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ABSTRACT

It is a common practice in natural language processing to pre-train a single model on a
general domain and then fine-tune it for downstream tasks. However, when it comes to
Large Language Models, fine-tuning the entire model can be computationally expensive,
resulting in very intensive energy consumption. As a result, several Parameter Efficient
Fine-Tuning (PEFT) approaches were recently proposed. One of the most popular
approaches is low-rank adaptation (LoRA), where the key insight is decomposing the
updated weights of the pre-trained model into two low-rank matrices. However, the
proposed approaches either use the same rank value across all different weight matri-
ces, which has been shown to be a sub-optimal choice, or do not use any quantization
technique, one of the most important factors when it comes to a model’s energy con-
sumption. In this work, we propose Bayesian-LoRA, a new method that approaches
low-rank adaptation and quantization from a Bayesian perspective by employing a prior
distribution on both quantization levels and rank values. As a result, B-LoRA is able to
fine-tune a pre-trained model on a specific downstream task, finding the optimal rank
values and quantization levels for every low-rank matrix. We validate the proposed
model by fine-tuning a pre-trained DeBERTaV3 on the GLUE benchmark. Additionally,
we fine-tune Phi-2 and Qwen, and evaluate them on few-shot and zero-shot MMLU.
We compare our proposed method with relevant baselines and present both qualitative
and quantitative results, showing its ability to learn optimal-rank quantized matrices.
B-LoRA performs on par with or better than the baselines while reducing the total
number of bit operations by roughly 70% compared to the baseline methods.

1 INTRODUCTION

Pre-trained language models (PLMs) have become the de-facto models in various natural language
processing tasks (Devlin et al., |2019; |Liu et al., 2019; He et al., [2021b; Radford et al.,|2019; |Brown et al.|
2020b). Although full fine-tuning (FT) has been the most common way to adapt pre-trained models to
downstream tasks |Qiu et al.| (2020); Raffel et al.| (2020), with the rise of large pre-trained models full
FT is becoming unfeasible. For instance, while BERT (Devlin et al.| 2019) consists of up to 300 M
parameters, GPT-3 (Brown et al.,[2020b) has up to 175 B parameters, making full FT computationally and
energy demanding. To address this issue, existing works (Hu et al., 2022} |[Dettmers et al.,|2023)focus on
reducing the fine-tuning parameters while maintaining or even improving the downstream performance of
PLMs. One approach is to mitigate such a problem by adapting only some parameters or learning external
modules for new tasks, while keeping the base model frozen and shared across tasks. As a result, only a
small number of task-specific parameters need to be stored and loaded, greatly boosting the operational
efficiency when deployed. For example, Adapter Tuning approaches (Houlsby et al.l 2019; Rebuffi et al.|
2017; [Pteiffer et al.| 2020; He et al., [2022) employ small neural modules called adapters within the layers
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Figure 1: (Left) B-LoRA Scheme: As mentioned in Sec. |1} every weight W can be decomposed as
W =W, + BEA. Since F is a diagonal matrix, we represent it as a vector of size r that acts on matrix
A with pointwise multiplication. (Right) Rank Adaptation and Quantization techniques are visually
represented, following equation [I3|for Rank Adaption and equations[7]and [§] for Quantization, respectively.
Visual Representation of quantization technique is taken from (Van Baalen et al.| [2020).

of the pre-trained model. Prefix tuning (Li & Liang] 2021 and Prompt tuning (Lester et al.,|2021) attach
additional trainable prefix tokens to the input or hidden layers of the base model. These methods have
been shown to achieve comparable performance to full fine-tuning, while only updating less than 1% of
the original model parameters, significantly releasing the memory consumption.

Another line of research proposes to model the incremental update of the pre-trained weights in a parameter-
efficient way, without modifying the model architecture (Zaken et al.,[2021; |Guo et al., 2020; |[Hu et al.,
2022; Zhang et al., 2023} [Valipour et al.| 2022)). Among this family of methods, the most widely used is
LoRA (Hu et al.}[2022), which parameterizes weight updates A as a low-rank matrix by the product of
two much smaller matrices:

W =Wy + A =Wy+ BA, (D

where Wy, A € R4 A € R™*? and B € R?¥" with r < d. During fine-tuning, only A and B are
updated. The rank r is chosen to be much smaller than the dimension of W (e.g., 7 = 8 when d = 1024).
With less than 0.5% additional trainable parameters, training overhead can be reduced up to 70%, achieving
comparable or even better performance than full fine-tuning (Hu et al.,|2022)). However, LoRA still has
limitations since searching the optimal rank value requires re-running the entire fine-tuning for each new
value (Valipour et al.,[2022) and it sets the same rank r of each incremental matrix A across different
LoRA blocks (Zhang et al., [2023)). The latter, as pointed out by Zhang et al.|(2023), does not take into
account that the impact of the weight matrices on downstream performances varies significantly across
modules and layers when fine-tuning pre-trained models.

While PEFT approaches are proved to be very successful in reducing the number of parameters needed for
specific downstream tasks, the LoRA-based approaches, proposed in the literature, either use the same rank
value across all different weight matrices or do not use any quantization technique. However, to reduce
the computational cost of neural network inference and the related energy consumption, quantization and
compression techniques are often applied before deploying a model in real life (Van Baalen et al., |2020;
Xu et al.,[2024). Indeed, the former reduces the bit width of weight and activation tensors by quantizing
floating-point values onto a regular grid, allowing the use of cheap integer arithmetic, while the latter
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aims to reduce the total number of multiply-accumulate (MAC) operations required (Kuzmin et al.,|2019;
Krishnamoorthil [2018)).

