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Abstract

Simultaneous Speech Translation (SimulST) enables real-time cross-lingual com-
munication by jointly optimizing speech recognition and machine translation under
strict latency constraints. Existing systems struggle to balance translation quality,
latency, and semantic coherence, particularly in multilingual many-to-many sce-
narios where divergent read/write policies hinder unified strategy learning. In this
paper, we present SimulMEGA(Simultaneous Generation by Mixture-of-Experts
GAting), an unsupervised policy learning framework that combines prefix-based
training with a Mixture-of-Experts refiner to learn effective read/write decisions in
an implicit manner, without adding inference-time overhead. Our design requires
only minimal modifications to standard transformer architectures and generalizes
across both speech-to-text and text-to-speech streaming tasks. Through comprehen-
sive evaluation on six language pairs, our 500 M-parameter speech-to-text model
outperforms the Seamless baseline, achieving under 7% BLEU degradation at 1.5 s
average lag and under 3% at 3 s. We further demonstrate SimulMEGA’s versatility
by extending it to streaming TTS with a unidirectional backbone, yielding superior
latency–quality trade-offs. 2

1 Introduction

Simultaneous Speech Translation (SimulST) addresses the critical need for real-time cross-lingual
communication by jointly optimizing speech recognition and machine translation under strict latency
constraints. Unlike conventional offline systems that process complete utterances, SimulST operates
on streaming audio input, incrementally generating translations while simultaneously decoding
ongoing speech - a capability mirroring human interpreters’ cognitive processing. This technology
enables transformative applications in international diplomacy, live media localization, and low-
latency dialogue systems. However, it faces fundamental challenges in reconciling three competing
objectives: translation quality, computational latency, and semantic coherence, exacerbated by
fragmented acoustic patterns and partial contextual dependencies.

Recent progress combines adaptive segmentation strategies[1, 2, 3] with streaming architectures like
RNN-T transducers[4, 5, 6] and Monotonic Attention mechanisms[7, 8], alongside policy-based
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Figure 1: Overview of the training and inference paradigm of SimulMEGA. SimulMEGA is composed
of a Streaming Speech Encoder, a text decoder, an MoE routing Gate(Router), and an MoE refiner.
In the first stage, the model is pre-trained on Loffline. In the second stage, the model is trained on a
combination of Loffline, Lprefix and Lrefiner. SSE denotes Streaming Speech Encoder.

decision frameworks[9, 10, 11, 12, 13, 14]. Despite these advances, current systems struggle to
achieve human-like efficiency-accuracy trade-offs across diverse linguistic contexts and acoustic con-
ditions. A particularly underexplored challenge lies in multilingual many-to-many translation, where
divergent read/write policies across language pairs complicate the learning of unified operational
strategies.

This paper introduces SimulMEGA, an unsupervised policy learning framework that synergizes
prefix-based training with Mixture-of-Experts (MoE) mechanisms to address these limitations. Our
approach enables high-performance multilingual SimulST through three key innovations: (1) An
auxiliary MoE refiner module enabling implicit policy learning without inference-time overhead,
(2) Minimal architectural modifications to standard transformers for broad applicability, and (3) A
unified framework supporting both speech-to-text and text-to-speech streaming tasks. Experimental
results demonstrate state-of-the-art performance across six languages, with our 500M-parameter
speech-to-text model outperforming SeamlessM4T[15] by achieving <7% BLEU degradation at
1.5s average lagging (AL) and <3% at 3s AL. What’s more, we extended our methods to streaming
text-to-speech (TTS) task via CosyVoice2’s unidirectional backbone[16], the system achieves superior
latency control compared to conventional interleaved streaming approaches.

Our principal contributions are as follows.

• Introduction of SimulMEGA: An unsupervised policy learning framework that combines prefix-
based training with a Mixture-of-Experts (MoE) refiner module, enabling efficient and effective
simultaneous speech translation without adding inference-time overhead.

• Multilingual Advancement: SimulMEGA achieves SOTA performance for quality-latency trade-
offs in many-to-many translation, demonstrating cross-lingual robustness through comprehensive
6-language evaluation.

• Universal Streaming Framework: SimulMEGA supports both speech-to-text and text-to-speech
streaming tasks within a single framework, making it broadly applicable and easily integrable
into existing models for multilingual SimulST tasks.

• General Conversational System: The integrated solution combining low-latency speech-to-text
and text-to-speech conversion, validated through real-world dialog interpretation scenarios.

