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ABSTRACT

We walk and talk at the same time all the time. It is just natural for us. This paper
tackles the challenge of replicating such natural behaviors in 3D avatar motion
generation driven by concurrent multi-modal inputs, e.g., a text description “a
man is walking” alongside a speech audio. Existing methods, constrained by the
scarcity of aligned multi-modal data, typically combine motions from individual
modalities sequentially or through weighted averaging. These strategies often
result in mismatched or unrealistic movements. To overcome these limitations,
we propose MOCO, a novel diffusion-based framework capable of processing
multiple simultaneous inputs—including speech audio, text descriptions, and trajec-
tory data—to generate coherent and lifelike motions without requiring additional
datasets. Our key innovation lies in decoupling the motion generation process.
During each denoising step, the diffusion model independently generates motions
for each modality from the input noise and assembles the body parts according
to predefined spatial rules. The resulting combined motion is then diffused and
serves as the input noise for the subsequent denoising step. This iterative approach
enables each modality to refine its contribution within the context of the overall
motion, progressively harmonizing movements across modalities. Consequently,
the generated motions become increasingly natural and fluid with each iteration,
achieving coherent and synchronized behaviors. We evaluate our approach us-
ing a purpose-built multi-modal benchmark. Experimental results demonstrate
that MOCO significantly outperforms existing baselines, advancing the field of
multi-modal motion generation for 3D avatars. The code will be released.

1 INTRODUCTION

Imagine watching a virtual talk show where the host delivers engaging dialogue complemented by
expressive gestures, natural body movements, and precise movement paths. The host walks across the
stage following a scripted trajectory, uses hand gestures to emphasize points based on their speech,
and shifts posture in response to both the conversation’s flow and predefined text instructions—all
occurring in perfect harmony. This level of realism transforms the viewing experience, making
interactions feel genuine and immersive. Achieving such lifelike behavior in virtual environments is
no small feat, yet it is essential for enhancing user engagement in applications ranging from virtual
reality to interactive gaming and beyond.

Driving a 3D avatar to perform such lifelike motions involves managing multiple control signals,
such as text descriptions, speech audio, and trajectory data. Particularly, multi-modal signals may be
provided concurrently, for instance, a text prompt like “a man is walking” alongside a speech audio
clip. However, most prior works primarily focus on single-modality control, such as text-to-motion
(Guo et al., 2022; Tevet et al., 2022) or speech-to-gesture (Ginosar et al., 2019b; Yi et al., 2023).
Recent studies (Zhou & Wang, 2023; Zhou et al., 2023; Zhang et al., 2024) have explored designing
unified models capable of addressing multiple modality control signals by leveraging datasets from
different generation tasks. Nevertheless, these models typically process only one modality at a time,
combining motions conditioned on different inputs in a limited and sequential manner when multiple
control signals are present.

The primary challenge in achieving simultaneous multi-modal control of motion generation is the
lack of aligned multi-modal data. Generating speech gestures that not only match the input speech
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a man is walking 

step aside, 
then sit down

keep sitting 
on a chair

stand up 
from a chair
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Zoom In
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Given Trajectory

Input Audio:

Input Audio:

Figure 1: Examples of Multi-Modal Controlled Motion Generation. Given multiple control
signals from different modalities—including text descriptions, speech audio, and trajectory data—our
MOCO framework generates realistic and coherent holistic body motion. This includes both body
movements and detailed features such as facial expressions and hand gestures, all closely aligned
with the provided conditions. To clearly illustrate this, we highlight two clips with temporal zoom,
showcasing the natural integration of speech gestures and lower-body movements in our generated
motions.

audio but also align with the text description is difficult without such datasets. Additionally, the
activity regions in speech-to-gesture datasets are often limited, making it hard to train models that can
generate trajectory-controlled speech gestures. While collecting additional multi-modal data could
help, it requires significant resources and remains constrained to specific scenarios. Some efforts, such
as Yang et al. (2024), attempt to address this issue by combining the predictions of text-conditioned
model and audio-conditioned model through weighted averaging, but this approach often results in
mismatched and unrealistic motion sequences. Similarly, Ling et al. (2023) address this problem by
generating pseudo text descriptions of a speaker’s speech, including both the speaker’s voice and
spoken content (e.g., “A male speaker is saying: ’I am shocked by what you have done.’”), and replace
scripts with movement descriptions during inference. However, the applicability of this method is
strictly limited due to the constrained variety of pseudo labels.

To overcome these challenges, we propose a novel diffusion-based framework, Multi-MOdal
Controlled COherent Motion Synthesis (MOCO). Inspired by Athanasiou et al. (2023) and Petrovich
et al. (2024), our approach decouples the motion generation process during inference by indepen-
dently modeling each modality. Specifically, speech audio naturally guides upper-body motion—like
gestures and facial expressions—while text descriptions influence lower-body movements like walk-
ing or shifting stance. Our framework is first trained on multiple datasets, ensuring that the model can
independently generate motions conditioned on either text or speech inputs. At each denoising step,
the model generates motions for each modality separately from the input noise and assembles the
body parts according to predefined spatial rules, i.e. combining audio-conditioned upper-body motion
with text-conditioned lower-body motion to produce the combined motion. This combined motion
is then diffused and used as the input noise for the next denoising step. The separation ensures that
each body part’s motion is highly aligned with its corresponding input condition, while the iterative
process conditions each generation step on the current state of the combined motion. This allows
each modality to refine its contribution within the context of the overall movement. Consequently,
with each iteration, the motions generated for different body parts become increasingly harmonized,
resulting in natural and fluid movements that exhibit coherent and synchronized behaviors. Further-
more, this decoupled generation process enables our framework to incorporate trajectory control into
co-speech motion generation. We can leverage trajectory data to generate text-conditioned motion
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and combine it with audio-conditioned motion, producing speech gestures that closely align with the
given trajectory.