Recently, [Van Baalen et al.| (2020) proposed the BayesianBits approach, which introduces a novel and
hardware-friendly decomposition of the quantization operation and allows for adaptable and optimal
quantization levels, resulting in optimal quantization levels and, therefore, lower model energy consumption.
Inspired by BayesianBits (Van Baalen et al., 2020), we propose Bayesian-LoRA (B-LoRA) |'| which
approaches LoRA matrix decomposition and quantization from a Bayesian perspective. Indeed, by
positioning a prior distribution on both quantization levels and rank values of the low-rank matrices
weights, the optimal rank values and quantization levels for each individual LoRA block are learned. We
validate the proposed approach, using the GLUE (Wang et al., |2019) benchmark, and compare it with
state-of-the-art baselines, such as LoRA (Hu et al.| 2022)), DyLoRA (Valipour et al.,|2022), and AdaLoRA
(Zhang et al.} 2023)). Moreover, we perform a qualitative analysis of quantization levels and rank values
across the fine-tuned quantized LoRA blocks, which shows how B-LoRA is able to reduce the total amount
of bit operations of roughly 70%, while performing on par or better than the related SOTA baselines.

2 RELATED WORK

2.1 TRANSFORMER-BASED LANGUAGE MODEL

Pre-trained language models have gained significant attention in the field of natural language processing
(NLP), due to their impressive capabilities in language generation, in-context learning, world knowledge,
and reasoning.

The GPT family, including GPT-3 (Brown et al.| [2020a), ChatGPT (OpenAl, [2022), GPT-4 (OpenAl,
2023)), and InstructGPT (Ouyang et al.,|[2022) are some of the representative works on autoregressive
LLMs. A second family of language models are bi-directional models, like DeBERTa (He et al., 2021b),
DeBERTa-v3 (He et al., [2021a)), RoOBERTa (L1u et al., |2019), TS (Raffel et al., [2020). It is a common
practice to train transformer models on Language Modelling or Masked Language Modelling task in
an unsupervised manner, which does not require annotated data, and adapt it for multiple downstream
applications. Such adaptation can be done via fine-tuning, which updates all parameters of a model (Hu
et al.| 2022). Since transformer models often have billions of parameters, computing gradient updates for
the entire model can be infeasible without appropriate hardware. This computational challenge motivated
research into parameter-efficient fine-tuning techniques, aiming to reduce hardware requirements while
maintaining model performance (Hu et al.} 2022} [Zaken et al.,[2021).

Low-Rank Adaptation. LoRA (Hu et al., [2022) is an efficient fine-tuning method that updates only a
small subset of model weights. It approximates weight changes using low-rank matrix decomposition,
significantly reducing the number of trainable parameters for downstream tasks. This results in the
following forward pass:

Wax = Wyx + Az = Wyx + BAx 2)

where Wy, A € R4*4, A € R™*4 and B € R™" with r < d. Typically, A is initialized from a Gaussian
distribution and all entries of B are set to 0. In transformers, LoRA is usually applied to attention layers.
Most of the experiments described by Hu et al.|(2022) use queries and values only. |He et al.| (2022) extend
method to weight matrices of FFNs (i.e., Wy, and Wy, ), leading to performance improvement. Meanwhile,
they propose a unified view of various efficient tuning methods, including adapter tuning, prefix tuning,
and LoRA. While LoRA (Hu et al.| 2022)) requires an expensive hyperparameter search to find the optimal
rank values, DyLoRA (Valipour et al.l [2022)) proposes to fine-tune the model’s weights for multiple rank
values simultaneously. Inspired by Nested Dropout (Rippel et al.| 2014), [Valipour et al.| (2022) truncates
matrices A, B to A, € R**? and By, € R4*?, sampling different rank values b per iteration. In contrast to
DyLoRA, which aims to optimize matrices for as many ranks as possible, AdaLoRA (Zhang et al.| 2023)

!Github link to Bayesian-LoRA implementation: https://github.com/KseniaSycheva/
Bayesian-Lora
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searches for optimal rank values. Given parameter budget, it is allocated among weights according to their
importance score. Authors reparameterize LoORA modules using SVD decomposition and during training
diagonal values can be truncated. Recently, it was proven that a nearly linear time approximation exists for
LoRA (Hu et al . [2024).

Quantization of LLMs. Quantization is a compression technique that reduces the bit width of the
parameters and/or activations of LLMs to improve their efficiency and scalability (Xiao et al., [2023}
Dettmers et al., | 2022; 2023)). Existing methods mostly focused on preserving or restoring the accuracy
of quantized LLMs during the inference stage (Zhu et al.| [2023)), where the key is to reduce the memory
footprint and computational costs without re-training the LLMs. In the context of low-rank adaptation,
QLoRA (Dettmers et al., [2023) uses a novel high-precision technique to quantize a pre-trained model
to 4-bit, and adds a small set of learnable low-rank Adapter weights that are tuned by backpropagating
gradients through the quantized weights. Moreover, QA-LoRA (Xu et al.| [2024) quantizes the weights
of the pre-trained language model during fine-tuning to reduce time and memory usage. However, both
QLoRA and QA-LoRA use vanilla LoRA blocks, inheriting their limitations related to rank values. In this
work, we jointly optimize quantization levels and rank values to reduce the complexity of the model, while
fine-tuning LoR A blocks to achieve better downstream performances.

