
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

Under review as a conference paper at ICLR 2025

BAYESIAN-LORA: LORA BASED PARAMETER EFFICIENT
FINE-TUNING USING OPTIMAL QUANTIZATION LEVELS
AND RANK VALUES TROUGH DIFFERENTIABLE BAYESIAN
GATES

Anonymous authors
Paper under double-blind review

ABSTRACT

It is a common practice in natural language processing to pre-train a single model on a
general domain and then fine-tune it for downstream tasks. However, when it comes to
Large Language Models, fine-tuning the entire model can be computationally expensive,
resulting in very intensive energy consumption. As a result, several Parameter Efficient
Fine-Tuning (PEFT) approaches were recently proposed. One of the most popular
approaches is low-rank adaptation (LoRA), where the key insight is decomposing the
updated weights of the pre-trained model into two low-rank matrices. However, the
proposed approaches either use the same rank value across all different weight matri-
ces, which has been shown to be a sub-optimal choice, or do not use any quantization
technique, one of the most important factors when it comes to a model’s energy con-
sumption. In this work, we propose Bayesian-LoRA, a new method that approaches
low-rank adaptation and quantization from a Bayesian perspective by employing a prior
distribution on both quantization levels and rank values. As a result, B-LoRA is able to
fine-tune a pre-trained model on a specific downstream task, finding the optimal rank
values and quantization levels for every low-rank matrix. We validate the proposed
model by fine-tuning a pre-trained DeBERTaV3 on the GLUE benchmark. Additionally,
we fine-tune Phi-2 and Qwen, and evaluate them on few-shot and zero-shot MMLU.
We compare our proposed method with relevant baselines and present both qualitative
and quantitative results, showing its ability to learn optimal-rank quantized matrices.
B-LoRA performs on par with or better than the baselines while reducing the total
number of bit operations by roughly 70% compared to the baseline methods.

1 INTRODUCTION

Pre-trained language models (PLMs) have become the de-facto models in various natural language
processing tasks (Devlin et al., 2019; Liu et al., 2019; He et al., 2021b; Radford et al., 2019; Brown et al.,
2020b). Although full fine-tuning (FT) has been the most common way to adapt pre-trained models to
downstream tasks Qiu et al. (2020); Raffel et al. (2020), with the rise of large pre-trained models full
FT is becoming unfeasible. For instance, while BERT (Devlin et al., 2019) consists of up to 300 M
parameters, GPT-3 (Brown et al., 2020b) has up to 175 B parameters, making full FT computationally and
energy demanding. To address this issue, existing works (Hu et al., 2022; Dettmers et al., 2023)focus on
reducing the fine-tuning parameters while maintaining or even improving the downstream performance of
PLMs. One approach is to mitigate such a problem by adapting only some parameters or learning external
modules for new tasks, while keeping the base model frozen and shared across tasks. As a result, only a
small number of task-specific parameters need to be stored and loaded, greatly boosting the operational
efficiency when deployed. For example, Adapter Tuning approaches (Houlsby et al., 2019; Rebuffi et al.,
2017; Pfeiffer et al., 2020; He et al., 2022) employ small neural modules called adapters within the layers

1

049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

Under review as a conference paper at ICLR 2025

Frozen

Pretrained

Weights

W ∈ ℝd×d

A ∈ ℝr×d

B ∈ ℝd×r

E ∈ ℝr

E ∈ ℝr

e1 e2 e3 e4 e5 e6 e7 e8

g1 g2 g3 g4 g5 g6 g7 g8

s2

α αβ β

S2/20−S2/2

s4

z4 x4 = x2 + z4ϵ4
s4

Rank Adaptation

Quantization

LoRA Scheme

x

h

Figure 1: (Left) B-LoRA Scheme: As mentioned in Sec. 1, every weight W can be decomposed as
W = W0 +BEA. Since E is a diagonal matrix, we represent it as a vector of size r that acts on matrix
A with pointwise multiplication. (Right) Rank Adaptation and Quantization techniques are visually
represented, following equation 13 for Rank Adaption and equations 7 and 8 for Quantization, respectively.
Visual Representation of quantization technique is taken from (Van Baalen et al., 2020).

of the pre-trained model. Prefix tuning (Li & Liang, 2021) and Prompt tuning (Lester et al., 2021) attach
additional trainable prefix tokens to the input or hidden layers of the base model. These methods have
been shown to achieve comparable performance to full fine-tuning, while only updating less than 1% of
the original model parameters, significantly releasing the memory consumption.

Another line of research proposes to model the incremental update of the pre-trained weights in a parameter-
efficient way, without modifying the model architecture (Zaken et al., 2021; Guo et al., 2020; Hu et al.,
2022; Zhang et al., 2023; Valipour et al., 2022). Among this family of methods, the most widely used is
LoRA (Hu et al., 2022), which parameterizes weight updates ∆ as a low-rank matrix by the product of
two much smaller matrices:

W = W0 +∆ = W0 +BA, (1)

where W0,∆ ∈ Rd×d, A ∈ Rr×d and B ∈ Rd×r with r ≪ d. During fine-tuning, only A and B are
updated. The rank r is chosen to be much smaller than the dimension of W (e.g., r = 8 when d = 1024).
With less than 0.5% additional trainable parameters, training overhead can be reduced up to 70%, achieving
comparable or even better performance than full fine-tuning (Hu et al., 2022). However, LoRA still has
limitations since searching the optimal rank value requires re-running the entire fine-tuning for each new
value (Valipour et al., 2022) and it sets the same rank r of each incremental matrix ∆ across different
LoRA blocks (Zhang et al., 2023). The latter, as pointed out by Zhang et al. (2023), does not take into
account that the impact of the weight matrices on downstream performances varies significantly across
modules and layers when fine-tuning pre-trained models.

While PEFT approaches are proved to be very successful in reducing the number of parameters needed for
specific downstream tasks, the LoRA-based approaches, proposed in the literature, either use the same rank
value across all different weight matrices or do not use any quantization technique. However, to reduce
the computational cost of neural network inference and the related energy consumption, quantization and
compression techniques are often applied before deploying a model in real life (Van Baalen et al., 2020;
Xu et al., 2024). Indeed, the former reduces the bit width of weight and activation tensors by quantizing
floating-point values onto a regular grid, allowing the use of cheap integer arithmetic, while the latter

2

098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

Under review as a conference paper at ICLR 2025

aims to reduce the total number of multiply-accumulate (MAC) operations required (Kuzmin et al., 2019;
Krishnamoorthi, 2018).

