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ABSTRACT

Value-based reinforcement learning (RL) can in principle learn effective policies
for a wide range of multi-turn problems, from games to dialogue to robotic control,
including via offline RL from static previously collected datasets. However, despite
the widespread use of policy gradient methods to train large language models for
single turn tasks (e.g., question answering), value-based methods for multi-turn RL
in an off-policy or offline setting have proven particularly challenging to scale to
the setting of large language models. This setting requires effectively leveraging
pretraining, scaling to large architectures with billions of parameters, and training
on large datasets, all of which represent major challenges for current value-based RL
methods. In this work, we propose a novel offline RL algorithm that addresses these
drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem
where the probabilities of tokens directly translate to Q-values. In this way we
obtain an algorithm that smoothly transitions from maximizing the likelihood of the
data during pretraining to learning a near-optimal Q-function during finetuning. Our
algorithm has strong theoretical foundations, enjoying performance bounds similar
to state-of-the-art Q-learning methods, while in practice utilizing an objective that
closely resembles SFT. Because of this, our approach can enjoy the full benefits of
the pretraining of language models, without the need to reinitialize any weights
before RL finetuning, and without the need to initialize new heads for predicting
values or advantages. Empirically, we evaluate our method on both pretrained
LLMs and VLMs, on a variety of tasks including both natural language dialogue
and robotic manipulation and navigation from images.

1 INTRODUCTION

Recently, some of the most impressive feats in Al have been performed through language models,
which are pretrained on large-scale data and adapted to a wide range of downstream tasks (Bommasani
et al.l [2021). Many of these tasks, such as natural language dialogue or robotic control, require
complex sequential decision-making. Reinforcement learning (RL) [Sutton & Barto| (2018) is a
powerful paradigm for solving such tasks (Mnih et al., 2013} [Silver et al.,|2017; |AlphaStar} |2019).
Furthermore, offline RL |Levine et al.| (2020) has been shown to do so from only static datasets, such
as suboptimal demonstrations from any unknown behavior policy, without the need for any additional
interaction. Though offline RL has been used to fine-tune large language models (LLMs) or vision
language models (VLMs) (Ouyang et al., 2022} |Bai et al.| 2022b)), its usefulness has been limited
to generating better single responses rather than multi-turn, sequential scenarios where RL should
theoretically shine. For example, across various dialogue tasks, offline RL fine-tuning of LLMs
does not reliably outperform supervised fine-tuning (SFT) (Sodht et al., 2023} |/Abdulhai et al., 2023).
Furthermore, in the realm of navigation and control, popular VLMs are still fine-tuned for multi-task
control using SFT (Brohan et al., 2023b;a}; |Collaboration et al., [ 2024)).

Single-turn problems, such as answering questions, can be tackled with policy gradient methods
(Ouyang et al., 2022} |Rafailov et al.| 2023)), but sequential or multi-turn problems, such as dialogue
or robotic control, require sample-efficient methods that can utilize data to reason about the dynamics
of the problem, which typically requires training value functions (Abdulhai et al., [2023;|Hong et al.,
2023)). This is in multi-turn problems, the agent must plan their actions to optimize some long-term
objective. Although there are many effective value-based RL methods that could be applied to
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Figure 1: Our proposed approach allows us to directly leverage the logits from a pretrained model to
train value functions. Prior approaches require separately initializing a value head.

LLMs and VLMs, in practice such methods have been difficult to adapt to these models with the
same effectiveness as policy gradients. We posit that this is due in part to a mismatch between the
pretraining objective that these models use, i.e. maximum likelihood estimation, and the fine-tuning
objective necessary to train value functions. This discrepancy means that fine-tuning using multi-turn
RL may require discarding some of knowledge gained by maximum likelihood pretraining of LLMs
and VLMs, including a broad understanding of language, vision, and even sequential reasoning.

Specifically, we hypothesize two reasons for why fine-tuning foundation models using offline RL
is unsuitable in practice. First, typical offline RL methods require regressing value functions that
estimate how appropriate actions, such as an utterance in dialogue, are. Such algorithms, known as
Q-learning, have achieved impressive results when applied on small networks (AlphaStar, 2019
Mnih et al.| 2013)), but surprisingly attain disappointing performance when scaled to larger ones
(Sodhi et al., [2023)). Recent work has attributed this lack of scaling to instability in the value-
learning objective, namely in regression towards non-stationary values (Farebrother et al.| [2024).
More importantly, a major advantage of SFT is the potential to leverage existing capabilities of
large pretrained models to drastically improve the efficiency when learning a new downstream task.
However, language models are trained to predict likelihoods, but Q-learning instead aims to predict
action values; therefore, when fine-tuning, Q-learning algorithms discard the learned likelihoods
in favor of only utilizing the underlying representations, which eliminates some of the useful prior
knowledge within the pretrained models. We illustrate this in Figure[I] where value functions are
trained must be trained via a new head with reset weights.