2 Related Works

SimulST Early works in SimulST focus on finding the input segmentation boundary and then
applying a variant of the wait-k policy[1, 17, 2, 3]. Later work seeks to find a more sophisticated
dynamic policy. [18] designs a learnable matrix between source and target for an integrate-and-
fire(IF) policy, and [19, 20] use attention score for a similar approach. [11] proposes a policy
based on divergence between the prefix and full input. [12] employs an extra CTC[21] head for
policy control. Another approach includes using an inherently streaming architecture like monotonic
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attention[7, 22, 8, 23], transducer[4, 5, 6] and Hidden Markov[24]. [25] explores non-autoregresive
generation for SimulST.

Streaming TTS Many works on TTS claim to be streamable[26, 27], yet they are not optimized
for fine-grained(chunk or token level) streaming and suffer from degraded quality due to a lack of
future information. [28] adapts a streaming model from an offline model via restricted attention. [29]
uses a fixed number of text tokens for look-ahead. [30] processes each text chunk in a separate AR
loop with look-ahead. [16] interleaves text and speech tokens at a fixed ratio, which potentially incurs
larger latency.

3 SimulMEGA: Simultaneous Translation via Mixture-of-Experts Routing

In this section, we introduce SimulMEGA (Simultaneous Generation by Mixture-of-Experts GAting),
an innovative framework that effectively converts an offline autoregressive model into a simultaneous
system with minimal computational overhead and negligible performance degradation.

The core principle of simultaneous training lies in enabling the model to autonomously determine
whether the currently available input suffices for generating the next output token. Previous ap-
proaches typically rely on either artificial policy signals, which constrain the model’s self-learning
capacity, or architectural modifications that compromise generation quality. In contrast, our frame-
work leverages a Mixture-of-Experts (MoE) architecture to achieve unsupervised policy learning
while maintaining an identical structure to the offline model, thereby preserving translation per-
formance. Our approach employs a prefix-based training strategy that closely mimics real-world
streaming inference scenarios.

3.1 Architecture Overview

Figure 1 illustrates the overall architecture of our SimulMEGA framework, which consists of four
key components: (1) a streaming speech encoder, (2) a text decoder, (3) a global routing gate, and (4)
a Mixture-of-Experts (MoE) refiner module.

The streaming speech encoder and text decoder adopt the Transformer architecture, maintaining com-
patibility with conventional speech-to-text translation (S2TT) systems. As illustrated in Figure 2(a),
the encoder combines chunk-wise autoregressive (Chunk-AR) blocks with non-autoregressive (NAR)
blocks in a hybrid design. The Chunk-AR blocks optimize inference efficiency through a cached
key-value mechanism, while the NAR blocks preserve translation quality by capturing global context.
To handle streaming inputs lacking an explicit end-of-sequence (EOS) token, we prepend a learnable
end-of-stream (EoSt) flag (a binary embedding) to the NAR blocks’ input, signaling whether the
current chunk terminates the audio stream. The text decoder follows a standard autoregressive
Transformer architecture.

The core innovation lies in the routing gate and MoE refiner, which enable unsupervised learning
of simultaneous translation policies without architectural modifications. The MoE refiner follows a
transformer-like architecture and shares language model head with the text decoder, which combines
prefix information and global information and predicts the target translation sequence. It is only
activated during training, introducing zero additional computational overhead during inference.

3.2 Unsupervised Policy Learning.

This section introduces the Mixture of Experts (MoE) refiner module, whose architecture is shown in
Figure 2(b). The module comprises Nrefiner blocks, each containing two specialized experts: a prefix
expert (Ep) and a global expert (Eg). The merging weights of these experts implicitly define a policy
that determines whether the current input prefix contains sufficient information for generating the
target token. Besides the dual-experts module, each block also contains a previous-output attention
module (similar to self-attention) and an MLP module, which is analogous to a standard transformer
decoder block.

Global Routing Gate For decision consistency, each refiner layer employs a shared global gate
implemented as a two-layer MLP with a Sigmoid head. The gate projects the text decoder’s final
hidden state (Odec) into a scalar value p ∈ [0, 1], which determines the expert weights: PRouter

Eg
= p

and PRouter
Ep

= 1− p.
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Figure 2: (a) Structure and inference example of the streaming speech encoder of SimulMEGA. It
comprises 20 chunkwise autoregressive (Chunk-AR) blocks and 4 non-autoregressive(NAR) blocks.
After each read, the Chunk-AR blocks only compute the new chunk while the NAR blocks recompute
the whole sequence. An End-of-Stream (EoSt) flag is given before NAR blocks. (B) The structure of
the MoE Refiner, in which the gate decides over the mixture proportion of the Prefix Expert and the
Global Expert. This proportion reflects the model’s confidence in the prefix sequence, leading to a
natural read/write policy. The self-attention module is replaced by a previous output attention(POA)
module to prevent global information leakage.