To the best of our knowledge, our method is one of the first to explicitly address the challenge of
simultaneous multi-modal control in motion generation. To facilitate the evaluation of this novel
task, we developed a multi-modal benchmark comprising 1,000 test clips which are generated from
40 fundamental text descriptions of body movements (e.g., “walk forwards” and “step back and sit
down”) and 694 audio clips from eight different speakers. Each test clip integrates two text prompts
describing a movement with two speech audio clips. We rigorously evaluated our approach against
baseline methods using both text-to-motion and speech-to-gesture metrics. Experimental results
demonstrate that our method significantly outperforms existing baselines, advancing the field of
multi-modal controlled motion generation for 3D avatars.

2 RELATED WORK

2.1 MULTI-MODAL CONDITIONED MOTION GENERATION

In recent years, human motion generation has received significant attention, driven in large part by
advancements in dataset collection. Various scenarios have been explored depending on the input
conditions, including action labels (Guo et al., 2020), text descriptions (Guo et al., 2022; Tevet et al.,
2022; Zhang et al., 2022; Chen et al., 2023), speech audio (Ginosar et al., 2019b; Yi et al., 2023;
Liu et al., 2023a; 2024), music (Li et al., 2021; Siyao et al., 2022; Tseng et al., 2023), scene context
(Hassan et al., 2019; Ma et al., 2024), trajectory data (Xie et al., 2023), and even the motion of another
person (Liu et al., 2023b). Beyond single-modality control, several works have aimed to handle
multiple control signals. For example, Yoon et al. (2020) take into account speaker identity, speech
audio, and transcripts to generate conversational gestures, while Yi et al. (2024) proposes a method
for generating motion from both text and scene inputs. Moreover, some research has focused on
integrating various datasets to train unified motion models that enhance scalability and applicability
across multiple scenarios (Zhou & Wang, 2023; Zhang et al., 2024).

Despite these advancements, effectively managing concurrent multi-modal control signals remains
challenging due to the scarcity of aligned multi-modal data. This limitation hampers the ability
to generate coherent motions in scenarios that require the integration of multiple inputs, such as
combining text descriptions with speech audio or integrating speech audio with trajectory data. To
address this, Yang et al. (2024) propose combining predictions from text-conditioned and audio-
conditioned models through weighted averaging. Similarly, Ling et al. (2023) suggest using speech
scripts as pseudo text labels to create aligned text-audio-motion datasets, replacing scripts with
movement descriptions during inference. However, these approaches are often constrained by biases
in co-speech motion datasets, limiting their generalizability across diverse contexts.

2.2 DIFFUSION MODEL IN MOTION GENERATION

As one of the most advanced generative paradigms, diffusion models have gained significant traction
in the field of human motion generation. Zhang et al. (2022) first introduced MotionDiffuse, a
diffusion model that enables multi-level manipulation, including fine-grained control of body parts
and arbitrary-length motion synthesis based on time-varying text prompts. More recently, Tevet
et al. (2022) presented the Motion Diffusion Model (MDM), a transformer-based diffusion model
featuring innovations such as predicting the sample itself rather than the noise, and incorporating
geometric losses like foot contact loss to improve realism. Additionally, Chen et al. (2023) proposed a
latent-based diffusion model, where the diffusion process operates in a learned latent space, enhancing
the representation of motion. Following these foundational works, diffusion models have been applied
across various motion generation scenarios, such as music-to-dance (Alexanderson et al., 2023),
speech-to-gesture (Zhu et al., 2023), scene-conditioned motion generation (Huang et al., 2023), and
human-human interaction (Liang et al., 2024).
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Figure 2: Overview of MOCO. At each denoising step t, input conditions and noisy data are
fed into their respective denoisers to predict clean motion, which is then diffused for the next
iteration. Specifically, the upper-body motion conditioned on speech audio and the lower-body
motion conditioned on text description are combined to form the overall body motion. The blue
arrows in the figure highlight two key points. One indicates that the denoising process of v0 is
completed before body motion denoising. The other shows that after the denoising process, the
detailed facial and hand movements, and the combined body motion are integrated together to produce
the final holistic motion.

3 METHOD

Given a set of condition signals and their corresponding time intervals, our framework generates
realistic and coherent holistic body motions that precisely align with each condition within its
specified time frame. To provide a comprehensive overview of our framework, we begin with a
brief introduction to the Motion Diffusion Model (MDM) (Tevet et al., 2022), which serves as the
foundational model in our approach (Section 3.1). Next, we describe the data representation and the
various model modules employed in our framework (Section 3.2). Following this, we explain our
multi-modal decoupled denoising for holistic body generation in scenarios where text and speech
audio conditions are provided within the same time interval (Section 3.3). Finally, we address a
more complex scenario where trajectory data is included, and each condition may have different time
intervals (Section 3.4).

3.1 PRELIMINARY: MOTION DIFFUSION MODEL

Our work builds upon the denoising framework of the Motion Diffusion Model (MDM) (Tevet et al.,
2022), which models diffusion as a Markov noising process {xt}Tt=0 starting from a sample x0 from
the data distribution. The transition between steps is defined by:

q (xt | xt−1) = N (
√
αt xt−1, (1− αt)I) , (1)

where αt ∈ (0, 1), N (0, I) is a standard normal distribution, and I represents the identity matrix. As
t increases, the distribution of xT approaches N (0, I).

The primary objective of MDM is to model the conditional distribution p(x0 | c) by reversing this
diffusion process through iterative denoising of xT . To achieve this, MDM minimizes the following
loss function:

L = Ex0,t

[
∥x0 −G (xt, t, c)∥22

]
, (2)

where G is the denoiser. Sampling from p(x0 | c) is performed iteratively. At each timestep t, MDM
predicts x0 = G(xt, t, c) and computes xt−1. This process continues until t = 0.
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Additionally, MDM employs classifier-free guidance (Ho & Salimans, 2022) to control the influence
of the conditioning signal c. The denoiser G is trained on both conditioned and unconditioned data
by randomly setting c = ∅ for a subset of training samples. This approach allows G(xt, t, ∅) to
approximate the unconditional distribution. During sampling, MDM adjusts the strength of the
conditioning signal using a scaling factor s as follows:

Gs (xt, t, c) = G (xt, t, ∅) + s · (G (xt, t, c)−G (xt, t, ∅)) , (3)

where Gs denotes the sampling with classifier-free guidance for denoiser G. This technique enables
precise control over how strongly the generated motion adheres to the conditioning signal, enhancing
the model’s ability to produce contextually appropriate motions.