In this work, we propose a new algorithm that remedies both drawbacks. Our key insight is simple:
by adding weights to the traditional supervised fine-tuning objective, we can learn probabilities that
conservatively estimate the value function instead of the behavior policy. In practice, our approach
is implemented by adding weights to the maximum likelihood objective, yielding a weighted cross
entropy loss where weights are target action values computed from the Bellman recurrence relations.
By using this objective, we are able to avoid the unstable regression objective commonly used in
value learning, as well as directly leverage the initial likelihoods resulting from large-scale pretraining.
Theoretically, we can show that such objective results in learned likelihoods that are a product of the
data distribution and Q-values, and that our approach is principled and results in performance bounds
competitive with other state-of-the-art approaches. Empirically, we demonstrate the effectiveness of
our method on a variety of tasks involving both LLMs, such as language games and dialogue, as well
as VLMs, such as navigation and robotic manipulation.

2 RELATED WORK

Much of the recent work on reinforcement learning (RL) finetuning of LLMs and VLMs uses policy
gradient methods and reward models learned from human feedback (e.g., RLHF) (Ziegler et al.| [2020;
Stiennon et al.| 2020; ' Wu et al., [2021; Nakano et al., 2022} Bai et al.| [2022a}; |(Christiano et al., 2023}
Rafailov et al., 2023)), or from handcrafted Al systems (e.g., RLAIF) (Bai et al., | 2022b), to generate
better responses to various queries. However, there is a large discrepancy in the capabilities required
to perform self-contained responses in single-step tasks, such as question-answering, and responses in
a multi-turn scenarios, such as dialogue. Namely, the latter requires planning to optimize a long-term
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objective,. Various prior works provide evidence that existing fine-tuning methods are insufficient to
enable language models with such planning capabilities (Bachmann & Nagarajan| [2024).

In principle, value-based RL (Lange et al.l |2012; |[Levine et al., 2020), specifically Q-learning,
can learn effective policies for multi-step tasks that outperform pure imitation via supervised fine-
tuning (Kumar et al., 2022)). Many offline RL algorithms exist that reap the benefits of value-based
RL using only static datasets, such as those currently used to fine-tune language models. Though
offline RL algorithms require handling distribution shift (Kumar et al.| 2019), where the learned
policy selects out-of-distribution (OOD) actions with unpredictable consequences, many methods
exist that effectively tackle this challenge (Kumar et al. 2020; Kostrikov et al., 2021 | Kidambi
et al., 2020; [Yu et al.| 2020; 2021). Due to the promising benefits of offline RL on learning from
demonstrations, algorithms have been proposed for learning LLM policies to some success in robotic
manipulation (Chebotar et al., 2023)) and language tasks (Snell et al.| [2022). However, recent
evaluation has shown that, on a variety of natural language tasks, Q-learning approaches are often
outperformed by supervised ones (Sodhi et al.l 2023; |Abdulhai et al.,[2023). We hypothesize this is
due to the mismatch between value-based RL fine-tuning and maximum likelihood pretraining, and
propose a new approach that remedies this core issue.

There also exist a paradigm of supervised approaches called return conditioned supervised learning
(RCSL), which learn conditional policies on return via a supervised learning objective (Brandfon-
brener et al.,[2022)). The most notable algorithm is Decision Transformer (DT) (Chen et al.,|2021)),
which can train LLM policies that outperform traditional offline RL methods that rely on Q-learning.
Though it performs well in practice, there is theoretical evidence that the ceiling of performance of
such algorithms is below that of value-based offline RL. Specifically, Brandfonbrener et al.| (2022)
showed that DT and similar approaches can only identify the optimal policy under stronger conditions
on the offline data than value-based RL. Our proposed algorithm is similar to RCSL in that we
also use a maximum likelihood loss, but we learn values and reap the theoretical benefits of other
value-based methods.

Recently, prior attempts have also been made to improve value-based RL algorithms for fine-tuning
language models. |Chebotar et al.| (2023) propose Q-learning with transformer value functions in
manipulation and control tasks by converting actions to sequences of tokens. We adopt their insight
when evaluating on robotics tasks, but use a fundamentally different objective to learn values. Most
similar to ours, [Farebrother et al.| (2024) propose to replace the regression loss from Q-learning with a
cross-entropy loss by casting value learning as a classification problem. However, while the proposed
method also converts value functions to distributions, these likelihoods are not naturally derived
from the logits obtained from large-scale pretraining, and must instead be learned from scratch via
a separate head with reset weights. Therefore, like traditional Q-learning, they also suffer from
being unable to leverage pretraining efficiently, unlike our approach whose likelihoods are directly
initialized by the logits of pretrained LLMs or VLMs.