Dual-Expert Architecture As shown in Figure 1(b), during training, the encoder processes both
the complete offline speech and a randomly truncated prefix, producing corresponding hidden states
hoffline and hprefix. Then the gate and the dual-expert architecture will decide which hidden states
to use. While the router typically favors the more informative hoffline, we introduce an information
bottleneck to balance this preference. Specifically, we apply temporal mean-pooling to hoffline,
yielding a condensed global embedding Hglobal for Eg. Eg is a two-layer MLP module whose
calculation is as follows:

x̂in
i = LayerNorm

(
xin
i

)
(1)

x
Eg

i = W
Eg

out · ReLU
(
W

Eg

in ·
[
x̂in
i ;Hglobal

])
(2)

where xin
i denotes the i-th position’s input, [·; ·] represents vector concatenation, WEg

in/out are learnable
projection weights (biases omitted). The prefix expert Ep employs a standard cross-attention:

x
Ep

i = W
Ep

O ·MHA
(
W

Ep

Q x̂in
i , W

Ep

K hprefix, W
Ep

V hprefix
)

Where MHA denotes multi-head attention. The final output combines both experts’ contributions
through a gated residual connection:

xout
i = xin

i + PRouter
i,Eg

· xEg

i + PRouter
i,Ep

· xEp

i

Global Information Leakage In standard transformer architectures, the self-attention mechanism
inherently leaks global information across the sequence. This poses a critical issue for our design:
even when the gate assigns PRouter

Eg
= 0 for a certain position, the hidden state at that position may

still access global context via self-attention, thereby undermining the intended expert specialization.
To enforce strict isolation of global information, we replace self-attention with a previous-output
attention mechanism. Instead of attending to hidden states within the same layer, each position only
attends to the decoder’s prior outputs(odec<i ), effectively preventing unintended information flow while
preserving sequential dependencies.

Training Protocol SimulMEGA leverages a pre-trained offline S2TT model as its foundation. The
training process consists of two stages:

1. Offline Pretraining: We first train the model with the standard offline S2TT objective
Loffline(incorporating streaming chunk masks in the encoder) until convergence, as illustrated in
Figure 1(a).
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2. Simultaneous Training: We then introduce two additional loss functions to enable simultaneous
capabilities as illustrated in Figure 1(b):

Lrefiner = −
∑
i

log pref(yi|y<i, h
prefix, Hglobal) (3)

Lprefix = −
∑

i:pi<λ

log pdec(yi | y<i, h
prefix) (4)

where pref and pdec are the output distribution of the MoE refiner and the text decoder. λ is a
pre-defined hyperparameter that restricts the losses to the confident position.Lrefiner learns the
read/write policy while Lprefix strengthens the prefix-based translation capability. In this stage,
the total loss is the weighted sum of the above three losses:

Lsimul = Loffline + wr · Lrefiner + wp · Lprefix (5)

In our experiment, we set wr = wp = 0.2 to prioritize the offline training.

Inference Policy During inference, SimulMEGA employs a straightforward threshold-based policy:

Action =

{
Write if pt,i < λ

Read otherwise
(6)

where pt,i is the gating score at input time t and target position i.

3.3 Score Distribution Control

The raw output scores from the routing gate lack inherent interpretability, as they emerge solely from
neural network optimization through gradient descent. These scores exhibit inconsistent statistical
properties, both in mean and variance, between different tasks, language pairs, and training data.
This variability poses significant challenges during inference, necessitating task-specific or language-
specific threshold tuning that fundamentally compromises the generalizability of our approach. To
overcome this limitation, we introduce the following techniques:

Score Normalization We introduce a heuristic that aligns the average gating score with the relative
information content between prefix and global contexts. Since sequence length serves as a practical
proxy for information quantity, we formulate a normalization loss based on the prefix length (lp) and
full sequence length (lg):

Lnorm = SmoothL1Loss

(
p,

min(lp, lb)× 0.5 + (lg − lp)

lg

)
(7)

where p represents the sequence’s mean gate output, and lb is a buffer hyperparameter (set to 1.5
seconds in our experiments) that prevents abrupt score changes near prefix boundaries. The 0.5
weighting factor accounts for the partial information available at prefix edges.

