 2 ﬁ”vf(%’o)HQ > 0.

As aresult

+oo

f(wo) — Gy(zo) = = (@) a=r@), 7(1))dL,

[
- [T ™ G (@)), V(@) orioydt, (5)
|

(IVf(@)I? = (G ¢ (), V(@) |a=r(dt > 0.
If V2f(2*) > 0, then defines

1 2
= _ - >0= *)
F(z) = f(z) = G¢(2) = 5 = IVf(@)]" 2 0= F(z%)
Its Hessian is positive semidefinite at z*, i.e.

VER(r) = V2 f (@) — V2Gy(*) — — (V2 () = 0,
1

= V2f(z*) — V2G(z*) = —

(V2f(x*))? = 0.
In consequence, there exists a radius 7’ < 7 such that

V() - VG (a) = 5 (VA ()2, Ve € Bt ),

So the function f(x) — Gs(x) is locally convex around the neighborhood of z*. And for r(0) =
xo € B(z*,7")

Anin (V2 £ (%))

Flo) = Gylag) = Ze LD g — 02
A2 x*
> RuanCTIED (1(30) - 50y, ”
2 +oo
e e

_ Min(V2f (@)

+o0
e [ IV ot

From eq. (23)) and eq. (26), we have

+oo 2 T* +oo
[ U95@I7 = 65 5@ a2 2T TED [0 )2y

- /0+OO (( W) IV£(@)]* - <Gf(x),Vf(fv)>> lomr eyt > 0.

Theorem F.2. If f(x) satisfies the assumption of theorem[3.10) then, by denoting S(v,C') as the set
of non-NE points that don’t satisfy case 1 and case 2, we have,

lim  [S(7,C)| =0, 27

v—1,C—0
where |S(v, C)| is the measure of S(v,C), if S(v, C) is non-empty,
lim max f(z) — Gy(z) =0. (28)

¥—1,C—=0zeS(v,0C)
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Proof. Suppose case 1 and case 2 don’t satisfy, then the iterates satisfy,
(Vf(2'), VG (a") > 1|V f(2")|I?,
VGO = (Vf (@), VG@E))* _ (29)
(Vf(a?), VG(a?))? '
By simplifying the second equation and consider (V f(z*), VG ¢(x')) > ||V f(z')||* > 0, we have
(Vf(z"),VGy(z")) >V f(=)]?,

(30)
(1= VOV f(a"), VGy(a") < |VGr(")|]* < (1+VONVf(a'), VG (ah)).
In consequence,
IV f(z") = VGy(a")|? = [IVf(2)]? = 2(V ("), VG (2")) + [ VGy ("),
<1+ A+ VOPIVF(h|? - 2(V f(a'), VG ("),
(31)
<1+ (1+VC)* =2V f ("),
<2(1+ (1+VC)* - 29)Ln(f(a') — G¢(a')).
and f(z') — G (2") satisfies,
o IV VG
fla') - Gytat) < TR, .
< (2(1 + (1 + \gf) — QV)Ln)9/2(f(‘,L,t) _ Gf(mt))e/Q.
The above inequality brings the upper bound for f(z*) — G¢ (') and |V f(z?)]|,
fat) - Gylat) < CAEOEVOEZ20En 2, (3
and o2
IV A < 2Ln(f (o) — Gyat)) < 2on 2T LEVOT 220 20,y

2v
As C — Oandy — 1, f(z') — Gf(2') < e, Ve > 0. Notice that we consider the non-NE point,
which implies

21+ (1+VC)> = 29)L

0 < V5@ < 2L XA VOF Z 2, 2, 65)

As aresult, as C' — 0 and v — 1, the point that satisfies case 3 has its measure converge to 0. O

G ADAPTIVE GD ALGORITHMS

G.1 IDEAL ADAPTIVE GRADIENT DESCENT

Theorem G.1. For an n-side y-PL function f(x) satisfying assumption by applying algo-
rithm[3

2(1—y)

e in Case I with a < S D e have
Fa) 6t < (1= 0D 6t - 6,
e in Case 2 with o < min{m, 2(L7§L/)}’ we have