3.2 DATA REPRESENTATION AND MODEL ARCHITECTURE

Data Representation. Our framework incorporates four main data modalities: motion, text, audio,
and trajectory. The motion data is represented as m = {mn}|Nn=1 ∈ RN×491, where N is the number
of frames. Specifically, the motion data for each frame is denoted as mn = {bn, dn}, with b ∈ R205

representing the body pose (Petrovich et al., 2024), in which v ∈ R3 is the linear velocities of the
pelvis in the x and y directions and the angular velocity around the body’s vertical axis (Z-axis),
and d ∈ R286 capturing detailed facial expression and hand movements. The text embeddings are
encoded using a pretrained CLIP model (Radford et al., 2021) and are denoted as ctext ∈ R512.
Audio features are extracted via a pretrained Wav2Vec2 model (Baevski et al., 2020) and represented
as caudio ∈ RN×768. Finally, the trajectory data is encoded as ctraj ∈ RN×2, representing the
position on the XY-plane for each frame.

Model Design. Our framework includes four transformer-based denoisers: one for text-to-motion
(T2M), one for speech-to-gesture (S2G), one for trajectory-to-velocity (T2V), and one for speech-to-
details (S2D), which handles facial expressions and hand poses:

b̂0 = GT2M(bt, t, ctext) (4)

b̂0 = GS2G(bt, t, caudio) (5)
v̂0 = GT2V(vt, t, ctraj) (6)

d̂0 = GS2D(dt, t, caudio). (7)

We denote the sampling with classifier-free guidance for each denoiser as Gs
u, where u ∈

{T2M, S2G, T2V, S2D}.

For the T2M denoiser, which uses the text embedding ctext as a condition, we follow prior work
by treating ctext as a token and applying self-attention to incorporate semantic information into
the motion generation process. In contrast, the S2G, T2V, and S2D denoisers handle sequential
data as conditions and utilize cross-attention to accurately model the relationships between the
input sequences and the generated motion. Additionally, for the T2M and S2G denoisers, which
are responsible for generating body poses, we initialize them with pretrained parameters from
STMC (Petrovich et al., 2024) and fine-tune them on the HumanML3D and BEATX datasets. This
initialization promotes faster convergence and reduces training time. All denoisers adhere to the
objective function and diffusion paradigm described in Section 3.1.

3.3 MULTI-MODAL DECOUPLED DENOISING FOR SYNCHRONOUS CONDITIONS

In this section, we introduce our multi-modal decoupled denoising approach for generating holistic
body motion in scenarios where text and speech audio conditions are provided synchronously—that
is, within the same time interval—as shown in Figure 3 (a). Notably, we design different generation
strategies for body motion and detailed movements, such as facial expressions and hand gestures, due
to the lack of detailed motion data in the HumanML3D text-to-motion dataset.

Multi-Modal Controlled Body Motion Generation. Few works have explored using multi-modal
control signals across datasets to generate motion. Yang et al. (2024) combine the predictions of the
text-conditioned model and the audio-conditioned model through weighted averaging:

b̂0 = γ ·GT2M(bt, t, ctext) + (1− γ) ·GS2G(bt, t, caudio), (8)

5
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a man is walking a man is walking step aside, then 
sit down

keep sitting on 
a chair

stand up from 
a chair walk forwardText Description

Speech Audio

(a) Synchronous Conditions (b) Asynchronous Conditions
0 8 (sec) 0 35 (sec)

Figure 3: Examples of synchronous and asynchronous conditions. Synchronous conditions occur
when all condition signals are provided within the same time interval. In contrast, asynchronous
conditions involve multiple conditions, each corresponding to different time intervals.

where γ is a parameter controlling the balance between the text-conditioned and speech-conditioned
models. However, this method may lead to motions that do not closely match the input conditions.
Further experimental analysis is presented in Appendix C.

Drawing inspiration from previous works (Athanasiou et al., 2023; Petrovich et al., 2024) that
decompose complex text prompts into simpler components associated with specific body parts during
inference, we propose to decouple the generation process for multi-modal control. Specifically, speech
audio naturally guides upper-body gestures (including head and arm poses), while text descriptions
influence lower-body movements (including spine and leg poses) like walking or shifting stance.

Based on this observation, we develop our multi-modal decoupled denoising method. At the beginning
of each denoising step, the framework generates motions for each modality separately from the
source noise. The upper-body motion conditioned on the speech audio and the lower-body motion
conditioned on the text description are then combined to generate the overall motion. Finally, the
overall motion is diffused and used as the input noise for the subsequent denoising step. The entire
procedure can be formulated as follows:

b̂0 = I ⊙Gs
T2M(bt, t, ctext) + (1− I)⊙Gs

S2G(bt, t, caudio), (9)

bt−1 =
√
αt−1 b̂0 +

√
1− αt−1 ϵ, (10)

where I ∈ R205 is the body mask for text-conditioned motion, a binary vector with entries set to
1 for the lower body and 0 for the upper body; ⊙ denotes element-wise multiplication. The term
αt =

∏t
s=1(1 − βs) represents the cumulative product of (1 − βs) up to timestep t, and βt is the

variance schedule controlling the amount of noise added at each timestep. The variable ϵ ∼ N (0, I)
is Gaussian noise sampled from a standard normal distribution.

The decoupled denoising allows each body part’s motion to be precisely guided by its corresponding
input condition, ensuring high fidelity to the control signals. Moreover, by conditioning each
generation step on the current combined motion, the model enables each modality to iteratively
refine its contribution in the context of the overall movement. As the process progresses, the motions
generated for different body parts become increasingly synchronized, resulting in natural and coherent
full-body movements.

Detailed Facial and Hand Movement Generation. Since HumanML3D lacks this kind of data,
we train a specialized model GS2D on BEATX to generate these elements from speech. When no
speech is provided, the specialized model generates facial expressions and hand movements from
unconditioned distributions:

d̂0 =

{
Gs

S2D(dt, t, c), if c = caudio

GS2D(dt, t, ∅), if c ̸= caudio
(11)

3.4 TRAJECTORY INTEGRATION AND ASYNCHRONOUS CONDITIONS

Having completed the multi-modal decoupled denoising for synchronous conditions, we now extend
our MOCO framework to tackle more complex scenarios, such as incorporating trajectory control
and managing asynchronous conditions.