3 METHOD

Our method searches for optimal precision and rank allocation in transformer models. In this section, we
discuss these components separately.

3.1 LEARNABLE QUANTIZATION

Following BayesianBits (Van Baalen et al., 2020), for a given weight 2 with values in the range [«, (]
we apply uniform quantization with different bitwidth b,, = n,n € N, where N = {2,4, 8,16, 32}. For
bitwidth b,,, quantized weights are computed as:

8 — «

= — 3
i 3)

g =sl|z/s], s
where s is the step size of the quantized value and |-] represents the round-to-nearest-integer function.
Van Baalen et al.|(2020) derive an expression for a residual error between consecutive quantization levels,
using bitwidth b,, and b1 = 2 * by,

T — Tp,, Sb,,
€b,y1 = Sbpya \‘ R ySbppr = o 11 “4)
1

Given this expression, weight x can be reconstructed from its quantized version by adding error terms:
Tq = To+ €4+ €g+ €16 + €32 @)
To make weight precision controllable, gating variables z;,i € {4, 8,16, 32} are introduced:
xy = To + 24(€s + 25(€s + z16(€16 + #32€32))) (6)

Reinterpreting the model from a Bayesian perspective, we can introduce a prior distribution on gates z;.
The prior can be described with the following equations:

P(2m|zn = 1) = Bern(e ™),

7
{m,njm =2xn,ne N\ {32}} @
that represent consecutive active gates, and
p(2m|zn = 0) = Bern(0) = 0,
@®)

{m,njm =2xn,ne N\ {2,32}}

4
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which are used for inactive gates. Notably, using this notation, whenever gate n is inactive, all the
consecutive ones will be inactive as well. Then, we can define the posterior distribution of gates g as:

= Bern(o(¢n,))
44 (2m|2n = 0) = Bern(0)

©))

where ¢; are used to parameterize the defined Bernoulli distributions and o (+) is a sigmoid function.

Algorithm 1 B-LoRA block. Individual quantizer
module parameters ¢ are not indicated for the sake
of clarity.

Require: Input z, rank r, pre-trained matrix W &€

Algorithm 2 Quantizer Module (Q); Hyperparame-
ters (1, (2 and t are fixed and defined in Appendix

Require: Input x; Quantizer parameters ¢

I: clip(x, min = a, max = )
2: 89 752__(1, To < Sgtii‘
& 1y T2

5: for bin {4,8, 16,32} do

R41%d2 1 oRA matrices A € R"™*% and B €
R%:X7 vector with diagonal entries £ € R",
rank distribution parameters &5 . . . &, quantiz-
ers Qu, Qq, Qe, Qp, used for weight matrices,

and Q 4, Q g, Qou, used for output variables. 6:  if training then
7 u~U[0,1], g+ logtt, s<o((g+
# quantize all weights ?)/b)
1. W, A E,B = & zp < min(1, max(0, s(¢1 — 2) + (2))
Qw( )7 a(A)7Qe(E)aQb(B) 9: else
# compute rank gates 10: 2 1 [U (510g (_%2) _ ¢) < t}
. 1
2:g1=1,g2= La(fz)-‘ gi = {H;_l U(Ej)-‘ 11:  endif
. | o 120 s i
f apply gates on diagonal 2 +1( )
entries (w2435 0 €
_ = 13: — .
3: Ei = Ei * g b 5 \‘ b —‘
# compute output ~ - 14- - ( _ )
4: return Quu(Wa + B - Qp(E - Qa(Az))) bomcreta (L) o

15: end for
16: return z,

Van Baalen et al.| (2020) provide results for convolutional models like LeNet (Simonyan & Zisserman,
2014) and VGG (Lecun et al.,[1998). In our work, we apply learnable quantization to transformers. We
limit our experiments by applying the method discussed above only to attention modules.

Consider an attention module, parameterized by matrices W, W,, W, corresponding to keys, queries, and
values, respectively. Following|Van Baalen et al.|(2020), we apply the learnable quantization approach to
both weights and variables defined within the attention module. During fine-tuning, we define W, W, W,
as LoRA blocks and optimize quantization levels of each weight and variable within the attention module.
Specifically, we use a different quantizer for every matrix of each LoRA block Wy, A, B, and the related
output variables.