L+ L/ 2
Pt =yt < (1= MEEIROY (et
e in Case 3 with a < ﬁ f — Gy is non-increasing. Furthermore, if f — G satisfies
(0, v)-PL condition and case 3 are satisfied from iterates t to t + k, we have

(2)759 2207555 4 9775 1 (1a) 229 (f(a!) — Gy(a")

fa™h) =G < o
(va(k+1))2=0
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Algorithm 5 Ideal Adaptive Gradient Descent (IA-GD)

Input: initial point 2° = (29, ...,22), learning rate @, 0 < v < 1 and C' > 0
fort=0toT —1do
if (VG (), V1 (a')) < [V ()] then
kt=0

if VG @)|P—(Vf(") VG(ah))
else if (Vi@ VGn)?
= 9 4 (VIE) VG )

: > C then

VG (zt)]2
else
kt=—1
end if
o't =2t — a(Vf(z!) + k' VG (ah))
end for

Proof. Case 1: This is analogous to the proof of Theorem

Case 2: From the smoothness assumption, we get

F) <f(at) + (VA 2 — oty + Zjjett

2
Oé2
— (&) — oV F(a"), V() + KVGs () + Lo |V (a) + KV Gy )]
Oé2
—(a") ~ (0~ KOV A2 - (k' — La®k)(V (a"), VG (ah)
+ 2 o6y e

For G¢(x), we have

/
Cy(at) <Gyt ) — (VGs(at), ot — o) + llat+ — |,
sz(xtH) + a(VGf(xt), Vf(zh) + k‘tVGf(a:t))
L'a? . 9
+ THVf(l‘t) + E'VG (27,
=G(z") + ak'|[VGs(a")[]* + (a + L'a’k") (VG ("), V f(2"))

L/ 2 L/ 2(1.t\2
s+ LS

+ IVG (")

As a result, we get

S = Gyl ™) < ) = Gye!) — (o= Lo = BV 72

— (ak' — La®k' — a — L'k (V f (1), VG (2h)) (36)

—_

+ =((L' + L)a? (k") 4 2ak") | VG ¢ (212

[\)

Now, we define
h(k') == — (ak' — La®k' — a — L'a®k")(V f(2'), VG (2"))
1
+ (L' + D)a? (k) + 20k") [ VG (2|7,

which is a convex function. We have

B N2 2 /2
(1) = -2 9 ) v + (o B - By v,
L 2 ) 2
< (o= 25— =5 ) IVFEh -
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L+LNYa—1)(Vf, VG +|VGs]? .
s )(L+)L<,)QHVG§>H2” 71 s less or equals

The function value h (k') at minimizer k! = k* = —
to zero if

(L+ LYV VGp)*a® = 2(L+ L'){(Vf,VGy)a+ (VG| = (Vf,VGy))?

1 (IVGsIPP = (V. VGy))?

< . 37
=91+ (V. VG ;)2 37)
Since in this case (HVGf(ngéVfo,)Vsz))Q >C,eq. is satisfied if
C
<
=901
In consequence, if o < 2(L76+VL/)’ VA € [0, 1], we have
* * LOé2 L/ 2 2
A=A+ (1= k") < Mh(=1) + (1= MA*) £ Aa = Z- = 52 [VF@)]

By setting k! = —1 + (Vi(), VHGVféit()z )HYGJ‘(” W — ) 4 (1 - X\)k*and a < m, we have
berq  LHDaELVIVGP  (L+L)a
- T D(F 5G] VG~ T @ D <
and
L+ Lo?  L'a?
hw%=hvx+u—xmw<a—lfd;j%ax - S =) IViEh A
As aresult,
@) = Gy
2 / 2
< Ja) ~ Gylat) — (a - o - 2 MWﬂ>W+hW>
L+ L L L'a?
< 76 = 656 - (o= I8 - By posyp
1 (L+L)a?
< f(a') - Gyl ‘) — QWH (@)]?
(L + L' )pa t t
<(1- L_L+D))U@)*GAID

< (1 "INy gty o))

Case 3: In this case, notice that f — Gy is L + L’-smooth,
f@) = G (')

