A Performance-Driven Benchmark for Feature
Selection in Tabular Deep Learning

Valeriia Cherepanova Roman Levin* Gowthami Somepalli
University of Maryland University of Washington University of Maryland
Jonas Geiping C. Bayan Bruss Andrew Gordon Wilson
University of Maryland Capital One New York University
Tom Goldstein Micah Goldblum
University of Maryland New York University
Abstract

Academic tabular benchmarks often contain small sets of curated features. In
contrast, data scientists typically collect as many features as possible into their
datasets, and even engineer new features from existing ones. To prevent overfit-
ting in subsequent downstream modeling, practitioners commonly use automated
feature selection methods that identify a reduced subset of informative features.
Existing benchmarks for tabular feature selection consider classical downstream
models, toy synthetic datasets, or do not evaluate feature selectors on the basis
of downstream performance. Motivated by the increasing popularity of tabular
deep learning, we construct a challenging feature selection benchmark evaluated
on downstream neural networks including transformers, using real datasets and
multiple methods for generating extraneous features. We also propose Deep Lasso
— an input-gradient-based analogue of Lasso for neural networks that outperforms
classical feature selection methods on challenging problems such as selecting from
corrupted or second-order features.

1 Introduction

Tabular data is ubiquitous across scientific and industrial applications of machine learning. Practi-
tioners often curate tabular datasets by including exhaustive sets of available features or by hand-
engineering additional features. Under such a procedure, real-world tabular datasets can quickly
accumulate a large volume of features, many of which are not useful for downstream models. Training
on such a large number of features, including noisy or uninformative ones, can cause overfitting.
To avoid overfitting, practitioners filter out and remove features using automated feature selection
methods [Guyon and Elisseeff, 2003} |Liu and Yu, 2005].

The literature contains a wide body of work proposing or evaluating feature selection approaches
that use classical machine learning algorithms in their selection criteria or which select features for
training classical machine learning algorithms downstream [Tibshirani,|1996| [Kohavi and John, |1997].
Over the past few years, deep learning for tabular data has become competitive and is increasingly
adopted by practitioners [|Arik and Pfister], 2021} |Gorishniy et al., 2021, Somepalli et al.,2021]]. While
the community has identified that neural networks are especially prone to overfitting on noisy features

*The substantive contributions of the author to the work described in the paper were done prior to the author
joining Amazon.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

[Grinsztajn et al., [2022], a thorough evaluation of feature selection methods for downstream tabular
neural networks is lacking.

To address this absence, we benchmark feature selection methods in tabular deep learning setting by
evaluating the selected features via the performance of neural networks trained on them downstream.
In addition to popular existing methods, we select features using the attention maps of tabular
transformer models [Gorishniy et al.,[2021[], and we further propose Deep Lasso — an input-gradient-
based analogue of Lasso [Tibshirani, |1996] for deep tabular models. Whereas many previous works
on feature selection use entirely synthetic datasets [Wah et al.,[2018| [Passemiers et al.,|2023| |Bol6n+
Canedo et al.| [2013]] or create extraneous features by concatenating random noise onto existing
features [Dinh and Ho, 2020, Borisov et al., [2019]], we conduct our benchmark on real datasets,
and explore three different ways to construct extraneous features: random noise features, corrupted
features, and second-order features that serve as a prototypical example of feature engineering.

In our experiments, we find that while many feature selection methods can differentiate between
informative features and noise within reason, they may fail under more challenging settings. No-
tably, Deep Lasso selects features which achieve significantly better downstream neural network
performance than previous methods when selecting from corrupted or second-order features. F_]

Our primary contributions are summarized as follows:

* We construct a challenging feature selection benchmark comprising real-world datasets with
extraneous uninformative, corrupted, and redundant features.

* We benchmark different feature selection algorithms for deep tabular models, including
recent tabular transformer architectures, on the basis of downstream performance.

* We propose a generalization of Lasso for deep neural networks, which leverages input
gradients to train models robust to changes in uninformative features. We show that Deep
Lasso outperforms other feature selection methods, including tree-based methods, in the
most challenging benchmark setups.

2 Related Work

In the following section, we provide a brief overview of recent developments in tabular deep learning,
and of feature selection in machine learning more broadly.