3.2 BAYESIAN RANK ADAPTATION

In this section, we formalize the LoRA parametrization as in|[Zhang et al.|(2023)) and apply the gating
mechanism defined in equation [6] to optimize the rank value of each LoRA block. We follow Zhang
et al.[(2023)) and extend LoRA parameterization to have an SVD structure. As a result, LoORA blocks are
modified to include the diagonal matrix F. Following Zhang et al. (2023)), we store diagonal entries in a
vector, therefore E' € R”. Hence, the forward pass in equation [2|can be expressed as:

Wax = Wyx + BEAx (10)
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In order to control and optimize rank values during training, the entries of the vector F are multiplied by
gating variables as follows:

g1

N g1 92
E= : x| (an

€1

’ e
gl.gg...gN n

As for z; priors defined in equations [7]and[8] we define the g; priors as follows:
p(gn+1lgn =1) = Bern(ef)‘),
{njne1,2,---,r—1}, (12)
p(g1) = Bern(1)
where p(g1) is always 1 because all LoRA matrices should have at least rank 1. Such parametrization
ensures that every diagonal entry e; is inactive if e;, j > i is not active. Consistently to equation 9} we can
model the posterior distribution of gates r¢ as:
re(gilgi—1 = 1) = Bern(o(&;)),
r¢(9ilgi—1 = 0) = Bern(0), (13)
re(g1) = Bern(1),

The pseudocode for our method is provided in Algorithm[I] An algorithm for a forward pass of weight
and activation quantizers can be found in Algorithm 2}

3.3 TRAINING

As LoRA (Hu et al., [2022), our proposed approach is agnostic to any training objective. Consistently to
prior works (Hu et al.} 2022} |Valipour et al.,|2022} [Zhang et al., 2023)), we focus on language modeling as
our motivating use case.

Suppose we are given a pre-trained autoregressive language model Py (y|z) parametrized by ®. Consider
adapting this pre-trained model to a given downstream task, represented by a training dataset of context-
target pairs: Z = {(z;, ;) }i=1,.. N, Where both x; and y; are sequences of tokens.

Following Hu et al.|(2022), we can define the LoRA objective function as:
lyl
Lira(©®) = Y D log (pag+aae) (yelz, y<t)) , (14)
(z,y)eZ t=1
where @ represents the initial set of parameters of the pre-trained model and A®(©) represents the set of
LoRA parameters that are optimized during the fine-tuning.

In order to optimize the proposed B-LoRA blocks, we follow the optimization scheme defined by [Van
Baalen et al.| (2020). Since the gating variables are sampled from Bernoulli distributions, we use an
approximation of the KL divergence term, which results in the following objective:

j<i rood
F(0,6,6) = Liora(®) = A D> [T aszinlzar = =N D > [ relgsnlgin = 1) 5
k i€BjeB k i=1j=1 (15)
Quantization Rank Adaptation

where B is a set of available bitwidth, £ denotes the index of the quantizer, A, and A, are hyperparameters
that weight quantization and rank adaptation regularizers, respectively. In all our experiments, we set
Ar = Ay = 1. We follow |Van Baalen et al.|(2020) and employ straight-through estimator (STE) (Bengio
et al.| 2013)) for rounding operation, performing rounding in the forward pass, while using identity in the
backward pass.

4 EXPERIMENTS
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Method #Params BOPs | MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
Acc Acc Acc Acc/F1 Acc Acc Acc Corr
Full FT 184M 90.12  95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60
DyLoRA 0.29M 98.31 | 87.17 9472 63.32 90.17 93.56 80.14 - 91.36
LoRA (r=8) 1.33M 98.31 | 90.67 9495 69.82 91.99/89.38 93.87 8520 89.95 91.60
AdaLoRA (b=576) 1.99M 9532 | 90.77 96.10 71.45 92.23/89.74 9455 88.09  90.69 91.84
LoRA (r=2) 0.33M 97.44 | 90.34 9495 68.71 91.61/8891 94.03 8556 89.71 91.68
AdaL.oRA (b=144) 0.49M 9532 | 90.68 95.80 70.04 91.78/89.16 9449 8736 90.44 91.63
B-LoRA (q) 0.44M 32.85 | 90.17 96.44 70.22 91.26/88.38 9425 86.52  90.20 91.64
B-LoRA (a) 0.44M 3291 | 89.90 96.01 69.57 91.26/88.38 94.19 87.85  90.77 91.84
B-LoRA (q + ra) 0.44M 3291 | 90.27 96.33  69.63 90.75/87.79 942  88.33  90.03 91.76

Table 1: GLUE Benchmark. Here, the parameter  in LoRA and the parameter b in AdalLoRA correspond
to the rank value and the parameter budget, respectively. We evaluate B-LoRA on two configuration: using
quantization + rank adaptation (q + ra) and using quantization only (q). The best results for each data
set are shown in bold, while second best ones are underlined. # of parameters refers to the number of
trainable parameters of encoder (excluding classification head).

In this section, we design empirical
experiments to understand the perfor-
mance of B-LoRA and its potential lim-
itations by exploring the following ques-
tions: (1) How does optimizing quanti-
zation levels and rank values affect the
downstream usefulness of LoRA-based
fine-tuning approaches? (2) Can we ob-
serve consistent patterns of quantization
levels and rank values across different
tasks? (3) How many bit operations
(BOPs) can we save by using adaptive
quantization levels and rank values?

123 456 7 8 9 101112 6 7 8 9 10 11 12
Layers Layers

Figure 2: Rank distribution for GLUE benchmark. The last
4.1 EXPERIMENTAL SETUP layers have larger rank values, compared to the first layers.

Ranks of values W, are larger than ranks of keys W}, and queries
Following AdaLoRA (Zhang et al.| W,.

2023)), B-LoRA is implemented for fine-

tuning DeBERTaV3-base (He et al.