Recently, Van Baalen et al. (2020) proposed the BayesianBits approach, which introduces a novel and
hardware-friendly decomposition of the quantization operation and allows for adaptable and optimal
quantization levels, resulting in optimal quantization levels and, therefore, lower model energy consumption.
Inspired by BayesianBits (Van Baalen et al., 2020), we propose Bayesian-LoRA (B-LoRA) 1 which
approaches LoRA matrix decomposition and quantization from a Bayesian perspective. Indeed, by
positioning a prior distribution on both quantization levels and rank values of the low-rank matrices
weights, the optimal rank values and quantization levels for each individual LoRA block are learned. We
validate the proposed approach, using the GLUE (Wang et al., 2019) benchmark, and compare it with
state-of-the-art baselines, such as LoRA (Hu et al., 2022), DyLoRA (Valipour et al., 2022), and AdaLoRA
(Zhang et al., 2023). Moreover, we perform a qualitative analysis of quantization levels and rank values
across the fine-tuned quantized LoRA blocks, which shows how B-LoRA is able to reduce the total amount
of bit operations of roughly 70%, while performing on par or better than the related SOTA baselines.

2 RELATED WORK

2.1 TRANSFORMER-BASED LANGUAGE MODEL

Pre-trained language models have gained significant attention in the field of natural language processing
(NLP), due to their impressive capabilities in language generation, in-context learning, world knowledge,
and reasoning.

The GPT family, including GPT-3 (Brown et al., 2020a), ChatGPT (OpenAI, 2022), GPT-4 (OpenAI,
2023), and InstructGPT (Ouyang et al., 2022) are some of the representative works on autoregressive
LLMs. A second family of language models are bi-directional models, like DeBERTa (He et al., 2021b),
DeBERTa-v3 (He et al., 2021a), RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020). It is a common
practice to train transformer models on Language Modelling or Masked Language Modelling task in
an unsupervised manner, which does not require annotated data, and adapt it for multiple downstream
applications. Such adaptation can be done via fine-tuning, which updates all parameters of a model (Hu
et al., 2022). Since transformer models often have billions of parameters, computing gradient updates for
the entire model can be infeasible without appropriate hardware. This computational challenge motivated
research into parameter-efficient fine-tuning techniques, aiming to reduce hardware requirements while
maintaining model performance (Hu et al., 2022; Zaken et al., 2021).

Low-Rank Adaptation. LoRA (Hu et al., 2022) is an efficient fine-tuning method that updates only a
small subset of model weights. It approximates weight changes using low-rank matrix decomposition,
significantly reducing the number of trainable parameters for downstream tasks. This results in the
following forward pass:

Wx = W0x+∆x = W0x+BAx (2)

where W0,∆ ∈ Rd×d, A ∈ Rr×d and B ∈ Rd×r with r ≪ d. Typically, A is initialized from a Gaussian
distribution and all entries of B are set to 0. In transformers, LoRA is usually applied to attention layers.
Most of the experiments described by Hu et al. (2022) use queries and values only. He et al. (2022) extend
method to weight matrices of FFNs (i.e., Wf1 and Wf2), leading to performance improvement. Meanwhile,
they propose a unified view of various efficient tuning methods, including adapter tuning, prefix tuning,
and LoRA. While LoRA (Hu et al., 2022) requires an expensive hyperparameter search to find the optimal
rank values, DyLoRA (Valipour et al., 2022) proposes to fine-tune the model’s weights for multiple rank
values simultaneously. Inspired by Nested Dropout (Rippel et al., 2014), Valipour et al. (2022) truncates
matrices A,B to Ab ∈ Rb×d and Bb ∈ Rd×b, sampling different rank values b per iteration. In contrast to
DyLoRA, which aims to optimize matrices for as many ranks as possible, AdaLoRA (Zhang et al., 2023)

1Github link to Bayesian-LoRA implementation: https://github.com/KseniaSycheva/
Bayesian-Lora

3

https://github.com/KseniaSycheva/Bayesian-Lora
https://github.com/KseniaSycheva/Bayesian-Lora

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

Under review as a conference paper at ICLR 2025

searches for optimal rank values. Given parameter budget, it is allocated among weights according to their
importance score. Authors reparameterize LoRA modules using SVD decomposition and during training
diagonal values can be truncated. Recently, it was proven that a nearly linear time approximation exists for
LoRA (Hu et al., 2024).

Quantization of LLMs. Quantization is a compression technique that reduces the bit width of the
parameters and/or activations of LLMs to improve their efficiency and scalability (Xiao et al., 2023;
Dettmers et al., 2022; 2023). Existing methods mostly focused on preserving or restoring the accuracy
of quantized LLMs during the inference stage (Zhu et al., 2023), where the key is to reduce the memory
footprint and computational costs without re-training the LLMs. In the context of low-rank adaptation,
QLoRA (Dettmers et al., 2023) uses a novel high-precision technique to quantize a pre-trained model
to 4-bit, and adds a small set of learnable low-rank Adapter weights that are tuned by backpropagating
gradients through the quantized weights. Moreover, QA-LoRA (Xu et al., 2024) quantizes the weights
of the pre-trained language model during fine-tuning to reduce time and memory usage. However, both
QLoRA and QA-LoRA use vanilla LoRA blocks, inheriting their limitations related to rank values. In this
work, we jointly optimize quantization levels and rank values to reduce the complexity of the model, while
fine-tuning LoRA blocks to achieve better downstream performances.

3 METHOD

Our method searches for optimal precision and rank allocation in transformer models. In this section, we
discuss these components separately.