3 PRELIMINARIES

Our work proposes a new RL algorithm for fine-tuning language models, specifically for multi-
turn tasks such as dialogue or manipulation and control. Language models operate over a discrete
vocabulary of tokens V), and are trained to maximize the likelihood the best next-token x,,4; given
an input sequence (o, ..., T, ) of tokens, given by 7(z,+1|T0,...,Zm). In a multi-turn task
such a dialogue, the tokens are words that are chained to form utterances, and the best next-token
requires complex, sequential reasoning to understand the utterances so far and plan for the next one.
Traditionally, this kind of reasoning can be learned via reinforcement learning (RL).

RL fundamentals. RL aims to optimize agents that interact with a Markov Decision Process (MDP)
defined by a tuple (S, A, P,r, u1,7), where S represents the set of all possible states, .4 is the set of
possible actions, £ is the initial state distribution, and -y is the discount factor. When action a € A is
executed at state s € S, the next state is generated according to s’ ~ P(-|s, a), and the agent receives
stochastic reward with mean r (s, a) € [0, 1].

The Q-function Q™ (s, a) for a policy 7 (:|s) represents the discounted long-term reward attained
by executing a given observation history s and then following policy 7 thereafter. Q™ satisfies the
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Bellman recurrence:
Qﬂ(s7 CL) = T(Sa Cl) + V]ES’NPHS,G,),a’NTr(-\s’) [Qﬂ(3l7al)] .

The value function V7 considers the expectation of the Q-function over the policy V™ (h) =
Eqr(|s) [@™(s,a)]. Meanwhile, the Q-function of the optimal policy Q* satisfies:

Q*(s,a) = T(Sa (1) + 7]ES’NP(-\s,a) [ma/XQ*(s/, a/) ;

and the optimal value function is V*(s) = max, Q*(s, a). Finally, the expected cumulative reward
is given by J(m) = Eg, ~,, [V™(s1)]. The goal of RL is to optimize a policy 7 (- | s) that maximizes
the cumulative reward J () = E,, [V7(s1)].

In offline RL, we are provided with a dataset D = {(s;, a;, ;, s5)}I¥ | of size |D| = N. We assume
that the dataset D is generated i.i.d. from an effective behavior policy w3 (a|s). Many state-of-the-art
offline RL methods build on Q-learning, which trains a Q-function using parameters 6 on dataset D
by minimizing temporal difference (TD) error.

2
ACTD(G) = E(s7a,7~7s/),\,p |:(7ﬂ + ’VHE}X Qé(slva/) - Qe(sv (l)) :| ) (1)

where Qy(s,a) is the parameterized Q-function, and @ parameterize a target network and is a
slow-moving copy of 6.

RL for language generation. Language generation can be viewed as an MDP, where states are
sequences of tokens from a finite vocabulary ¥V (Ramamurthy et al., [2023). All tokens that the
agent initially observes are used as our initial state, sg = (xo, ..., Zm), where z; € V,Vi € [m].
At timestep ¢, an action a; € V is some token in the vocabulary. As long as a; is not a special
end-of-sequence <EOS> token, the transition function deterministically appends a; to state s; to
form s;4 1. Otherwise, the agent observes (potentially stochastic) responses from the environment, i.e.
utterances by conversational partners in the case of multi-turn dialogue, o; = (yo, . . ., Yn ), which
also consist of tokens in the vocabulary; then, the transition function appends both a; and responses
o; to state s;. This continues until the last timestep 7" where we obtain a state s and the agent
receives a deterministic reward r(s7).

It becomes clear that a policy 7 (a|s) is a language model that parses all the language tokens seen so
far as the state, and computes a distribution over tokens as the next action to take. Recently, RL has
been considered for learning policies that are LLLMs or VLMs for difficult tasks such as generalist
robotic manipulation or dialogue. Because value learning is very different from traditional next-token
prediction, preforming such fine-tuning requires reparameterizing the pretrained language model,
such as by adding value heads with independently initialized weights (Snell et al., [2023]).

4 Q-LEARNING VIA SUPERVISED FINE-TUNING

We will now describe our proposed offline RL algorithm, which we dub Q-learning via Supervised
Fine-tuning (Q-SFT). Concretely, instead of training value functions by fitting Q-values to their
Bellman backup target via a regression loss, we instead fine-tune directly on the probabilities learned
from large-scale pretraining —like in SFT— via a weighted cross-entropy loss, such that the resulting
probabilities also capture the desired Q-values.