2.1 Tabular Deep Learning

Tabular data is the dominant format of data in real-world machine learning applications. Until
recently, these applications were primarily solved using classical decision tree models, such as
gradient boosted decision trees (GBDT). However, modern deep tabular neural networks started to
bridge the gap to conventional GBDTs, which in turn unlocked new use cases for deep learning in
tabular domain. Recent work includes the development of novel tabular architectures, for example
based on transformer models [Huang et al.l 2020 |Gorishniy et al., 2021}, [Somepalli et al., 2021},
Arik and Pfister; [2021]], and ensembles of differentiable learners [Popov et al., 2019} Kontschieder
et al.,[2015, |[Hazimeh et al., [2020, Badirli et al., | 2020], as well as modifications and regularizations
for MLP-based architectures [Kadra et al., 2021, |Gorishniy et al.l2022]. Other works explore new
capabilities that are enabled by tabular deep learning, such as self-supervised pre-training [[Ucar
et al.| [2021} [Somepalli et al., 2021} Rubachev et al.| [2022| [Kossen et al.,|2021, |Agarwal et al., 2022],
transfer learning [Levin et al., 2023} 'Wang and Sun, |2022| |Zhu et al.| 2023], few-shot learning [Nam!
et al.| 2023]] and data generation [Kotelnikov et al., 2022].

2.2 Feature Selection

A cornerstone of applied machine learning is feature selection, where data science practitioners
carefully curate and select features for predictive tasks. As a result, there has been considerable
interest in automating this process.

'0ur code for benchmark and Deep Lasso is available at https://github.com/vcherepanova/
tabular-feature-selection

https://github.com/vcherepanova/tabular-feature-selection
https://github.com/vcherepanova/tabular-feature-selection

Existing approaches for feature selection can be categorized into three main types: filter, wrapper
and embedded methods. Filtering algorithms rank features based on their individual characteristics
and relevance to target variables, without considering any specific learning algorithm. Examples of
filter methods include univariate statistical tests, variance filters, and mutual information scores. A
comprehensive overview of existing filter methods can be found in [Lazar et al.,[2012]]. Wrapper
methods, on the other hand, are algorithm-dependent and involve iteratively re-training a machine
learning algorithm on a subset of features to identify the subset that yields the best performance.
These include greedy sequential algorithms [Kittler, | 1978]], recursive feature elimination [|Guyon et al.,
2002, Huang et al.,[2018]] as well as evolutionary algorithms [Xue et al.,|2015}|Siedlecki and Sklansky,
1989, [Kennedy and Eberhart, |1995| |Gheyas and Smith|, |2010]]. Embedded methods incorporate the
task of feature selection into the training process, allowing the model to learn which features are most
relevant while training. Lasso [Tibshirani, |1996] is a classical embedded feature selection algorithm,
which has been also applied to deep neural networks in the form of Adaptive Group Lasso [Dinh and
Ho, [2020]. Additionally, tree-based algorithms like Random Forests [Breimanl 2001]] and Gradient
Boosted Decision Trees [Friedman [2001]] employ built-in feature importance measures, enabling
automatic feature selection. A few recent works propose specialized neural network architectures with
embedded feature selection through knockoff filters [Lu et al., 2018 [Zhu et al.|[2021]], auto-encoders
[Balin et al.l 2019, |Zhu et al., [2021]] and specialized gating layers [Lemhadri et al.| [2021].

We find wrapper methods generally too computationally expensive to be useful for the deep neural
network models we consider in this study, especially when hyperparameter optimization is performed.
Therefore, in our study we focus on established filter and embedded approaches, both classical and
modern, that can be applied to generic tabular architectures.

2.3 Feature Selection Benchmarks

So far, it is unclear which strategy, whether classical or modern, would be optimal for feature selection
with deep tabular models. Existing benchmark studies focus primarily on classical downstream
models [[Bolon-Canedo et al., [2013| [Bommert et al., 2020, Bolon-Canedo et al., 2014]] or do not
optimize for downstream performance at all [Lu et al.| [2018]]. A few works evaluate feature selection
methods on synthetic datasets [Bolon-Canedo et al.| 2013} |Wah et al.,[2018| |Passemiers et al.||2023|
Sanchez-Marofio et al.,2007]] or on domain specific datasets such as high-dimensional genomics data
containing small number of samples [Bommert et al., {2020, Bolon-Canedo et al., [2014]], malware
detection data [Darshan and Jaidhar, 2018]] and text classification [Darshan and Jaidhar, 2018, [Forman
et al.,[2003]]. [Passemiers et al.| [2023]] evaluates neural network interpretability methods in a feature
selection setup on synthetic datasets, using a small MLP model, and finds them to be less effective
than classical feature selection methods such as random forest importance.