3.1 LEARNABLE QUANTIZATION

Following BayesianBits (Van Baalen et al., 2020), for a given weight x with values in the range [α, β]
we apply uniform quantization with different bitwidth bn = n, n ∈ N , where N = {2, 4, 8, 16, 32}. For
bitwidth bn, quantized weights are computed as:

xq = s⌊x/s⌉ , s =
β − α

2bn − 1
, (3)

where s is the step size of the quantized value and ⌊·⌉ represents the round-to-nearest-integer function.
Van Baalen et al. (2020) derive an expression for a residual error between consecutive quantization levels,
using bitwidth bn and bn+1 = 2 ∗ bn:

ϵbn+1 = sbn+1

⌊
x− xbn

sbn+1

⌉
, sbn+1 =

sbn
2b + 1

(4)

Given this expression, weight x can be reconstructed from its quantized version by adding error terms:

xq = x2 + ϵ4 + ϵ8 + ϵ16 + ϵ32 (5)

To make weight precision controllable, gating variables zi, i ∈ {4, 8, 16, 32} are introduced:

xq = x2 + z4(ϵ4 + z8(ϵ8 + z16(ϵ16 + z32ϵ32))) (6)

Reinterpreting the model from a Bayesian perspective, we can introduce a prior distribution on gates zi.
The prior can be described with the following equations:

p(zm|zn = 1) = Bern(e−λ),

{m,n|m = 2× n, n ∈ N \ {32}}
(7)

that represent consecutive active gates, and

p(zm|zn = 0) = Bern(0) = 0,

{m,n|m = 2× n, n ∈ N \ {2, 32}} (8)

4

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Under review as a conference paper at ICLR 2025

which are used for inactive gates. Notably, using this notation, whenever gate n is inactive, all the
consecutive ones will be inactive as well. Then, we can define the posterior distribution of gates qϕ as:

qϕ(zm|zn = 1) = Bern(σ(ϕm))

qϕ(zm|zn = 0) = Bern(0)
(9)

where ϕi are used to parameterize the defined Bernoulli distributions and σ(·) is a sigmoid function.

Algorithm 1 B-LoRA block. Individual quantizer
module parameters ϕ are not indicated for the sake
of clarity.
Require: Input x, rank r, pre-trained matrix W ∈

Rd1×d2 , LoRA matrices A ∈ Rr×d2 and B ∈
Rd1×r, vector with diagonal entries E ∈ Rr,
rank distribution parameters ξ2 . . . ξr, quantiz-
ers Qw, Qa, Qe, Qb, used for weight matrices,
and QA, QE , Qout, used for output variables.

quantize all weights
1: W̄ , Ā, Ē, B̄ =

Qw(W), Qa(A), Qe(E), Qb(B)
compute rank gates

2: g1 = 1, g2 =

⌊
σ(ξ2)

⌉
, gi =

⌊∏i
j=1 σ(ξj)

⌉
apply gates on diagonal
entries

3: Ēi = Ēi ∗ gi
compute output

4: return Qout(W̄x+ B̄ ·QE(Ē ·QA(Āx)))

Algorithm 2 Quantizer Module (Q); Hyperparame-
ters ζ1, ζ2 and t are fixed and defined in Appendix
C
Require: Input x; Quantizer parameters ϕ

1: clip(x, min = α, max = β)
2: s2 ← β−α

22−1 , x2 ← s2⌊ x
s2
⌉

3: xq ← x24:
5: for b in {4, 8, 16, 32} do
6: if training then
7: u ∼ U [0, 1], g ← log u

1−u , s← σ((g +

ϕ)/b)
8: zb ← min(1,max(0, s(ζ1 − ζ2) + ζ2))
9: else

10: zb ← I
[
σ
(
β log

(
− ζ2

ζ1

)
− ϕ

)
< t

]
11: end if
12: sb ←

sb/2
2b/2+1

13: ϵb ← sb

⌊
x−(x2+

∑
j<b ϵj)

sb

⌉
14: xq ← xq + zb

(∏
j<b zj

)
ϵb

15: end for
16: return xq

Van Baalen et al. (2020) provide results for convolutional models like LeNet (Simonyan & Zisserman,
2014) and VGG (Lecun et al., 1998). In our work, we apply learnable quantization to transformers. We
limit our experiments by applying the method discussed above only to attention modules.

Consider an attention module, parameterized by matrices Wk,Wq,Wv corresponding to keys, queries, and
values, respectively. Following Van Baalen et al. (2020), we apply the learnable quantization approach to
both weights and variables defined within the attention module. During fine-tuning, we define Wk,Wq,Wv

as LoRA blocks and optimize quantization levels of each weight and variable within the attention module.
Specifically, we use a different quantizer for every matrix of each LoRA block W0, A,B, and the related
output variables.

3.2 BAYESIAN RANK ADAPTATION

In this section, we formalize the LoRA parametrization as in Zhang et al. (2023) and apply the gating
mechanism defined in equation 6 to optimize the rank value of each LoRA block. We follow Zhang
et al. (2023) and extend LoRA parameterization to have an SVD structure. As a result, LoRA blocks are
modified to include the diagonal matrix E. Following Zhang et al. (2023), we store diagonal entries in a
vector, therefore E ∈ Rr. Hence, the forward pass in equation 2 can be expressed as:

Wx = W0x+BEAx (10)

5

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

Under review as a conference paper at ICLR 2025

In order to control and optimize rank values during training, the entries of the vector E are multiplied by
gating variables as follows:

Ê =

g1
g1 · g2

...
g1 · g2 · · · gN

×
e1...
en

 (11)

As for zi priors defined in equations 7 and 8, we define the gi priors as follows:
p(gn+1|gn = 1) = Bern(e−λ),

{n|n ∈ 1, 2, · · · , r − 1} ,
p(g1) = Bern(1)

(12)

where p(g1) is always 1 because all LoRA matrices should have at least rank 1. Such parametrization
ensures that every diagonal entry ej is inactive if ei, j > i is not active. Consistently to equation 9, we can
model the posterior distribution of gates rξ as:

rξ(gi|gi−1 = 1) = Bern(σ(ξi)),
rξ(gi|gi−1 = 0) = Bern(0),

rξ(g1) = Bern(1),
(13)

The pseudocode for our method is provided in Algorithm 1. An algorithm for a forward pass of weight
and activation quantizers can be found in Algorithm 2.

3.3 TRAINING

As LoRA (Hu et al., 2022), our proposed approach is agnostic to any training objective. Consistently to
prior works (Hu et al., 2022; Valipour et al., 2022; Zhang et al., 2023), we focus on language modeling as
our motivating use case.

Suppose we are given a pre-trained autoregressive language model PΦ(y|x) parametrized by Φ. Consider
adapting this pre-trained model to a given downstream task, represented by a training dataset of context-
target pairs: Z = {(xi, yi)}i=1,..,N , where both xi and yi are sequences of tokens.

Following Hu et al. (2022), we can define the LoRA objective function as:

LLoRA(Θ) =
∑

(x,y)∈Z

|y|∑
t=1

log
(
pΦ0+∆Φ(Θ)(yt|x, y<t)

)
, (14)

where Φ0 represents the initial set of parameters of the pre-trained model and ∆Φ(Θ) represents the set of
LoRA parameters that are optimized during the fine-tuning.