4.1 LEARNING VALUES AS PROBABILITIES

Recently, large neural networks such as LLMs and VLMs have been successfully trained and fine-
tuned on demonstration data using supervised learning. If we adopt the earlier multi-turn formalism
in Section 3|and view these models as agents, such approaches train a policy 74 (a|s) with parameters
¢ by minimizing cross-entropy loss:

Lce(9) = E(s,a)~p [logmg(a | s)] . 2)

Because the resulting policy approximates the behavior policy 74 (als) = mg(als), this approach has
also been dubbed behavioral cloning (BC). While BC scales well to complex tasks and networks, the
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resulting policy can only be as good as the behavior policy, which is insufficient when the dataset is
not curated from expert demonstrations.

In contrast, Q-learning enables the learned policy to greatly outperform the behavior policy (Kumar
et al.}2022), by instead having the policy behave according to the estimated Q-values. This can be
done via policy extraction, such as 7(a|s) = 1[a = arg max/, Qg (s, a’)] or the entropy-regularized
variant 7(als) x exp(Qp(s,a)). However, as alluded to earlier, the Q-function Qg (s, a) cannot be
naturally derived from pretrained language models, which output probabilities, and require modifying
their architectures as in Figure

Our goal is to provide a way to learn Q-values for multi-turn RL problems with language models such
that the Q-function can be initialized from a model pretrained via supervised learning (i.e., maximum
likelihood estimation), without the need to reinitialize weights or add new heads to represent the
Q-values. An autoregressive sequence model (e.g., a transformer) outputs the probability of each
token conditioned on the past history. In order to avoid adding new heads or reinitializing weights, the
Q-values have to also be represented by these same probabilities. Furthermore, to maximize transfer
from pretraining, we would like our proposed loss function to also closely resemble the maximum
likelihood loss function used for pretraining.

We propose a simple modification to the BC objective in Equation[2] Our modification hinges on
the following observation. Let py(a|s) represent the probability of action a under state s, and are
optimized via the weighted cross entropy loss

Lwer(0) = E(s,a)~D [w(s,a)logpg(a|s)+ (1 —w(s,a))logps(aq| )],

where w(s, a) are weights, and a4 is some dummy action. The resulting probabilities that optimize this
objective approximate py(als) ~ w(s, a)mg(als) for all @ # aq. Our goal is, via a proper choice of
weights, to learn probabilities that are conservative estimates of the true Q-values py(s, a) ~ Q*(s, a).
In order to do so, we require the following assumption on bounded total rewards:

Assumption 4.1. For any policy m, we have > o, v~ 'ry < 1.

This assumption has been made by multiple prior works without loss of generality (Ren et al.| 2021}
Kumar et al.| 2022)), as rewards can, in theory, be scaled without affecting the optimal policy in the
MDP. Furthermore, many tasks of interest, such as dialogue, have sparse rewards, where we observe
success or failure only after the conversation has ended.

Following the above observation, let us define the empirical Bellman probability operator B* for
transition (s, a,r, s') as

. pe(a’ | §)

B*pg(a | s) —r+7n}le}xm.
Note that this is different from the traditional Bellman operator in that we additionally divide by mg
in the backup. Then, we consider the following weighted cross-entropy loss:

1—Bpslals
EWCE(H) = E(s a,r,s’")~D B pe(a | S) 10gp0 a | Z |A|p€ | ) Ingg(a/ | S) . (3)

Here, we see that our loss is an instance of weighted cross entropy loss with weights approximately

equal to Bellman target values B*pg(a|s). The primary difference is that instead of introducing a
dummy action, we equally distribute the leftover weight across the remaining actions. As we will
show, this acts as a label-smoothing term that ultimately regularizes the probabilities. We will show
later that in the absence of sampling error, our learned likelihood function pyg(a|s) satisfies Q* (s, a) >
Do(als) > ma(als) Q*(s,a). This means that we are able to effectively learn a conservative estimation
of the Q-function as a likelihood, without the need for optimizing a potentially unstable and poorly-
scaling TD objective.

In addition, because probabilities are modeled directly by existing language models, we do not need
to modify the parameterization of such models in order to perform such fine-tuning, i.e. by resetting
weights or adding a new head. Namely, our likelihood function py(a|s) can be directly initialized
from the logits of a pretrained LLM or VLM.
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4.2 THEORETICAL ANALYSIS

In the previous section, we motivated a new objective Lwcg given by Equation [3]that learns modified
probabilities over actions py directly from the logits of a base LLM or VLM. Here, we will show that
such probabilities serve as a conservative approximation of the true Q-values. To 51mp11fy exposition,

we consider a simple modification of Equation 3 l where instead of empirical operator B* we use the

true operator:
po(a’ | s)
B* = Esp(. — .
po(als)=7(s,a) + YEy<p(|s.a) {H}f}x s(d | #)
Note that it is simple to adapt our analysis to the empirical operator. Namely, it requires obtaining
_ R < _C :
(a]s)—B*pg(a s)’ < T where C is

a constant independent of . This kind of inequality commonly arises in analysis of offline RL
algorithms (Kumar et al.,[2020; 2022)).

