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Abstract
We study convergence properties of the discrete-
time Mean-Field Langevin Stochastic Descent-
Ascent (MFL-SDA) algorithm for solving distri-
butional minimax optimization. These problems
arise in various applications, such as zero-sum
games, generative adversarial networks and dis-
tributionally robust learning. Despite the signifi-
cance of MFL-SDA in these contexts, the discrete-
time convergence rate remains underexplored. To
address this gap, we establish a last-iterate conver-
gence rate of O( 1ϵ log

1
ϵ ) for MFL-SDA. This rate

is nearly optimal when compared to the complex-
ity lower bound of its Euclidean counterpart. This
rate also matches the complexity of mean-field
Langevin stochastic gradient descent for distribu-
tional minimization and the outer-loop iteration
complexity of an existing double-loop algorithm
for distributional minimax problems. By leverag-
ing an elementary analysis framework that avoids
PDE-based techniques, we overcome previous
limitations and achieve a faster convergence rate.

1. Introduction
In this paper, we study a distributional minimax optimiza-
tion of the form

min
µ∈P1

max
ν∈P2

E(µ, ν), (1)

where P1,P2 are sets of probability measures and E is a
convex-concave probability functional. This formulation
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generalizes minimax optimization problems in Euclidean
spaces and arises widely in many important applications,
including generative adversarial networks (GANs) (Good-
fellow et al., 2020; Arjovsky et al., 2017), distribution-
ally robust learning (Mądry et al., 2017), as well as zero-
sum games with mixed Nash equillibrium (Daskalakis &
Panageas, 2018).

Solving such optimization problems over distributional
spaces is inherently challenging. Unlike in Euclidean spaces,
the convexity/concavity of the objective function does not di-
rectly guarantee the convergence of gradient-based methods.
To address this, mean-field Langevin dynamics (MFLD) has
emerged as a powerful theoretical framework (Mei et al.,
2018; Sirignano & Spiliopoulos, 2020; Hu et al., 2021;
Chizat, 2022; Nitanda et al., 2022a; Suzuki et al., 2024). In
this framework, an entropy-regularized distributional convex
minimization is considered:

min
µ∈P(Θ)

E(µ)− τH(µ),

where H(µ) = −Eµ[logµ] is the entropy functional. The
mean-field Langevin gradient descent method in discrete
time proceeds as follows:

θk+1 = θk − η∇δE

δµ
[µk](θk) +

√
2ητξk,

where µk is the distribution of θk; δE
δµ [µk] is the first varia-

tion of E with respect to µ at µk; and ξk is an independent
injected standard Gaussian noise. Notably, the gradient
in this context is often replaced with an unbiased stochas-
tic gradient estimator to accommodate practical settings
such as stochastic gradient descent. By leveraging the uni-
form log-Sobolev inequality, corresponding to the Polyak-
Łojasiewicz (PL) condition (Karimi et al., 2016) in the dis-
tributional space, recent works have established exponential
(linear) convergence for MFLD in continuous time (Chizat,
2022; Nitanda et al., 2022a) sublinear convergence of the
order O( 1ϵ log

1
ϵ ) in discrete time (Nitanda et al., 2022a) and

with a stochastic gradient oracle (Suzuki et al., 2024).

The MFLD framework can be extended to distributional min-
imax problems (1), giving rise to the Mean-Field Langevin
Descent-Ascent (MFL-DA) algorithm. For instance, under
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two-sided Polyak-Łojasiewicz conditions, Lu (2023) estab-
lished a linear convergence rate for MFL-DA in continuous
time. Furthermore, Kim et al. (2024) proposed two variants:
the Mean-Field Langevin Averaged Gradient method, which
guarantees average-iterate convergence, and the Mean-Field
Langevin Anchored Best Response, a symmetric double-
loop algorithm whose outer loop achieves linear last-iterate
convergence. Despite recent advances, the convergence
properties of single-loop discrete-time algorithms remain
largely unexplored. A notable exception is the discrete-
time stochastic Mean-Field Langevin Averaged Gradient
algorithm introduced by Kim et al. (2024), which achieves
an average-iterate convergence rate of O(ϵ−O(1/α)), where
α is the log-Sobolev constant. However, this rate appears
suboptimal. Furthermore, last-iterate convergence is often
more desirable in minimax optimization due to its practical
significance. To our knowledge, the nearly optimal complex-
ity of last-iterate convergence for discrete-time Mean-Field
Langevin Stochastic Descent-Ascent (MFL-SDA) has not
yet been investigated.

In contrast, minimax problems in Euclidean spaces have
been extensively studied. For stochastic strongly convex-
strongly concave functions, an optimal complexity of
O(1/ϵ) is achieved by a variant of stochastic gradient
descent-ascent (Yan et al., 2020; Zhang & Hu, 2025). Sim-
ilarly, for problems with two-sided PL conditions using a
stochastic oracle, an O(1/ϵ) convergence rate is attained by
alternating stochastic gradient descent-ascent (Yang et al.,
2020). In view of this, it is natural to ask whether MFL-
SDA can achieve a similar last-iterate convergence rate in
the distributional space under the two-sided distributional
PL condition. These gaps in understanding motivate our
central question:

Can the discrete time MFL-SDA for (1) achieve a
last-iterate complexity similar to that of minimax
problems in the Euclidean space?

1.1. Related Work

Mean Field Langevin Dynamics Our primary motiva-
tion stems from recent advancements in applying MFLD to
neural networks. The pioneering works of Mei et al. (2018);
Chizat & Bach (2018); Sirignano & Spiliopoulos (2020)
leveraged MFLD to establish global convergence guaran-
tees for (noisy) gradient descent in optimizing two-layer
neural networks. Building on these foundations, Chizat
(2022); Nitanda et al. (2022a) demonstrated that, under
the log-Sobolev inequality–the distributional counterpart
of the PL condition, continuous-time MFLD for distribu-
tional minimization can achieve an exponential convergence
rate. Furthermore, Nitanda et al. (2022a) showed that the
discrete-time MFLD enjoys a convergence guarantee with
a complexity of O( 1ϵ log(

1
ϵ )). This rate also extends to set-

tings involving stochastic gradient oracles and finite-particle
approximations, as established by Suzuki et al. (2024). Our
discrete-time analysis draws inspiration from a recent work
by Wang et al. (2024), which established the convergence of
MFLD in discrete time for one-hidden layer neural network
with softmax activations and a square loss.

Distributional Minimax Optimization Compared to dis-
tributional minimization problems, the study of MFLD in
distributional minimax problems remains limited, particu-
larly in the discrete-time setting. The most relevant work in
this area is by Kim et al. (2024), who investigated the conver-
gence of general convex-concave functionals in both contin-
uous and discrete time. Rather than analyzing the standard
MFL-DA algorithm, they proposed two alternative meth-
ods: the Mean-Field Langevin Averaged Gradient (MFL-
AG) (Tao et al., 2021) and the Mean-Field Langevin An-
chored Best Response (MFL-ABR) algorithm (Lascu et al.,
2023). MFL-AG updates are computed using a weighted
average of past gradients instead of the current gradient.
For the discrete-time setting with a stochastic oracle, they
demonstrated that the average-iterate convergence rate to
an ϵ-optimal saddle point is O(ϵ−1−O(1/α)), where α is
the log-Sobolev constant. They derived an O(1/d) bound
for α and noted that this dependence on the dimension of
the sample space can sometimes be avoided. MFL-ABR
is a double-loop algorithm, with the outer loop having an
iteration complexity of O( 1ϵ log

1
ϵ ). Additionally, Cai et al.

(2024) analyzed MFL-SDA with a bilinear functional and
a strongly convex-concave interaction function, an assump-
tion not applicable in our context. Wang & Chizat (2022)
introduced and analyzed a particle-based method inspired
by the mirror prox algorithm in Euclidean space.

In addition, there has been some convergence analysis for
MFL-DA in continuous time. Domingo-Enrich et al. (2020),
Ma & Ying (2021) and Lu (2023) studied its convergence
for finding the saddle point of an entropy-regularized ob-
jective. Qualitative convergence results were established
in Domingo-Enrich et al. (2020), while Ma & Ying (2021)
proved the asymptotic convergence under quasi-static con-
ditions, where the ascent dynamics is infinitely faster or
slower than the descent dynamics. Lu (2023) provided non-
asymptotic exponential convergence rates with based on a
two-sided PL condition. Zhu et al. (2024) demonstrated
a sublinear convergence rate for the stochastic gradient
descent-ascent algorithm for solving functional minimax
optimization using mean-field neural networks, and showed
that the discrete-time algorithm converges to its continuous-
time counterpart.

Eucliean Minimax Optimization There is a substantial
body of research on minimax optimization problems in
Euclidean space (e.g., see recent works of Daskalakis &
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Panageas (2018); Doan (2022); Jin et al. (2020); Lin et al.
(2020); Li et al. (2022)), encompassing both the convex-
concave setting and more general scenarios. Among these
studies, some provide valuable insights for our work. For
instance, Doan (2022) analyzed the convergence properties
in Euclidean space under the PL condition using continuous-
time analysis. Similarly, Yang et al. (2020) proposed a
(stochastic) alternating gradient descent-ascent algorithm
under the PL condition. We aim to achieve a similar conver-
gence result in the distributional space.

1.2. Main contributions

We establish the last-iterate convergence rate of the MFL-
SDA algorithm in discrete time. Our O( 1ϵ log

1
ϵ ) bound is

nearly optimal, comparable to the O( 1ϵ ) bound for minimax
problems in Euclidean space, and aligns with the O( 1ϵ log

1
ϵ )

complexity of mean-field Langevin stochastic gradient de-
scent in distributional minimization problems (Suzuki et al.,
2024) and the outer-loop iteration complexity of the double-
loop MFL-ABR algorithm (Kim et al., 2023).

Unlike previous studies that rely on PDE-based techniques,
our proof is elementary and bears more resemblance to
analyses conducted in Euclidean space. Our perturbation
analysis is flexible enough to overcome the limitations of
existing discrete-time algorithm analyses and thereby im-
proves the convergence rate.

We apply our findings to several applications, including
zero-sum games and mean field neural networks, and verify
the essential assumptions required to ensure the theoretical
convergence of MFL-SDA in these contexts.

2. Preliminaries
2.1. Problem Setup

Let P(RdΘ) (resp., P(RdΩ)) denote the space of probability
distributions on RdΘ (resp., RdΩ) where the entropy and
second-order moment are well-defined. Let J : P(RdΘ)×
P(RdΩ) → R be a convex-concave functional, in the sense
that for any distributions µ1, µ2 ∈ P(RdΘ) and ν1, ν2 ∈
P(RdΩ) and any t ∈ [0, 1], the following conditions hold

J(tµ1 + (1− t)µ2, ν1) ≤ tJ(µ1, ν1) + (1− t)J(µ2, ν1),

J(µ1, tν1 + (1− t)ν2) ≥ tJ(µ1, ν1) + (1− t)J(µ1, ν2).

We consider the following energy functional

E(µ, ν) := J(µ, ν) + τKL(µ|ρµ)− τKL(ν|ρν), (2)

where KL(µ|ρµ) = Eµ

[
log
(

dµ
dρµ

)]
denotes the Kullback-

Leibler (KL) divergence; the reference distributions ρµ, ρν

are assumed to be standard Gaussian for simplicity, though
they can be generalized to distributions with a strongly con-
vex potential. The hyperparameter τ > 0 controls the reg-
ularization. This setup aligns with Kim et al. (2023) but

differs slightly from Lu (2023), who considered entropy reg-
ularization. When the reference distributions are standard
Gaussians, the KL divergence is equivalent to the entropy
plus the second-order moment of the distribution. With KL
(or entropy) regularization, the energy functional E(µ, ν)
is strongly convex in µ and strongly concave in ν, which
ensures the existence and uniqueness of the mixed Nash
equilibrium (µ∗, ν∗) (Kim et al., 2024, Proposition 2.1),
where

E(µ∗, ν) ≤ E(µ∗, ν∗) ≤ E(µ, ν∗), ∀µ, ν. (3)

Denote by δJ
δµ [µ, ν](·) and δJ

δν [µ, ν](·) the first variations of
J with respect to µ and ν, respectively, which are assumed
to be well-defined throughout. Convexity/concavity can be
also defined via first variations, as detailed in Appendix
A.1. Denote by θ and ω the random variables with distri-
butions µ and ν, respectively. Denote by ∇ δJ

δµ [µ, ν](·) and
∇ δJ

δν [µ, ν](·) the Wasserstein gradients of J with respect
to µ and ν, respectively. For more details on Wasserstein
gradient flow, see Ambrosio et al. (2008); Santambrogio
(2015) .