2020) on natural language understand-

ing using the GLUE benchmark (Wang et al., 2018)). We set the number of training epochs and scaling
parameter alpha (Hu et al.;,|2022)) according to AdaLoRA. However, while AdaLLoRA uses specific hyper-
parameters for each different GLUE dataset, we use the same set for the whole benchmark, showing the
robustness of the proposed method. In contrast to AdaLoRA, our method is applied to W}, W, and W,
while W, Wy, and W, are kept frozen. More details on hyperparameters are stated in Appendixg The
only layers that are fine-tuned with W,, W, W,, are two linear layers in the task-specific head. We provide
results for the full method B-LoRA(q + ra) and an ablation of it that uses only adaptive quantization
B-LoRA(q). We can compute the number of training parameters for the proposed approach as follows:

#params = 6 X r X [ x d (16)

where [ represents the base model layers and d the hidden model’s sizes, respectively. The number of
parameters in the classification head is not included in the parameter count, since it is fixed for all methods.
A full description of B-LoRA and related baselines number of parameters computation can be found in
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Appendix [E] B-LoRA is implemented using PyTorch (Paszke et al, , publicly available HuggingFace
Transformers weights (Wolf et al.,|[2019), BayesianBits’|and AdaLoRApP|repositories.

To evaluate B-LoRA’s performance against QLoRA (Dettmers et al, 2023)), we fine-tuned Phi-2 (Hughes)
and Qwen2 (Yang et al 2024) models using both methods and assessed them on the MMLU benchmark.
MMLU is a comprehensive evaluation framework that challenges models across 57 diverse subjects,

spanning from elementary science to advanced topics in economics and law. This benchmark effectively
measures a model’s reasoning capabilities and factual knowledge retention.

Baselines. In order to assess the ca- 07
pabilities of the proposed method with
respect to the current state of the art,
we consider the following related base-
lines. Full Fine-tuning (FT): This ap-
proach initializes the model with pre-
trained weights and updates all parame-
ters during the training process. Gradi-
ent computations are performed for the
entire model.

LoRA (Hu et al] 2022). A popular

MMLU Accuracy for Phi and Qwen
parameter-efficient fine-tuning method

Phi
that updates only a subset of model

Qwen
weights. LORA approximates weight up- Figure 3: MMLU Accuracy for Phi-2 and

dates as the product of two low-rank ma- Qwen?2 trained with QLoRA and BLoRA.
trices, significantly reducing the number

of trainable parameters. The efficiency

can be controlled by adjusting the rank of these matrices, known as the intrinsic dimension. We adopt the
experimental setup from Zhang et al | for both LoRA and AdalLoRA implementations. This setup
utilizes DeBERTaV3 as the pre-trained model and applies LoRA blocks to the following
weight matrices: Wy, Wy, Wy, W,, Wy, , Wy,. We compute the number of parameters trained by LoRA
as:

MMLU Accuracy
o o o o
w = (9] o

o
[N]

EmE QLoRA
I BLoRA (q + ra)
I BLoRA (ra)

4
,ﬂ

o
o

Models

#iparams = 2 X r X [ X (d x 5+ d;) (17)

where d; is the dimension related to the weight matrix Wy, .

AdaLoRA (Zhang et al}[2023)). It is an extension of LoRA that aims to limit the total sum of rank values
used in different LoRA blocks. They define a computational budget and prune rank values according to an
importance score (Zhang et al.} 2023). We compute number of training parameters in AdaLoRA using

Eq.|17|with r which corresponds to the maximum rank value. According to IZhang et a1.| (120231), r= %
where 7 is the number of adapted weights and b7 is the target budget. We report the number of parameters
for b7 € {144,576}, which results in r € {3,12}.

DyLoRA (Valipour et all,[2022): DyLoRA is another extension of LoRA, that enables adapting rank values
dynamically. However, the goal of this method is to optimize the model fine-tuning for a range of ranks, in
such a way that different versions of the fine-tuned model can be used if needed. Number of parameters
for DyLoRA can be computed with Equation[T7) with 7 set to maximum rank.

QLoRA (Dettmers et al.} [2023). QLoRA combines low-rank adaptation with 4-bit quantization to enable
efficient fine-tuning of large models. Instead of fine-tuning the entire model, QLoRA applies 4-bit quanti-
zation to the pre-trained model weights, reducing memory usage while preserving model performance.
It then fine-tunes the model by introducing low-rank updates, similarly to LoRA, but over the quantized

https://github.com/Qualcomm-AI-research/BayesianBits
*https://github.com/Qingruzhang/AdaLoRA/
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model. This approach allows for fine-tuning on consumer-grade hardware with significantly reduced
computational costs.

We follow the setup in (Dettmers et al., [2023)), where 4-bit NormalFloat (NF4) quantization is applied
to the weights of pre-trained models, followed by LoRA updates (see Table 5] for details on pre-trained
models and hyperparameters).