Pre-Sigmoid Gaussian Noise Following prior work [7], we incorporate Gaussian noise before
Sigmoid activation to promote discretization of gate output. While this discretization does not directly
improve model performance, it significantly enhances robustness by reducing sensitivity to threshold
selection across diverse tasks. In our implementation, we apply zero-mean unit-variance Gaussian
noise (σR = 1) to the pre-Sigmoid logits.

Combined with our normalization technique, this approach enables precise control over both the
mean and variance of gating scores. The complete training objective is:

Ltotal = Lsimul + wn · Lnorm (8)

where we set a small normalization weight wn = 0.01.

3.4 Streaming TTS

A common practice in speech-to-speech translation (S2ST) systems involves integrating a speech-to-
text translation (S2TT) module with a text-to-speech (TTS) component. For simultaneous translation
scenarios, however, a streaming TTS system is essential to preserve the low-latency requirement of the
overall pipeline. While specialized streaming TTS systems exist, we demonstrate that SimulMEGA
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offers a universal and straightforward method to convert a standard transformer-based autoregressive
TTS system into a streaming-capable variant.

For our experiments, we adopt CosyVoice 2 as the base model, which consists of a decoder-only
language model and a flow-based acoustic model. During adaptation, we retain the flow model and
fine-tune the language model using the techniques and loss functions outlined in Sections 3.2 and 3.3.
Randomly initialized routing gate and the MoE refiner are incorporated during training. Since the
backbone lacks an encoder, we derive the prefix and offline hidden states (hprefix and hoffline) from
the final hidden representations of the text tokens. A detailed architectural diagram is provided in the
appendix. We compare our approach against CosyVoice2’s default dual-stream mode.

Through this work, we not only develop a more comprehensive S2ST system capable of real-time
speech-to-speech translation but also validate the compatibility of SimulMEGA with diverse tasks
and model architectures. We leave an end-to-end S2ST system with SimulMEGA for future work.

4 Experiments and Results

4.1 Experiment Settings

Task & Data We collect data and train on many-to-many speech-to-text translation across six
popular languages: EN, ZH, DE, ES, FR, and IT. We collect various open-source speech recognition
datasets covering the six languages, including LibriSpeech [31], Multilingual Librispeech(MLS) [32],
VoxPopuli [33], Common Voice[34], WenetSpeech[35], KeSpeech[36] and Emilia [37]. Then we
create pseudo translation labels for these data by translating the transcription into different languages
through a cloud text-to-text translation API. The dataset consists of approximately 100K hours of
training data. For TTS experiment, we use a subset of ST training set that only contains Chinese and
English data due to the language compatibility of the CosyVoise 2.

Model Our offline base model for ST is derived from the whisper medium model. For inference
efficiency, we transformed the encoder into a streaming encoder and pruned half of the layers in the
decoder. This results in an encoder with 20 chunk-AR blocks and 4 NAR blocks, and a decoder with
12 layers. Offline base model for TTS is CosyVoice 2 as mentioned in section 3.4. In both the ST and
TTS experiment, the MoE refiner consists of Nrefiner = 6 layers, with the hidden size matching that
of the base model.

Training Each experiment is trained in FP16 with 8 Nvidia H800 GPUs. In stage 1 offline
training of the ST experiment, to retain the capability of the whisper encoder, we employ Low-Rank
Adaptation(LoRA)[38] (α = 64 ) at the chunk-AR blocks of the encoder. We train the offline model
for 1M steps, which takes around 1 week. In stage 2 training, the chunk-AR blocks are frozen. The
router and MoE Refiner module are randomly initialized. The stage 2 training takes about 2 days.
We use AdamW optimizer[39] and linear learning rate scheduler with 5000 steps of warmup. The
maximum learning rate is 1e-4 in stage 1 training and 1e-5 in stage 2 training.

Evaluation In S2TT evaluation, we employ case-sensitive BLEU[40] with punctuation3 as our
primary quality metric and average lagging (AL)4 [43] for latency assessment. Our evaluation spans
two benchmark datasets: CoVoST2 [44] and Fleurs [45]. For CoVoST2, we report averaged scores
across 5 non-English to English (X-EN) translation pairs and 2 English to non-English (EN-X) pairs.
The Fleurs dataset enables comprehensive many-to-many evaluation through its parallel data across
six languages, yielding results for all 30 possible language pair combinations. We present separate
averages for 5 X-EN pairs, 5 EN-X pairs, and 30 X-X pairs.