The continuous-time mean-field gradient flow of (2) is given
by

dθt = −∇δJ

δµ
[µt, νt](θt)dt− τθtdt+

√
2τdB1

t ,

dωt = η ·
(
∇δJ

δν
[µt, νt](ωt)dt− τωtdt+

√
2τdB2

t

)
.

(4)
Here, µt and νt are the distributions of θt and ωt at
time t, respectively. The drift terms ∇ δJ

δµ [µt, νt](θt) and
∇ δJ

δν [µt, νt](ωt) are the Wasserstein gradients with respect
to µt and νt at time t, while {B1

t }t, {B2
t }t are two inde-

pendent Brownian motions initialized at zero. The decay
terms τθt and τωt correspond to the second-order moment
regularization associated with the KL regularization. To
simplify the presentation, we set the scaling factor and the
weight decay to be the same as the hyperparameter for KL
regularization, corresponding to the standard Gaussian, but
our analysis can be easily extended to other choices. The
scaling factor η > 0 follows from the formulation in Lu
(2023), who derived an exponential convergence of (4) to
the saddle point.

Algorithm 1 Mean field Langevin Stochastic Descent-
Ascent (MFL-SDA)

1: Initialize µ0, ν0, K
2: for k = 1 to K − 1 do
3: θk+1 ← θk − η1(∇̂ δJ

δµ
[µk, νk](θk) + τθk) +

√
2η1τξ

1
k

4: ωk+1 ← ωk+η2(∇̂ δJ
δν

[µk+1, νk](ωk)−τωk)+
√
2η2τξ

2
k

5: end for

In this paper, we focus on the discrete-time counterpart of
(4), as outlined in Algorithm 1. In this algorithm, ∇̂ denotes
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an unbiased stochastic gradient estimator, and ξ1k and ξ2k
are independent standard normal random variables sampled
at each iteration k. The algorithm employs dynamics with
two timescales, η1, η2 > 0, aligning with the continuous-
time updates in Lu (2023) and the discrete-time Euclidean
updates in Yang et al. (2020). Additionally, the updates
for µ and ν are performed alternately, following a strategy
similar to Yang et al. (2020) for Euclidean spaces. Our
primary goal of this work is to analyze the convergence of
Algorithm 1 to the saddle point (µ∗, ν∗).

2.2. Log-Sobolev Inequality

Unlike minimax problems in Euclidean space, the convex-
concave property of the energy functional does not provide
immediate algorithmic benefits for gradient-based methods
in the Wasserstein space1. Conversely, a more generalized
notion, the Polyak-Łojasiewicz (PL) condition, has proven
useful for analyzing the gradient flow in the distribution
space. In Euclidean space, the PL condition facilitates a
linear convergence rate (Karimi et al., 2016). Extending
this notion to distribution spaces leads to the log-Sobolev
inequality, which has been employed in the analysis of opti-
mization over distribution spaces with MFLD (Chizat, 2022;
Nitanda et al., 2022a; Lu, 2023; Kim et al., 2023).

Definition 1. A distribution ν satisfies the log-Sobolev in-
equality with parameter α > 0 if, for all µ ≪ ν, the follow-
ing holds:

KL(µ|ν) ≤ 1

2α
I(µ|ν), (LSI)

where the relative Fisher information I(µ|ν) is defined as

I(µ|ν) := Eµ

[∥∥∥∇ log
dµ

dν

∥∥∥2] .
2.3. Gibbs Distributions

To define the optimizer of the inner maximization in (2), we
introduce several Gibbs distributions. We define the Gibbs
operators K+

µ [·] and K−
ν [·] as

K+
µ [ν](ω) ∝ exp

(
τ−1 δJ

δν
[µ, ν](ω)− ∥ω∥22

2

)
, (5)

K−
ν [µ](θ) ∝ exp

(
− τ−1 δJ

δµ
[µ, ν](θ)− ∥θ∥22

2

)
. (6)

When the energy functional J(µ, ν) is bilinear in
µ and ν, Lu (2023) demonstrated that K+

µ [ν] =
argmaxν∈P(RdΩ ) E(µ, ν). However, this equality no
longer holds when J(µ, ν) is a general nonlinear functional.

1In fact, another notion of convexity, known as displacement
convexity or geodesic convexity, is more applicable for studying
gradient flow in the Wasserstein space (Villani, 1998; Ambrosio
et al., 2008), which is not satisfied in our setting.

To address this, we consider the fixed point of (5), defined
as

K+
∗ [µ](ω) :=

1

Z∗(µ)
exp

(
τ−1 δJ

δν

[
µ,K+

∗ [µ]
]
(ω)−∥ω∥22

2

)
,

where

Z∗(µ) :=

∫
RdΩ

exp
(
τ−1 δJ

δν

[
µ,K+

∗ [µ]
]
(ω)− ∥ω∥22

2

)
dω

is a normalization constant. It can be verified that K+
∗ [µ]

satisfies the following equation of ν:

δJ

δν
[µ, ν](ω)− τ

∥ω∥22
2

− τ log ν(ω) = const, ∀ω,

where the constant is independent of ω but may depend on µ.
Observe that the above equation is the first-order condition
for the problem maxν∈P(RdΩ ) E(µ, ν). Thus we have

E
[
µ,K+

∗ [µ]
]
= max

ν∈P(RdΩ )
E(µ, ν) =: E∗(µ). (7)

This will be frequently used in our convergence analysis.

3. Main Results
The goal of this section is to establish the convergence of
MFL-SDA (Algorithm 1). Following Yang et al. (2020); Lu
(2023), we introduce the Lyapunov function

L(µ, ν) := L1(µ) + λL2(µ, ν),

where λ > 0 is a fixed constant, and

L1(µ) := max
ν′∈P(RdΩ )

E(µ, ν)− min
µ′∈P(RdΘ )

max
ν′∈P(RdΩ )

E(µ′, ν′),

L2(µ, ν) := max
ν′∈P(RdΩ )

E(µ, ν′)− E(µ, ν).

(8)
Note that L1 and L2 are both non-negative and vanish if and
only if (µ, ν) = (µ∗, ν∗) in the weak sense.

We begin by stating our main assumptions.

3.1. Assumptions

We impose the following assumptions.
Assumption 1 (Initial condition). The initial iterate (µ0, ν0)
satisfies E(µ0, ν0) < ∞, and the initial third-order mo-
ments satisfy Eµ0

[∥θ0∥42],Eν0
[∥ω0∥42] < ∞.

Assumption 2 (Regularity of functional J). The functional
J(µ, ν) is convex in µ and concave in ν. The first varia-
tions of J have bounded derivatives up to the fourth or-
der: ∥∇i δJ

δµ∥F , ∥∇
i δJ
δν ∥F ≤ Mi, i = 1, . . . , 4, where

∥ · ∥F is Frobenius norm. Additionally, J has a bounded
cross second-order variation: ∥ δ2J

δµδν ∥∞ ≤ C0. More-
over, the Hessian of its second variations are bounded:
∥∇θ∇⊤

θ′
δ2J
δµ2 ∥F , ∥∇θ∇⊤

ω
δ2J
δµδν ∥F , ∥∇ω∇⊤

ω′
δ2J
δν2 ∥F ≤ C1,

∥∇θ
δ2J
δµδν ∥∞, ∥∇ω

δ2J
δµδν ∥∞ ≤ C2.
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Assumption 3 (Log-Sobolev inequality). For any µ ∈
P(RdΘ), ν ∈ P(RdΩ), the measures K+

µ [ν],K−
ν [µ] satisfy

LSI with parameter α.

We will validate these assumptions in various applications,
as discussed in Section 4 and Appendix B.1.
Remark 1. Using Suzuki et al. (2024); Kim et al. (2023),
Asssumption 2 implies Assumption 3 with a conservative
LSI constant; see Lemma 5 in the Appendix.
Remark 2. For simplicity, we assume dΘ = dΩ = d in
proofs related to convergence rates.

3.2. Convergence Analysis

At a high level, our analysis framework parallels that of
stochastic gradient descent-ascent in Euclidean spaces (e.g.,
Yang et al. (2020)). However, analyzing the evolution of
distributions in our problem presents greater challenges.
Specifically, the noise terms ξ1k and ξ2k introduce time-
discretization error terms that do not appear in Euclidean
problems, even when the gradient oracle is exact. To show
that these errors are negligible higher-order terms, most
existing analyses leverage the connection between discrete-
time updates and continuous-time gradient flow (4) (e.g.,
Vempala & Wibisono (2022); Nitanda et al. (2022a); Suzuki
et al. (2024); Kim et al. (2024)). In contrast, we directly
analyze the discrete-time updates and carefully bound the
higher-order terms in Taylor expansions through integra-
tion by parts and the divergence theorem. As will be seen
from Theorem 2, our approach is flexible enough to handle
the stochastic gradient oracle in a straightforward manner,
similar to the Euclidean case.

Below, to illustrate the main idea, we first present the conver-
gence analysis of MFL-DA, where the algorithm has access
to exact gradients, then extend our results to MFL-SDA in
Section 3.3.

Observe that
L(µk+1, νk+1)− L(µk, νk)

=L1(µk+1)− L1(µk) + λ(L2(µk+1, νk+1)− L2(µk, νk)).

In the following, we bound the two terms L1(µk+1) −
L1(µk) and L2(µk+1, νk+1)−L2(µk, νk) in Sections 3.2.1
and 3.2.2, respectively. Once these bounds are established,
we sum them over all iterations and apply a telescoping
argument to derive the overall convergence rate in Section
3.2.3.

To simplify the presentation, we define

gk := ∇δJ

δµ
[µk, νk](θk) + τθk,

hk := ∇δJ

δν
[µk+1, νk](ωk)− τωk,

fk := ∇δJ

δµ
[µk,K+

∗ [µk]](θk) + τθk,

where fk, depending on the Gibbs distribution K+
∗ [µk], is

only used for theoretical analysis but not in the implemen-
tation of algorithm. Moreover, we omit the constants ap-
pearing in the higher-order error bounds, whose explicit
expressions are provided in Appendix A.3.

3.2.1. BOUNDING L1(µk+1)− L1(µk)

By definition of L1 in (8) and E∗ in (7), it holds that

L1(µk+1)− L1(µk) = E∗(µk+1)− E∗(µk).

We have the following result.
Proposition 1. Assume Assumptions 1-3 hold. Let η1 < 1

C1
.

Then it holds that

L1(µk+1)− L1(µk) ≤

− η1
2

(
Eµk

[∥fk +∇ logµk∥22]− Eµk
[∥gk − fk∥22]

)
+ Γ0η

2
1 ,

where remainder Γ0 is defined in Appendix A.3.

Proposition 1 establishes that the difference L1(µk+1) −
L1(µk), or equivalently, E∗(µk+1)− E∗(µk), is bounded
by the squared Wasserstein gradient norm of E∗(µ) at µk.
The bound consists of two dominant terms, corresponding
to the squared norm of the partial Wasserstein gradients of
E
(
µ,K+

∗ [µ]
)
—an equivalent form of E∗(µ)—with respect

to the first and second arguments of the energy functional E.
The first term arises from the outer minimization problem
in (2) with respect to µ, while the second term serves as
a correction due to the inner maximization in (2) over ν.
This result parallels the convergence analysis in Euclidean
space (Yang et al., 2020). However, obtaining the O(η21)
remainder requires significant effort, as it involves analyzing
the smoothness of the functional E∗(µ), which, in turn, de-
pends on the smoothness of the operator K+

∗ [µ]; see Lemma
9 in the Appendix for details.

3.2.2. BOUNDING L2(µk+1, νk+1)− L2(µk, νk)

By definition, we have

L2(µk+1, νk)− L2(µk, νk)

=
(
E∗(µk+1)− E∗(µk)

)
+
(
E(µk, νk)− E(µk+1, νk)

)
.

We have already established an upper bound on the first
difference above in Proposition 1. It remains to bound the
second difference.
Lemma 1. Assume Assumptions 1-3 hold. Then we have

E(µk+1, νk+1)− E(µk+1, νk)

≥ η2Eνk
[∥hk − τ∇ log νk∥22]− Γ2η

2
2 .

Similarly, we have

E(µk+1, νk)− E(µk, νk)

≤− η1Eµk
[∥gk +∇ logµk∥22] + Γ1η

2
1 .