In order to optimize the proposed B-LoRA blocks, we follow the optimization scheme defined by Van
Baalen et al. (2020). Since the gating variables are sampled from Bernoulli distributions, we use an
approximation of the KL divergence term, which results in the following objective:

F(θ, ϕ, ξ) = LLoRA(Θ)− λq

∑
k

∑
i∈B

j≤i∏
j∈B

qϕ(zjk|zik = 1)︸ ︷︷ ︸
Quantization

−λr

∑
k

r∑
i=1

i∏
j=1

rξ(gjk|gik = 1)︸ ︷︷ ︸
Rank Adaptation

(15)

where B is a set of available bitwidth, k denotes the index of the quantizer, λq and λr are hyperparameters
that weight quantization and rank adaptation regularizers, respectively. In all our experiments, we set
λr = λq = 1. We follow Van Baalen et al. (2020) and employ straight-through estimator (STE) (Bengio
et al., 2013) for rounding operation, performing rounding in the forward pass, while using identity in the
backward pass.

4 EXPERIMENTS

6

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

Under review as a conference paper at ICLR 2025

Method # Params BOPs MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
Acc Acc Acc Acc/F1 Acc Acc Acc Corr

Full FT 184M 90.12 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60
DyLoRA 0.29M 98.31 87.17 94.72 63.32 90.17 93.56 80.14 - 91.36
LoRA (r=8) 1.33M 98.31 90.67 94.95 69.82 91.99/89.38 93.87 85.20 89.95 91.60
AdaLoRA (b=576) 1.99M 95.32 90.77 96.10 71.45 92.23/89.74 94.55 88.09 90.69 91.84
LoRA (r=2) 0.33M 97.44 90.34 94.95 68.71 91.61/88.91 94.03 85.56 89.71 91.68
AdaLoRA (b=144) 0.49M 95.32 90.68 95.80 70.04 91.78/89.16 94.49 87.36 90.44 91.63
B-LoRA (q) 0.44M 32.85 90.17 96.44 70.22 91.26/88.38 94.25 86.52 90.20 91.64
B-LoRA (a) 0.44M 32.91 89.90 96.01 69.57 91.26/88.38 94.19 87.85 90.77 91.84
B-LoRA (q + ra) 0.44M 32.91 90.27 96.33 69.63 90.75/87.79 94.2 88.33 90.03 91.76

Table 1: GLUE Benchmark. Here, the parameter r in LoRA and the parameter b in AdaLoRA correspond
to the rank value and the parameter budget, respectively. We evaluate B-LoRA on two configuration: using
quantization + rank adaptation (q + ra) and using quantization only (q). The best results for each data
set are shown in bold, while second best ones are underlined. # of parameters refers to the number of
trainable parameters of encoder (excluding classification head).

K
Q
V

RT
E

1 1 1 1 1 1 2 1 4 7 7 8
1 1 1 1 1 1 1 1 8 8 8 8
1 3 1 1 6 7 8 8 8 8 8 8

K
Q
VM

RP
C

1 8 1 1 7 8 7 7 8 8 8 8
1 1 1 1 5 8 8 8 8 8 8 8
7 8 8 8 8 8 8 8 8 8 8 8

K
Q
VST

S-
B

4 1 1 6 8 1 8 8 8 8 8 8
1 1 1 1 8 8 8 8 8 8 8 8
8 7 8 8 8 8 8 8 8 8 8 8

1 2 3 4 5 6 7 8 9 10 11 12
Layers

K
Q
VSS

T-
2

1 1 1 1 1 1 1 1 1 8 8 7
1 1 1 1 1 1 1 1 1 8 8 6
7 8 1 8 8 8 7 8 8 8 8 8

K
Q
V

Co
LA

1 1 1 1 1 7 7 1 1 8 8 8
1 1 1 2 1 1 1 8 8 8 8 8
8 8 7 8 8 8 8 8 8 8 8 8

K
Q
V

M
NL

I 1 1 1 1 1 1 1 1 3 7 8 3
1 1 1 1 1 5 1 4 7 7 8 8
1 4 1 4 8 6 8 6 7 8 8 7

K
Q
V

QN
LI

1 1 1 1 1 1 1 8 8 7 8 8
1 1 1 1 1 1 1 8 8 8 8 8
1 6 7 7 7 8 8 7 7 7 8 8

1 2 3 4 5 6 7 8 9 10 11 12
Layers

K
Q
V

QQ
P

1 1 1 1 1 6 6 1 1 7 6 8
1 1 1 1 5 1 1 1 7 8 6 6
1 1 1 7 8 7 8 8 8 8 8 8

Figure 2: Rank distribution for GLUE benchmark. The last
layers have larger rank values, compared to the first layers.
Ranks of values Wv are larger than ranks of keys Wk and queries
Wq .

In this section, we design empirical
experiments to understand the perfor-
mance of B-LoRA and its potential lim-
itations by exploring the following ques-
tions: (1) How does optimizing quanti-
zation levels and rank values affect the
downstream usefulness of LoRA-based
fine-tuning approaches? (2) Can we ob-
serve consistent patterns of quantization
levels and rank values across different
tasks? (3) How many bit operations
(BOPs) can we save by using adaptive
quantization levels and rank values?

4.1 EXPERIMENTAL SETUP

Following AdaLoRA (Zhang et al.,
2023), B-LoRA is implemented for fine-
tuning DeBERTaV3-base (He et al.,
2020) on natural language understand-
ing using the GLUE benchmark (Wang et al., 2018). We set the number of training epochs and scaling
parameter alpha (Hu et al., 2022) according to AdaLoRA. However, while AdaLoRA uses specific hyper-
parameters for each different GLUE dataset, we use the same set for the whole benchmark, showing the
robustness of the proposed method. In contrast to AdaLoRA, our method is applied to Wk,Wq and Wv

while Wo,Wf1 and Wf2 are kept frozen. More details on hyperparameters are stated in Appendix C. The
only layers that are fine-tuned with Wq,Wk,Wv are two linear layers in the task-specific head. We provide
results for the full method B-LoRA(q + ra) and an ablation of it that uses only adaptive quantization
B-LoRA(q). We can compute the number of training parameters for the proposed approach as follows:

#params = 6× r × l × d (16)

where l represents the base model layers and d the hidden model’s sizes, respectively. The number of
parameters in the classification head is not included in the parameter count, since it is fixed for all methods.
A full description of B-LoRA and related baselines number of parameters computation can be found in

7

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

Under review as a conference paper at ICLR 2025

Appendix E. B-LoRA is implemented using PyTorch (Paszke et al., 2019), publicly available HuggingFace
Transformers weights (Wolf et al., 2019), BayesianBits2 and AdaLoRA3 repositories.