For TTS evaluation, we combine LibriSpeech-PC test-clean [31, 46] and Seed-TTS test-zh [47] with
CoVoST2 data. Our analysis includes recognition word error rate (WER), speaker similarity (SIM),
and text-unit-to-speech-unit average lagging(AL). In S2ST evaluation on CoVoST2, we measure
ASR-BLEU against speech-to-speech-unit AL. For English metrics, we utilize Whisper-Large-V3,
while Mandarin evaluations employ Paraformer [48]. And for SIM, we employ a speaker verification
model based on WavLM-large [49] to extract speaker embeddings. These embeddings are then used
to compute the cosine similarity between synthesized speech and ground truth speech.

3https://github.com/mjpost/sacrebleu[41]
4Code is borrowed from https://github.com/facebookresearch/SimulEval[42]
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Table 1: The offline BLEU score(%) of different models on CoVoST2 and Fleurs testset, where all
results are based on greedy search. Only parameters involved in the S2TT inference are calculated.
The value in the bracket denotes the performance degradation compared to the offline base model.

Models Param CoVoST2 Fleurs

X-EN EN-X X-EN EN-X X-X
Offline Models

SeamlessM4T Medium 821M 34.4 35.9 25.6 27.1 16.1
SeamlessM4T Large-v2 1.5B 38.3 40.8 29.8 31.5 19.6
S2T Base (Ours) 561M 37.0 38.9 26.4 32.4 25.1

Simultaneous Models
Seamless-S2T 2.0B 35.3(-7.8%) 37.6(-7.8%) 28.0(-6.0%) 28.9(-8.3%) 18.1(-7.7%)

SimulMEGA-S2T (Ours) 561M 36.9(-0.3%) 38.5(-1.0%) 26.3(-0.4%) 31.4(-3.1%) 24.7(-1.7%)

Baselines In simultaneous S2TT, our method is compared against the Seamless model family
[15] and four custom baselines: Wait-K [43], Dig-SST [11], EDATT [19] and AlignATT [20],
all implemented using our offline base model architecture. For streaming TTS comparisons, we
benchmark against the native streaming implementation in CosyVoice2. In simultaneous S2ST
evaluation, Seamless serves as our primary comparator. Both the Seamless framework and our
proposed system incorporate voice preservation capabilities. We also compare against two publicly
available models, StreamSpeech[12] and NAST-S2S[25], whose parameter size and data size are
smaller.

4.2 Main Results

Offline Multilingual S2TT Performance The results are summarized in Table 1. Leveraging
high-quality pseudo-labeled data, our offline base model achieves performance comparable to Seam-
lessM4T large-v2 across our in-domain six languages, despite the latter having three times the
parameter count. The Seamless models, constrained by an English-centric data distribution, slightly
underperform ours in the FLEURS many-to-many evaluation. For simultaneous models, we report
BLEU score degradation (in brackets) relative to their respective base models. Our analysis reveals
that SimulMEGA exhibits minimal degradation, ranging from 0.3% to 3%, while Seamless suffers
a more significant 7% drop. Consequently, SimulMEGA outperforms Seamless in 4 out of the 5
evaluated scenarios.

Figure 3: The multilingual simultaneous speech-to-text translation quality (BLEU) against the latency
metrics (LAAL) on different testsets. The reported BLEU and LAAL are the average of all language
splits in the testsets(5 in CoVoST X-EN, 2 in CoVoST2 EN-X and 30 in Fleurs X-X)

Simultaneous Multilingual S2TT Performance To evaluate generalizability across language pairs,
we apply the same threshold configuration to all methods under identical settings. As illustrated
in Figure 3, SimulMEGA demonstrates robust performance across diverse language pairs and
outperforms baseline methods in all three evaluation scenarios. Compared to the offline base
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Table 2: TTS evaluation results. ZS denotes zero-shot mode (prompt added in AR stage), and CL
denotes cross-lingual mode (prompt not added in AR stage). ALs are calculated by the number of
input text tokens. We use the generated text as the WER label for CoVoST2 evaluation.

LibirSpeech SeedTTS_zh CoVoST2_zh-en CoVoST2_en-zh

WER SIM AL WER SIM AL WER SIM WER SIM
CosyVoice2-ZS 2.44 0.658 22.3 1.62 0.757 23.1 - - - -
CosyVoice2-S-ZS2 5.31 0.651 18.5 7.98 0.760 20.9 - - - -
CosyVoice2-S-CL2 3.13 0.535 8.4 4.33 0.707 8.4 19.94 0.388 7.74 0.352
Seamless - - - - - - 20.05 0.292 18.86 0.301
SimulMEGA-TTS 2.54 0.661 1.2 1.90 0.755 0.5 12.26 0.391 4.51 0.405

model, SimulMEGA exhibits minimal degradation—3%, 3%, and 5% degradation at an AL of 2
seconds—while Seamless suffers significantly higher degradation (12%, 17%, and 9%). Notably,
SimulMEGA achieves low-latency performance with <7% degradation at 1.5 seconds AL and nears
offline model quality (<3% degradation) at 3 seconds AL.