Here, the remainders Γ1 and Γ2 are defined in Appendix A.3.
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This lemma provides a lower bound on the per-step objective
improvement for the inner gradient ascent and outer gradient
descent in solving (2). The leading terms in both bounds
correspond to the squared Wasserstein gradient norm with
respect to νk and µk, respectively. The O(η21) and O(η22)
bias terms arise from time discretization and are consistent
with the results of Nitanda et al. (2022a) for distributional
convex minimization problems.

Using Lemma 1 and Assumption 3, the following result is
immediate.

Lemma 2. Assume Assumptions 1-3 hold. Then we have

L2(µk+1, νk+1) ≤ (1− 2η2τα)L2(µk+1, νk) + Γ2η
2
2 .

Using the bound in Proposition 1 and combining Lemma 1
and Lemma 2, we obtain the following bound on the differ-
ence between L2(µk+1, νk+1) and L2(µk, νk).

Proposition 2. Assume Assumptions 1-3 hold. Then we
have

L2(µk+1, νk+1) ≤

(1− 2η2τα)
(
L2(µk, νk) + η1Eµk

[∥gk +∇ logµk∥22]

− η1
2
Eµk

[∥fk +∇ logµk∥22] +
η1
2
Eµk

[∥gk − fk∥22]
)

+ Γ2η
2
2 + (1− 2η2τα)(Γ1 + Γ0)η

2
1 .

Combining Propositions 1 and 2 yields a recursive bound
on the Lyapunov function L.

3.2.3. CONVERGENCE OF MFL-DA

By applying Propositions 1 and 2, and using an argument
similar to that in the Euclidean case (Yang et al., 2020),
we can establish the following convergence result for MFL-
DA. Note that different learning rates η1, η2 are employed
to ensure convergence, as is commonly done (Yang et al.,
2020; Lu, 2023).

Theorem 1. Assume Assumptions 1-3 hold. Set τ < 1
2C2

1
,

η1 ≤ 1
C1

, η2 ≤ 1
2τα and η1 = min{λ, 0.2, 1

τα}ταη2, then
it holds that

L(µK , νK) ≤ (1− 2η1τα)
KL(µ0, ν0) +R1, (9)

where R1 =
λ(Γ2η

2
2+(1−2η2τα)(Γ1+Γ0)η

2
1)+Γ1η

2
1

η1τα
.

Theorem 1 demonstrates that the Lyapunov function L(µ, ν)
converges to a bias R1 at a geometric rate. This geo-
metric decay aligns with the exponential decay observed
in the continuous-time case, as established by Lu (2023).
The bias term R1, which results from time discretization,
is of order O(η1). To assess the algorithm’s complexity,
since in practical algorithm we often assume τ, η1, η2 is

small, then the remainder rg4, rh4 in Appendix A.3 caused
by the fourth moment has max{O(1), τ2d2} scale. Sub-
stitute into Γ0,Γ1,Γ2 we can get an estimation of these
bias term: Γ0 = max{O(1), τd, τ2d2, d

α1/2τ
} , Γ1(2) =

max{O(1), τd, τ2d2} . Replace them into R1 we can get a
worst bound R1 = O( dη1

τ3α3 ). Let R1 = ϵ, then choose η1 =

O( ϵτ
3α3

d ) to get a sample complexity K = O( d
ϵτ4α4 log

1
ϵ )

. This complexity matches that of MFLD for distributional
convex minimization (Nitanda et al., 2022a) and the outer-
loop complexity of discrete-time MFL-ABR (Kim et al.,
2024), and the sample complexity K = O( d

ϵτ2α2 log
1
ϵ ) in

(Nitanda et al., 2022b) who discussed about discrete-time
MFLD in the single minimization problem, the higher order
of τ, α is because the two-timescale optimization scheme
in minimax problem, hence the efficiency of this algorithm
mainly depends on the slower part, which is the descent part
in our paper.

Comparatively, in the Euclidean case, the (exact) gradient
descent-ascent method (Yang et al., 2020, Theorem 3.1 with
σ = 0) achieves a linear convergence rate of O( 1ϵ ), where
the bias term is absent. This is because, in the Euclidean
setting, higher-order terms in the Taylor expansion can be
absorbed into the first-order squared gradient norm, result-
ing in a contraction of the Lyapunov function. However, in
our distributional case, the randomness introduced by Gaus-
sian noise prevents the absorption of higher-order terms into
the first-order term, leading to a sublinear convergence rate.
Remark 3. Similar to Lu (2023), we can also consider the
Lyapunov function L3(ν) + λL4(µ, ν), where

L3(ν) := max
ν′∈P(RdΩ )

min
µ′∈P(RdΘ )

E(µ′, ν′)− min
µ′∈P(RdΘ )

E(µ′, ν),

L4(µ, ν) := E(µ, ν)− min
µ′∈P(RdΘ )

E(µ′, ν),

which is useful for max-min problem. The result is similar
to Theorem 1 but with a reverse scaling of η1 and η2.

3.3. Convergence of MFL-SDA

In the previous subsection, we assumed the availability of
exact gradients. In practice, however, we often work with
stochastic gradients, where the exact gradient is replaced
by an unbiased estimate. Thanks to the similar high-level
structure of our analysis to the Euclidean case (Yang et al.,
2020), our results can be extended to the stochastic gradient
setting in a straightforward manner. We can show that the
convergence rate of MFL-SDA is analogous to that of MFL-
DA, with the same geometric decay rate and bias term. The
main difference is that the bias term now depends on the
higher-order moments of the stochastic gradients.

Assumption 4 (Bounded moments). There exists ζ ≥ 0
such that

E[∥ĝk − gk∥4|µk, νk], E[∥ĥk − hk∥4|µk+1, νk] ≤ ζ,
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We have the following result for MFL-SDA analogous to
Theorem 1.

Theorem 2. Under the same setup as in Theorem 1, and
assume further that Assumption 4 holds. Then we have

E[L(µK , νK)] ≤ (1− 2η1τα)
KL(µ0, ν0) +R2,

where R2 =
λ(Γ̂2η

2
2+(1−2η2τα)(Γ̂1+Γ̂0)η

2
1)+Γ̂1η

2
1

η1τα
with Γ̂0, Γ̂1,

Γ̂2 defined in (17), and the expectation is taken over the
randomness in the stochastic gradients.

This result demonstrates that the convergence rate of MFL-
SDA (Algorithm 1) is O( 1ϵ log

1
ϵ ). This rate is nearly op-

timal when compared to the O( 1ϵ ) convergence rate of
stochastic gradient descent-ascent for minimax optimiza-
tion with a two-sided PL condition in Euclidean space, as
discussed in Yang et al. (2020).

Proof Sketch. Let Hk be σ-field generated by the ran-
dom gradients up to iteration k − 1. Similar to the Eu-
clidean case, at iteration k, we analyze the impact of using
stochastic gradient oracles on the bound E[L(µk+1, νk+1) |
Hk] − L(µk, νk). By controlling the second- and third-
order moments of the stochastic gradients, we ensure that
the convergence properties established in Section 3.2.3 re-
main valid, albeit with additional error terms. Specifically,
thanks to the unbiasedness of the stochastic gradients and
the moment bounds in Assumption 4, the error term intro-
duced by stochastic gradients is O(η2) or higher order. This
holds for both the squared gradient norm and the entropy
regularization. By carefully bounding these error terms,
we show that the overall convergence result holds with a
modified remainder term that accounts for the inexactness
of the gradient.

Furthermore, leveraging the connection between the Lya-
punov function and KL-divergence, we can also obtain con-
vergence rate in terms of KL-divergence to (µ∗, ν∗) and
further in terms of Wasserstein distance.

Corollary 1 (Convergence in KL-divergence / Wasserstein
distance). Under the same setup as in Theorem 2, suppose
that K+

∗ [µ] and K−
∗ [ν] satisfy LSI with constant α1, then it

holds that

2τ

α1
(W2

2(µk, µ
∗) +W2

2(νk, ν
∗))

≤ τ(KL(µK |µ∗) + KL(νK |ν∗))
≤ (1− η1τα)

KQL(µ0, ν0) +QR1,

where Q =
(
1 + ( 2λ +

4C2
0

τ2 )
)

and W2 denotes the 2-
Wasserstein distance.

Similar to Remark 1, Assumption 2 implies a conservative
upper bound on the LSI constant α1. Kim et al. (2023)

established that the stochastic MLF-AG achieves a con-
vergence rate of O(ϵ−1−O(α−1)) in terms of the squared
1-Wasserstein distance, where α is the LSI constant in As-
sumption 3. Since W2 upper bounds W1, Corollary 1 im-
proves the existing complexity bound for stochastic MLF-
AG, particularly when the log-Sobolev constant α is small.
Notably, it surpasses the conservative α = O(1/d) bound
established in Proposition 3.2 of their paper.

4. Applications
4.1. Zero-Sum Games

Zero-sum games are widely applicable in economics, oper-
ations research, and reinforcement learning. These games
involve a payoff function G(θ, ω), which defines the interac-
tion between two players’ strategies θ and ω. While finding
a pure Nash equilibrium can be challenging or even impos-
sible when G is nonconvex-nonconcave, a mixed Nash equi-
librium (MNE) often exists. In an MNE, players optimize
their mixed strategies, represented as probability distribu-
tions over available actions.

Following Lu (2023), consider a bilinear distributional min-
imax optimization problem, where the strategies of two
players are represented by probability distributions µ ∈ P1

and ν ∈ P2. The energy functional J(µ, ν), which captures
the expected payoff, is expressed as

J(µ, ν) = Eµ⊗ν [G(θ, ω)]. (10)

The goal is to find an MNE (µ∗, ν∗) that satisfies µ∗ ∈
argminµ∈P1

E(µ, ν∗) and ν∗ ∈ argmaxν∈P2
E(µ∗, ν).

This formulation extends the classical minimax problem
to a distributional setting, where players optimize over prob-
ability measures rather than deterministic strategies.

Example 1 (GAN). Consider the following generative ad-
versarial network with an integral probability metric:

min
µ∈P(RdΘ )

max
f∈F

{
Eµ[f ]− Epdata

[f ]
}
,

where pdata is the real data distribution, µ is the distribution
of the generated data, and f is a discriminator function. Sup-
pose that the discriminator function f is parameterized by a
(infinite-width) two-layer neural network with an activation
function σ(·, ω) parameterized by ω under the mean-field
scaling, so that every function f ∈ F can be expressed as

f(θ) = Eω∼ν [σ(θ, ω)].

Then the generative adversarial network can be formulated
as a distributional minimax optimization problem with

J(µ, ν) = Eµ

[
Eν [σ(θ, ω)]

]
− Epdata

[
Eν [σ(θ, ω)]

]
,

which is a bilinear functional. ♢

7
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The bilinear nature of the functional J simplifies the analy-
sis, as the Wasserstein gradients are given by

∇θ
δJ

δµ
[µ, ν] = Eω∼ν [∇θG(θ, ω)],

∇ω
δJ

δν
[µ, ν] = Eθ∼µ[∇ωG(θ, ω)].

and the Gibbs distribution K+
µ [ν] satisfies the first-order

optimality condition of the inner maximization problem in
(1). Under mild regularity conditions on G, we can verify
that Assumptions 2-3 are satisfied.

Proposition 3. Assume the payoff function G satisfies that
∥∇iG∥F ≤ Gi, i = 0, 1, . . . , 4. Then the functional J in
(10) satisfies Assumption 2, and Assumption 3 holds with
α = 1

exp(2G0τ−1) .

4.2. Mean-Field Neural Networks

Consider a functional minimax problem

min
f

max
g

Ez∼D[F (f(z), g(z), z)], (11)

where f and g are functions of a variable z. The objective
function F is convex in f and concave in g, and the expec-
tation is taken with respect to z ∼ D. We parameterize
f and g as infinite-width two-layer neural networks with
activations σ1 and σ2, respectively:

f(z) = Eθ∼µ[σ1(θ, z)], g(z) = Eω∼ν [σ2(ω, z)].

This transforms the original problem into a minimax prob-
lem in distributional space:

min
µ

max
ν

Ez∼D
[
F (Eθ∼µ[σ1(z, θ)],Eω∼ν [σ2(z, ω)], z)

]
.