Trajectory Control. Following the approach of Petrovich et al. (2024), we represent the global
transition of body pose using the velocity vector v = [ṙx, ṙy, θ̇], where ṙx and ṙy are the linear
velocities of the pelvis in the x and y directions, respectively, and θ̇ is the angular velocity about
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the body’s vertical (Z) axis. Given the trajectory data ctraj, we first predict v̂0 using Equation 6. To
enhance prediction accuracy, we incorporate loss guidance into our method. During each denoising
step for predicting the velocity vector, we compute v̂0 using Equation 6 and apply loss guidance as
follows:

Lguidance = FK(v̂0)− ctraj, (12)
where FK represents the differentiable Forward Kinematics function that converts linear and angular
velocities into the trajectory. We optimize Lguidance with respect to v̂0 using the second-order LBFGS
optimizer (Liu & Nocedal, 1989), following the methodology of Wang et al. (2023). This optimization
ensures that the predicted global transitions closely match the provided trajectory data.

Once v̂0 is predicted based on ctraj, we substitute the velocity component in b̂0 with v̂0 during each
iteration of its generation. This substitution guides the generation process to adapt the remaining
elements of b̂0 to align with v̂0, thereby ensuring consistency with the provided trajectory data.

Managing Asynchronous Conditions Timeline. To extend our framework to broader applications
where multiple conditions are provided and each corresponding to different time intervals, i.e.
asynchronous conditions, we adopt a timeline-based strategy as described in Petrovich et al. (2024).
Specifically, given a set of conditions and their corresponding time intervals, we denote them as
{cj , fs

j , f
e
j } for 1 ≤ j ≤ J , where cj represents the j-th condition, and fs

j and fe
j are the respective

start and end frames within the overall timeline. Here, J is the total number of conditions.

During each denoising step t, the body pose over the entire timeline is generated as follows:

b̂0 =

J∑
j=1

Ij ⊙Gs
j

(
bt,fs

j :f
e
j
, t, cj

)
, (13)

where Ij is a binary mask corresponding to the motion generated by the j-th condition, and Gs
j ∈

{Gs
T2M, Gs

S2G} represents the denoiser used for the j-th condition. The operator ⊙ denotes element-
wise multiplication.

Similarly, the denoising step t for generating facial and hand movements across the entire timeline is
expressed as:

d̂0 =

J∑
j=1

GS2D

(
dt,fs

j :f
e
j
, t, cj

)
. (14)

In particular, if cj is a text condition, it is replaced with an unconditional condition ∅. The overall
holistic body motion is then represented as m̂0 = {b̂0, d̂0}. This strategy enables our framework
to handle multiple conditions over different time intervals, facilitating more flexible and complex
motion generation scenarios. We further explore methods to generate smoother transitions at interval
boundaries in Section 4.

4 EXPERIMENTS

4.1 DATASETS

Task-Specific Datasets. HumanML3D dataset is a large Text-to-Motion dataset created by
amalgamating motion sequences from the HumanAct12 and AMASS datasets (Guo et al., 2022). It
consists of 14,616 motions and 44,970 descriptions composed of 5,371 distinct words, totaling 28.59
hours of motion data. To align the data representation—specifically, to use SMPL-X parameters for
representing joint rotations—we utilize only the AMASS portion of HumanML3D because it has an
official SMPL-X version. BEATX dataset is a large-scale Speech-to-Gesture dataset specifically
designed for research in speech-to-gesture generation (Liu et al., 2023a). It contains synchronized
recordings of speech audio and corresponding 3D motion capture data of human gestures. In addition
to audio and motion data, the dataset includes annotations such as text transcriptions and emotional
states.

Multi-Modal Benchmark. To effectively evaluate our proposed task, we created a multi-modal
benchmark consisting of 1,000 test clips by following the procedure outlined in Petrovich et al.

7
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Text2Motion Speech2Gesture Transition
FID+ ↓ R1 ↑ R3 ↑ M2T ↑ M2M ↑ FID-A ↓ BC ↑ L1div ↑ MTD ↓

GT (Ground Truth) 0.000 40.0 72.5 0.781 1.000 - - - 2.9
Audio-Only 1.647 2.9 8.6 0.514 0.507 2.19 2.45 4.51 1.2
Text-Only 0.587 27.1 53.3 0.730 0.702 5.30 1.90 6.78 4.9
Weighted Average (Yang et al., 2024) 1.335 6.8 16.1 0.546 0.537 2.17 2.20 4.08 1.2
Pseudo-Text (Ling et al., 2023) 1.593 2.2 7.0 0.511 0.503 2.22 2.55 6.43 1.7
MOCO 0.862 24.6 46.9 0.649 0.639 3.83 2.72 8.62 5.3

Table 1: Comparison with baselines.

(2024). Each test clip is automatically constructed and contains two text descriptions and two audio
clips. To create these clips, we first manually collected a set of 40 texts focusing on lower-body
movements that commonly occur during speech delivery or conversation . We then split the audio
from the BEATX test set into clips using a Voice Activity Detector (VAD). To serve as ground
truth for computing evaluation metrics (Section 4.2), we selected motion samples from AMASS and
BEATX that correspond to each text and audio clip. Based on these atomic texts and audio clips, we
automatically generated test clips.

4.2 METRICS

We evaluate our method using three categories: text-to-motion, speech-to-gesture, and transition
smoothness (Liu et al., 2023a; Petrovich et al., 2024). For text-to-motion, FID+ assesses realism by
measuring the distribution difference between real and generated motions using five random 5-second
clips per test sample. R1 and R3 metrics evaluate alignment by recording the frequency of correct text
prompts appearing in the top-1 and top-3 retrieved texts, respectively. M2T (motion-to-text) and M2M
(motion-to-motion) measure alignment through cosine similarity between embeddings of generated
motions and ground truth texts or motions. In the speech-to-gesture category, FID-A similarly
measures the realism of motion generated based on speech audio. Beat Consistency (BC) evaluates
how well gestures synchronize with the rhythm and beats of the speech, while L1 Diversity (L1Div)
quantifies gesture diversity by calculating the average L1 distance between multiple gesture clips.
Transition smoothness is assessed by Max Transition Distance (MTD), which measures the maximum
distance between consecutive frames during transitions, with lower values indicating smoother and
more realistic motions. This comprehensive set of metrics ensures a thorough evaluation of our
method across key dimensions.

