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Abstract

Spatial sequencing technologies have allowed for studying the relationship be-
tween the physical organization of cells and their functional behavior. However,
interpreting these data and deriving insights from them remains difficult. Here,
we present a Bayesian statistical model that performs dimension reduction for
these data in a spatially-aware manner. In particular, our proposed model cap-
tures the low-dimensional structure of gene expression while accounting for the
spatial variability of expression. Our model also allows us to project dissociated
scRNA-seq data onto a spatial grid, as well as use scRNA-seq impute and smooth
the expression of spatial sequencing data. Through simulations and applications
to spatial sequencing data, we show that our model captures joint structure of
spatially-resolved and dissociated sequencing data.

1 Introduction

Spatial genomics technologies provide an opportunity to study the relationship between the molecular
makeup of cells and their physical organization. A variety of technologies have been developed in
recent years [Ståhl et al., 2016, Rodriques et al., 2019, Stickels et al., 2021, Lee et al., 2021, Zhao
et al., 2021], which have contributed to the understanding of cell types, disease, and responses to
therapeutics.

While there are extensive applications of spatial genomics technologies, there remains a need for
statistical methods that can distill these high-dimensional data into interpretable factors. It is of
particular interest to be able to decompose the variability of gene expression into a set of patterns that
are driven by the cells’ spatial positions and another set of patterns that are driven solely by the cells’
expression behavior. Previous methods for this task [Lopez et al., 2019, Zhu and Sabatti, 2020] have
focused purely on imputation, while placing less emphasis on spatially-aware dimension reduction.
Moreover, it would be beneficial to be able to leverage the vast collection of existing dissociated
(non-spatially-resolved) single-cell RNA-sequencing data (scRNA-seq) to inform these factors.

Here, we build on recent work [Verma and Engelhardt, 2020a] by proposing a family of latent
variable models that perform dimension reduction on spatial genomics data in a spatially-aware
manner by decomposing the data variation into a set of spatial-related and non-spatial-related factors.
In particular, our proposed model captures the low-dimensional structure of gene expression while
accounting for the spatial variability of expression. Our model also allows us to project dissociated
scRNA-seq data onto a spatial grid, as well as use scRNA-seq impute and smooth the expression of
spatial sequencing data. The probabilistic framing of our approach allows dissociated scRNA-seq
data to be seamlessly incorporated into the model, and even opens the door for imputation of the
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dissociated cells’ spatial coordinates. We demonstrate our model through a series of simulation
studies and an application to two gene expression datasets.

2 Spatially-aware dimension reduction

Consider a set of n cells indexed by i = 1, . . . , n. Denote cell i’s gene expression vector as yi ∈ Rp,
where p is the number of genes measured, and denote yij as the expression level of the jth gene in
this cell. Denote the cell’s spatial position as xi ∈ Rd, where d is the dimension of the spatial domain
(typically, d ∈ {2, 3} in most applications). For data collected from spatially-resolved sequencing
technologies, xi is directly observed, but for data collected from dissociated cells using scRNA-seq,
xi is unobserved.

Model Our modeling approach is built as an extension of the Gaussian process latent variable model
(GPLVM) [Lawrence, 2003, Titsias and Lawrence, 2010]. The GPLVM assumes that each feature of
high-dimensional observations is generated from a GP projection of a lower-dimensional representa-
tion (latent variables) of the samples, plus noise. The latent variables can then be investigated for
influential patterns in the data.

We extend the GPLVM by augmenting the latent space to also include a set of fixed covariates,
which we specify as the spatial locations of the cells. The high-dimensional outcome space is then
a function of both unobserved latent variables and the spatial locations. By placing a GP prior on
this function, we obtain our model, which we call a semi-supervised Gaussian process latent variable
model (ssGPLVM). Specifically, let zi ∈ Rd′

be the vector of unobserved latent variables for cell
i, and let ti = (x>i , z

>
i )> ∈ Rd+d′

be the concatenation of spatial coordinates and latent variables.
Then the ssGPLVM for cells i = 1, . . . , n and genes j = 1, . . . p is given by

yij = fj(ti) + εi, fj ∼ GP (0, k(·, ·)), zi ∼ N(0, Id′), εi ∼ πnoise, (1)

where πnoise is the prior for the noise, and k(·, ·) is a covariance function. When cell i does not have
observed spatial coordinates, xi is unobserved, and we place a Gaussian prior on it, xi ∼ N(0d, Id).
In our work, we explore two choices for πnoise: Gaussian noise πnoise = N(0, σ2) and Student’s
t-distributed noise πnoise = T (0, ν, σ2) . For the t-distributed noise, we optimize the noise variance
σ2 during inference, and we set the degrees of freedom ν = 4 based on prior work [Verma and
Engelhardt, 2020b].