(12)

Example 2 (Functional Conditional Moment Equations).
The conditional moment equation is a fundamental prob-
lem in econometrics and statistics. Given a dataset z =
(X,Y ) ∼ D, the goal is to find a function f that solves
the following functional equation involving the conditional
distribution of X given Z:

EY |X [Φ(f(X,Y ), Y ) | X = x] = 0, ∀x,

where Φ is a known function that is convex in f . Examples
of Φ include conditional moment equations in nonparamet-
ric instrumental variable regression, policy evaluation in
reinforcement learning, and asset pricing models in finance
(Zhu et al., 2024). Using a Lagrangian dual function g,
this problem can be formulated as a distributional minimax
optimization problem by setting g(z) = g(X) and

F (f, g, z) = gΦ(f, Y ). ♢

Example 3 (Feature-based Policy Learning). Feature-based
decision-making (Yang et al., 2022) aims to find a policy
f from a set of features X to an action f(X). Given
a data set z = (X,Y ) ∼ D, where Y is some exoge-
nous random variable, the goal is to minimize the ex-
pected loss ED[ℓ(f(X), Y )], subject to feasibility con-
straints Af(X) ≤ b for every X . By introducing a La-
grangian dual function g(z) = g(X), this problem can be
formulated as a distributional minimax optimization prob-
lem with the objective

F (f, g, Z) = ℓ(f, Z) + g(Af − b). ♢

We introduce regularity assumptions on F and σ1, σ2, which
implies Assumption 2.

Assumption 5. The function F (x, y) is convex-concave,
L-smooth in both x and y, and has bounded deriva-
tives (i.e., ∥F ′

x∥, ∥F ′
y∥ ≤ F1). Moreover, we assume

that σ1, σ2 has bounded gradients up to fourth-order, i.e.,
∥∇iσ1∥, ∥∇iσ2∥ ≤ mi, i = 0, 1, . . . , 4.

Under this regularity condition, we can also show that
the Gibbs distributions K+

µ [ν] and K−
ν [µ] satisfy the log-

Sobolev inequality, which verifies Assumption 3.

Proposition 4. Under Assumption 5, (12) satisfies As-
sumption 2. Meanwhile, for J(µ, ν) defined in (12), we
have K+

µ [ν] ∈ L1(RdΩ) and K−
ν [µ] ∈ L1(RdΘ) and they

both satisfy the Log-Sobolev inequality with parameter
α1 = 1

exp(2F1m0τ−1) .

5. Conclusion
In this paper, we establish an Õ(1/ϵ) last-iterate conver-
gence guarantee for the Mean-Field Langevin Stochastic
Descent Ascent (MFL-SDA) algorithm. We also explore
several common applications, including zero-sum games
and mean-field neural networks.

There are several directions for future research. First, in
practical applications, the MFL-SDA algorithm often re-
quires finite-particle approximation, which calls for further
analysis to establish uniform-in-time propagation of chaos.
To address this issue, our analysis can be combined with
the techniques from Chen et al. (2022); Suzuki et al. (2023;
2024); Nitanda (2024); Kim et al. (2023). Second, while
our results apply to a broad class of nonlinear functionals,
more specialized analyses for specific functionals–such as
bilinear forms or convex-concave functions of expectations–
may lead to sharper convergence guarantees. Lastly, our
current algorithm follows a two-time-scale framework with
a relatively large time-scale ratio, in line with Yang et al.
(2020); Lu (2023). It remains an open question whether a
single-timescale approach could be advantageous in certain
settings, as highlighted in Wang & Chizat (2024).
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Impact Statement
This paper presents work whose goal is to advance the theo-
retical understanding of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Notation and Definition
A.1. First-variation of functional

Let J be a functional on P(RdΘ) → R, its first-variation δJ
δµ [µ] at µ is defined as a functional P(RdΘ)×Θ → R satisfying

for all ν ∈ P(RdΘ)

lim
ϵ→0

d

dϵ
J(µ+ ϵ(ν − µ)) =

∫
Θ

δJ

δµ
[µ](θ)(ν − µ)dθ. (13)

The first-variation δJ
δµ [µ] is unique up to an additive constant, and for simplicity, we let

∫
Θ

δJ
δµ [µ]dµ = J(µ). For example,

the first variation of F (µ) =
∫
Θ
fdµ with respect to µ is exactly f .

The convexity of J can also be expressed via its first variation, i.e. for all ν ∈ P(RdΘ):

J(ν) ≥ J(µ) +

∫
Θ

δJ

δµ
[µ](θ)(ν − µ)(dθ). (14)

And if J is concave if −J is convex.

A.2. Tensor representation

For a function f(x) : Rd → R, consider its Tayler expansion, we may denote the twice and third order derivative
∇2f(x) ∈ Rd×d and ∇3f(x) ∈ Rd×d×d as s tensor. i.e.

(∇2f(x))ij =
∂2f(x)

∂xi∂xj
, (∇3f(x))ijk =

∂3f(x)

∂xi∂xj∂xk
. (15)

And the inner product with vector can be defined as

⟨∇2f(x), h(x)⊗2⟩ = h(x)⊤∇2f(x)h(x), ⟨∇3f(x), h(x)⊗3⟩ =
∑
i,j,k

(∇3f(x))ijkh(x)ih(x)jh(x)k. (16)

A.3. Constants

In this section, we explicitly define the constants that have been used in the main content:



Γ0 = (
M2 + τ

2
r
1/2
g4 +

M3

6
(η1r

3/4
g4 + 6τdr

1/2
g4 +M2

2 τ/2 + 2d2M4τ
2 +

C1C2

α1/2τ
r
1/2
g4

+M4(η
4
1rg4 + 4

√
2η3.51 τ1/2m1r

3/4
g4 + 12dη31τr

1/2
g4 + 8

√
2m3τ

3/2η
5/2
1 r

1/2
g4 + 4η21τ

2d(d+ 2)),

Γ1 = (
M2 + τ

2
r
1/2
g4 +

M3

6
(η2r

3/4
g4 + 6τdr

1/4
g4 ) + (M2 + τ)2τ/2 + 2d2M4τ

2 +
C1

2
r
1/2
g4

+M4(η
4
2rg4 + 4

√
2η3.52 τ1/2m1r

3/4
g4 + 12dη32τr

1/2
g4 + 8

√
2m3τ

3/2η
5/2
2 r

1/4
g4 + 4η22τ

2d(d+ 2)),

Γ2 = (
M2 + τ

2
r
1/2
h4 +

M3

6
(η2r

3/4
h4 + 6τdr

1/4
h4 ) + (M2 + τ)2τ/2 + 2d2M4τ

2 +
C1

2
r
1/2
h4

+M4(η
4
2rh4 + 4

√
2η3.52 τ1/2m1r

3/4
h4 + 12dη32τr

1/2
h4 + 8

√
2m3τ

3/2η
5/2
2 r

1/4
h4 + 4η22τ

2d(d+ 2)),

where constants rg4, rh4 are defined as

{
rg4 = 8M4

1 + 8τ3((2(4τ + 2τd+ η31M
2
1 )

2/τ + η21M
4
1 + (8 + 4d)η1τM

2
1 + 16τ2(d2 + 2d))),

rh4 = 8M4
1 + 8τ3((2(4τ + 2τd+ η32M

2
1 )

2/τ + η22M
4
1 + (8 + 4d)η2τM

2
1 + 16τ2(d2 + 2d))).

11
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The above constants are used in the proof of Theorem 1, and the following constants are used in the proof of Theorem 2:

Γ0 = (
M2 + τ

2
R

1/2
g4 +

M3

6
(η1R

3/4
g4 + 6τdR

1/2
g4 +M2

2 τ/2 + 2d2M4τ
2 +

C1C2

α1/2τ
R

1/2
g4

+M4(η
4
1Rg4 + 4

√
2η3.51 τ1/2m1R

3/4
g4 + 12dη31τR

1/2
g4 + 8

√
2m3τ

3/2η
5/2
1 R

1/2
g4 + 4η21τ

2d(d+ 2)),

Γ1 = (
M2 + τ

2
R

1/2
g4 +

M3

6
(η2R

3/4
g4 + 6τdR

1/4
g4 ) + (M2 + τ)2τ/2 + 2d2M4τ

2 +
C1

2
R

1/2
g4

+M4(η
4
2Rg4 + 4

√
2η3.52 τ1/2m1R

3/4
g4 + 12dη32τR

1/2
g4 + 8

√
2m3τ

3/2η
5/2
2 R

1/4
g4 + 4η22τ

2d(d+ 2)),

Γ2 = (
M2 + τ

2
R

1/2
h4 +

M3

6
(η2R

3/4
h4 + 6τdR

1/4
h4 ) + (M2 + τ)2τ/2 + 2d2M4τ

2 +
C1

2
R

1/2
h4

+M4(η
4
2Rh4 + 4

√
2η3.52 τ1/2m1R

3/4
h4 + 12dη32τR

1/2
h4 + 8

√
2m3τ

3/2η
5/2
2 R

1/4
h4 + 4η22τ

2d(d+ 2)),

(17)

where constants Rg4, Rh4 are defined as
Rg4 = 8(M4

1 + ζ) + 8τ3((2(4τ + 2τd+ η31(M
2
1 + ζ1/2))2/τ

+ η21(M
2
1 + ζ1/2) + (8 + 4d)η1τ(M

2
1 + ζ1/2) + 16τ2(d2 + 2d))),

Rh4 = 8(M4
1 + ζ) + 8τ3((2(4τ + 2τd+ η32(M

2
1 + ζ1/2))2/τ

+ η22(M
2
1 + ζ1/2) + (8 + 4d)η2τ(M

2
1 + ζ1/2) + 16τ2(d2 + 2d))).

B. Preliminary Results
B.1. Log-Sobolev Inequality

In this section, we present some sufficient conditions for ensuring log-Sobolev inequality from the existing literature.
Lemma 3 (Bakry & Émery (2006)). If f : Rd → R is a function and ∇2f ⪰ αI , then the probability density ρ ∝ exp(−f)
satisfies LSI with constant α.
Lemma 4 (Holley & Stroock (1986)). Let ρ be a density satisfying LSI with constant α, then for a bounded function
B : Rd → R, the perturbed distribution

dpB(x) =
exp(B(x))ρ(x)

Eρ[exp(B(x)]
dx, (18)

satisfies LSI with parameter exp(−(supB − inf B))α.

Lemma 5 (Suzuki et al. (2024); Kim et al. (2023)). Let the probability measure µ ∝ exp(−τ−1h− ∥θ∥2
2

2 ) with ∥∇h∥ ≤ M1,
then µ satisfies LSI with constant

α ≥ 1

2
e−

4M2
1

τ2

√
2d
π ∨

(
4 +

(
M1

τ
+

√
2

)2(
2 + d+

4M2
1

τ2

)
e

M2
1

2τ2

)−1

.

B.2. Technical Lemmas

In this section, we give some technical lemmas from Wang et al. (2024) that are quite useful for the subsequent proofs. We
provide a self-contained proof for the sake of completeness.
Lemma 6. Let µ be a probability density and let ρϵ be its convolution with a normal distribution N(0, ϵI), then

Eρ[log ρϵ] ≤ Eρ[log ρ]−
ϵ

2
I(ρ),

where I(ρ) is Fisher information of ρ.

Proof of lemma 6. Define h : R+ → R as
h(ϵ) = Eρϵ

[log ρϵ].

Then by de Brujin’s identity (Stam, 1959), we have h′(ϵ) = − 1
2I(ρϵ) ≤ 0. Based on the data processing inequality, I(ρϵ) is

nonincreasing in ϵ, and hence h′ is nondecreasing. This establishes the convexity of h, and we arrive at

h(ϵ) ≤ h(0) + ϵh′(0),

which yields the desired result.

12
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Lemma 7. For measures νk+1, νk defined in Algorithm 1, we have

τH(νk+1)− τH(νk) ≥ η2Eνk
[∥τ∇ log νk∥22]− η2Eνk

[⟨hk, τ∇ log νk⟩]− Õ(τη22). (19)

Similarly, for µk+1, µk, we have

τH(µk)− τH(µk+1) ≤ −η2Eµk
[∥τ∇ logµk∥22]− η2Eµk

[⟨gk, τ∇ logµk⟩] + Õ(τη21). (20)

where Õ(τη2i ) = (M2 + τ)2τη2i /2 + 2d2M4τ
2η2i .

Proof of Lemma 7. We first prove (19). Let ν̄k+1 be the distribution of ω̄k+1 = T (ωk) with T (ωk) = ωk + η2hk and
ωk ∼ νk. With this definition, we can decompose H(µk)−H(µk+1) into the sum of the following two terms

−Eν̄k+1
[log ν̄k+1] + Eνk

[log νk] and Eν̄k+1
[log ν̄k+1]− Eνk+1

[log νk+1]. (21)

Note that T is invertible for 0 < η2 ≤ 1/M2. By the formula for change of variables, we arrive at

Eν̄k+1
[log ν̄k+1] =

∫
ν̄k+1(ω̄k+1) log ν̄k+1(ω̄k+1)dω̄k+1

=

∫
ν̄k+1(T (ωk)) log ν̄k+1(T (ωk))|det(∇T (ωk))|dωk

=

∫
νk(ωk) log νk(ωk)dωk −

∫
νk(ωk) log |det(∇T (ωk))|dωk

= Eνk
[log νk]− Eνk

[log |det(∇T )|].