In contrast, Seamless, despite its self-learning design, struggles with a substantial performance gap
due to limitations in multi-head monotonic attention(MMA). The static wait-K strategy incurs high
latency and degradation across all settings. Meanwhile, DiG-SST, ED-ATT and AlignATT exhibits
instability, failing on specific language pairs. In our experiment ED-ATT is most stable among
baselines but still shows more than 0.5s additional LAAL compare to SimulMEGA under same
quality.

Streaming TTS & Simultaneous S2ST Our experiments on LibriSpeech and SeedTTS_zh eval-
uate SimulMEGA-TTS under extreme streaming conditions, processing one text unit at a time.
For the CoVoST2 cross-lingual setting, the system receives incremental text chunks generated by
SimulMEGA-S2T. We compare against CosyVoice2-S operating at its default text-to-speech ratio. As
shown in Table 2, SimulMEGA-TTS demonstrates comparable speaker similarity to both CosyVoice2
variants, attributable to their shared flow model. While showing marginally lower alignment latency
(AL) than CosyVoice systems, SimulMEGA-TTS maintains equivalent speech intelligibility (WER)
to the original CosyVoice2. In cross-lingual evaluation, SimulMEGA-TTS surpasses Seamless by
10 SIM points while achieving more than 40% lower WER. Figure 4 presents our simultaneous
speech-to-speech translation (S2ST) results. SimulMEGA-S2S maintains tight latency control, adding
less than 200 ms AL compared to speech-to-text translation (S2TT). The quality degradation from
S2TT to S2ST shows a 7% (ZH-EN) and 6% (EN-ZH) BLEU reduction for our system, lower than
Seamless’s 10% and 20% reductions, respectively. Furthermore, SimulMEGA-S2S outperforms
synthesizing by CosyVoice2’s streaming mode in both output quality and latency metrics.

Figure 4: Bi-directional Simultaneous S2TT and S2ST Result between Mandarin and English in
CoVoST2 test set. The translation quality metric is BLEU for S2TT and ASR-BLEU for S2ST. We
use the same threshold group between S2ST and S2TT. Results of NAST-S2S and StreamSpeech are
taken from original paper.
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4.3 Ablation Study

We conduct ablation experiments on three key designs in SimulMEGA: 1) pre-Sigmoid noise scale,
2) router score normalization, and 3) training losses. For these ablations, we employ the same base
model and conduct stage-2 simultaneous training as in the main experiment. Training is performed
on a subset of the main dataset containing only the Common Voice English data, with evaluation on
the CoVoST2 EN-ZH test set.

Pre-Sigmoid Noise We examine three noise settings: 1) No noise, 2) σ = 1, and 3) σ = 3.
Figure 5(a) indicates that noise magnitude has minimal effect on average performance. However,
increasing noise leads to more deterministic router scores, thus limiting the flexibility of the latency-
performance curve. Conversely, the absence of noise results in an overly wide score range and
unstable low-latency performance. A moderate noise level (σ = 1) achieves an optimal balance
between a manageable dynamic range and stable translation performance.

Score Normalization Figure 5(b) shows that without normalization, router scores are disproportion-
ately concentrated between thresholds 0.5 and 0.8, complicating threshold selection across different
tasks or language pairs. Incorporating normalization yields a smoother latency-performance curve,
reflecting a more balanced score distribution within the [0.2, 0.8] range, thereby facilitating easier
and more consistent threshold tuning.

Training Loss We investigate the effects of removing either Loffline or Lprefix during simultane-
ous training. Results presented in Figure 5(c) demonstrate that removing Loffline reduces overall
performance by approximately 1 BLEU point, highlighting the necessity of offline loss to maintain
simultaneous translation quality. Conversely, omitting Lprefix leads to negligible performance degra-
dation, suggesting its optional nature. We hypothesize that the generalization to prefix translation
tasks provided by Loffline and Lrefiner mitigates the need for truncation-specific training.

Figure 5: Ablation Studies. The threshold for all ablation experiment evaluation is 0.8, 0.7, ..., 0.2
from left to right.