Thus, the ssGPLVM allows for modeling gene expression from both spatially-resolved and dissociated
cells under a single modeling framework.

Inference Our goal in inference for the ssGPLVM is to compute the posterior for the latent variables,
p(Z|X,Y). When a subset of the spatial coordinates are unobserved, we also wish to compute the
posterior for those spatial coordinates. This posterior is intractable, so we use a variational inference
approach using inducing points to approximate the posterior for the latent variables. See Appendix
A.2 for details.

3 Results

3.1 ssGPLVM enables spatially-aware dimension reduction

We now show that the ssGPLVM can be used to perform spatially-aware dimension reduction. We
first demonstrate this with synthetic data before applying it to spatially-resolved sequencing data.

Simulations We generated synthetic univariate gene expression data with a one-dimensional spatial
coordinate. We generated the data with a quadratic function, y = ax2 + b. We randomly sampled
n = 200 spatial coordinates from the interval [−3, 3] and sampled half of the outcomes with
a = 1, b = 0 and the other half with a = 1, b = 4. We fit both the GPLVM and the ssGPLVM on
these data and visualized the latent variables. Each parabola is colored by its spatial coordinates,
and the latent coordinates are colored by which parabola they are from. We find that the GPLVM
latent variables capture all variation, including the variation between the two parabolas and the spatial
shape (Figure 1). On the other hand, the SSPGLVM latent variables remove the variation due to the
spatial coordinates, and we are better able to isolate the variation between the parabolas (Figure 1).
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Figure 1: Demonstration of the GPLVM and ssGPLVM on synthetic data. Left: Synthetic data
with two-dimensional outcome (represented by each point’s location) and one-dimensional spatial
coordinate (represented by each point’s color). Middle: Latent variables recovered by the GPLVM.
Each point’s color corresponds to which parabola it belongs to. Right: Latent variables recovered by
the ssGPLVM. Each point’s color corresponds to which parabola it belongs to.

Application to Visium data We next applied the ssGPLVM to a spatial transcriptomics dataset
collected from the mouse cortex using the Visium platform [10x Genomics, 2020]. We fit the model
with d′ = 2 latent variables and extracted the latent variables. Visualizing the latent variables, we
find that there is some natural clustering of the cells in the latent space (Figure 2). To more precisely
define these clusters, we use the K-means algorithm to assign each point to one of K = 5 clusters in
the latent space. It is then possible to use this data to see what the latent variables capture in terms of
biology (see Figure 6 in Appendix). We next checked whether the ssGPLVM latent space captured
any information about the spatial coordinates. To check this, we again visualized the latent variables
and colored each point by the first spatial coordinate. We find that the spatial coordinates show only
minor clustering on the latent variables, suggesting that the latent variables capture information apart
from the spatial location (Figure 2).

Figure 2: ssGPLVM applied to Visium mouse cortex data. Left: ssGPLVM latent variables colored
by a K-means clustering. Right: ssGPLVM latent variables colored by the first spatial coordinate.

3.2 ssGPLVM enables imputation of gene expression and spatial coordinates

We next sought to validate that our model can accurately impute partially missing data.
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Simulations We first generated non-spatial synthetic data with a two-dimensional outcome (Fig-
ure 3). We then randomly dropped a single outcome variable for two samples and used the ssGPLVM
to impute the dropped values. Specifically, we fit the ssGPLVM and computed the approximate
posterior distribution over the missing values. We find that the model provides a reasonable estimate
of both the mean and variance for the imputed values (Figure 3). As a similar experiment, we next
tested whether we could impute a missing spatial coordinate. We find that we are also able to impute
the spatial coordinate within reasonable accuracy (Figure 3). This suggests that our model is a feasible
approach to jointly modeling partially-observed data in a semi-supervised manner.