(22)

Hence, the first term in (21) becomes

−Eν̄k+1
[log ν̄k+1] + Eνk

[log νk] = Eνk
[log |det(∇T )|]

= Eνk
[log det(I + η2∇hk(ωk))]

= Eνk
[Tr(η2∇hk(ωk) + η22(∇hk(ω̄k))

2/2)]

≥ η2Eνk
[∇ · hk]− (M2 + τ)2η22/2

= −η2Eνk
[⟨hk,∇ log νk⟩]− (M2 + τ)2η22/2.

(23)

Here, the last equality follows since

= Eνk
[∇ · hk] =

∫
Ω

νk∇ · hkdω = −
∫
Ω

hk · ∇νkdω = −Eνk
[⟨hk,∇ log νk⟩]. (24)

Note that νk+1 equals the convolution of ν̄k+1 and a Gaussian distribution N(0, 2η2τI). By Lemma 7, the second term in
(21) can be bounded by

τ(Eν̄k+1
[log ν̄k+1]−Eνk+1

[log νk+1]) ≥ η2Eνk
[∥τ∇ log νk∥22]− η2(Eνk

[∥τ∇ log νk∥22]−Eν̄k+1
[∥τ∇ log ν̄k+1∥22]), (25)

where the last term on the right-hand side can be further bounded by

Eν̄k+1
[∥∇ log ν̄k+1∥22] =

∫
ν̄k+1∥∇ log ν̄k+1∥22dω̄k+1

=

∫
νk∥∇ log νk(ωk)−∇ log |det(∇T (ωk))∥22dωk

≥ Eνk
[∥∇ log νk∥22]− 2

∫
∇ log ν⊤k ∇ log |det(∇T (ωk))|νk(ωk)dωk

≥ Eνk
[∥∇ log νk∥22]− 2η2 sup

ωk

∆2gk(ωk).

(26)

13
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Here, the last inequality follows since∣∣∣∣∫ ∇νk(ωk)
⊤∇ log |det(∇T (ωk))|dωk

∣∣∣∣ = ∣∣∣∣∫ νk(ωk)∆(log |det(∇T (ωk))|)dωk

∣∣∣∣
=

∫
νk(ωk)∆(tr(η2∇ · hk(ω̃k))dωk

= η2

∫
νk(ωk)∆

2 δJ

δν
[µk+1, νk](ω̃k)dωk.

(27)

Since ∆2hk < d2M4, it holds that

η2(Eνk
[∥τ∇ log νk∥22]− Eν̄k+1

[∥τ∇ log ν̄k+1∥22]) ≤ 2d2M4τ
2η22 . (28)

Combining these terms together we then obtain the desired result (19). Finally, note that (19) and (20) are symmetric. Hence,
(20) can be proved using a similar technique and we omit here for brevity.

Lemma 8. For any µ ∈ P(RdΘ) and ν ∈ P(RdΩ), the following inqualities hold:

τKL(µ|µ∗) ≤ L1(µ) ≤ τKL(µ|K−
µ [K+

∗ [µ]]),

τKL(ν|K+
∗ [µ]) ≤ L2(µ, ν) ≤ τKL(ν|K+

ν [µ]).

Proof of Lemma 8. We start by establishing the lower bound and upper bound of L2 via KL-divergence. Specifically,

L2(µ, ν) = τKL(ν|ρν)− τKL(K+
∗ [µ]|ρν) + J(µ,K+

∗ [µ])− J(µ, ν)

≥ τKL(ν|ρν)− τKL(K+
∗ [µ]|ρν)−

∫
δJ

δν
[µ,K+

∗ [µ]]d(ν −K+
∗ [µ])

≥ τKL(ν|K+
∗ [µ]),

L2(µ, ν) = τKL(ν|ρν)− τKL(K+
∗ [µ]|ρν) + J(µ,K+

∗ [µ])− J(µ, ν)

≤ τKL(ν|ρν)− τKL(K+
∗ [µ]|ρν) +

∫
δJ

δν
[µ, ν]d(K+

∗ [µ]− ν)

≤ τKL(ν|K+
ν [µ])).

(29)

The inequalities is a consequence of convex-concave property of functioinal J , see Appendix A.1. To prove inequalities of
L1(µ), we first need a symmetric functional of L1,L2, named L3,L4 defined by

L3(ν) := max
ν′∈P(RdΩ )

min
µ′∈P(RdΘ )

E(µ′, ν′)− min
µ′∈P(RdΘ )

E(µ′, ν),

L4(µ, ν) := E(µ, ν)− min
µ′∈P(RdΘ )

E(µ′, ν).
(30)

By the same technique as in (29), we can verify that

L4(µ, ν) ≤ τKL(µ|K−
µ [ν]). (31)

Then we arrive at
L1(µ) = max

ν′∈P(RdΩ )
E(µ, ν′)− min

µ′∈P(RdΘ )
max

ν′∈P(RdΩ )
E(µ′, ν′)

= max
ν′∈P(RdΩ )

E(µ, ν′)− min
µ′∈P(RdΘ )

E(µ′,K+
∗ [µ])

≤ E(µ,K+
∗ [µ])− min

µ′∈P(RdΘ )
E(µ′,K+

∗ [µ])

= L4(µ,K+
∗ [µ])

≤ τKL(µ|K−
µ [K+

∗ [µ]]).

(32)

14
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The inequality is since we fixed the value of second term in E. It remains to establish a lower bound for L1(µ). To this end,
we note that

logZ∗[αµ1 + (1− α)µ2]

= log

(∫
exp

(
α

∫
τ−1 δ

δν
J [µ1,K+

∗ [µ1]] + ∥ω∥22dµ
)
· exp

(
(1− α)

∫
τ−1 δ

δν
J [µ2,K+

∗ [µ2]] + ∥ω∥22dµ
)
dω

)
≤ log

((∫
exp

(∫
τ−1 δ

δν
J [µ1,K+

∗ [µ1]] + ∥ω∥22dµ
)
dω

)α

·
(∫

exp

(∫
τ−1 δ

δν
J [µ2,K+

∗ [µ2]] + ∥ω∥22dµ
)
dω

)1−α
)

= α logZ∗[µ1] + (1− α) logZ∗[µ2],

which verifies the convexity of logZ∗. Then we obtain

L1(µ) = E∗(µ)− E∗(µ∗)

= −τ (H(µ)−H(µ∗)) + τ(logZ∗[µ]− logZ∗[µ∗])

≥ τ

(∫
logµdµ−

∫
logµ∗dµ∗

)
− τ

∫
δ logZ∗[µ∗]

δµ
d(µ− µ∗)

= τ

(∫
logµdµ−

∫
logµ∗dµ∗

)
− τ

∫
log(µ∗)d(µ− µ∗)

= τKL(µ|µ∗),

(33)

where the first inequality follows from the convexity of logZ∗. Hence, we complete the proof.

Lemma 9. Given µ, µ′ ∈ P(RdΘ), we can obtain

KL(K+
∗ [µ

′]|K+
∗ [µ]) ≤

1

2ατ2
EK+

∗ [µ′]

[∥∥∥∥∫ ∇ω
δ2J

δµδν
[µ,K+

∗ [µ̃]]d(µ
′ − µ)

∥∥∥∥2
2

]
. (34)

Proof of Lemma 9. First, consider

L2(µ,K+
∗ [µ

′]) = E(µ,K+
∗ [µ])− E(µ,K+

∗ [µ
′]).

By Lemma 8 we obtain
L2(µ,K+

∗ [µ
′]) ≥ τKL(K+

∗ [µ
′]|K+

∗ [µ]).

The last inequality follows from the fact that if ν satisfies (LSI) with constant α, then it satisfies the Talagrand inequality.
Also, we use another side of Lemma 8 we can get

L2(µ,K+
∗ [µ

′]) ≤ τKL(K+
∗ [µ

′]|Kµ[K+
∗ [µ

′]])

≤ τ

2α
EK+

∗ [µ′]

[∥∥∥∥∇ω log
K+

∗ [µ
′]

Kµ[K+
∗ [µ′]]

∥∥∥∥2
2

]

=
1

2ατ
EK+

∗ [µ′]

[∥∥∥∥∇ω
δJ

δν
[µ′,K+

∗ [µ
′]−∇ω

δJ

δν
[µ,K+

∗ [µ
′]

∥∥∥∥2
2

]

=
1

2ατ
EK+

∗ [µ′]

[∥∥∥∥∫ ∇ω
δ2J

δµδν
[µ̃,K+

∗ [µ
′]d(µ′ − µ)

∥∥∥∥2
2

]
(35)

Combing the above two equation we can get desired result.

Lemma 10. Given Assumptions (2)-(3), we can prove under the algorithm 1,

Eνk
[∥hk∥42] ≤ Eν0 [∥ω0∥42] + rh4, Eµk

[∥gk∥42] ≤ Eµ0 [∥θ0∥32] + rg4. (36)

where rh4, rg4 are specified in the proof.
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Proof of Lemma 10. Let ρ = N (0, Id) be a standard multivariate Gaussian distribution. We first consider the second-order
moment, note that

Eνk⊗ρ[∥ωk + η2hk∥22]
=Eνk

[∥ωk∥22] + 2Eνk⊗ρ[⟨ωk, η2(hk + τωk − τωk)⟩] + Eνk⊗ρ[∥η2(hk + τωk − τωk)∥22]
≤Eνk

[∥ωk∥22] + 2η2M1Eνk
[∥ωk∥]− 2η2τEνk

[∥ωk∥22] + 2η22(M
2
1 + τ2Eνk

[∥ωk∥22])

≤(1− 2η2τ +
η2τ

2
+ 2η22τ

2)Eνk
[∥ωk∥22] + 2η2M

2
1 /τ + 2η22M

2
1

≤(1− η2τ)Eνk
[∥ωk∥22] + η2(2M

2
1 /τ + 2η2M

2
1 ),

(37)

where the first inequality follows the fact that ∥hk + τωk∥ = ∥∇ δJ
δν [µk+1, νk](ωk)∥ ≤ M1, the second inequality is since

2M1Eνk
[∥ωk∥2] ≤ τ

2 (Eνk
[∥ωk∥2])2 + 2M2

1 /τ ≤ τ
2Eνk

[∥ωk∥22] + 2M2
1 /τ and last inequality since η2τ < 1/4.

Then we consider the fourth moment,

Eνk+1
[∥ωk+1∥42]

=Eνk⊗ρ[∥ωk + η2hk +
√
2η2τξ

2
k∥42]

≤Eνk⊗ρ

[
∥ωk + η2hk∥4 + (8 + 4d)η2τ∥ωk + η2hk∥22 + 4η22τ

2(d2 + 2d)
]
.

(38)

Since we have prove

Eνk
[∥ωk + η2hk∥22] ≤ (1− η2τ)Eνk

[∥ωk∥22] + η2(2M
2
1 /τ + 2η2M

2
1 ).

Then

Eνk
[∥ωk + η2hk∥42] ≤ Eνk

[((1− 3/2η2τ + η22τ
2)Eνk

[∥ωk∥22] + η2(2M
2
1 /τ + 2η2M

2
1 ))

2]

= (1− 3/2η2τ + η22τ
2)2Eνk

[∥ωk∥42] + 2η42M
2
1 (1− 3/2η2τ + η22τ

2)Eνk
[∥ωk∥22] + η42(2M

2
1 /τ + 2η2M

2
1 ))

2.

Then combining them together,

Eνk
[∥ωk∥42]

≤(1− 3/2η2τ + η22τ
2)2Eνk

[∥ωk∥42] + η2(1− 3/2η2τ + η22τ
2)(8τ + 4τd+ 2η32M

2
1 )Eνk

[∥ωk∥22]
+η42M

4
1 + (8 + 4d)η32τM

2
1 + 16η22τ

2(d2 + 2d)

≤(1− η2τ)Eνk
[∥ωk∥42] + η2(2(4τ + 2τd+ η32M

2
1 )

2/τ + η22M
4
1 + (8 + 4d)η2τM

2
1 + 16τ2(d2 + 2d))

(39)

Hence, by iteratively applying this inequality we can get

Eνk
[∥ωk∥42] ≤ Eν0

[∥ω0∥42] +
1

η2τ
η2(2(4τ + 2τd+ η32M

2
1 )

2/τ + η22M
4
1 + (8 + 4d)η2τM

2
1 + 16τ2(d2 + 2d)).