5 Conclusion and Discussion

SimulMEGA addresses multilingual SimulST challenges through an unsupervised policy learning
framework integrating prefix-based training and Mixture-of-Experts refinement. By enabling mini-
mal architectural modifications to standard transformers, it achieves state-of-the-art quality-latency
tradeoffs across six languages while supporting unified speech/text streaming. The integrated system
advances real-time cross-lingual communication with miniature BLEU degradation at low latency and
robust conversational performance, establishing a versatile foundation for low-latency multimodal
translation systems.

Limitation Though SimulMEGA-S2S is a strong simultaneous S2ST system, it suffers from the
drawback shared by cascaded systems: inconsistent text tokens(between Whisper tokens in S2TT and

2Using the officially released code and checkpoint (Commit fbab274), CosyVoice 2 exhibits hallucination
issues in streaming mode, leading to increased WER and deviations from reported results.
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Qwen2 tokens in TTS), extra latency(around 0.1 seconds) and so on. What’s more, SimulMEGA-TTS
only supports two languages by now, which hinders its utility. In the future, we plan to add more
language support, as well as integrate into a more unified end-to-end system. Additionally, currently
SimulMEGA only support 30 seconds of maximum input duration. Therefore, it still rely on an VAD
model to cut input stream into less than 30s. In the future we will explore continuously generation
without segmentation by sliding window or history selection.

Broader Impacts This work proposes new streaming techniques and is dedicated to providing a
faithful translation of the original speech. However, with the voice cloning capability of SimulMEGA-
TTS, the system may be subject to some misuse.
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A SimulMEGA-TTS Implementation Details

Figure 6 shows how to implement SimulMEGA on top of a uni-directional decoder-only backbone. We take
CosyVoice 2 as the base model and fine-tune it into SimulMEGA-TTS. We take the last layer hidden states
output of text tokens as the hprefix and the hidden state of the text EOS token as Hglobal.

In S2TT, normally, when the input reaches the end of the stream, we no longer turn to the read/write strategy and
instead continue the generation until the EOS token appears. However, in the TTS task, the end of speech is
relatively ambiguous. Therefore, if we employ the same strategy as S2TT, the hallucination problem may occur
at the end of the generation. Therefore, we employ a mixed strategy to tell the end of the generation:

End of Generation =

{
True if Et ∈ Ttext and (Es ∈ Tspeech or p·,i > λend)

False otherwise
(9)

Where Et/s denotes text/speech EOS token. Ttext/speech denotes text or speech tokens in the current sequence.
p·,i is the router output at the current position after all input streams are read. λend = 0.9.

Figure 6: Illustration of SimulMEGA-TTS. The left uses offline text input while the right uses prefix
text input for policy learning.

B Experiment Details

B.1 S2TT Baselines

1. Meta Seamless series: Meta Seamless series contains a set of models including SeamlessM4T-large-
v2 for offline translation, SeamlessStreaming for simultaneous translation and SeamlessExpressive for
voice cloning. They also combines the capability of SeamlessStreaming with SeamlessExpressive into a
single model named Seamless. In our experiment we use SeamlessM4T-large-v2 for offline evaluation,
SeamlessStreaming for simultaneous S2TT evaluation and Seamless for simultaneous S2ST evaluation.

2. Wait-K: For each input test sample, We use a VAD to determine the starting time. Then we wait for two
chunks (1.28s) and start generation at a fixed ratio, ranging from 0.5 to 2.5 tokens per chunk.

3. DiG-SST: Following the original paper, we freeze the base model and add three learnable policy layers on
top of the text decoder to predict the divergence between prefix and global input. It was trained for 100k
steps on the same training set of SimulMEGA.

4. EDATT: We follow the paper and official code5 for implementation. We re-tuned the thresholds and
hyperparameter and set attention layer to be the 8th layer and set attention frame to be 4.

5. AlignATT: We follow the updated official code6. A frame-wise normalization is applied to the attention
score to mitigate maximum attention fixation.

In our experiment we observed that both DiG-SST and AlignATT behave poorly on all X2ZH pairs, which
hinders the overall performance. We hypothesis that this might be caused by the UTF-8 byte-level BPE tokenizer.
It encodes each CJK character into multiple tokens, potentially leading to unexpected output distribution and
attention pattern.

5https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/
simultaneous_translation/agents/v1_1/simul_offline_edatt.py

6https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/
simultaneous_translation/agents/v1_1/simul_alignatt_seamlessm4t.py
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B.2 Quality-latency variable

Table 3 shows the choice of the variable that controls the quality-latency tradeoff in the main experiment. From
left to right the quality and latency gradually increase.