Figure 3: Imputation of synthetic gene expression and spatial coordinates with the ssGPLVM.
Left: Original two-dimensional dataset with two partially observed samples. Gray lines indicate the
observed outcome of each sample, while the other outcome is unobserved. Middle left: Imputation of
synthetic gene expression using a GPLVM. Red points and bars show the approximate posterior mean
plus or minus twice the standard deviation. Middle right: Original dataset with one-dimensional
outcome (y-axis) and one-dimensional spatial coordinate (x-axis). Right: Green dot shows imputed
spatial coordinate for one point.

Application to seqFISH+ data We then applied our model to a dataset from a mouse cortex
collected using the seqFISH+ technology [Eng et al., 2019]. We first impute missing gene expression
of the seqFISH+ data set. We find that the imputed gene expression values lie reasonably within the
range of what we expect to see (Figure 4).

Next, we impute spatial coordinates. We randomly drop 10% of both of the spatial coordinates (x and
y) in seqFISH+, and we use ssGPLVM to try to accurately impute them back. In (Figure 4), we plot
the imputed x and y spatial coordinates against the true x and y. If our imputation was perfect, the
two plots would show a straight line since the imputed x and y would be equal to the true x and y.
However, we do see a positive linear trend in both graphs that closely follow the identity line. This
result suggests that ssGPLVM is working properly, and is imputing within a reasonable accuracy.

Figure 4: Imputation of gene expression and spatial coordinates in seqFISH+ data. Left: Black
points show observed gene expression values for two genes, and red points show ssGPLVM-imputed
gene expression for points whose values were randomly dropped. Middle: True spatial coordinate
(x-axis) and imputed spatial coordinate (y-axis) for the x spatial coordinate. Right: True spatial
coordinate (x-axis) and imputed spatial coordinate (y-axis) for the y spatial coordinate.
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4 Discussion

We propose a Bayesian statistical model, which we call the semi-supervised Gaussian process
latent variable model (ssGPLVM) that captures low-dimensional structure of gene expression data
while accounting for the spatial variability. We demonstrate that the ssGPLVM can be used across
modalities by jointly fitting spatial spatially-resolved and dissociated gene expression data to learn
the low-dimensional structure of expression, as well as impute partially missing gene expression and
spatial coordinates from sequencing data. With this knowledge, we can uncover genetic patterns and
patterns across space that may not be accessible in one of the modalities separately. As single cell
technologies evolve, the ability to integrate data sets will become more vital part of any analysis
pipeline. The ssGPLVM offers a principled method for integrating single-cell data and potentially
other types of multi-modal molecular data. Future work includes fitting the ssGPLVM on other
existing data sets, such as from the Visium platform, and comparing imputation results with related
methods (such as PCA).
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A Appendix

A.1 Data

A.1.1 seqFISH+

The seqFISH+ dataset we used was collected from the mouse visual cortex. It measures the gene
expression levels for a set of spatially-resolved cells (the "spatial" data set). The full spatial data
matrix is dimensions (913 cells, 9541 genes) and also includes spatial data for each cell. Before
imputing, we manipulate the data to be easier to work with, namely log transforming the gene
expression data and normalizing the spatial data. We use the manipulated data, and refer to it as the
seqFISH+ data set.
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A.1.2 Visium

This data set includes data on mouse brain slices generated using Visium v1 chemistry. Tissue sections
of 10 µm thickness from a sagittal slice of the posterior were placed on Visium Gene Expression
Slides. Under the tissues, 3,355 spots were detected with approximately 4,772 genes per spot. Visium
spatial gene expression maintains spatial information, but the resolution of each spot can cover is
limited as each spot can cover multiple cells. We refer to this set as the Visium data set in this paper
as we run our model on it.

A.2 Methods

Variational inference for the tGPLVM

The joint probability model for the tGPLVM is given by

p(Y,Z,F, θ, σ2) = p(Y|F, σ2)p(F|Z, θ)p(Z)

=

 D∏
j=1

n∏
i=1

T (yij |fj(xi), σ
2, ν)


︸ ︷︷ ︸

Noise model

 D∏
j=1

N(fj |0n,Kff )


︸ ︷︷ ︸

GP prior

[
n∏

i=1

N(xi|0d, Id)

]
︸ ︷︷ ︸

Latent prior

.