Then by (a+ b)4 ≤ 8(a4 + b4) we can obtain the upper bound of fourth moment of gradient hk:

Eνk
[∥hk∥42] ≤ 8(Eνk

[∥hk − τωk∥42 + ∥τωk∥42]
≤8M4

1 + 8τ3(Eνk
[∥ω0∥42] + (2(4τ + 2τd+ η32M

2
1 )

2/τ + η22M
4
1 + (8 + 4d)η2τM

2
1 + 16τ2(d2 + 2d))).

Denote rh4 = 8M4
1 + 8τ3((2(4τ + 2τd+ η32M

2
1 )

2/τ + η22M
4
1 + (8 + 4d)η2τM

2
1 + 16τ2(d2 + 2d))).

For Eµk
[∥gk∥42], we can similarly obtain

Eµk
[∥gk∥42] ≤ Eµ0

[∥θ0∥42] + rg4,

where rh4 = 8M4
1 + 8τ3((2(4τ + 2τd+ η31M

2
1 )

2/τ + η21M
4
1 + (8 + 4d)η1τM

2
1 + 16τ2(d2 + 2d))).
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C. Proofs for Section 3
Proof of Proposition 1. To prove the boundedness of E(µk+1,K+

∗ [µk+1])− E(µk,K+
∗ [µk]), we split it into(

E(µk+1,K+
∗ [µk+1])− E(µk+1,K+

∗ [µk])
)
+
(
E(µk+1,K+

∗ [µk])− E(µk,K+
∗ [µk])

)
. (40)

The second term includes

E(µk+1,K+
∗ [µk])− E(µk,K+

∗ [µk]) = J(µk+1,K+
∗ [µk])− J(µk,K+

∗ [µk]) + τ
(
Eµk+1

[logµk+1]− Eµk
[logµk]

)
+

τ

2

(
Eµk+1

[∥θk+1∥22]− Eµk
[∥θk∥22]

) (41)

Where the entropy term has bound

τ
(
Eµk+1

[logµk+1]− Eµk
[logµk]

)
≤ η2Eµk

[∥τ∇ logµk∥22]−η2Eµk
[⟨gk, τ∇ logµk⟩]+ (M2+ τ)2τη21/2+2d2M4τ

2η21 .

via Lemma 7. Now we consider the weight decay term τ
2

(
Eµk+1

[∥θk+1∥22]− Eµk
[∥θk∥22]

)
. Let ρ = N (0, Id) be a standard

multivariate Gaussian distribution, then:

τ

2
Eµk+1−µk

[∥θ∥22] =
τ

2
Eµk⊗ρ[∥θk + η1gk +

√
2η1τξ

1
k∥22 − ∥θk∥22]

=
τ

2
Eµk

[2η1⟨θk, gk⟩+ η21∥gk∥22] + η1τ
2d.

(42)

And by second-order expansion of J(·, ν),

J(µk+1,K+
∗ [µk])− J(µk,K+

∗ [µk])

≤ Eµk+1−µk

[
δJ

δµ
[µk,K+

∗ [µk]](θk)

]
+

1

2

∫
Rd

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ
′)d(µk+1 − µk)(θ)d(µk+1 − µk)(θ

′)
(43)

By the fourth-order Taylor expansion with Lagrangian remainder, the first part on the right-hand side of (43) becomes

Eµk+1−µk

[
δJ

δµ
[µk,K+

∗ [µk]]

]
(44)

=Eµk⊗ρ

[
δJ

δµ
[µk,K+

∗ [µk]](θk − η1gk +
√
2η1τξ

1
k)−

δJ

δµ
[µk,K+

∗ [µk]](θk)

]
=Eµk⊗ρ

[〈
∇δJ

δµ
[µk,K+

∗ [µk]],−η1gk +
√
2η1τξ

1
k

〉
+

1

2

〈
∇2 δJ

δµ
[µk,K+

∗ [µk]], (−η1gk +
√
2η1τξ

1
k)

⊗2

〉]
(45)

+
1

6
Eµk⊗ρ

[〈
∇3 δJ

δµ
[µk,K+

∗ [µk]], (−η1gk +
√

2η1τξ
1
k)

⊗3

〉]
, (46)

+
1

24
Eµk⊗ρ

[〈
∇4 δJ

δµ
[µk,K+

∗ [µk]](θ̃k), (−η1gk +
√
2η1τξ

1
k)

⊗4

〉]
, (47)

where we use θ̃k to indicate the point achieving the equality from the mean value theorem. Since Eρ[ξ
1
k] = 0, we have

Eµk⊗ρ

[〈
∇δJ

δµ
[µk,K+

∗ [µk]],−η1gk +
√

2η1τξ
1
k

〉]
= Eµk

[〈
∇δJ

δµ
[µk,K+

∗ [µk]],−η1gk

〉]
. (48)

Since ∥∇2 δJ
δµ [µ, ν]∥F < M2 for all µ, ν, we further have

Eµk⊗ρ

[〈
∇2 δJ

δµ
[µk,K+

∗ [µk]], (η1gk +
√
2η1τξ

1
k)

⊗2

〉]
≤ M2η

2
1Eµk

[∥gk∥22] + 2η1τEµk

[
Tr

(
∇2 δJ

δµ
[µk, νk]

)]
= M2η

2
1Eµk

[∥gk∥22]− 2η1τEµk
[⟨gk,∇ logµk⟩] + 2η1τ

2d,
(49)
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where the equality follows from (24).

Similarly, we can derive an upper bound for the third term and the fourth term:

Eµk⊗ρ

[〈
∇3 δJ

δµ
[µk,K+

∗ [µk]], (−η1gk +
√

2η1τξ
1
k)

⊗3

〉]
≤ M3(η

3
1Eµk

[∥gk∥32] + 6η21τdEµk
[∥gk∥2]).

and

Eµk⊗ρ

[〈
∇4 δJ

δµ
[µk,K+

∗ [µk]](θ̃k), (−η1gk +
√
2η1τξ

1
k)

⊗4

〉]
≤M4(η

4
1Eµk

[∥gk∥42] + 4
√
2η3.51 τ1/2m1Eµk

[∥gk∥32] + 12dη31τEµk
[∥gk∥22] + 8

√
2m3τ

3/2η
5/2
1 Eµk

[∥gk∥2] + 4η21τ
2d(d+ 2)).

Where m1 =
√
2Γ((d+1)/2)

Γ(d/2) ,m3 = 23/2 Γ((d+3)/2)
Γ(d/2) .

The second term of (43) is indeed

∫
Rd

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ
′)d(µk+1 − µk)(θ

′)d(µk+1 − µk)(θ)

= Eµk+1−µk

[∫
Rd

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ
′)d(µk+1 − µk)(θ

′)

]
= Eµk+1−µk

[
Eµk⊗ρ

[
∇θ′

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ̃
′)(η1gk +

√
2η1τξ

1
k)

]]
= Eµk+1−µk

[
Eµk⊗ρ

[
∇θ′

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ̃
′)(η1gk +

√
2η1τξ

1
k)

]]
= Eµk+1−µk

[
Eµk

[
∇θ′

δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ̃
′)η1gk

]]
= Eµk

[
Eµk

[
∇θ∇⊤

θ′
δ2J

δµ2
[µ̃,K+

∗ [µk]](θ, θ̃
′)η1gk

]
η1gk

]
≤ C1η

2
1(Eµk

[∥gk∥2])2

≤ C1η
2
1Eµk

[∥gk∥22].

(50)

Then we analyse the first term E(µk+1,K+
∗ [µk+1]− E(µk+1,K+

∗ [µk]), by concavity of J(µ, ·) + τH(·):

E(µk+1,K+
∗ [µk+1])− E(µk+1,K+

∗ [µk)]

≤
∫
Rd

(
δJ

δν
[µk+1,K+

∗ [µk]]−
τ

2
∥ω∥22 − τ logK+

∗ [µk]

)
d(K+

∗ [µk+1]−K+
∗ [µk])

=

∫
Rd

(
δJ

δν
[µk,K+

∗ [µk]] +

∫
Rd

δ2J

δνδµ
[µ̃,K+

∗ [µk]]d(µk+1 − µk)−
τ

2
∥ω∥22 − τ logK+

∗ [µk]

)
d(K+

∗ [µk+1]−K+
∗ [µk])

=

∫
Rd

∫
Rd

δ2J

δµδν
[µ̃,K+

∗ [µk]]d(µk+1 − µk)d(K+
∗ [µk+1]−K+

∗ [µk])

(51)

The last equality is since δJ
δν [µk,K+

∗ [µk]]− τ
2∥ω∥

2
2 − τ logK+

∗ [µk] = τ logZ∗[µk], which is a constant relative to ω.
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Now ∫
Rd

∫
Rd

δ2J

δµδν
[µ̃,K+

∗ [µk]]d(µk+1 − µk)d(K+
∗ [µk+1]−K+

∗ [µk])

=

∫
Rd

Eµk+1−µk

[
δ2J

δµδν
[µ̃,K+

∗ [µk]]

]
d(K+

∗ [µk+1]−K+
∗ [µk])

=

∫
Rd

Eµk

[
∇θ

δ2J

δµδν
[µ̃,K+

∗ [µk]](θ̃)(η1gk +
√
2η1τξ

1
k)

]
d(K+

∗ [µk+1]−K+
∗ [µk])

≤ η1C2Eµk
[∥gk∥2]TV(K+

∗ [µk+1],K+
∗ [µk])

≤
√
2η1C2Eµk

[∥gk∥2]
√

KL(K+
∗ [µk+1]|K+

∗ [µk])

≤
√
2η1C2Eµk

[∥gk∥2] ·

√√√√ 1

2ατ2
EK+

∗ [µk+1]

[∥∥∥∥∫ ∇ω
δ2J

δµδν
[µk,K+

∗ [µ̃]]d(µk+1 − µk)

∥∥∥∥2
2

]

≤
√
2η1C2Eµk

[∥gk∥2] ·
√

1

2ατ2
C2

1η
2
1(Eµk

[∥gk∥2])2

≤ η21
α1/2τ

C1C2Eµk
[∥gk∥22].

(52)

Combining these inequalities with the result in Lemma 7, we finally get

L1(µk+1)− L1(µk)

= − η1Eµk
[⟨fk, gk⟩]− η1τEµk

[⟨fk + gk,∇ logµk⟩] + η1τ
2Eµk

[∥∇ logµk∥22] +
η21C1

2
Eµk

[∥gk∥22] + Γ0η
2
1

≤− η1
2
Eµk

[∥fk +∇ logµk∥22] +
η1
2
Eµk

[∥gk − fk∥22] + Γ0η
2
1 ,

(53)

where

Γ0 = (
M2 + τ

2
Eµk

[∥gk∥22] +
M3

6
(η1Eµk

[∥gk∥32] + 6τd(Eµk
[∥gk∥2]) +M2

2 τ/2 + 2d2M4τ
2 +

C1C2

α1/2τ
Eµk

[∥gk∥22]

+M4(η
4
1Eµk

[∥gk∥42] + 4
√
2η3.51 τ1/2m1Eµk

[∥gk∥32] + 12dη31τEµk
[∥gk∥22] + 8

√
2m3τ

3/2η
5/2
1 Eµk

[∥gk∥2] + 4η21τ
2d(d+ 2)).

The last inequality is since η1 < 1
C1

. Therefore, we complete the proof.

Proof of Lemma 1. By the definition of E, we note that

E(µk+1, νk+1)− E(µk+1, νk) =(J(µk+1, νk+1)− J(µk+1, νk))− τ(KL(νk+1|ρν)− KL(νk|ρν))

=(J(µk+1, νk+1)− J(µk+1, νk)) + τ(H(νk+1)−H(νk)) +
τ

2
(Eνk+1

[∥ωk+1∥22]− Eνk
[∥ωk∥22]).

Note that the second term H(νk+1) − H(νk) can be bounded via Lemma 7. In the following, we focus on term
τ
2Eνk+1−νk

[∥ωk∥22], Let ρ = N (0, Id) be a standard multivariate Gaussian distribution, then:

τ

2
Eνk+1−νk

[∥ω∥22] =
τ

2
Eνk⊗ρ[∥ωk + η2hk +

√
2η2τξ

2
k∥22 − ∥ωk∥22]

=
τ

2
Eνk

[2η2⟨ωk, hk⟩+ η22∥hk∥22] + η2τ
2d.