Table 3: Quality-latency variables in the main experiment.
Method variable S2TT S2ST

SimulMEGA λ [0.9, 0.7, 0.5, 0.3, 0.1] [0.8, 0.7,... , 0.2]
Seamless tEMMA [0.3, 0.5, 0.7, 0.9, 1] [0.3, 0.5, 0.7, 0.9]
DiG-SST λ [0.1, 0.07, 0.05, 0.03, 0.01] -
EDATT α [0.05, 0.03, 0.02, 0.015, 0.01] -

AlignATT f [32, 48, 64, 80, 96] -
Wait-K ratio [2.5, 2.0, 1.5, 1.0, 0.5] -

C S2TT computation overhead.

For evaluating the computation overhead, we plot the computation-aware(CL) quality-latency trade-off curve
in the CoVoST2 FR-EN testset. Computation-aware latency considers the actual inference time of the model.
The evaluation is performed on a fully idle machine with a single Nvidia-H100 GPU. As shown in Figure 7, for
SimulMEGA, the extra AL due to computation is around 50 ms, whereas the number for Seamless is around 200
ms.

Figure 7: Computation aware quality-latency curve on CoVoST2 FR-EN. CL denotes Computation-
Aware.

D S2ST System Deployment & Latency.

We deploy our S2ST system on an Ubuntu server equipped with NVIDIA H100 GPUs. For the frontend and
backend, we utilize FastRTC7 and FastAPI8, respectively. To enhance inference efficiency, vLLM9 is used to
accelerate the language model in TTS, and TensorRT10 is used to accelerate the flow model.

We evaluate the system latency with streaming inputs, using four language pairs (ZH-EN, EN-ZH, FR-EN,
FR-ZH). For each direction, we test two samples, each 20–30 seconds in length, and record event timestamps
for latency calculation. Virtual Audio Cable11 software is employed to eliminate echo interference and ensure

7https://github.com/gradio-app/fastrtc
8https://github.com/fastapi/fastapi
9https://github.com/vllm-project/vllm

10https://github.com/NVIDIA/TensorRT
11https://vac.muzychenko.net/en/
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consistent audio input across tests. The average latency results are presented in Table 4. Here, the S2T/S2S
Start Offset indicates the time required to generate the first text or speech chunk, while the S2T/S2S End Offset
measures the delay of the final text chunk or speech frame relative to the end of the source speech.

It should be noted that these results provide only a rough estimation of system latency, as actual values may vary
due to server or network conditions, output content length, speech rate, or other factors.

Table 4: Simultaneous S2ST system latency statistics (in seconds). N denotes using non-stream TTS
and S denotes stream TTS

Offline SimulMEGA Seamless
N N S -

S2TT Start Offset 13.56 3.12 2.95 3.55
End Offset 0.78 0.44 0.58 0.61

S2ST Start Offset 15.98 7.43 3.87 4.33
End Offset 14.16 7.65 7.54 6.42

E Numerical results

Numerical results of simulMEGA S2TT on CoVoST 2 testset is shown in Table 5.

Table 5: Numerical results of simulMEGA S2TT on CoVoST 2 testset.
Threshold 0.9 0.7 0.5 0.3 0.1 0

zh-en BLEU 21.06 25.37 26.01 26.40 26.63 26.89
LAAL 1.395 2.249 2.539 2.807 3.180 -

de-en BLEU 32.90 36.08 36.94 37.15 37.41 37.44
LAAL 1.217 1.862 2.149 2.420 2.856 -

es-en BLEU 37.21 40.27 40.94 41.28 41.46 41.51
LAAL 1.047 1.521 1.760 2.001 2.405 -

fr-en BLEU 36.50 38.76 39.33 39.60 39.76 40.02
LAAL 0.952 1.391 1.590 1.812 2.195 -

it-en BLEU 34.64 37.42 38.12 38.57 38.89 38.90
LAAL 1.101 1.621 1.873 2.125 2.512 -

en-zh BLEU 39.93 42.77 43.11 43.17 43.42 43.57
LAAL 1.539 2.305 2.680 2.976 3.381 -

en-de BLEU 29.65 32.89 33.16 33.61 33.66 33.75
LAAL 1.266 1.813 2.121 2.404 2.808 -

F S2ST Case Study

We visualize two S2ST example of SimulMEGA in FR-EN and ZH-EN, respectively. The second row is the
isochronic text label of source speech and the forth row indicates the timestamps when each target text chunk are
generated.
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Figure 8: (a) FR-EN

Figure 8: (b) ZH-EN
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