4.3 COMPARISON WITH BASELINES

In Table 1, we compare our proposed MOCO with several baseline methods, including Audio-Only,
an audio-conditioned model trained exclusively on the speech-to-gesture dataset; Text-Only, a text-
conditioned model trained solely on the text-to-motion dataset; Weighted Average, a method that
follows Yang et al. (2024) by combining the predictions of text- and audio-conditioned models
through weighted averaging; and Pseudo-Text, a method that follows Ling et al. (2023) by using
pseudo text descriptions of a speaker’s speech as the text condition during training.

As shown in the table, the single-modality baselines achieve the highest performance within their
respective domains but perform poorly on the other modality’s metrics. Specifically, the Audio-Only
excels in speech-to-gesture metrics but underperforms in text-to-motion metrics, while the Text-Only
performs well in text-to-motion metrics but poorly in speech-to-gesture metrics. In contrast, our
proposed MOCO exhibits robust performance across both sets of metrics, delivering competitive
results in both text-to-motion and speech-to-gesture tasks simultaneously. This underscores the
effectiveness of MOCO in generating condition-aligned motions when multi-modal conditions are
provided concurrently.

It is important to note that the Fréchet Inception Distance (FID) is computed based on the similarity
between the generated data and the ground truth. For instance, MOCO’s upper-body motion, which
primarily consists of speech gestures, differs significantly from the ground truth in the text-to-motion
dataset. Therefore, even though MOCO’s generated lower-body motion closely follows the text
descriptions (e.g., walking, standing, or sitting) similar to the Text-Only, the discrepancy in upper-body
motion results in a higher FID+ compared to the Text-Only. Similarly, while MOCO’s upper-body
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Method Share
Weight

Body Mask
1− I

Transition
Method

Text2Motion Speech2Gesture Transition
FID+ ↓ R1 ↑ R3 ↑ M2T ↑ M2M ↑ FID-A ↓ BC ↑ L1div ↑ MTD ↓

GT - - - 0.000 40.0 72.5 0.781 1.000 - - - 2.9
MOCO ✗ head, arms diffcollage 0.862 24.6 46.9 0.649 0.639 3.83 2.72 8.62 5.3
Variant 1 ✗ head, arms, spine diffcollage 0.921 22.4 44.2 0.634 0.617 3.86 2.81 8.35 4.7
Variant 2 ✗ spine, legs diffcollage 1.234 7.9 18.7 0.554 0.550 2.75 2.19 5.11 1.6
Variant 3 ✓ head, arms diffcollage 0.866 22.1 47.8 0.656 0.641 4.24 2.68 8.95 4.5
Variant 4 ✗ head, arms average 0.858 24.0 46.5 0.650 0.639 3.83 2.68 8.56 6.5

Table 2: Ablation study on key designs within MOCO.

motion aligns well with the speech audio, as seen in the Audio-Only, differences in lower-body
motion cause MOCO’s FID-A to be larger than that of the Audio-Only.

The other two baselines, Weighted Average and Pseudo-Text, perform similarly to the Audio-Only,
achieving good results on speech-to-gesture metrics but poor performance on text-to-motion metrics,
indicating their limited ability to handle multi-modal data effectively. We explain this further in
Appendix C.

4.4 ABLATION STUDY

To assess the impact of key designs within our MOCO framework, we conduct an ablation study
presented in Table 2. This study systematically examines the effects of body masking (Body Mask),
weight sharing (Share Weight), and transition methods (Transition Method) on the model’s perfor-
mance across text-to-motion and speech-to-gesture metrics.

Body Masking. In Variants 1 and 2, we test our hypothesis that speech audio guides upper-body
motion (head and arms) while text descriptions influence lower-body movements (spine and legs). In
Variant 1, we expand the body mask to include the spine along with the head and arms (Body Mask =
head, arms, spine). This modification results in an increased FID+ and a slight decrease in R1 and
R3, indicating a decline in text-to-motion performance. Moreover, it does not produce significant
improvements in speech-to-gesture metrics, suggesting that including the spine in the body mask fails
to enhance gesture generation and instead compromises text-driven motion performance.

Variant 2 further adjusts the body mask to include the legs and spine (Body Mask = legs, spine), leading
to a significant deterioration in text-to-motion metrics and Beat Consistency. This decline primarily
arises because the text descriptions in our multi-modal benchmark include various movements such
as ”walk,” ”sit,” and ”turn right,” while the speech-to-gesture data predominantly features standing
gestures, creating a substantial mismatch. Controlling lower-body motion with audio makes it difficult
to align the motion with text descriptions, while controlling upper-body motion with text complicates
alignment with beats. Although Variant 2 shows a notable improvement in FID-A, suggesting a bias
in the speech-to-gesture data where most motions involve standing in place, the overall performance
deteriorates.

In contrast, our original method (Body Mask = head, arms) effectively balances the influences of
both text and audio inputs. By assigning the upper body to be guided by audio and the lower body
by text, we achieve superior results across both text-to-motion and speech-to-gesture metrics. This
demonstrates the advantage of our approach in producing coherent and contextually appropriate
motions that align well with the provided conditions.

Weight Sharing. In Variant 3, we enable weight sharing (Share Weight = ✓), following previous
multi-modal methods (Ling et al., 2023; Yang et al., 2024), while keeping the body mask and
transition method unchanged. Compared to the full MOCO model (without weight sharing), enabling
weight sharing results in poorer performance across several metrics, including R1 and FID-A. This
decline suggests that sharing weights between modalities may limit the model’s ability to capture
modality-specific nuances, thereby reducing its effectiveness in generating accurate and realistic
motions for both text-to-motion and speech-to-gesture tasks.