high-probability bounds of the form V(s, a),

Our main theoretical result is that our learned probabilities satisfy being conservative estimates of the
true value function:

Theorem 4.1. Let py be the likelihood function that arises from optimizing Equation[3|using the true
Bellman likelihood operator. Then, py satisfies

Q*(s,a) = po(s,a) > Q°(s,a)m(a | s),
forall s € Dand a € A such that Q*(s,a) > W%l'

We defer proof of the theorem to Appendix [A] Note that our probabilities are conservative only over
actions that have non-negligible Q-values. In practice, we do not see this as a problem as actions with
negligible Q-values will not be chosen anyway. Overall, we show that while our objective looks very
different from traditional value-based RL, our method still learns a conservative value function.

So far, we have shown that theoretically, our algorithm achieves similar theoretical properties as
value-based RL methods, even though our objective looks closer to supervised learning. Next, we
will compare our approach to other RL algorithms adapted from supervised learning such as filtered
behavior cloning or return-conditioned supervised learning, and show why ours is beneficial.

Filtered behavior cloning. Filtered BC attempts to adapt supervised fine-tuning to non-expert
datasets by only training on the top p-percent of trajectories by reward for p € [0, 1]. While natural,
this harms sample efficiency as our method, like value-based RL methods, is also able to extract
meaningful knowledge from low-reward trajectories.

Return-conditioned supervised learning. RCSL remedies the issues with filtered BC by condition-
ing on reward during training to extract multiple policies rather than just the expert one. However, we
argue that RCSL still fails to learn from low-reward trajectories as well as our approach. Specifically,
our approach and others that learn value functions can learn from suboptimal trajectories by stitching
them into a better policy (Fu et al.,[2020). However, Brandfonbrener et al.[(2022)) showed that RCSL
cannot perform stitching in general, which limits its effectiveness at learning from suboptimal data.

4.3 PRACTICAL IMPLEMENTATION

Our objective in Equation [3]trains the model such that the predicted token probabilities match their
Q-values. Our final step is to choose how to use these probabilities in the final learned policy. Prior
work performs policy extraction that learns a policy regularized to be similar to the behavior policy
(Peng et al., 2019; |Kostrikov et al.,[2021). Namely, it is well-known that a policy parameterization
7(a|s) o< wa(als) exp(B Q*(s,a)) is a solution to the constrained optimization problem (Peng et al.|
2019; [Brandfonbrener et al., 2021)

argmax By g anr [@7(s,0)] st Egigms [Dir(n(- [ 8) [[m(- | 5))] <e,

where 8 > 0 is a hyperparameter derived from the Lagrange multiplier. Recall that we have already
approximated 7 by optimizing an £ g (¢) over parameters ¢. Therefore, without any further training
we can extract a policy whose probabilities of actions follow 7(als) o m4(als)exp (8 po(als)),
which can be computed at inference time using our learned probabilities py, estimated behavior policy
T4, and tunable hyperparameter 3 > 0. Note that unlike prior works that explicitly require a policy
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Figure 2: Overview of all the evaluated tasks, spanning both text and image inputs. Solving all the
tasks effectively requires our algorithm to be able to be used to fine-tune LLMs, VLMs, and even
robotics transformer models.

extraction step with additional training, our policy can be computed at inference-time. Namely, we
can express our policy using only the probabilities that we had previously learned. An overview
of our entire method is provided in Algorithm [T} We also provide implementation details such as
hyperparameter selection for our experiments in Appendix [B]

Algorithm 1 Q-learning via Supervised Fine-tuning (Q-SFT)

Require: Dataset D = {(s;, i, 7, 5}) }ic[n]> hyperparameter 5 > 0
1: Initialize ¢, #, f from pretrained model.
. Optimize behavior policy:
. for each gradient step do
Update ¢ <— ¢ — Ay Vo Lcor(0)
end for
: Optimize likelihood model:
for each gradient step do
Update 0« 6— AngEWQE (9) B
Update target parameters: 6 + (1 — «)f + af
: end for
: At inference time, policy probabilites become: T(a | s) x my(a | s)exp (Bpo(a | s))

TRYRIADIUNRLE

—_—

5 EXPERIMENTS

Our method combines aspects of both SFT and value-based RL training, and we therefore compare
our method to state-of-the-art methods from both classes, evaluating:

(1) Whether our method improves over SFT methods by taking into account and optimizing
over a multi-step task reward.

(2) Whether our method improves on the stability and performance of previously proposed
value-based RL methods for training LLMs and VLMs.

(3) Whether our method is better able to benefit from the pretraining of large models than
previously proposed multi-turn RL methods.