< f@@') = Gy(a") + (Vf(a") = VG(a"), 2" —af) +

— f(a') — Gy(at) - m—éngﬂ) VG2,

< f(a') = Gy(a') - QaHVf(a? ) = VG(")|?,
< f(a') = Gy(a') —va(f(z') - VG(a')*/*
The result follows directly from Lemma 6 of [Fatkhullin et al.| (2022). O

L+
St — a2,
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Algorithm 6 Adaptive Gradient Descent (A-GD)

Input: initial point 2° = (29, ..., 2%), learning rates o, 8,0 <y < 1 and C > 0
fori=0toT —1do
ytT =ABR(2!, T, B) :Algorithm EI

compute VG f(zt) := Ly Vf(y;’T/, zt)
if (VG (a), V(")) < (v —155) IV (2")]? then

kt =
o (VG @) —(V f(2"), VG (a)))*
else if W?‘f oIk > C then
Tt (Vf(z'),VGy(a"))
W =24 %aane
else
R
end if o
ot =gt — o(Vf(at) + k'VG ()
end for

G.2 ADAPTIVE GRADIENT DESCENT

Theorem G.2. For an n-sided PL function f(x) satisfying assumption by implementing algo-
rithm|§]with B < % and T > L ) log (1297;[/2 )

log(lﬂtﬁ u2y2ab
e in Case I with a < %, we have

f(mtJrl) _ Gf(xtJrl) < (1 _ w)(f(mt) — Gf(.l’t))

2
. . . -1/2 3C 1/2 71C 3y(L+L)
in Case 2 with o < min {(Cy)~" (Etizme;) / 7676(L1L’) (1;+1087)g47 sy b e
have
n(L+ L')ua®
£t = Gpath < (1= MEEEIO) () - Gy (at).

t
* in Case 3 with v <min{ LJiL’ 7 (12(1130,»))1/3 HVf(HV)f(ZfGﬁ(m )l Y, f=Gly is non-increasing.

Furthermore, if f — Gy satisfies (0,v)-PL condition and case 3 occurs from iterates t to
t + k, then

0 + 2 0

(4277 2507550 4 (2)27707370 + (va) 77 (J(@) — G (o))
(valk + 1))

@) =Gt <

Proof. To approximate Gf(x'), we need to estimate the best response of i-th block z}(x") when
other blocks are fixed. As the function f(x!) satisfies n-sided PL condition, the function f;(z;) =
f(xi, 2t ;) satisfies strong PL condition. Therefore by applying the gradient descent with partial
gradient V; f(z;, 2" ;), the best response can be approximated efficiently. For any § > 0,

* ! 2
|2} (") =y |17 < ;(f(yf’T xl;) —min f(z;,22;))
2 / .
< A= uB)"(f (") —min f(zi,20,)) (38)
< (1= BT Vi) < ﬁHVif(xt)ll2~
=2 = L2
it T > W log (2 i 52) The first inequality comes from the quadratic growth properties of the
function f;(z ) f (srl, ;) since it satisfies the strong PL condition. The second inequality comes
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from the convergence of gradient descent under the PL condition. The third inequality comes from
the definition of the n-sided PL condition.

> VS ) -3V
i=1 i=1

%Z va:(aﬁ), o) = VG )

IVG (') = VG (")l =

3\»—

IN

(39)

tT/

I /\

ng||Vf ) <8IV ().

In the fourth line, we apply the eq. (38). In the last line, we apply Cauchy-Schwartz inequality.

The second line comes from triangle inequality and the third line comes from the L-Lipschitz con-
tinuity of V f (xt).Then, we denotes Z1! as the iterates in the ideal case, i.e.

ehl_ {f — a(Vif(z") + k'V,G (")), ifi =i, o)

€T
i t+1 syt
FAI ifi #£ 4",

Next, by choosing ¢ = 7?—; we show the convergence of f(z') — G (z"). To do so, we break it into
different cases.