Transition Methods. For ensuring smooth transitions between motion segments, we adopt “diffcol-
lage” (Zhang et al., 2023c), as utilized by Petrovich et al. (2024). This method creates an overlap area
at the transition point and combines conditional and unconditional predictions within this region to
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jogs forwards walk in a circle 
counterclockwise slowly walk backwards step back and sit down turn around then sit 

down in a chairturn right quickly walk backwards run

(a) (b) (c) (d)

Figure 4: Qualitative results. We visualize four samples generated by MOCO. Darker colors
represent later points in time. The results demonstrate that MOCO is capable of generating coherent
and realistic motions that highly align with the given multi-modal control signals. Figures (a), (b),
and (d) present natural speech gestures coordinated with various lower-body movements as specified
by the text inputs, such as jogging, walking in a circle, turning right, running, and so on. Figure (c)
displays natural movements of delivering a speech while sitting down. Figure (d) reveals a limitation
of MOCO. When standing up or sitting down, the foot should remain stationary. However, the foot
highlighted in the red box slides, leading to unrealistic results. This issue should be addressed in
future work.

achieve seamless motion continuity. We compare diffcollage with an alternative transition method in
the Variant 4: average”, which applies a weighted average in the overlap area. This approach results
in a slight improvement in FID+ compared to the full MOCO text2motion modelut leads to a decrease
in transition smoothness, indicating more abrupt transitions between motion intervals. This suggests
that while the edit method may marginally enhance certain performance metrics, it compromises the
fluidity of motion, which is crucial for realistic motion synthesis.

4.5 QUALITATIVE ANALYSIS

To clearly illustrate the overall performance of MOCO, we visualize four samples generated by
MOCO along with their corresponding conditions in Figure 4. The lighter color of the mesh and the
background of the text description indicate the start of the sequence, while the darker color indicates
the end of the sequence. These results showcase natural speech upper-body gestures that coordinate
with various lower-body motions such as jogging, walking, and sitting, indicating that MOCO is
capable of generating coherent and realistic motions that highly align with the given multi-modal
control signals. Please see the caption for a full analysis of these examples.

5 CONCLUSION

In this study, we present MOCO, a novel diffusion-based framework to generate realistic and
coherent holistic body motions from multi-modal inputs, including text descriptions, speech audio, and
trajectory data. Our key innovation lies in a decoupled denoising process where, during each denoising
step, the model independently generates motions for each modality and assembles them according
to predefined spatial rules. This approach ensures that the generated motion is closely aligned
with each condition while producing realistic and coherent whole-body movements. Experimental
results demonstrate that our approach delivers state-of-the-art performance both qualitatively and
quantitatively, advancing the field of multi-modal controlled motion generation for 3D avatars.
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A THEORETICAL ANALYSIS FOR DECOUPLE-THEN-COMBINE

Our proposed MOCO relies on the assumption that the joint conditional probability p(xt−1 |
ctext, caudio, xt) can be approximated by p(xt−1,lower | ctext, xt) · p(xt−1,upper | caudio, xt), expressed
as:

p(xt−1 | ctext, caudio, xt) ≈ p(xt−1,lower | ctext, xt) · p(xt−1,upper | caudio, xt), (15)

where xt denotes the motion at denoising step t, composed of upper-body motion xt,upper and
lower-body motion xt,lower.

We provide a detailed derivation of Equation 15, outlining the two approximations involved in the
decomposition process. The derivation follows these steps:

p(xt−1 | ctext, caudio, xt) = p(xt−1,lower, xt−1,upper | call), where call = {ctext, caudio, xt}
= p(xt−1,lower | call) · p(xt−1,upper | call, xt−1,lower) (16)
≈ p(xt−1,lower | call) · p(xt−1,upper | call) (17)
≈ p(xt−1,lower | call \ {caudio}) · p(xt−1,upper | call \ {ctext}) (18)
= p(xt−1,lower | ctext, xt) · p(xt−1,upper | caudio, xt).

The first approximation occurs in the transition from Equation 16 to Equation 17. Here, we approxi-
mate:

p(xt−1,upper | call, xt−1,lower) = p(xt−1,upper | ctext, caudio, xt,upper, xt,lower, xt−1,lower)

≈ p(xt−1,upper | ctext, caudio, xt,upper, xt,lower)

= p(xt−1,upper | call).

This approximation assumes that xt already encapsulates sufficient information about xt−1, allowing
us to neglect the influence of xt−1,lower when estimating xt−1,upper. This simplification is justified by
the proximity of the diffusion steps and the strong correlation between the states at steps t and t− 1.

The second approximation occurs in the transition from Equation 17 to Equation 18, where we
decouple modality-specific influences:

p(xt−1,lower | call) ≈ p(xt−1,lower | call \ {caudio}),
p(xt−1,upper | call) ≈ p(xt−1,upper | call \ {ctext}).

This approximation leverages the observation that text input (ctext) primarily influences lower-body
movements (e.g., walking or shifting stance), while audio input (caudio) predominantly affects upper-
body movements (e.g., gestures or facial expressions). By excluding caudio from the conditioning
set for xt−1,lower and ctext for xt−1,upper, we ensure the conditioning focuses on the most relevant
modality for each body part.

B RULES FOR MANAGING MULTI-MODAL ASYNCHRONOUS CONDITIONS

In this section, we outline the rules of the MOCO framework for managing multi-modal asynchronous
conditions. Our rules build upon the excellent work of STMC (Petrovich et al., 2024) and extend
them to accommodate multi-modal scenarios.

Default:

1. Single Active Condition: When only one condition is active, it governs the movement of the
entire body.

2. Two Active Conditions of Different Modalities: When two conditions from different modalities
(e.g., speech and text) are active simultaneously, speech by default controls upper body movements
(i.e., head and arms), while text by default controls lower body movements (i.e., legs and spine).

Flexible:

To achieve more nuanced control, we leverage STMC’s rules. When two conditions are active
simultaneously:
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1. Different Body Parts: If the conditions control different body parts, each condition governs its
respective parts without conflict.