Metrics. To evaluate our proposed approach and compare it with related baselines, we employ two
categories of metrics. The first category focuses on downstream performance, utilizing the GLUE (Wang
et al.| |2019) and MMLU (Hendrycks et al.,[2020) benchmark datasets. The second category assesses
efficiency, measuring the number of parameters (#params) and the number of Bit Operations (BOPs) for
each method. To compute the BOP count we follow [Van Baalen et al.|(2020), which uses # Bit Operations
as a hardware-agnostic proxy to model complexity and have an impact on energy level and device lifetime.
According to|Yang et al.[(2017) and |[Van Baalen et al.|(2020), BOPs impact the energy consumption of the
deployed model. Moreover, [Yang et al.|(2017) points out how the number of bits accessed scales linearly
with the corresponding bitwidth and that most of the energy is consumed by the multiplication operations,
which scales linearly with the used variables bitwidth. Therefore, we use BOPs as a proxy measure to
show how the proposed approach affects the energy consumption with respect to the related baselines. A
list of the downstream metrics used for the GLUE benchmark can be found in Appendix [F]

4.2 RESULTS

Quantitative Results. Table|l| presents the comparison between the proposed model and the related
baselines described in Section4.1] On all datasets, B-LoRA achieves on-par performance with all other
baselines, while presenting a much lower BOPs. Specifically, our method shows slightly worse results for
MNLI and QQP, but performs better than baselines on SST-2 and RTE (B-LoRA(q): 96.44 — AdalLoRA:
96.10 and B-LoRA(g+ra): 88.33 — AdaLoRA: 88.09, respectively). Interestingly, we can see that
optimizing quantization levels and rank values results in better performances for RTE and STS-B datasets
than using only quantization (B-LoRA(g+ra): 88.33 — B-LoRA(q): 86.52 and B-LoRA(g+ra): 91.76 —
B-LoRA(q): 91.64, respectively). Moreover, Table 2] presented in Appendix [B] reports B-LoRA BOPs for
every dataset within the GLUE benchmark, showing how quantization levels and amount of BOPs are
correlated.

Results on MMLU are summarized in Figure [3] Results reported are the average accuracy on all 57
categories of questions. BLORA with rank adaptation only performs on par with QLoRA, achieving 68.2.
Compared to experiments on GLUE benchmark, rank adaptation without quantization performs better
than with quantization on both models: accuracy is decreased by 6% for Qwen-2 and 5% for Phi-2. This
decrease is not observed on GLUE benchmark.

Qualitative Results: Task-Specific Head Quantization Levels. We examine precision levels of task-
specific head layers after fine-tuning. In all experiments layers of the task-specific head remained at the
highest possible precision (32 bit). This result aligns with findings reported by |[Van Baalen et al.| (2020),
where they observed that the first and last layers were kept in higher precision in most of their experiments,
however, we only observed higher precision in the last layers. Since Task-Specific Heads plays a central
role when fine-tuning a pre-trained model, quantizying their weights has a big impact on downstream
performances.

LoRA blocks quantization levels and rank value patterns. We analyzed the distribution of quantization
levels and rank values after fine-tuning. We observed that B-LoRA matrices are often kept with low
precision of 2 or 4 bits, while pre-trained weights are usually kept with higher precision. Plots of
quantization levels distribution can be found in Appendix [H] A correlation between the quantization level
of pre-trained weights and final output and the dataset size is present: the newer data the model observes
during training, the less precision of pre-trained weights is needed. Indeed, datasets with a training set size
below 10k (RTE, MRPC, STS-B, CoLA) present a median number of bits used above 8, while the remain
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ones (SST-2, MNLI, QNLI, QQP) use a median number of bits below 8. We hypothesized that there might
be a correlation between specific attention weights (i.e., Wy, W, and W},), optimal precision level, and
related rank value. In accordance to our hypothesis, Figure 2] shows that W, has on average larger rank
values, compared to W}, W, which indicates that most of the information is retained within attention
values. On the other hand, queries and keys can discard most of the information, since they are only used
to compute attention weights and highlight the information retained within attention values. A similar
pattern can be observed in Figure[I] where B-LoRA blocks used for values use more bits on average. In
Appendix [G} AdaLoRA rank values are provided for budget b = 576. The overall pattern observed in
Zhang et al.|(2023) aligns with our results, however, for B-LoRA rank reduction is more significant, since
many LoRA modules are truncated to rank value 1.

5 DISCUSSION

In this work we present B-LoRA, a parameter-efficient fine-tuning approach based on LoRA that allows
to optimize quantization levels and rank values using Bayesian gating mechanisms proposed by [Van
Baalen et al.|(2020). While works such as DyLoRA (Valipour et al.| 2022) and AdaLLoRA (Zhang et al.;
2023) propose different approaches for optimizing rank values, they do not quantize variables and weights.
Moreover, while our approach does not require any hyperparameter search, AdaLLoRA requires specifying
several hyperparameters for every dataset (i.e., computational budget, scheduler hyperparameters, learning
rate). The main limitation of this work is that B-LoRA is only evaluated on the GLUE and MMLU
benchmarks, while both LoORA and AdalLoRA provide results for natural language generation (Narayan
et al 2018; [Hermann et al., [2015). In future works we will validate the model on the two question
answering (QA) benchmarks SQuADv1.1 (Rajpurkar et al., 2016a) and SQuADv2.0 (Rajpurkar et al.}
2018a), as well as the E2E benchmark (Novikova et al., [2017), using GPT-3 (Brown et al., |2020a) as
pre-trained model.