Case 1: If (VG (zt), Vf(2))

(VG (a"),V f(a'))
= (VGy(z") = VG (a"), Vf(a") + (VGs(a"), Vf(a"))
<|IVGy(a') = VG (@) [V f ()] + (VGy(ah), V f(a'))

a’ ~
S IVEDIP + (VG "), Vi) <AV

< (v =72V f (2|2, we have

By choosing k! = 0, from theorem 3.6, we have
Fa) = Gplat™h) = f@H) - Gt

< (122G () - 65,

Case 2t (Sl — 1) = € and (VG (). V1Y) = (3= 255) VA We
T (V) VG () = FACE > - .

firstly bound the difference of VG s () and VG ¢ (2!). From the assumption of case 2, we have

(96, V1) > (175 IVFEIE = 19656 > (=15 IVFE).
This indicates
VG @) = VG @)l < [VGr(a®) = VGr(a®)| < 8V F (")

<

1 -
VG (") < §||VGf($t)H~

=~ ch
3
3
In the last line, we apply § = % < . As aresult,
II@Gf(It)H e 0 VG
VG ()]l Ty VG
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VG ()] : LS
and HVGfW < 2. These two inequalities imply

19G ()] I9G @Ol , ) (I¥G )]
—1] = +1 -1
Hvafﬁnz = (reeseon Ul iwesom) )
(WCA ) 0196, 68 125
IVGr @D )5 =5 NG = 5 =5 =

In thf: last inequality, we applied o < (C f)_l/ 2 < 1. Then we can bound the difference between k'
and k.
It — | :‘ (Vf(@"), VGy(ah) <Vf(§vt)ﬁGf(:vt)>‘
IVG ()] IVG ()2
<‘ (Vf('), VGs(a")) (V') VG(ah) ‘
VG eI IVG(2t)]?
L |[(LED.VGA) (9161 98,
VG (zh)]? VG (at)]?
1
<[IVFE)IVGy (2 -
VIV e ”HVG G 9GP
1
+IVFE)IIVGs(a') = Vs (@)l e s
VG (t)]?
VG (h)|?
IV £ [ VG (ot V&, @I (42)
IV1@ONYEs ) s v ~ |
1
+IVFE@IIVGs (") = VG () m s
VG (at)]?
126 1
<7||Vf( MIVG @z
IVG s (at)]?
~ 1
HIVIEIVG (") = VG (@3
VG (at)]?
1260 V(a2 ~ 1
¢ VTG 9 0ty 196 (0) — 9t e
7 IVGEh)] IVG ()]
2
S(lQéCf 5) ||~Vf(x)|| < 126C n 9 < 136Cy <Cra?<1.
" IVGya))? — e o o
where Cy = %ﬂ + 1. The third line comes from Cauchy-Schwartz inequality. The sixth line comes
from eq. (#I). The eighth line comes from lemma [3.8] The ninth line comes from eq. (39). The
last two lines come from § = %33 and o < (C f)_l/ 2. Also, the absolute value of k* and k! can be
bounded.
; Vf(ah), VG (a")) V£l a®y~1 13
Bt = _2+< - <24 = <24 (y—7 <2+ -, (43)
= VGl wa el <20 <
and
t t 7.t 7.t t t t 13
|k* = |k" — k" + kY| < k" — k\+|k|<3+m (44)
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As aresult,
[K'VG(x") = k'VGy ()| = [K'VG(a") = K'VGy(a') + K'VGy(a') = K'VG (")
< [K'VG(a) = VG (') | + VG (at) — K VG ()]
< |k = BlIVG; @)l + [FIIV G, (") = VGr(at)]|
< €2 VG (a)] + (2+ 151 ) IVGy (') = VG ()],
< G2Vl + (2+ 132) IV )|
2
OJ%QQHVf(xt)H + M
< 20302V f(2")].

IV £

(45)
The fourth line comes from eq. (2)) and eq. @3). The fifth line comes from eq. (39). The sixth line

comes from § = %

In the case of one of ideal settings, we need « to satisfy eq. (37). However, we only have the

estimation VG 7(x'). Next, we show that eq. is satisfied if « is small enough. Then we can
make sure the linear convergence of the ideal case and further bound the difference of f — Gy
between the ideal case and the practical case.