The posterior of interest is
p(F,Z|Y) = p(F|Z,Y)p(Z|Y). (2)

We introduce a set of m auxiliary variables (inducing points) to facilitate variational inference.
Specifically, let B ∈ Rm×d′

be a matrix of pseudo-inputs (inducing locations), and let U ∈ Rm×p

be a corresponding set of pseudo-outputs. We attempt to configure these variables such that Y and F
become conditionally independent given U in our posterior (Equation 2):

p(F,Z,U|Y) = p(F|Z,U)p(U|Y)p(Z|Y). (3)

We approximate this posterior with a variational distribution of the form

q(F,Z,U) = p(F|Z,U)q(U)q(X).

We let q(U) and q(Z) be free-form multivariate Gaussians,

q(U) = N(mU ,SU ), q(Z) = N(mZ ,SZ).

Our variational parameters are

φ = {B,mU ,SU ,mZ ,SZ}.

To optimize this approximation, we maximize a lower bound on the log marginal likelihood (the
evidence lower bound, or ELBO) with respect to the variational parameters:

log p(Y) ≥ Eq

[
log

p(Y,Z,F,U)

q(F,Z,U)

]
.

We can simplify this expression as follows.

Eq

[
log

p(Y,Z,F,U)

q(F,Z,U)

]
= Eq

[
log

p(Y|F)p(F|Z,U)p(U)p(Z))

p(F|Z,U)q(U)q(Z)

]
= Eq

[
log

p(Y|F)p(U)p(Z))

q(U)q(Z)

]
= Eq [log p(Y|F)]−DKL(q(U)‖p(U))−DKL(q(Z)‖p(Z)).

The final two terms (the KL divergences) can be computed in closed-form given our Gaussian
assumptions. However, the first term cannot be computed analytically. Instead, we estimate this term
with a Monte Carlo approximation,

Eq [log p(Y|F)] ≈ 1

L

L∑
`=1

log p(Y|F̂`)
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where we draw F̂` from p(F|Z,B), where U has been marginalized out. This distribution is given by

p(f|Z,B) = N(µ̃, Σ̃)

where

µ̃ = µ(Z) + K>ufK
−1
uu (m− µ(Z))

Σ̃ = Kff −K>ufK
−1
uu (Kuu − Ω)K−1uuKuf .

This ultimately becomes a two-step sampling procedure. First, we sample Ẑ ∼ q(Z), and then we
sample F̂ ∼ p(F|Ẑ,B).

Variational inference for the ssGPLVM

In order to perform inference in the semisupervised version of the model, we make one minor change:
we append the fixed spatial dimensions to both the latent variables X and the inducing locations Z.
Denote the matrix of spatial coordinates as S ∈ Rn×2, and let the augmented latent variables be
given by

T = [X Z] ∈ Rn×(d+d′).

To incorporate the spatial coordinates into the inducing locations Z, we take one of two approaches.
First, similar to above, we can append a subset of the spatial locations to the inducing locations such
that

B̃ =
[
X̃ B

]
∈ Rm×(d+2)

where X̃ ∈ Rm×2 is a subset of the spatial coordinates. This subset can be chosen by, for example,
k-means clustering of the spatial coordinates (where k = m). As a second approach, we can allow S̃
to be an extra set of variational parameters, and optimize them as part of our approximate inference
strategy.

A.3 Supplementary figures

Figure 5: Visualizing imputing spatial location in Visium data set: If we look at the left graph,
we can see the faint outline of the tissue. Each dot on the graph represents a cell and it is colored by
the molecular counts. For this particular graph, we only took the 15000 cells with the most variance
(highest molecular count) and dropped one of those cells to impute. The true location is in red, and
the green dot is our imputed guess. We can see that as the green dot approaches the red dot, our
imputation gets better. The right graph shows the latent variables.
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Figure 6: Gene set enrichment analysis on the ssGPLVM latent variables obtained from the
Visium data
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