To evaluate B-LoRA’s performance against QLoRA (Dettmers et al., 2023), we fine-tuned Phi-2 (Hughes)
and Qwen2 (Yang et al., 2024) models using both methods and assessed them on the MMLU benchmark.
MMLU is a comprehensive evaluation framework that challenges models across 57 diverse subjects,
spanning from elementary science to advanced topics in economics and law. This benchmark effectively
measures a model’s reasoning capabilities and factual knowledge retention.

Figure 3: MMLU Accuracy for Phi-2 and
Qwen2 trained with QLoRA and BLoRA.

Baselines. In order to assess the ca-
pabilities of the proposed method with
respect to the current state of the art,
we consider the following related base-
lines. Full Fine-tuning (FT): This ap-
proach initializes the model with pre-
trained weights and updates all parame-
ters during the training process. Gradi-
ent computations are performed for the
entire model.

LoRA (Hu et al., 2022). A popular
parameter-efficient fine-tuning method
that updates only a subset of model
weights. LoRA approximates weight up-
dates as the product of two low-rank ma-
trices, significantly reducing the number
of trainable parameters. The efficiency
can be controlled by adjusting the rank of these matrices, known as the intrinsic dimension. We adopt the
experimental setup from Zhang et al. (2023) for both LoRA and AdaLoRA implementations. This setup
utilizes DeBERTaV3 (He et al., 2021a) as the pre-trained model and applies LoRA blocks to the following
weight matrices: Wq,Wk,Wv,Wo,Wf1 ,Wf2 . We compute the number of parameters trained by LoRA
as:

#params = 2× r × l × (d× 5 + di) (17)

where di is the dimension related to the weight matrix Wf1 .

AdaLoRA (Zhang et al., 2023). It is an extension of LoRA that aims to limit the total sum of rank values
used in different LoRA blocks. They define a computational budget and prune rank values according to an
importance score (Zhang et al., 2023). We compute number of training parameters in AdaLoRA using
Eq. 17 with r which corresponds to the maximum rank value. According to Zhang et al. (2023), r = bT

n

where n is the number of adapted weights and bT is the target budget. We report the number of parameters
for bT ∈ {144, 576}, which results in r ∈ {3, 12}.
DyLoRA (Valipour et al., 2022): DyLoRA is another extension of LoRA, that enables adapting rank values
dynamically. However, the goal of this method is to optimize the model fine-tuning for a range of ranks, in
such a way that different versions of the fine-tuned model can be used if needed. Number of parameters
for DyLoRA can be computed with Equation 17 with r set to maximum rank.

QLoRA (Dettmers et al., 2023). QLoRA combines low-rank adaptation with 4-bit quantization to enable
efficient fine-tuning of large models. Instead of fine-tuning the entire model, QLoRA applies 4-bit quanti-
zation to the pre-trained model weights, reducing memory usage while preserving model performance.
It then fine-tunes the model by introducing low-rank updates, similarly to LoRA, but over the quantized

2https://github.com/Qualcomm-AI-research/BayesianBits
3https://github.com/QingruZhang/AdaLoRA/

8

https://github.com/Qualcomm-AI-research/BayesianBits
https://github.com/QingruZhang/AdaLoRA/

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Under review as a conference paper at ICLR 2025

model. This approach allows for fine-tuning on consumer-grade hardware with significantly reduced
computational costs.

We follow the setup in (Dettmers et al., 2023), where 4-bit NormalFloat (NF4) quantization is applied
to the weights of pre-trained models, followed by LoRA updates (see Table 5 for details on pre-trained
models and hyperparameters).

Metrics. To evaluate our proposed approach and compare it with related baselines, we employ two
categories of metrics. The first category focuses on downstream performance, utilizing the GLUE (Wang
et al., 2019) and MMLU (Hendrycks et al., 2020) benchmark datasets. The second category assesses
efficiency, measuring the number of parameters (#params) and the number of Bit Operations (BOPs) for
each method. To compute the BOP count we follow Van Baalen et al. (2020), which uses # Bit Operations
as a hardware-agnostic proxy to model complexity and have an impact on energy level and device lifetime.
According to Yang et al. (2017) and Van Baalen et al. (2020), BOPs impact the energy consumption of the
deployed model. Moreover, Yang et al. (2017) points out how the number of bits accessed scales linearly
with the corresponding bitwidth and that most of the energy is consumed by the multiplication operations,
which scales linearly with the used variables bitwidth. Therefore, we use BOPs as a proxy measure to
show how the proposed approach affects the energy consumption with respect to the related baselines. A
list of the downstream metrics used for the GLUE benchmark can be found in Appendix F.

4.2 RESULTS

Quantitative Results. Table 1 presents the comparison between the proposed model and the related
baselines described in Section 4.1. On all datasets, B-LoRA achieves on-par performance with all other
baselines, while presenting a much lower BOPs. Specifically, our method shows slightly worse results for
MNLI and QQP, but performs better than baselines on SST-2 and RTE (B-LoRA(q): 96.44→ AdaLoRA:
96.10 and B-LoRA(q+ra): 88.33 → AdaLoRA: 88.09, respectively). Interestingly, we can see that
optimizing quantization levels and rank values results in better performances for RTE and STS-B datasets
than using only quantization (B-LoRA(q+ra): 88.33→ B-LoRA(q): 86.52 and B-LoRA(q+ra): 91.76→
B-LoRA(q): 91.64, respectively). Moreover, Table 2, presented in Appendix B, reports B-LoRA BOPs for
every dataset within the GLUE benchmark, showing how quantization levels and amount of BOPs are
correlated.

Results on MMLU are summarized in Figure 3. Results reported are the average accuracy on all 57
categories of questions. BLoRA with rank adaptation only performs on par with QLoRA, achieving 68.2.
Compared to experiments on GLUE benchmark, rank adaptation without quantization performs better
than with quantization on both models: accuracy is decreased by 6% for Qwen-2 and 5% for Phi-2. This
decrease is not observed on GLUE benchmark.