({7656, _y:

HVGf(th)ll2 ]
(NG, | (THE).VOh) (V16,96 )y
VG f(at)]2 VG (xt)]? VG (xt)|?
>(<Vf(gct)ﬁGf(:vt)> . 1)2
UG @l ~
B 2’ <Vf(?t)7VGf($t)> B 1‘ , ’(Vf(l‘t),VGf(xt)) 3 <Vf(fft)’VGf($t)>’
VG (t))2 VG (2] VG ()2
L (SHTCL) _(y7 ol (I TG
- VG (2t)? VG (2]
(VI VG @) Ny 2 IVSE
Z< VG (zt)]? ) ! (||VGf(95t)|| " )
(Vf(xt), VG (at)) 2 13 13 C
>( H@Gf(xt)fn‘z 1)~ 20402 (m +1) > C - 200 (m +1) > =

In the fifth line, we apply eq . In the sixth line, we apply | VG f(z!)[| > (v — fy‘l"—;) IV f(zY)].
In the last line, we apply a? < W As a result, we obtain

(< IVG (=) 1>2 _ ((Vf(:ct%VGf(xt» B 1)2(< IVG (=) )))2

Vf(at), VGf( at)) VG (at)|? Vf(at), VGy(at
( VG (@ )2 _ CIVG)|? = 2IVG(a') = VG ()|
IVfEH /7 — 2 2[Vf(at)|?
C (7272 C (7272 72a6
=) ( 169 52) 5( 169 169 )
7107
> 338 2 >2(L+ L)a.

In the second line, we applied |[z||? > 3||y[|> — ||z — y||%, Vo,y € R? In the third line, we used
the fact that | VG (zt)|| > 2|V f(2")| and [|[VGy(zt) — VGy(at)|| < 6|V f(x*)| and applied

41



Under review as a conference paper at ICLR 2025

§= 'YO‘ . The last line comes from o < #jﬁ,). Since eq. lb is satisfied, it indicates h(k*) < 0.
And we can apply the result from the ideal case. From lemma[3.4]and eq. (0), we have

Pt~ Gyt ) - (f(ﬂ’c”l) G @)
SVHE) - VG E ), -3 4 EEE gy

=(Vf(z t“) VG ("
L+

a(k'VGy(a') — K'V Gy ("))

)&
h,

+ IIOé(k VGy(') — k'VGy(a"))|?
Y

=(Vf(z )—VGf( ", a(k'VG(a") — k'VGy(a'))
(V@) = V(") = VG (@) + VG (a"), a(k'VGy(a!) — K'VGy(a")))

L + L ~
a(k'VGy(a') — K'VG ("))

The first term is

(VI(z") = VG(a"),alk'VGy(a") — K'V G ("))

< a| V(') = VG (@)K VG () = k'VG(2')]
< a([VF)] + VG (@h)])2CFa? |V f )]

< 203(1 + Cp)a® [V f ("),

In the fourth line, we apply the triangle inequality and the eq. (@3)). The second term is
(V@) = Vf(2') = VG (@) + VG ('), a(k' VG (a') — k'VGy(a"))
<|IVf@E*) - Vf(fvt) = VG(@) + VG (a")|[|a(k' VGy(a') — k'VG(a")]

< (L+ Lozt = a'[||[k'VGy(a") - k'VG (")

(L+LNa?[Vf(a") + VG (") ||k VG (") = K'VG (")

(L + LYa*(IVf @)+ K IVG @) DIF VG () = KV G ()|

< (

L+ L)a? <1 + (3 + 13) Cf) IV £ (@)]||E VG (2t) — KV Gy (2h)||

21+ 2100t (14 (34 12 ) ) IV s

13
<03 (1+(3+ 1) ) 19161

< ( = +4Cf) oV £ ().

In the sixth line, we apply Cauchy-Schwartz inequality. The eighth line comes from eq. (@4). The
ninth line comes from eq. (3). The third term is

L+L’
Ha(krtVzth( ) = E'VuGy(ah)|?