6 CONCLUSION

In this study, we introduced Bayesian-LoRA (B-LoRA), a novel approach for optimizing quantization
levels and rank values in model parameters, using Bayesian techniques. Our method extends the Bayesian-
Bits framework by Van Baalen et al.[(2020), enabling a hardware-friendly and adaptive quantization that
significantly reduces computational demands without sacrificing model performance. We empirically
demonstrated that B-LoRA achieves competitive results on the GLUE and MMLU benchmarks, matching
or even surpassing state-of-the-art methods such as LoRA, DyLoRA, and AdaLoRA, while also reducing
bit operations by approximately 70%. This efficiency is achieved without the need for extensive hyperpa-
rameter tuning, contrasting sharply with approaches like AdalLoRA that require detailed configuration,
tailored to each dataset. However, our evaluation was limited to the GLUE benchmark. Future work
will aim to validate B-LoRA across a broader range of tasks, including question answering and natural
language generation, using benchmarks like SQuAD v1.1 (Rajpurkar et al.,|2016b) and 2.0 (Rajpurkar
et al.,|2018b), and the E2E generation benchmark (Novikova et al.|[2017). Additionally, applying B-LoRA
to other pre-trained models like GPT-3 (Brown et al.,|2020a) will help establish its utility and robustness in
diverse natural language processing contexts.

Overall, B-LoRA presents a promising direction for energy efficient, scalable, and effective model fine-
tuning, making a step to bridge the gap between computational efficiency and performance.
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A APPENDIX

B ADDITIONAL RESULTS

Table E] illustrates how B-LoRA amount of BOPs varies across every GLUE dataset. As expected, datasets,
showing the highest levels of quantizations, presented in Fig. [I] have the lowest amount of BOPs.

Relative BOPs in encoder
Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
B-LoRA (q) 28.05 25.08 3470 27.66 34.12 3558 37.50 40.17
B-LoRA (q+ra) 26.67 2438 34.19 25.04 30.87 3521 36.99 42.08

Relative BOPs in Attention Layers
B-LoRA (q) 16.63 13.19 2434 16.18 23.66 2536 27.58  30.68
B-LoRA (q+ra) 1548 12.84 24.15 13.60 2032 2532 2732 3324

Table 2: GLUE Benchmark: BOPs. BOPs values for each dataset. Each value represents percentage
w.r.t. BOPs of encoder and attention layers of LoRA with rank 16 applied on W,, W, W, (BOPs of
LORAT:16 = 100%, LORATZQ = 9704%), AdG,LORATmaI:16 = 9744%

C TRAINING DETAILS

In contrast to AdaLoRA, where different set of hyperparameters is used for every dataset as shown
in Table |4} most of the hyperparameters in our experiments are the same for all datasets. The only
value that is changed is number of training epochs, which can be found in Table [3} Table ?? reports
hyperparameters used by DyLoRA and all hyperparameters that were fixed in B-LoRA experiments. Here
(1¢o are hyperparameters that ensure that z has support for exact 0,1 and ¢ is a threshold used during
inference for binarizing gates.

Dataset | # epochs

MNLI 7
RTE 50
QNLI 5
MRPC 30
QQP 5
SST-2 24
CoLA 25
STS-B 25

Table 3: Hyper-parameter setup of B-LoRA for GLUE benchmark.

D MACs AND BOPs FOR LORA

D.1 MACs AND BOPs

A MAC (Multiply-ACcumulate operation) is a multiplication followed by addition. This metric can be
used to estimate complexity of the model and often dictate the memory usage of a network. It can be
related to FLOPs as

FLOPs = 2 « MACs
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Dataset ‘ learning rate  batch size  #epochs  ~ ti Ar ty

MNLI 5x107% 32 7 0.1 8000 100 50000
RTE 1.2 x 1073 32 50 03 600 1 1800
QNLI 1.2 x 1073 32 5 0.1 2000 100 8000
MRPC 1x1073 32 30 0.1 600 1 1800
QQP 5x107* 32 5 0.1 8000 100 25000
SST-2 8 x107* 32 24 0.1 6000 100 22000
CoLA 5x107* 32 25 0.5 800 10 3500
STS-B | 2.2x 1073 32 25 0.1 800 10 2000

Table 4: Hyper-parameter setup of AdaLoRA for GLUE benchmark. Reported from (Zhang et al.l 2023).

Model \ Parameter Value
Optimizer AdamW
Warmup Ratio 0.03
LR Scheduler Constant
Batch Size 4
Learning Rate (LR) 2e-4
Weight Decay 0.0
Qwen2-7B LoRA Config r =64
LoRA « 16
LoRA Modules All
LoRA Dropout 0.1
Quant Type NF4
Max Steps 1875
Eval Steps 187
Hugging Face Qwen/Qwen2-7B
Optimizer AdamW
Warmup Ratio 0.03
LR Scheduler Constant
Batch Size 4
Learning Rate (LR) 2e-4
Weight Decay 0.0
Phi-2 LoRA Config r =64
LoRA « 16
LoRA Modules All
LoRA Dropout 0.1
Quant Type NF4
Max Steps 1875
Eval Steps 187
Hugging Face microsoft/phi-2

Table 5: The hyperparameters used in experiments with Qwen2-7B and Phi-2 models.