In this section, we perform a comprehensive empirical evaluation across a suite of different tasks to
find positive answers to all the above questions.

5.1 TASK DESCRIPTIONS

Contrary to many existing applications of RL on language models, such as RLHF
2022)) or DPO (Rafailov et al.} 2023)), our proposed algorithm is tailored for offline RL on multi-step
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tasks. Therefore, we consolidate a variety of existing benchmarks where a language model must
make sequential decisions, arriving at the following suite of different tasks.

The first set of tasks include language games from the LMRL benchmark (Abdulhai et al., [2023)),
which is one of the first benchmarks tailored at evaluating offline RL for language generation.

Chess. This task uses a textual representation of the game of chess. The offline dataset consists of
trajectories by Stockfish 15.1 simulating various player strengths as the agent, playing against another
Stockfish engine with Elo 1200. The reward is 1 for a move that results in victory, O for a legal move
and -1 for an illegal move. Our dataset consists of 625K trajectories of full games, in which the agent
achieves an average return of 0.21.

Wordle. In the game of Wordle, the agent is given at most 6 attempts to guess a hidden 5-letter word.
After each guess, the agent is told whether each letter in the guessed word is: (1) in the hidden word
and in the right position (green), (2) in the hidden word but not in the right position (yellow), or (3)
not in the hidden word (gray). The agent receives a reward of -1 after each incorrect guess. The
dataset consists of 20K trajectories by a suboptimal heuristic policy that achieves an average return
of -4.12, originally collected by [Snell et al.| (2022).

Twenty Questions. The final language task is the dialogue game of twenty questions, where the
agent tries to guess what a hidden object is by asking a series of yes-or-no questions. The dataset
consists of 100K conversations between an agent that is a guesser and the oracle that chooses the
hidden word. The oracle chooses the hidden work uniformly at random from 158 unique objects. The
guesser and the oracle are both simulated using GPT3. 5 (OpenAll |2022), which is prompted to both
generate questions and answer them factually. The agent receives a reward of -1 for each question
that is not a correct guess, up to a minimum return of -20. The average return in the dataset is -17.3.

The next evaluation for fine-tuning LLMs as language agents — interactive web-based tasks that
require using tools like search.

WebShop. an online shopping website environment where an agent processes unstructured text data
(in the form of descriptions crawled from Amazon) to purchase a product given some initial user
specifications. At the end, the agent receives a reward between 0 and 1 depending on the similarity
between the purchased and ground-truth desired item. The benchmark consists of 12k initial user
instructions, of which we randomly held out 100 for evaluation. With the remaining instructions, we
generate a dataset of trajectories where we simulate an suboptimal agent by prompting GPT3. 5 with
few-shot examples, following the prompts used by |Yao et al.| (2022)).

Our method can be applied not only to language models, but also to multimodal models. In the next
experiment, we study the performance of our method on vision-based navigation with VLMs.

ALFWorld. This is a popular text-based environment grounded in image observations (Shridhar
et al., |2021). In this environment, the agent is tasked with solving one of 6 different task types,
ranging from finding, moving, and manipulating different household objects within an embodied
environment of 120 rooms. At each timestep, the agent observes a textual description of its location
and surroundings with an analogous image, and chooses a text action from a set of admissible
actions. In this environment, we sample 10k trajectories consisting of a random templated task
description, and an attempted execution of the task within 30 timesteps by a prompted GPT3. 5
model for data collection. In the dataset, the agent only successfully accomplishes the task 34% of
the time aggregated across all task types.

Finally, we also evaluate our method for training policies outside of language generation. Robotics
is a popular domain in which offline RL has been proven effective for training per-token Q-values
for continuous control (Singh et al.| 2020; |Chebotar et al.,|2023)). In these experiments, we do not
leverage pretrained language models and simply test the effectiveness of the underlying RL algorithm.

Robotic manipulation. We consider the large-scale robotic manipulation control tasks from [Singh
et al.| (2020). In the environment, the agent controls a 7-DoF mobile manipulator in front of a
countertop surface to perform two types of tasks: pick up an object and place on the trap in front,
or grab an object from the drawer. A sparse reward of 1 is received if the agent accomplishes the
task. Following Singh et al.|(2020), we collect 300k trajectories of randomized, scripted policies
performing one of the two task types. The scripted policies achieve roughly 40% success rate.

We show illustrations of all the considered tasks in Figure
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language games alfworld
Method Chess Wordle 20Q Pick Examine Clean Heat Cool Pick2
ReAct 0 —-4.96 —-13.2 45 19 17 7 12 24
SFT 0.11 -3.81 —17.3 38 15 0 11 0 18
ILQL 0.09 —2.08 —14.2 28 7 0 5 2 15
Q-SFT (ours) 0.15 —-2.11 —-13.1 39 21 19 14 18 21

Table 1: Average scores (for language games), and success rates (for ALFWorld tasks) across 100
independent evaluations. Our method performs best or near-best across the table, and competitively
with prompting a much more complex model.