Qualitative Results: Task-Specific Head Quantization Levels. We examine precision levels of task-
specific head layers after fine-tuning. In all experiments layers of the task-specific head remained at the
highest possible precision (32 bit). This result aligns with findings reported by Van Baalen et al. (2020),
where they observed that the first and last layers were kept in higher precision in most of their experiments,
however, we only observed higher precision in the last layers. Since Task-Specific Heads plays a central
role when fine-tuning a pre-trained model, quantizying their weights has a big impact on downstream
performances.

LoRA blocks quantization levels and rank value patterns. We analyzed the distribution of quantization
levels and rank values after fine-tuning. We observed that B-LoRA matrices are often kept with low
precision of 2 or 4 bits, while pre-trained weights are usually kept with higher precision. Plots of
quantization levels distribution can be found in Appendix H. A correlation between the quantization level
of pre-trained weights and final output and the dataset size is present: the newer data the model observes
during training, the less precision of pre-trained weights is needed. Indeed, datasets with a training set size
below 10k (RTE, MRPC, STS-B, CoLA) present a median number of bits used above 8, while the remain

9

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

Under review as a conference paper at ICLR 2025

ones (SST-2, MNLI, QNLI, QQP) use a median number of bits below 8. We hypothesized that there might
be a correlation between specific attention weights (i.e., Wk, Wq, and Wk), optimal precision level, and
related rank value. In accordance to our hypothesis, Figure 2 shows that Wv has on average larger rank
values, compared to Wk,Wq, which indicates that most of the information is retained within attention
values. On the other hand, queries and keys can discard most of the information, since they are only used
to compute attention weights and highlight the information retained within attention values. A similar
pattern can be observed in Figure 1, where B-LoRA blocks used for values use more bits on average. In
Appendix G, AdaLoRA rank values are provided for budget b = 576. The overall pattern observed in
Zhang et al. (2023) aligns with our results, however, for B-LoRA rank reduction is more significant, since
many LoRA modules are truncated to rank value 1.

5 DISCUSSION

In this work we present B-LoRA, a parameter-efficient fine-tuning approach based on LoRA that allows
to optimize quantization levels and rank values using Bayesian gating mechanisms proposed by Van
Baalen et al. (2020). While works such as DyLoRA (Valipour et al., 2022) and AdaLoRA (Zhang et al.,
2023) propose different approaches for optimizing rank values, they do not quantize variables and weights.
Moreover, while our approach does not require any hyperparameter search, AdaLoRA requires specifying
several hyperparameters for every dataset (i.e., computational budget, scheduler hyperparameters, learning
rate). The main limitation of this work is that B-LoRA is only evaluated on the GLUE and MMLU
benchmarks, while both LoRA and AdaLoRA provide results for natural language generation (Narayan
et al., 2018; Hermann et al., 2015). In future works we will validate the model on the two question
answering (QA) benchmarks SQuADv1.1 (Rajpurkar et al., 2016a) and SQuADv2.0 (Rajpurkar et al.,
2018a), as well as the E2E benchmark (Novikova et al., 2017), using GPT-3 (Brown et al., 2020a) as
pre-trained model.

6 CONCLUSION

In this study, we introduced Bayesian-LoRA (B-LoRA), a novel approach for optimizing quantization
levels and rank values in model parameters, using Bayesian techniques. Our method extends the Bayesian-
Bits framework by Van Baalen et al. (2020), enabling a hardware-friendly and adaptive quantization that
significantly reduces computational demands without sacrificing model performance. We empirically
demonstrated that B-LoRA achieves competitive results on the GLUE and MMLU benchmarks, matching
or even surpassing state-of-the-art methods such as LoRA, DyLoRA, and AdaLoRA, while also reducing
bit operations by approximately 70%. This efficiency is achieved without the need for extensive hyperpa-
rameter tuning, contrasting sharply with approaches like AdaLoRA that require detailed configuration,
tailored to each dataset. However, our evaluation was limited to the GLUE benchmark. Future work
will aim to validate B-LoRA across a broader range of tasks, including question answering and natural
language generation, using benchmarks like SQuAD v1.1 (Rajpurkar et al., 2016b) and 2.0 (Rajpurkar
et al., 2018b), and the E2E generation benchmark (Novikova et al., 2017). Additionally, applying B-LoRA
to other pre-trained models like GPT-3 (Brown et al., 2020a) will help establish its utility and robustness in
diverse natural language processing contexts.

Overall, B-LoRA presents a promising direction for energy efficient, scalable, and effective model fine-
tuning, making a step to bridge the gap between computational efficiency and performance.

10

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

Under review as a conference paper at ICLR 2025

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013. URL https://api.
semanticscholar.org/CorpusID:18406556.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in Neural Information Processing Systems, 2020a.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020b.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit matrix multiplica-
tion for transformers at scale. In Advances in Neural Information Processing Systems, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified
view of parameter-efficient transfer learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=0RDcd5Axok.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced BERT with
disentangled attention. CoRR, abs/2006.03654, 2020. URL https://arxiv.org/abs/2006.
03654.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543, 2021a.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with
disentangled attention. In International Conference on Learning Representations, 2021b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. CoRR, abs/2009.03300, 2020. URL
https://arxiv.org/abs/2009.03300.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural information
processing systems, 28, 2015.

11

https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://openreview.net/forum?id=0RDcd5Axok
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2009.03300

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In
International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYf9.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of low-rank
adaptation (lora) for transformer-based models, 2024. URL https://arxiv.org/abs/2406.
03136.

Alyssa Hughes. Phi-2: The surprising power of small language models — mi-
crosoft.com. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/. [Accessed 02-
10-2024].

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepa-
per. arXiv preprint arXiv:1806.08342, 2018.

Andrey Kuzmin, Markus Nagel, Saurabh Pitre, Sandeep Pendyam, Tijmen Blankevoort, and Max Welling.
Taxonomy and evaluation of structured compression of convolutional neural networks. arXiv preprint
arXiv:1912.09802, 2019.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–
3059, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.
emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021,
pp. 4582–4597. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.353.
URL https://doi.org/10.18653/v1/2021.acl-long.353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the summary! topic-
aware convolutional neural networks for extreme summarization. arXiv preprint arXiv:1808.08745,
2018.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-end
generation. arXiv preprint arXiv:1706.09254, 2017.

OpenAI. Gpt-4 technical report. arXiv, 2023.