MAC count of a common layers:

* linear: MACs(l) = n; * n,, where n; - number of input features, n, - number of output features

* convolution: MACs(l) = C, x W s H « W; * Wy « Hy, where C, - number of output channels,
W; - number of input channels, W, H - dimensions of output map, W, H - dimensions of filter
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A BOP corresponds to Bit OPerations, as defined in (Van Baalen et al.| |2020). BOP count measures
multiplication operations, multiplied by bit width of the corresponding components, which makes this
metric a hardware-agnostic estimate of the complexity of a model. BOP count is computed the following
way:
BOPs(l) = MACSs(1) * by, * by

where b,,, b, are weight and input activation bit width, respectively. BayesainLoRA method is additionally
compared to AdaLLoRA in terms of BOP count. Below derivation of BOP and MAC for self-attention
mechanism is provided.

D.2 SELF-ATTENTION MACS

Self-attention is a basic block of transformer models (Vaswanti et al.,[2017). For evaluating B-LoRA, BOP
is computed for self-attention blocks of DeBERTa-v3 and compared to BOP of the same blocks with all
weights and activation set to highest possible precision (32 bits).

Self-attention module is parameterized with 3 matrices Wy, W, W,, € R* where d is a hidden size of a
model. Define maximum length of an input sequence as [, then

MACs(q) = MACs(k) = MACs(v) = d? * |
Other operation that increases MAC count for self-attention is dot product between keys and queries

(attention scores). Assuming that number of attention heads is i, MACs of attention scores can be
computed as

d

MACs attention_scores) = 12 * {h} *h
Finally, values are weighted by attention probabilities, which gives
d

MAGCs(attention_scores) = % * {h} xh

Therefore, MAC count for a self-attention model can be computed as
d
MACs(self attention) = 3 % d* [ + 2 % [* % {h} *h+1

where last term corresponds to a scaling factor.

D.3 DISENTANGLED SELF-ATTENTION MACS

Since in all experiments DeBERTa-v3 was used, MAC calculations need to be extended to attention variant
proposed by (He et al.| [2020). Disentangled attention utilizes positional information by introducing two
extra matrices for keys and queries that are applied on positional embeddings. Then scores between
positional keys and queries (context to position) and positional queries and keys (position to context) are
computed and added to the attention scores.

Computations described above have components for which MAC need to be calculated. Assuming that
positional embeddings size is e:

MACs(pos;,) = MACs(pos,) = d* x e
For Context-to-Position and Position-to-Context dot product:

d
MACS(pQC) = MACS(Cgp) =lxex |:h:| x h

Each of them has a scaling factor. This results in
MACs(dis_self_attention)
= MACs(self_attention) + 2 x MACs(pos;,) + 2 * MACs(p2c)

d d
=3xd2xl+2x12x M xh+2+xd?se+2%l*xex M xh+3
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D.4 LoRA MACs

LoRA (Hu et al,|2022) parameterizes linear layer in the following way:
Wz = Wy + BAx
where A € R>*, B € R*>. MAC count for LoRA linear layer can be expressed as
MACs(LoRA) = MACs(linear) + (2% r 4+ 1) * d

E NUMBER OF PARAMETERS

E.1 LoRA

Number of parameters in one LoRA module with matrices W € R4 %2 A ¢ R™*4 B ¢ R4*7 ig
computed with the following equation:

#params = #A + #B = (r x d2) + (d1 X 1) (18)

LoRA is applied to 6 matrices in attention layer. W, Wi, W,,, W, have di = dy = d, therefore, number
of parameters in each of them is

(rxd)+(dxr)=2xrxd (19)

Additionally, it is used in intermediate and output layers of attention, Wy, € Rdxdi Wy, € Rdixd,
Number of trainable parameters in each of these layers is:

(rxd)+(d; xr) (20)

Summing parameters for all weights in attention layer results in:
Ax2xrxd)+2x ((rxd) +(d;xr)=2xrx(5xd+d;) (1)

For a model with [ layers, number of trainable parameters in the encoder is:
#params = 2 X | x r X (5 x d + d;) (22)

E.2 B-LoRA

B-LoRA is applied for W,, Wy, W, € R4, In total, it gives
#params =2 X I xrx (3 xd)=6x1Ixrxd (23)
parameters.

F GLUE DATASETS DOWNSTREAM METRICS

Table @provides details about GLUE datasets, such as task, number of examples in train/dev/test splits and
metrics, used for evaluation.

G ADALORA RANK DISTRIBUTION

Figure ] shows the distribution of rank values in different layers in model, trained with AdaLoRA.

H QUANTIZATION LEVELS

Figure[I] shows the distribution of quantization levels in different layers in model, trained with BLoRA.
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Corpus |Train| |Test| Task Metrics Domain

Single-Sentence Tasks

CoLA 8.5k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k  sentiment acc. movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase acc./F1 news

STS-B 7k 1.4k  sentence similarity = Pearson/Spearman corr. misc.

QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks

MNLI 393k 20k NLI matched acc./mismatched acc.  misc.

QNLI 108k 5.7k QA/NLI acc. Wikipedia

RTE 2.5k 3k NLI acc. misc.

Table 6: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except
STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test
sets, shown in bold, use labels that have never been made public in any form. Image is taken from

etal} 2019)
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Figure 4: Rank Distribution for AdaLoRA on MNLI dataset.
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Figure 5: Quantization levels for GLUE benchmark. For each type of weight/activation, we compute the
median value of its bitwidth across the encoder. LoRA modules are kept in lower precision of 2, 4 bits.
Values W, are kept in higher precision than keys W}, and queries W,,.
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