2. Overlapping Body Parts: If both conditions attempt to control the same body parts, the condition
controlling fewer body parts takes precedence for those specific parts.

3. Equal Control Scope: If both conditions control an equal number of body parts, the condition with
the earlier start time takes precedence. The later-starting condition will only control movement
after the earlier condition has concluded.

C LIMITATIONS OF WEIGHTED AVERAGING IN MULTI-MODAL MOTION
GENERATION

(a) T, text =“standing” (b) A, text=“standing” (c) T, text=“sitting” (d) A, text=“sitting”

Figure 5: Comparison of differences calculated by the speech-to-gesture model and the text-to-motion
model during motion updates. “T” denotes using text-to-motion model to update motion, while “A”
denotes using speech-to-gesture to update motion. The results show that the speech-to-gesture model
computes larger differences than the text-to-motion model, indicating it adjusts the motion more
aggressively based on the conditions. This explains why the weighted averaging method’s generated
results closely resemble those produced entirely by the speech-to-gesture model. Additionally, when
the text condition is “sitting,” the speech-to-gesture model calculates larger differences in the legs
than in the arms, which is counterintuitive and may be attributed to data bias in the speech-to-motion
dataset.

To understand why the Weighted Average method perform similarly to the Audio-Only—achieving
good results in speech-to-gesture metrics but poor performance in text-to-motion metrics—we
conducted the following experiments.

Given both speech and text inputs, we updated the motion using only the text-to-motion model.
At each denoising step t, we computed the difference difft between the speech-to-gesture model’s
prediction—based on the speech input and the current motion from the text-to-motion model—and
the current motion from the text-to-motion model. This difference quantifies how much the speech-to-
gesture model perceives a mismatch between the speech condition and the current motion. Conversely,
when we used only the speech-to-gesture model to update the motion, the calculated difference
indicated how much the text-to-motion model perceived a mismatch between the text condition and
the current motion. A larger difference suggests a greater mismatch and that the model will update
the motion more aggressively.

We recorded these differences in both scenarios and divided them into whole body, arms, and legs
for clearer illustration. Comparing Figures 5 (a) and (b), as well as Figures 5 (c) and (d), we found
that the differences calculated by the speech-to-gesture model are larger than those by the text-to-
motion model. This indicates that the speech-to-gesture model adjusts the motion more aggressively
based on its conditions than the text-to-motion model does. This explains why, when using the
weighted averaging method, the generated result closely resembles that produced entirely by the
speech-to-gesture model.

Furthermore, by comparing Figures 5 (a) and (c), which have different text conditions, we observe
that when the text condition is “sitting,” the differences calculated by the speech-to-gesture model
in the legs are larger than in the arms. This is counterintuitive since speech is typically associated
with upper-body gestures rather than lower-body movements. Conversely, when the text condition is
“standing,” the differences in the legs are smaller than in the arms, aligning with expectations. This
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phenomenon may be attributed to data bias in the speech-to-motion dataset, where most motions are
performed in standing positions.

These observations reveal the limitations of weighted averaging in multi-modal motion generation
and suggest the validity of our proposed decoupled denoising process.

D COMPUTATIONAL COMPLEXITY

Parameters (M) Model Size (MB) FLOPs (G) Inference Time (ms/frame)

GT2M 27.01 103.02 5.19 2.26
GS2G 36.86 140.62 6.72 4.30
GT2V 0.34 1.31 0.06 6.20
GS2D 36.94 140.94 6.74 4.37

Table 3: Complexity of each denoiser of MOCO.

Our framework, MOCO, comprises four transformer-based denoisers: GT2M for text-to-motion
(T2M), GS2G for speech-to-gesture (S2G), GT2V for trajectory-to-velocity (T2V), and GS2D for
speech-to-details (S2D), which manages facial expressions and hand poses. To clearly illustrate the
computational complexity of MOCO, we present various metrics, including the number of parameters,
model size, FLOPs, and inference time on a single NVIDIA 4090 GPU, as shown in Table 3.

As indicated in the table, our framework is overall lightweight and sufficiently fast. Specifically,
the speech-to-gesture denoiser GS2G and the speech-to-details denoiser GS2D are relatively larger
than the other denoisers due to additional cross-attention parameters. In contrast, the trajectory-to-
velocity denoiser GT2V is the most lightweight module, featuring fewer hidden state dimensions
and transformer layers because the task it handles involves low-dimensional data. However, the
introduction of a guidance mechanism for more accurate predictions results in GT2V having the
longest inference time.

Finally, to generate the motion sequences for a 35-second demo video consisting of nine clips under
different conditions and with a total duration of 54 seconds, our method completed the body motion
generation task in only 3.72 seconds. This fast generation time highlights the potential of our approach
for real-time applications.

E ADDITIONAL EXPERIMENTS

E.1 EVALUATION OF TRAJECTORY CONTROL

Method Location Orientation
CFG L-BFGS Average Difference Goal Difference Average Difference Goal Difference

✗ ✗ 0.5641 1.2068 0.7059 1.2583
✓ ✗ 0.5676 1.3177 0.8276 1.5115
✗ ✓ 0.0747 0.1235 0.6009 1.1031
✓ ✓ 0.1121 0.1950 0.7111 1.2845

Table 4: Evaluation of Trajectory Control.

Table 4 evaluates trajectory control methodologies by assessing the effects of classifier-free guidance
(CFG) and L-BFGS optimization on both location (meters) and orientation (radians). For each cate-
gory, two primary metrics are reported: Average Difference, quantifying the mean deviation between
the generated trajectory and the ground truth (GT), and Goal Difference, measuring the discrepancy
at the final point relative to the GT. The results show that L-BFGS optimization significantly reduces
location differences and modestly improves orientation accuracy. Notably, for the same trajectory,
orientation can be diverse, so the generated orientation does not need to closely match the GT. In
contrast, incorporating CFG does not enhance trajectory accuracy. These findings indicate that while
L-BFGS is a robust optimization strategy for trajectory control, integrating CFG may not provide
complementary advantages and could interfere with the optimization process.
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Text2Motion Speech2Gesture Transition
FID+ ↓ R1 ↑ R3 ↑ M2T ↑ M2M ↑ FID-A ↓ BC ↑ L1div ↑ MTD ↓

Ground Truth 0.000 40.0 72.5 0.781 1.000 - - - 2.9
Synchronous 0.896 23.8 45.9 0.638 0.629 4.41 2.62 9.47 5.5
Asynchronous 0.862 24.6 46.9 0.649 0.639 3.83 2.72 8.62 5.3

Table 5: Comparison of MOCO in synchronous and asynchronous conditions.