<
<

Ja
)o’
)
)

L-l-

(20,3 *(IV £ (=)D

= Q(L +L)Cia® |V f(ah)]? < C1a®|[V ().
In the third line, we apply eq. (#3). In conclusion,
Fl@™h) = Gl = (f@™) = Gy (@)

§2C?(1+Cf)043||vf( Y+ €3 (g5 +4Cs)alI VP
Cha® ||V f (') (46)
((2 + E)02 +6C + CF) |V ()]

<(o+ 532 ) ChallI Vs
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and
f@tH) — G2
:f( ) Gf( t+1) + f(a:t'H) _ Gf(.%‘t+1) _ (f(—t+1) N Gf(,t_i_l))

<(1- M)(ﬁﬁ) = Gy + (9+ —)C?a3HVf( HI?

n " uo?
<(1 - HEE Y (0t - Gta) + (184 5 nLChal(f(a) - Grlat)

n "pa?
<(1- MEEEON (0t — Gy at))

In the second line, we apply theorem[3.10|and eq. 1@) In the last line we apply o < (121(1%7%.

Case 3: From eq. and eq. with k' = —1, we know that

Lo? L'a?

FE) = Go@ ) < (') = Gyla) - (0= Z= = 5= ) IVF@') = VG )
< J(@') = Gpa') = SIVH (') = VG ()]

(47)

The second line comes from o < ToI7 + —7. From lemma , we have
FE@) = Gyl = (f(@) - G (@)
< (VF(EHY) — VG (@), 2 — 31 4 L;L/”IIHI L2

=(Vf(z t“) VG (@), a(VGy(a') - VGy(a)))
L +

Ha(VGf( z') = VG (a"))|?

= <Vf( ") = VG(ah),a(VG(a') = VGy(a")))
H(VIEH) = V(") = VG (@) + VG (a"), a(VGy(a) — VG (a"))

P8 a(ves ) - Vs

_|_

The first term is

(Vf(a") = VG(2"), a(VGy(a') — VGy(a")))
< a|| V(') = VG| VG (a') — VGy(ah)|
< a(|Vf(")] + VG () NIVG (') — VGy(ah)|

< (14 CpallVf@IIVGs (') = VG (') < %v(l +Cp)at [V f ()]

In the last line, we apply eq. D and 6 = "’a . The second term is

(V) = Vf(a') = VG + VG (a'), a( VG (') = VG ("))

S IVF(ETY) = V(') = VG (@) + VG (") |[|a(VGy(a') = VG ("))
< L+ Lal|z = a'[||[VGy(a') — VG ()]

(L+LNa?|Vf(a") = VGi(a")[[IVG (') — VG (a")|

(L + L) (V@) + VG (@) DIVG () = VGy(ah)]

(L+ L)1+ Cpa?|Vf(@)[I[VGy(at) = VGy(a')]

1%)7@ + L)1+ Cp)e® |V <

IN AN IANIA

IN

< 151+ Cpal V) .
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In the sixth line, we apply Cauchy-Schwartz inequality. In the ninth line, we apply eq. (39) and
3
= 1%~ The third term is

L+ L ~

5 (VG (z') — VGy(x"))|?

L+ L 5 4 N 1 54 112
< = < — .
< B L b |95 < o195

In the second line, we applied eq. and 6 = % Overall, we obtain
Fla™h) = Gp(@™h) = (f@™) = Gy ("))

< 201+ Cpat|VFEh|? +

1 3
<3 3357 @ IVIEDIP < Zr(1+ Cpa|VF()|*.

338

and,
f@™) = Gy(a™)
= f(i‘t+1) — Gf(jtJrl) —+ f(g;t+1) _ Gf(xtJrl) _ (f(ft+1) o Gf(jtJrl))

< Fat) = Gylat) — 5allVH@) = VG + 157(1 + Cplat V5 ()P

< () = Gslat) — 50l VF) ~ VG P,

< f(a) = Gyla") = alf(@') = VG

In the last two line, we apply eq. (iEI) and o < (12(11chf) )1/3 ||vf(ﬁtv);(zgﬁ(zt)” . The result follows

directly from Lemma 6 of |[Fatkhullin et al.| (2022]). O
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