(54)

By second order expansion with functional J(µk+1, ·), it holds that

J(µk+1, νk+1)−J(µk+1, νk) = Eνk+1−νk

[
δJ

δν
[µk+1, νk](ωk)

]
+
1

2

∫
Rd2

δ2J

δν2
[µk+1, ν̃](ω, ω

′)d(νk+1−νk)(ω)d(νk+1−νk)(ω
′)

(55)
Define

δ̃J

δν
[µ, ν](ω) = Eξ∼ρ

[
δJ

δν
[µ, ν](ω +

√
2η2τξ)

]
. (56)
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By Taylor expansion with Lagrangian remainder, the first part on the right-hand side of (55) becomes

Eνk+1−νk

[
δJ

δν
[µk+1, νk]

]
(57)

=Eν̄k+1

[
δ̃J

δν
[µk+1, νk](ω̄k+1)

]
− Eνk

[
δJ

δν
[µk+1, νk](ωk)

]

=Eνk

[
δ̃J

δν
[µk+1, νk](ωk)

]
− Eνk

[
δJ

δν
[µk+1, νk](ωk)

]
(58)

=Eνk⊗ρ

[〈
∇δJ

δν
[µk+1, νk], η2hk +

√
2η2τξ

2
k

〉
+

1

2

〈
∇2 δJ

δν
[µk+1, νk], (η2hk +

√
2η2τξ

2
k)

⊗2

〉]
(59)

+
1

6
Eνk⊗ρ

[〈
∇3 δJ

δν
[νk+1, νk], (η2hk +

√
2η2τξ

2
k)

⊗3

〉]
, (60)

+
1

24
Eνk⊗ρ

[〈
∇4 δJ

δν
[µk+1, νk](ω̃k), (η2hk +

√
2η2τξ

2
k)

⊗4

〉]
, (61)

where we use ω̃k to indicate the point achieving the equality from the mean value theorem. Since Eρ[ξ
2
k] = 0, we have

Eνk⊗ρ

[〈
∇δJ

δν
[µk+1, νk], η2hk +

√
2η2τξ

2
k

〉]
= Eνk⊗ρ

[〈
∇δJ

δν
[µk+1, νk], η2hk

〉]
. (62)

Since ∥∇2 δJ
δν [µ, ν]∥F < M2, we further have

Eνk⊗ρ

[〈
∇2 δJ

δν
[µk+1, νk], (η2hk +

√
2η2τξ

2
k)

⊗2

〉]
≥ −M2η

2
2Eνk

[∥hk∥22] + 2η2τEνk

[
Tr

(
∇2 δJ

δν
[µk+1, νk]

)]
= −M2η

2
2Eνk

[∥hk∥22]− 2η2τEνk
[⟨hk,∇ log νk⟩]− 2η2τ

2d,

(63)

where the equality follows from (24).

Similarly, we can derive an upper bound for the third term:

Eνk⊗ρ

[〈
∇3 δJ

δν
[µk+1, νk], (η2hk +

√
2η2τξ

2
k)

⊗3

〉]
≥ −M3(η

3
2Eνk

[∥hk∥32] + 6η22τdEνk
[∥hk∥2]).

Plugging in the above inequalities to (57), we arrive at

Eνk+1−νk

[
δJ

δν
[µk+1, νk]

]
≥ η2Eνk

[∥hk∥22]− η2τEνk
[⟨hk,∇ log νk⟩]

− η22(
M2

2
Eνk

[∥hk∥22] +
M3

6
(η2Eνk

[∥hk∥32] + 6τdEνk
[∥hk∥2]).

The second term is indeed

1

2

∫
Rd

δ2J

δν2
[µk+1, ν̃](ω, ω

′)d(νk+1 − νk)d(νk+1 − νk) ≥ −C1η
2
2

2
Eνk

[∥hk∥22] (64)

which is similar to (50). Combining with the bound of τ(H(νk+1)−H(νk)) as established in Lemma 7, we then obtain

E(µk, νk+1)− E(µk, νk) ≥ η2Eνk
[∥hk∥22]− 2η2τEνk

[⟨hk,∇ log νk⟩] + η2τ
2Eνk

[∥∇ log νk∥22]− Γ2η
2
2

= η2Eνk
[∥hk − τ∇ log νk∥22]− Γ2η

2
2 ,

where

Γ2 = (
M2 + τ

2
Eνk

[∥hk∥22] +
M3

6
(η2Eνk

[∥hk∥32] + 6τd(Eνk
[∥hk∥22] + 1))) + (M2 + τ)2τ/2 + 2d2M4τ

2 +
C1

2
Eνk

[∥hk∥22]

+M4(η
4
2Eνk

[∥hk∥42] + 4
√
2η3.52 τ1/2m1Eνk

[∥hk∥32] + 12dη32τEνk
[∥hk∥22] + 8

√
2m3τ

3/2η
5/2
2 Eνk

[∥hk∥2] + 4η22τ
2d(d+ 2)).
(65)

where Eνk
[∥hk∥i2], i = 1, 2, 3, 4 terms can be further bounded by proposition 10. This gives rise to the desired result.
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Proof of Lemma 2. By definition of K+
µ [ν], we have

Eνk
[∥hk − τ∇ log νk∥22] = Eνk

[∥τ∇ logK+
µk+1

[νk]− τ∇ log νk∥22] = τ2I(νk|K+
µk+1

[νk]|).

Applying the log-Sobolev inequality for K+
µk+1

[νk] as well as Lemma 8, we then obtain

τ2I(νk|K+
µk+1

[νk]|) ≥ 2ατ2KL(νk|K+
µk+1

[νk]) ≥ 2ατL2(µk+1, νk),

which implies that Eνk
[∥hk − τ∇ log νk∥22] ≥ 2ατL2(µk+1, νk).

Based on Lemma 1,
L2(µk+1, νk+1)

= E∗(µk+1)− E(µk+1, νk+1)

= E∗(µk+1)− E(µk+1, νk) + E(µk+1, νk)− E(µk+1, νk+1)

≤ E∗(µk+1)− 2η2ταL2(µk+1, νk)− E(µk+1, νk) + Γ2η
2
2

= (1− 2η2τα)L2(µk+1, νk) + Γ2η
2
2 .

(66)

Hence get the desired result.

Proof of Proposition 2. Lemma 2 shows that

L2(µk+1, νk+1) ≤ (1− 2η2τα)L2(µk+1, νk) + Γ2η
2
2

= (1− 2η2τα)(L2(µk, νk) + E(µk, νk)− E(µk+1, νk) + E∗(µk+1)− E∗(µk)) + Γ2η
2
2 .

(67)

By Lemma 1,
E(µk, νk)− E(µk+1, νk) ≤ η1Eµk

[∥gk +∇ logµk∥22] + Γ1η
2
1 . (68)

By Proposition 1, we further have

E∗(µk+1)− E∗(µk) ≤ −η1
2
Eµk

[∥fk +∇ logµk∥22] +
η1
2
Eµk

[∥gk − fk∥22] + Γ0η
2
1 .

Combining the above inequalities, inequality (67) then becomes

L2(µk+1, νk+1) ≤ (1− 2η2τα)L2(µk, νk) + (1− 2η2τα)η1Eµk
[∥gk +∇ logµk∥22]

− (1− 2η2τα)
η1
2
Eµk

[∥fk +∇ logµk∥22] + (1− 2η2τα)
η1
2
Eµk

[∥gk − fk∥22]

+ Γ2η
2
2 + (1− 2η2τα)(Γ1 + Γ0)η

2
1 ,

(69)

which completes the proof.

Proof of Theorem 1. Combining (53) and (69), we have

L1(µk+1) + λL2(µk+1, νk+1) ≤ L1(µk)−
η1
2
(1 + λ(1− η2τα))Eµk

[∥fk +∇ logµk∥22] + λ(1− η2τα)L2(µk, νk)

+ λ(1− η2τα)η1Eµk
[∥gk +∇ logµk∥22] + (λ(1− η2τα) + 1)

η1
2
Eµk

[∥gk − fk∥22]

+ λ(Γ2η
2
2 + (1− 2η2τα)(Γ1 + Γ0)η

2
1) + Γ1η

2
1 .

(70)
According to the Pinsker’s inequality, it holds that 2KL(µ|ν) ≥ TV2(µ, ν) where TV(µ, ν) = ∥µ−ν∥1 is the total-variation
distance between µ and ν. Since J has bounded second-order Wasserstein gradients, we have

Eµk
[∥gk − fk∥22] =

∫
Θ

∣∣∣∣∇δJ

δµ
[µk,K+

∗ [µk]]−∇δJ

δµ
[µk, νk]

∣∣∣∣2 dµk ≤ C2
1TV

2(K+
∗ [µk], νk) ≤ 2C2

1KL(νk|K+
∗ [µk]),

(71)
which, by invoking Lemma 8, further leads to

Eµk
[∥gk − fk∥22] ≤ 2C2

1KL(νk|K+
∗ [µk]) ≤

2C2
1

τ
L2(µk, νk). (72)
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By Assumption 3, K−
µ [ν] satisfies the log-Sobolev inequality with parameter α, and hence,

Eµk
[∥fk +∇ logµk∥22] = τ2I(µk|K−

µk
[K+

∗ [µk]]) ≥ 2ατ2KL(µk|K−
µk
[K+

∗ [µk]]) ≥ 2ατL1(µk),

where the last inequality follows from Lemma 8. Additionally, applying the Young’s inequality, we obtain

Eµk
[∥gk +∇ logµk∥22] ≤ 2(Eµk

[∥fk +∇ logµk∥22 + Eµk
[∥gk − fk∥22]). (73)

Combining the above inequalities then yields

L1(µk+1) + λL2(µk+1, νk+1) ≤
(
1−

(η1
2
(1 + λ(1− 2η2τα)) + 2η1λ(1− 2η2τα)

)
2ατ

)
L1(µk)

+

(
λ(1− 2η2τα) +

(
(λ(1− 2η2τα) + 1)

η1
2

+ 2λ(1− 2η2τα)η1

) 2C2
1

τ

)
L2(µk, νk)

+ λ(Γ2η
2
2 + (1− 2η2τα)(Γ1 + Γ0)η

2
1) + Γ1η

2
1 .

(74)

By noting that

1−
(η1
2
(1 + λ(1− 2η2τα)) + 2η1λ(1− 2η2τα)

)
2ατ ≤ 1− η1ατ,

since 1− 2η2τα > 0, as well as

λ(1− 2η2τα) +
(
(λ(1− 2η2τα) + 1)

η1
2

+ 2λ(1− 2η2τα)η1

) 2C2
1

τ

≤λ(1− 2η2τα+
η1
2
(1− 2η2τα) +

η1
2λ

+ 2η1(1− 2η2τα))

≤λ(1− η1ατ),

we can rewrite inequality (74) into

L1(µk+1)+λL2(µk+1, νk+1) ≤ (1−η1τα)(L1(µk)+λL2(µk, νk))+λ(Γ1η
2
2+(1−2η2τα)(2Γ2+M2M

2
1 )η

2
1)+Γ2η

2
1 .

By recursively applying the above inequality, we then obtain

L(µk) ≤ (1− η1τα)
kL(µ0) +O(η1),

where O(η1) =
λ(Γ1η

2
2+(1−2η2τα)(2Γ2+M2M

2
1 )η

2
1)+Γ2η

2
1

η1τα
. This completes the proof.

Proof of Corollary 1. We proceed by bounding KL(µk|µ∗) and KL(νk|ν∗) separately. Lemma 8 and Theorem 1 allow us to
bound KL(µk|µ∗) by

τKL(µk|µ∗) ≤ L1(µk) ≤ L(µk, νk) ≤ (1− η1τα)
kL(µ0, ν0) +R1(η1). (75)

In the following, we focus on KL(νk|ν∗). By definition, it holds that

τKL(νk|ν∗) = τKL(νk|K+
∗ [µk]) + τ

∫
Ω

(log(K+
∗ [µk])− log ν∗)dνk

= τKL(νk|K+
∗ [µk]) + τ

∫
Ω

(logK+
∗ [µk]− log ν∗)d(νk − ν∗)− τK(ν∗|K+

∗ [νk])

≤ τKL(νk|K+
∗ [µk]) + τ

∫
Ω

(logK+
∗ [µk]− log ν∗)d(νk − ν∗).