Method Score Method Pick Object Place Object Near Target
ReAct 0.60 BC 44 32
SFT 0.55 CQL 78 57
Offline ArCHer  0.57 QT 92 68
Q-SFT 0.63 Q-SFT 94 64

Table 2: Average score across 100 Table 3: Success rate for 100 runs across robotic ma-
held-out instructions in WebShop. Our  nipulation tasks. Our general method performs compet-
method performs best, even against itively with Q-transformer, a value-based RL method
prompting a much larger model. specifically designed for continuous control.

5.2 RESULTS

The goal of our empirical results is to show positive answers to all the proposed research questions.
In order to do so, we evaluate multiple state-of-the-art supervised and value-based RL methods.

Evaluation. We compare our method Q-SFT against three classes of competing algorithms:

Prompting: ReAct (Yao et al.|[2022)) is an extension of chain-of-though prompting (Wei et al.| [2023)),
where the pretrained language model is prompting to think and reason multiple steps in advance. We
use GPT3.5 (OpenAl,2022) as the LLM, and GPT4-V (OpenAl} 2023) as the VLM.

Supervised learning: Supervised fine-tuning (SFT) on the offline dataset. In the case of using
non-pretrained models, such as in the robotics task, we rename the method as behavior cloning (BC).

Value-based RL: Traditional offline RL algorithms that perform Q-learning to learn value functions.
We consider several different algorithms, depending on the task at-hand. In the case of language
games and ALFWorld, we evaluate ILQL (Snell et al., [2023)), a popular approach for language
generation. In WebShop, we consider an offline variant of ArCHer (Zhou et al.,2024])) that performs
best on the task from prior work. Finally, in robotics manipulation, we consider both CQL (Kumar
et al., 2020) and Q-transformer (QT) (Chebotar et al.,|2023), which are both popular and achieve
state-of-the-art performance in continuous control.

Since the state-of-the-art LLMs and VLMs often only expose inference APIs, we instead train our
considered methods on the GPT2-medium LLM, which consists of 345M parameters (Radford
et al., 2019). For ALFWorld, which requires VLMs, we use LLaVA-1. 6 model as the pretrained
model (Liu et al.,|2023). Finally, for robotics, we use a randomly initialized Transformer architecture
modeled after the popular RT-1 model, which processes images and discretizes the action space
into tokens (Brohan et al.l 2023b). Note that for the Chess and Wordle tasks, because their state
and action space are unlike natural language, we replace the pretrained weights with a random
initialization. Therefore, these tasks, like robotics manipulation, only compares the methods in terms
of their effectiveness as RL algorithms.

Discussion We report results of our evaluations in Tables T} 2land [3] For fine-tuning LLMs, TableT]
and [2] show that our Q-SFT method outperforms supervised learning, and different value-based
RL methods, sometimes outperforming state-of-the-art by almost 30%. Similarly, for VLMs, as
shown in Table|l| our approach beats supervised and value-based RL baselines, particularly on hard
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Figure 3: Success rate during initial training Figure 4: Scores after training on 10% of the
on the pick object task of the robotic manipula- offline dataset on the 20Q task, varying the size
tion benchmark. Though our method achieves of the pretrained model. Our method benefits
similar final performance as Q-transformer, we more from using more sophisticated pretrained
perform much better on fewer samples. models, suggesting our approach scales better.

task types with low success rate in the data. Our approach is also competitive with state-of-the-art
prompting of GPT4-V, which contains about 30x more parameters than the base models using
during training. Finally, in Table[3] we see that even without leveraging any pretraining, our approach
is competitive with state-of-the-art, suggesting that our objective is effective for learning values. This
can be attributed to the fact that our underlying objective is more stable to optimize than traditional
Q-learning ones, which require regression to non-stationary Bellman target values. Furthermore, in
Figure|3] we show the learning curve for our approach compares favorably to QT, showing that our
method learns more quickly and achieves better performance in the low-data regime.

Finally, we want to answer the last research question. We hypothesize that our approach benefits
more from pretraining than existing value-based RL techniques, and verify this with an additional
experiment. Specifically, we consider the 20Q task, and train both ILQL and Q-SFT policies against
different models of increasing number of parameters, namely the GPT2-1large and GPT2-x1
models, which are 2x and 5x larger than GPT2-medium respectively. We also only train on 10% of
the original dataset, so that retaining prior knowledge from pretraining becomes crucially important.
In Figure[d] we show the average return achieved by both methods across the different model sizes.
We notice that for larger model sizes, Q-SFT significantly outperforms ILQL, implying a positive
answer to the research question that our method retains knowledge acquired during pretraining better
than existing value-based RL.