TB OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI, 2022.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2406.03136
https://arxiv.org/abs/2406.03136
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions
with human feedback. Advances in Neural Information Processing Systems, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 8024–8035, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained models
for natural language processing: A survey. Science China Technological Sciences, 63(10):1872–1897,
2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016a. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016b. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pp. 784–789, Melbourne, Australia, July 2018a. Association for
Computational Linguistics. doi: 10.18653/v1/P18-2124. URL https://aclanthology.org/
P18-2124.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions for
SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 784–789, Melbourne, Australia, 2018b. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2124.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested dropout.
In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1746–1754, Bejing, China,
22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/rippel14.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

13

https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://proceedings.mlr.press/v32/rippel14.html

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

Under review as a conference paper at ICLR 2025

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Mart Van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort,
and Max Welling. Bayesian bits: Unifying quantization and pruning. CoRR, abs/2005.07093, 2020.
URL https://arxiv.org/abs/2005.07093.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http:
//arxiv.org/abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. CoRR, abs/1804.07461,
2018. URL http://arxiv.org/abs/1804.07461.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv preprint, abs/1910.03771, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International Conference
on Machine Learning, 2023.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, XI-
AOPENG ZHANG, and Qi Tian. QA-loRA: Quantization-aware low-rank adaptation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=WvFoJccpo8.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng
He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical
report, 2024. URL https://arxiv.org/abs/2407.10671.

Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to estimate the energy consumption
of deep neural networks. In 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp.
1916–1920, 2017. doi: 10.1109/ACSSC.2017.8335698.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
lq62uWRJjiY.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. arXiv preprint arXiv:2308.07633, 2023.

14

https://arxiv.org/abs/2005.07093
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
https://openreview.net/forum?id=WvFoJccpo8
https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

Under review as a conference paper at ICLR 2025

A APPENDIX

B ADDITIONAL RESULTS

Table 2 illustrates how B-LoRA amount of BOPs varies across every GLUE dataset. As expected, datasets,
showing the highest levels of quantizations, presented in Fig. 1, have the lowest amount of BOPs.

Relative BOPs in encoder
Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B
B-LoRA (q) 28.05 25.08 34.70 27.66 34.12 35.58 37.50 40.17
B-LoRA (q + ra) 26.67 24.38 34.19 25.04 30.87 35.21 36.99 42.08

Relative BOPs in Attention Layers
B-LoRA (q) 16.63 13.19 24.34 16.18 23.66 25.36 27.58 30.68
B-LoRA (q + ra) 15.48 12.84 24.15 13.60 20.32 25.32 27.32 33.24

Table 2: GLUE Benchmark: BOPs. BOPs values for each dataset. Each value represents percentage
w.r.t. BOPs of encoder and attention layers of LoRA with rank 16 applied on Wq,Wk,Wv (BOPs of
LoRAr=16 = 100%, LoRAr=2 = 97.04%), AdaLoRArmax=16 = 97.44%.

C TRAINING DETAILS

In contrast to AdaLoRA, where different set of hyperparameters is used for every dataset as shown
in Table 4, most of the hyperparameters in our experiments are the same for all datasets. The only
value that is changed is number of training epochs, which can be found in Table 3. Table ?? reports
hyperparameters used by DyLoRA and all hyperparameters that were fixed in B-LoRA experiments. Here
ζ1ζ2 are hyperparameters that ensure that z has support for exact 0, 1 and t is a threshold used during
inference for binarizing gates.

Dataset # epochs

MNLI 7
RTE 50
QNLI 5
MRPC 30
QQP 5
SST-2 24
CoLA 25
STS-B 25

Table 3: Hyper-parameter setup of B-LoRA for GLUE benchmark.

D MACS AND BOPS FOR LORA

D.1 MACS AND BOPS

A MAC (Multiply-ACcumulate operation) is a multiplication followed by addition. This metric can be
used to estimate complexity of the model and often dictate the memory usage of a network. It can be
related to FLOPs as

FLOPs = 2 ∗MACs

15

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

Under review as a conference paper at ICLR 2025

Dataset learning rate batch size # epochs γ ti ∆T tf

MNLI 5× 10−4 32 7 0.1 8000 100 50000
RTE 1.2× 10−3 32 50 0.3 600 1 1800
QNLI 1.2× 10−3 32 5 0.1 2000 100 8000
MRPC 1× 10−3 32 30 0.1 600 1 1800
QQP 5× 10−4 32 5 0.1 8000 100 25000
SST-2 8× 10−4 32 24 0.1 6000 100 22000
CoLA 5× 10−4 32 25 0.5 800 10 3500
STS-B 2.2× 10−3 32 25 0.1 800 10 2000

Table 4: Hyper-parameter setup of AdaLoRA for GLUE benchmark. Reported from (Zhang et al., 2023).

Model Parameter Value
Optimizer AdamW

Warmup Ratio 0.03
LR Scheduler Constant

Batch Size 4
Learning Rate (LR) 2e-4

Weight Decay 0.0
Qwen2-7B LoRA Config r = 64

LoRA α 16
LoRA Modules All
LoRA Dropout 0.1

Quant Type NF4
Max Steps 1875
Eval Steps 187

Hugging Face Qwen/Qwen2-7B

Optimizer AdamW
Warmup Ratio 0.03
LR Scheduler Constant

Batch Size 4
Learning Rate (LR) 2e-4

Weight Decay 0.0
Phi-2 LoRA Config r = 64

LoRA α 16
LoRA Modules All
LoRA Dropout 0.1

Quant Type NF4
Max Steps 1875
Eval Steps 187

Hugging Face microsoft/phi-2

Table 5: The hyperparameters used in experiments with Qwen2-7B and Phi-2 models.

MAC count of a common layers:

• linear: MACs(l) = ni ∗ no, where ni - number of input features, no - number of output features

• convolution: MACs(l) = Co ∗W ∗H ∗Wi ∗Wf ∗Hf , where Co - number of output channels,
Wi - number of input channels, W,H - dimensions of output map, Wf , Hf - dimensions of filter

16

https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/microsoft/phi-2

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

Under review as a conference paper at ICLR 2025

A BOP corresponds to Bit OPerations, as defined in (Van Baalen et al., 2020). BOP count measures
multiplication operations, multiplied by bit width of the corresponding components, which makes this
metric a hardware-agnostic estimate of the complexity of a model. BOP count is computed the following
way:

BOPs(l) = MACs(l) ∗ bw ∗ ba
where bw, ba are weight and input activation bit width, respectively. BayesainLoRA method is additionally
compared to AdaLoRA in terms of BOP count. Below derivation of BOP and MAC for self-attention
mechanism is provided.