E.2 PERFORMANCE UNDER SYNCHRONOUS AND ASYNCHRONOUS CONDITIONS

In Table 5, we compare the performance of MOCO under synchronous and asynchronous conditions.
As illustrated in the table, MOCO generates slightly better motions under asynchronous conditions
compared to synchronous ones. This improvement may be attributed to asynchronous conditions
allowing a single modality to control the entire body, rather than using multiple modalities to control
different parts simultaneously. Such an approach is likely simpler for the model, as it was trained
on data where single modalities govern the whole body. Additionally, motions generated under
single-modality conditions more closely align with the distribution of the GT in the test set, which
also consists of motions under single-modality conditions. Consequently, this alignment results in
better performance metrics.

E.3 SINGLE MODALITY PERFORMANCE

Methods R-Precision FID↓ MM Dist↓ Diversity↑ MM↑Top 1 Top 2 Top 3

Ground Truth 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
T2M-GPT (Zhang et al., 2023a) 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MDM (Tevet et al., 2022) - - 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MOCO (Ours) 0.434±.010 0.618±.008 0.720±.008 0.530±.044 3.563±.049 9.856±.166 2.663±.068

FineMoGen (Zhang et al., 2023b) 0.504±.002 0.690±.002 0.784±.002 0.151±.008 2.998±.008 9.263±.094 2.696±.079

MoMask (Guo et al., 2024) 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

LMM-Tiny (Zhang et al., 2025) 0.496±.002 0.685±.002 0.785±.002 0.415±.002 3.087±.012 9.176±.074 1.465±.048

LMM-Large (Zhang et al., 2025) 0.525±.002 0.719±.002 0.811±.002 0.040±.002 2.943±.012 9.814±.076 2.683±.054

Table 6: Quantitative results of text-to-motion generation on the HumanML3D test set.

Methods FGD↓ BC Diversity↑ MSE↓ LVD↓

FaceFormer (Fan et al., 2022) - - - 7.787 7.593
CodeTalker (Xing et al., 2023) - - - 8.026 7.766
S2G (Ginosar et al., 2019a) 28.15 4.683 5.971 - -
Trimodal (Yoon et al., 2020) 12.41 5.933 7.724 - -
HA2G (Liu et al., 2022c) 12.32 6.779 8.626 - -
DisCo (Liu et al., 2022a) 9.417 6.439 9.912 - -
CaMN (Liu et al., 2022b) 6.644 6.769 10.86 - -
DiffStyleGesture (Yang et al., 2023) 8.811 7.241 11.49 - -
TalkShow (Yi et al., 2023) 6.209 6.947 13.47 7.791 7.771
EMAGE (Liu et al., 2023a) 5.512 7.724 13.06 7.680 7.556
ProbTalk (Liu et al., 2024) 6.170 8.099 10.43 8.990 8.385
MOCO (Ours) 5.543 7.089 14.05 7.285 7.573

Table 7: Quantitative results of speech-to-gesture generation on the BEATX test set.

To demonstrate MOCO’s performance in single-modality scenarios, we trained it from scratch on
HumanML3D for text-to-motion and on BEATX for speech-to-gesture, respectively, ensuring a
fair comparison. The results, presented in Tables 6 and 7, show that in the HumanML3D text-
to-motion benchmark (Table 6), our model achieves performance comparable to the widely-used
MDM. This outcome is expected since our text-to-motion denoiser, GT2M, is based on MDM. In the
BEATX speech-to-gesture benchmark (Table 7), MOCO attains competitive performance compared
to state-of-the-art methods.
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F DETAILS OF MULTI-MODAL BENCHMARK

To effectively evaluate our proposed task, we developed a multi-modal benchmark comprising 1,000
test clips, following the methodology outlined in Petrovich et al. (2024). Each test clip is automatically
generated and includes two text descriptions and two audio clips.

For the text descriptions, we manually curated a set of 40 texts focusing on lower-body movements
commonly associated with speech delivery or conversation. These descriptions provide the necessary
context for evaluating the corresponding movements within the benchmark. Regarding the audio
clips, we selected recordings from the BEATX dataset, specifically choosing eight speakers with
speaker IDs below 10. These audio files were segmented into clips using a Voice Activity Detector
(VAD), resulting in 694 audio clips with an average duration of 9.14 seconds.

The 1,000 test clips were generated through an automated process that utilizes the curated text
descriptions and audio clips. For each test clip, two text descriptions are randomly selected and
assigned random durations. Subsequently, two neighboring audio clips are randomly chosen. The
start times for both the text and audio intervals are determined randomly, allowing the sequence
to commence with either text or audio. This process results in the creation of four intervals that
correspond to the selected text descriptions and audio clips.

Here optional text description:
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walk in a circle clockwise
walk in a circle counterclockwise
walk in a quarter circle to the left
walk in a quarter circle to the right
turn 180 degrees to the left on the left foot
turn 180 degrees to the left on the right foot
turn left
turn right
walk forwards
walk backwards
slowly walk forwards
slowly walk backwards
quickly walk forwards
quickly walk backwards
run
jogs forwards
jogs backwards
slowly walk in a circle
perform a squat
sit down
turn around then sit down in a chair
sit down then get back up and walk back
sit down for a moment
step back and sit down
sit down indian style
take a step to their right and sit down
sit criss cross
sit down on the ground and cross their legs
squat down
sit on a high object
sit on a barstool and rest their legs on the stool
take a large step and sits on a stool
get down on their knees
sit on the ground with his legs extended in front of him
walk up to a backwards chair and sit down on it with legs outstretched
sit down and adjust themselves
sit down and swap their legs crossing back and forth
sit and lie down on a lounge chair
sit down and lean on the chair
sits very still in the chair
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