(76)

By noting that ν∗ = K+
∗ [µ

∗], we then have

logK+
∗ [µk]− log(ν∗) = τ−1

(
δJ

δν
[µ,K+

∗ [µ]]−
δJ

δν
[µ∗,K+

∗ (µ
∗)]

)
− (logZ∗[µk]− logZ∗[µ∗]). (77)
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And the constant part logZ∗[µk]− logZ∗[µ∗] equals to zero when integrate over νk − ν∗. This leads to

τKL(νk|ν∗) ≤ τKL(νk|K+
∗ [µk]) +

∫
Ω

∫
Θ

∥∥∥∥ δ2J

δµδν
(µ, ν)

∥∥∥∥
∞

d(µk − µ∗)d(νk − ν∗)

≤ τKL(νk|K+
∗ [µk]) + C0 · TV(µk, µ

∗) · TV(νk, ν
∗)

≤ τKL(νk|K+
∗ [µk]) + 2C0 ·

√
KL(µk|µ∗) ·

√
KL(νk|ν∗)

≤ τKL(νk|K+
∗ [µk]) +

τ

2
KL(νk|ν∗) +

2C2
0

τ
KL(µk|µ∗),

(78)

where the second inequality used Pinsker’s inequality and the last inequality used Young’s inequality. Combining the above
inequalities we then arrive at

τKL(νk|ν∗) ≤ 2τKL(νk|K+
∗ [µk]) +

4C2
0

τ
KL(µk|µ∗) ≤

(
2

λ
+

4C2
0

τ2

)(
(1− η1τα)

kL(µ0, ν0) +R1(η1)
)
, (79)

which yields the desired result. Finally, by Otto & Villani (2000), every ν satisfies LSI with parameter α also satisfies
Talagrand’s inequality with parameter α, where

W2
2(µ, ν) ≤

2

α
KL(µ|ν).

For any µ.

Proof of Theorem 2. The proof mainly relies on a distributional update, and we take the update of µ as an example:

µ̄k+1 = ((Id − η1ĝk(·, zk))♯µk), µk+1 = µ̄k+1 ∗ ρk, (80)

where ĝk(·, zk) is the inexact gradient oracle generated by label zk, and ρk represents an independent N(0, 2η1τI).

Let Hk be the σ-algebra generated by {zj}kj=1, then conditional on Hk, we have

E[E(µk+1, νk)|Hk]− E(µk, νk)

=
(
E
[
J(µk+1, νk) +

τ

2
Eµk+1

[∥θ∥22]
∣∣∣Hk

]
− J(µk, νk)−

τ

2
Eµk

[∥θ∥22]))− τ(E[H(µk+1)|Hk]−H(µk)
)
.

(81)

We can analyze the difference term conditioned on Hk similar with exact gradient as Proposition 1,2 and Lemma 1,

Among them, every expectation term of Ĥk(·, zk) would be E[Eνk
[ĥk(·, zk)]|Hk] = hk by the law of iterated expectations.

For the fourth order moments, we first bound

Eνk
[∥ĥk(·, zk) + τωk∥24] ≤ 8Eνk

[∥ĥk(·, zk)− hk∥42] + 8Eνk
[∥hk + τωk∥42]

= 8ζ + 8M4
1 .

(82)

Then similar to Lemma 10, denoted the distribution of random variable zk be ζk:

Then

Eνk
[∥ωk + η2ĥk(·, zk)∥42] ≤ Eνk

[((1− 3/2η2τ + η22τ
2)∥ωk∥22 + η22(M

2
1 + ζ1/2))2]

= (1− 3/2η2τ + η22τ
2)2Eνk

[∥ωk∥42] + 2η42(M
2
1 + ζ1/2)(1− 3/2η2τ + η22τ

2)Eνk
[∥ωk∥22] + η42(M

2
1 + ζ1/2)2.

Then combining them together,

Eνk
[∥ωk∥42]

≤(1− 3/2η2τ + η22τ
2)2Eνk

[∥ωk∥42] + η2(1− 3/2η2τ + η22τ
2)(8τ + 4τd+ 2η32(M

2
1 + ζ1/2))Eνk

[∥ωk∥22]
+η42(M

2
1 + ζ1/2)2 + (8 + 4d)η32τ(M

2
1 + ζ1/2) + 16η22τ

2(d2 + 2d)

≤(1− η2τ)Eνk
[∥ωk∥42]

+ η2(2(4τ + 2τd+ η32(M
2
1 + ζ1/2))2/τ + η22(M

2
1 + ζ1/2)2 + (8 + 4d)η2τ(M

2
1 + ζ1/2) + 16τ2(d2 + 2d))

(83)
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Hence, by iteratively applying this inequality we can get

Eνk
[∥ωk∥42] ≤ Eνk

[∥ω0∥42]+
1

η2τ
η2(2(4τ+2τd+η32(M

2
1+ζ1/2))2/τ+η22(M

2
1+ζ1/2)2+(8+4d)η2τ(M

2
1+ζ1/2)+16τ2(d2+2d)).

Then by (a+ b)4 ≤ 8(a4 + b4) we can obtain the upper bound of fourth moment of gradient hk:

Eνk
[∥ĥk(·, zk)∥42] ≤ 8(Eνk

[∥ĥk(·, zk) + τωk∥42 + ∥τωk∥42])
≤8(M4

1 + ζ) + 8τ3(Eνk
[∥ω0∥42]

+ (2(4τ + 2τd+ η32(M
2
1 + ζ1/2))2/τ + η22(M

2
1 + ζ1/2)2 + (8 + 4d)η2τ(M

2
1 + ζ1/2) + 16τ2(d2 + 2d))).

Denote Rh4 = 8(M4
1 + ζ) + 8τ3((2(4τ + 2τd + η32(M

2
1 + ζ1/2))2/τ + η22(M

2
1 + ζ1/2) + (8 + 4d)η2τ(M

2
1 + ζ1/2) +

16τ2(d2 + 2d))).

For Eµk
[∥ĝk(·, zk)∥42], we can similarly obtain

Eµk
[∥ĝk(·, zk)∥42] ≤ Eµ0

[∥θ0∥42] +Rg4,

where Rg4 = 8(M4
1 + ζ) + 8τ3((2(4τ + 2τd + η31(M

2
1 + ζ1/2))2/τ + η21(M

2
1 + ζ1/2) + (8 + 4d)η1τ(M

2
1 + ζ1/2) +

16τ2(d2 + 2d))).

Hence, by repeating the proof process of MFL-DA with exact gradients, we can get a result similar to exact gradient one, we
give a track to whole proof process for 1, for first order term as (48), (62),

E

[
Eµk

[〈
∇δJ

δµ
[µk,K+

∗ [µk]](θ),−η1ĝk(θ, zk)

〉] ∣∣∣∣∣Hk

]
= Eµk

[〈
∇δJ

δµ
[µk,K+

∗ [µk]],−η1gk

〉]
.

Since ĝk, ĥk are unbiased estimator, hence introduce no error term.

For weight decay terms (42),(54), we have

E
[τ
2
Eµk+1−µk

[∥θ∥22]
∣∣∣Hk

]
= E

[τ
2
Eµk

[2η1⟨θk, ĝk(θk; zk)⟩+ η21∥ĝk(θk; zk)∥22] + η1τ
2d
∣∣∣Hk

]
≤ η1τEµk

[⟨θk, gk⟩] + η1τ
2d+

τ

2
η21Eµk

[∥ĝk∥22]

≤ η1τEµk
[⟨θk, gk⟩] + η1τ

2d+
τ

2
η21R

1/2
g4 .

(84)

And for second order part,

E
[
Eµk⊗ρ

[〈
∇2 δJ

δµ
[µk,K+

∗ [µk]], (η1gk +
√
2η1τξ

1
k)

⊗2

〉] ∣∣∣Hk

]
≤ M2η

2
1Eµk

[∥ĝk∥22] + 2η1τEµk

[
Tr

(
∇2 δJ

δµ
[µk, νk]

)]
= M2η

2
1Eµk

[∥ĝk∥22]− 2η1τEµk
[⟨ĝk,∇ logµk⟩] + 2η1τ

2d

≤ M2η
2
1R

1/2
g4 − 2η1τEµk

[⟨gk,∇ logµk⟩] + 2η1τ
2d

(85)

Hence, we can get new constants as in (17). Substitute into Theorem 1 we can get a result with remainder R2.

D. Proofs for Section 4
Proof of Proposition 3. Let ν′ ∝ exp(−∥ω∥2

2 ). By the Bakry-Émery condition (Bakry & Émery, 2006), ν′ satisfies LSI
with parameter 1. Then according to the Holley-Stroock perturbation principle (Holley & Stroock, 1986), if ν′ and ν are
Gibbs measures with Hamiltonian H and ϕ+H , respectively, and ν′ satisfies LSI with parameter α′, then ν also satisfies
LSI with parameter α ≥ e−(supϕ−inf ϕ)α′. Note that the first variation of J as defined in (10) equals

δJ

δν
[µ, ν](y) = Eµ[G(θ, ω)]
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Then the Gibbs functional becomes

K+
µ [ν] = exp

(
τ−1Eµ[G(θ, ω)]− ∥ω∥2

2

)
.

Let

H =
∥ω∥2

2
, ϕ(ω) = τ−1Eµ[G(θ, ω)].

We can verify that supϕ− inf ϕ = 2τ−1G0. This implies that K+
µ [ν] satisfies LSI with parameter α = 1

exp(2G0τ−1) . We
can show the same conclusion for K−

ν [µ] using a similar technique, and we omit here for brevity.

Then we can verify the conditions in Assumption 2. Observe that the Wasserstein gradient of (10)

∇θ
δJ

δµ
=

∫
∇θG(θ, ω)dν, ∇ω

δJ

δν
=

∫
∇ωG(θ, ω)dµ (86)

are both smooth up to fourth order since ∥∇iG(x, y)∥F ≤ Gi, i = 0, 1, . . . , 4. Moreover, since J is bilinear,

J(µ′, ν)− J(µ, ν) = Eδµ

[
δJ

δµ
[µ, ν]

]
, J(µ, ν′)− J(µ, ν) = Eδν

[
δJ

δν
[µ, ν]

]
. (87)

Hence, the second-order term equals zero. Meanwhile, the cross second-vairation δ2J
δµδν = G(θ, ω) satisfies boundedness,

which certificating Assumption 2.

Proof of Proposition 4. Similar to proof of Proposition 3, note that the first variation of J as defined in (12) equals

δJ

δν
[µ, ν] = ED[(F

′
y(Eµ[σ1(x; θ),Eν [σ2(y;ω)])σ2(y;ω)].

Then the Gibbs functional becomes

K+
µ [ν] = exp

(
τ−1

(
ED[(F

′
y(Eµ[σ1(x; θ),Eν [σ2(y;ω)])σ2(y;ω)]

)
− ∥ω∥2

2

)
.

Let

H =
∥ω∥2

2
, ϕ(ω) = ED[τ

−1(F ′
y(Eµ[σ1(x; θ)],Eν [σ2(y;ω)])σ2(y;ω))].

We can verify that supϕ− inf ϕ = 2τ−1F1m0. This implies that K+
µ [ν] satisfies LSI with parameter α = 1

exp(2F1m0τ−1) .
We can show the same conclusion for K−

ν [µ] using a similar technique, and we omit here for brevity.

Then, we will verify J defined in (12) satisfies Assumption 2.

It is evident that J is convex in µ and concave in ν. Furthermore, we note that∥∥∥∥∇i δ

δµ
J(µ, ν)

∥∥∥∥
F

= ED[F
′
x(Eµ[σ1(x; θ)],Eν [σ2(y;ω)])∥∇iσ1(x; θ)∥F ] ≤ F1mi. (88)

And the same for ∥∇i δ
δν J(µ, ν)∥F .

For second variation term, note that∥∥∥∥ δ2

δµδν
J(µ, ν)

∥∥∥∥
∞

= ED[F
′′
xy(Eµ[σ1(x; θ)],Eν [σ2(y;ω)])∥σ1(x; θ)∥∞∥σ2(y; θ)∥∞] ≤ Lm2

0. (89)

Similarly,∥∥∥∥∇θ∇⊤
ω

δ2

δµ2
J(µ, ν)

∥∥∥∥
F

= ED[F
′′
xy(Eµ[σ1(x; θ)],Eν [σ2(y;ω)])∥∇σ1(x; θ)∥F ∥∇σ2(y; θ)∥F ] ≤ Lm2

1 (90)

And similar for
∥∥∥∇θ∇⊤

θ′
δ2

δµ2 J(µ, ν)
∥∥∥
F
,
∥∥∥∇ω∇⊤

ω′
δ2

δν2 J(µ, ν)
∥∥∥
F

. Hence we has verified all the condition in Assumption
2.
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