D.2 SELF-ATTENTION MACS

Self-attention is a basic block of transformer models (Vaswani et al., 2017). For evaluating B-LoRA, BOP
is computed for self-attention blocks of DeBERTa-v3 and compared to BOP of the same blocks with all
weights and activation set to highest possible precision (32 bits).

Self-attention module is parameterized with 3 matrices Wk,Wq,Wv ∈ R× where d is a hidden size of a
model. Define maximum length of an input sequence as l, then

MACs(q) = MACs(k) = MACs(v) = d2 ∗ l
Other operation that increases MAC count for self-attention is dot product between keys and queries
(attention scores). Assuming that number of attention heads is h, MACs of attention scores can be
computed as

MACs(attention scores) = l2 ∗
[
d

h

]
∗ h

Finally, values are weighted by attention probabilities, which gives

MACs(attention scores) = l2 ∗
[
d

h

]
∗ h

Therefore, MAC count for a self-attention model can be computed as

MACs(self attention) = 3 ∗ d2 ∗ l + 2 ∗ l2 ∗
[
d

h

]
∗ h+ 1

where last term corresponds to a scaling factor.

D.3 DISENTANGLED SELF-ATTENTION MACS

Since in all experiments DeBERTa-v3 was used, MAC calculations need to be extended to attention variant
proposed by (He et al., 2020). Disentangled attention utilizes positional information by introducing two
extra matrices for keys and queries that are applied on positional embeddings. Then scores between
positional keys and queries (context to position) and positional queries and keys (position to context) are
computed and added to the attention scores.

Computations described above have components for which MAC need to be calculated. Assuming that
positional embeddings size is e:

MACs(posk) = MACs(posq) = d2 ∗ e
For Context-to-Position and Position-to-Context dot product:

MACs(p2c) = MACs(c2p) = l ∗ e ∗
[
d

h

]
∗ h

Each of them has a scaling factor. This results in
MACs(dis self attention)

= MACs(self attention) + 2 ∗MACs(posk) + 2 ∗MACs(p2c)

= 3 ∗ d2 ∗ l + 2 ∗ l2 ∗
[
d

h

]
∗ h+ 2 ∗ d2 ∗ e+ 2 ∗ l ∗ e ∗

[
d

h

]
∗ h+ 3

17

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

Under review as a conference paper at ICLR 2025

D.4 LORA MACS

LoRA (Hu et al., 2022) parameterizes linear layer in the following way:
Wx = W0x+BAx

where A ∈ R∖×, B ∈ R×∖. MAC count for LoRA linear layer can be expressed as
MACs(LoRA) = MACs(linear) + (2 ∗ r + 1) ∗ d

E NUMBER OF PARAMETERS

E.1 LORA

Number of parameters in one LoRA module with matrices W ∈ Rd1×d2 , A ∈ Rr×d2 , B ∈ Rd1×r is
computed with the following equation:

#params = #A+#B = (r × d2) + (d1 × r) (18)

LoRA is applied to 6 matrices in attention layer. Wq,Wk,Wv,Wo have d1 = d2 = d, therefore, number
of parameters in each of them is

(r × d) + (d× r) = 2× r × d (19)

Additionally, it is used in intermediate and output layers of attention, Wf1 ∈ Rd×di , Wf2 ∈ Rdi×d.
Number of trainable parameters in each of these layers is:

(r × d) + (di × r) (20)

Summing parameters for all weights in attention layer results in:
4× (2× r × d) + 2× ((r × d) + (di × r)) = 2× r × (5× d+ di) (21)

For a model with l layers, number of trainable parameters in the encoder is:

#params = 2× l × r × (5× d+ di) (22)

E.2 B-LORA

B-LoRA is applied for Wq,Wk,Wv ∈ Rd×d. In total, it gives
#params = 2× l × r × (3× d) = 6× l × r × d (23)

parameters.

F GLUE DATASETS DOWNSTREAM METRICS

Table 6 provides details about GLUE datasets, such as task, number of examples in train/dev/test splits and
metrics, used for evaluation.

G ADALORA RANK DISTRIBUTION

Figure 4 shows the distribution of rank values in different layers in model, trained with AdaLoRA.

H QUANTIZATION LEVELS

Figure 1 shows the distribution of quantization levels in different layers in model, trained with BLoRA.

18

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

Under review as a conference paper at ICLR 2025

Corpus |Train| |Test| Task Metrics Domain

Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions

Inference Tasks

MNLI 393k 20k NLI matched acc./mismatched acc. misc.
QNLI 108k 5.7k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. misc.

Table 6: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except
STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test
sets, shown in bold, use labels that have never been made public in any form. Image is taken from Wang
et al. (2019).

1 2 3 4 5 6 7 8 9 10 11 12
Layer

W f2

W f1

Wo

Wv

Wk

Wq

4 1 5 2 3 5 5 6 10 5 5 0

6 9 9 9 12 11 12 12 12 12 12 2

7 3 5 8 8 10 12 12 12 12 12 5

6 6 10 6 10 11 11 11 12 12 11 9

5 4 5 5 10 9 9 11 12 12 12 12

3 2 5 4 7 7 7 10 11 11 10 3

0

2

4

6

8

10

12

T
he

finalrank

Figure 4: Rank Distribution for AdaLoRA on MNLI dataset.

19

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

Under review as a conference paper at ICLR 2025

2
8

16
RTE

2
8

16
CoLA

2
8

16
MRPC

2
8

16
MNLI

2
8

16
STS-B

2
8

16
QNLI

Q_w Q_a Q_A Q_e Q_E Q_b Q_out
2
8

16
SST-2

Q_w Q_a Q_A Q_e Q_E Q_b Q_out
2
8

16
QQP

Keys Queries Values

Qu
an

tiz
at

io
n

Le
ve

ls
[#

 b
its

]

Figure 5: Quantization levels for GLUE benchmark. For each type of weight/activation, we compute the
median value of its bitwidth across the encoder. LoRA modules are kept in lower precision of 2, 4 bits.
Values Wv are kept in higher precision than keys Wk and queries Wq .

20

	Introduction
	Related Work
	Transformer-based Language Model

	Method
	Learnable Quantization
	Bayesian Rank Adaptation
	Training

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion
	Appendix
	Additional Results
	Training Details
	MACs and BOPs for LoRA
	MACs and BOPs
	Self-Attention MACs
	Disentangled Self-Attention MACs
	LoRA MACs

	Number of Parameters
	LoRA
	B-LoRA

	GLUE Datasets Downstream Metrics
	AdaLoRA Rank Distribution
	Quantization Levels