6 DISCUSSION

In this paper, we present Q-learning via Supervised Fine-Tuning (Q-SFT), a new offline RL algorithm
where Q-values are learned as probabilities in an objective that looks like supervised fine-tuning.
Because of this, our objective can be directly optimized over the logits of pretrained LLMs or VLMs
To our knowledge, this is the first algorithm that can perform value-based RL fine-tuning without
requiring any changes to the architecture, such as adding in new value heads. This has a number
of important benefits. First, our objective is an instance of weighted cross-entropy, which has been
shown by prior works to be more stable to train than traditional value-based RL methods that require
regression towards non-stationary target values. More importantly, our algorithm fully leverages the
advantage of foundation models such as LLMs or VLMs, as our algorithm starts from the pretrained
probabilities, as opposed to randomly-initialized values. Theoretically, we show that our probabilities
are conservative estimates of the true value function. Empirically, we compare our approach against
strong supervised and value-based RL baselines on a variety of different tasks requiring LLMs,
VLMs, and even robotics transformers. As future work, we aim to use our approach to also fine-tune
vision-language-action (VLA) models, where we expect to see even greater benefit (Kim et al., [2024).
Another more interesting direction for futher investigation, is whether our method can be adapted
to also work online, as many recent works have considered online Rl optimization of language
agents (Zhou et al.| 2024).
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A THEORETICAL PROOFS

Here, we provide a proof of Theorem[4.1] Recall that we are optimizing the following objective:

B p als
Lwee(e) = By | BBl | logpla | 5) + 30 2B LD 1000 g @)
/#a
Let us consider iteration k of training. Settlng the derivative of Equation [ to 0, we obtain the
following expression of p“*1 in terms of p*:

1 - B | 9)

VseD,ac A, pti(als)=mpals)B D (a]|s)+ Zﬂ'[g(a/ | 5) A1

a’'#a

&)

Lower-bound. We will first show the lower-bound part of Theorem Rearranging the above
equation, we see that:

Pials) Wﬁ s) 1= B*p*(d | )
mg(als) Pals) +Z | s) |A| -1 ' ©)

Hence, we see that
Sk+1 k(! /
p ) S ok pia | )
—_— = B = ) Ee’w |s,a TR
L 53] 9) = r50) + B i DD
where we substitute the definition of B*. Finally, taking the fixed point of the above expression yields,
pla | s)

ma(a | s)

(a]s

> Q"(s,a) = pla|s) 2 ms(a| 5)Q"(s,a),

as desired.

Upper-bound. Now, we show the upper-bound part of Theorem[d.1] Assume that
1
Al -1

Bp*(als) >

Then, we can solve for the bound:

_ Rk als
(L—mg(als)) B'p (a]s)— Y ma(a’|s) lit]f—(l)

a'#a
, . 1—B*ﬁk a|s
- L9 (53 i)
a’#a
, I—B*A" "|s
2 2wl (|A| |A|—(1| ') 20

This means that we have,

1—B*p*d | s
PHa] s) = (] B P | 5)+ 3 mplal | 5) ol 15)

2 A1
_ Rxk( 4/
=B 9) - (1= mala ) B a9+ 3 mpla | o) 2P o
a’#a
< BFa s).
Hence, we see that
~k+1 * (., /
PHals)  BPals) 1 ( { p(as)D
< = r(s,a) +VYEgwp(|s,e) |[max ———"—5| ] .
m@ls) = wplals)  msals) Y Pl | T )

Finally, taking the fixed point of the above expression yields the desired p(a | s) < Q*(s, a). This
completes the proof.

16



Published as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

We use the hyperparameters reported in Table ] All algorithms were trained on a single TPUv3 on
Google Cloud until convergence.

Hyperparameter | Chess Wordle 20Q WebShop ALFWorld
154 8.0 4.0 1.0 1.0 1.0
v discount factor 0.99 0.99 0.95 0.9 0.95
Batch size 128 128 128 128 128
Target network update o 0.005 0.005  0.005 0.01 0.01
Number of updates per iteration 60 60 60 50 50
Number of iterations 100 100 100 200 200
A learning rate le-4 le-4 le-4 2e-4 3e-4
Ao learning rate le-4 le-4 le-4 2e-4 le-4

Table 4: Hyperparameters used during training Q-SFT in our experiments.

As shown in Table ] most hyperparameters were held the same except for /3, where larger 3 results
in a more deterministic policy. In practice, we only had to increase 3 for tasks with restricted action
spaces (such as games). Hence, we can conclude that in most practical tasks, our method does does
not require much hyperparamter tuning to perform well.
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