In contrast, in this work we provide an extensive benchmark of feature selection methods for modern
deep tabular models. We construct our feature selection benchmark on large-scale tabular datasets
with different types of extraneous features and investigate a range of representative feature selectors,
both classical and deep learning based. Our benchmark evaluates feature selection methods based on
performance of the downstream deep tabular models.

3 Experimental Setup

We construct a challenging feature selection benchmark that uses real datasets and includes multiple
approaches for the controlled construction of extraneous features. In all cases, we evaluate feature
selection methods based on downstream neural network performance, i.e. the practically relevant met-
ric of success for a feature selection procedure. We conduct experiments with both MLP architectures
and the recent transformer-based deep tabular FT-Transformer architecture [|Gorishniy et al., [2021]]
as downstream models. Our benchmark comprises 12 datasets with 3 types of additional features.
These datasets are collected and adapted based on recent tabular benchmark papers [|Gorishniy et al.,
2021} 2022, Rubachev et al., [2022]] and include ALOI (AL), California Housing (CA), Covertype
(CO), Eye Movements (EY), Gesture (GE), Helena (HE), Higgs 98k (HI), House 16K (HO), Jannis
(JA), Otto Group Product Classification (OT), Year (YE) and Microsoft (MI). Among these datasets,
there are eight classification datasets and four regression datasets. We measure downstream model
performance using accuracy for the classification tasks and RMSE for the regression tasks. Additional
details concerning these datasets can be found in Appendix

ALOI California Housing Covertype Eye Movements
—0.400 0.97 0.75

& !
0.950 .\.\. h I~ _
—0.425 oo 3 \ 0.70 ~
0.925 T~
_ 0.96
0.450 . 0.65 \:
0900 ~0.475 \ 0.60

0.875 . 0.95 A
\. -0.500 \ 0.55
0.850
-0.525
N 0.04 o 050
Gesture Helena Higgs House
. . 0.82 S0, _
0.65 \. 039 SN, —— 0550 B, |
[0} ~—.. \n\. 0.80 —0.575 \.\'
O 0.60 e \. 0.38 -
& o5 \ . 0.78 -0.600 model
g - \. 0.37 \ —— FT-Transformer
= 0.76 -0.625
L 030 S — 0.36 —. Yor
- ' —0.650 —— XGBoost
& o4s 0.74
0.35 . T———e— . 0675
Jannis Microsoft Otto Year
PR— —0.86 o o
—, 0.82
—————a—, .t'\ ~0.78 *
0.72 ~ . \.
-0.88 0.80 —— 079 °
N -0. —
0.70 \, 0.78 \:\
. .
N -0.80 \:
~,
0.68 0.76
-0.81
-0.92
0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5

% of uninformative features in the dataset

Figure 1: Performance of FT-Transformer, MLP and XGBoost models when trained on data
with random extra features. The X-axes indicates the percentage of uninformative features in the
dataset and the Y-axes depict accuracy for classification problems and negative RMSE for regression
datasets, so higher values always indicate better performance. Overall, we find MLP models to be
more susceptible to noise than either XGBoost or FT-Transformer models.

For each benchmarking experiment, we perform extensive hyperparameter tuning for both feature
selection algorithms and downstream models with respect to the downstream model performance
using the Bayesian hyperparameter optimization engine Optuna [[Akiba et al., 2019]. We select the
best hyperparameters based on validation metrics and report test metrics computed over 10 random
model initializations (seeds). Details concerning final hyperparameters can also be found in the

Appendix sections D] [C.3]

In the following section, we present a motivating experiment. In Section [5] we discuss our benchmark
design in detail. Section[6]presents experimental benchmark results using feature selection methods.

4 Are Deep Tabular Models More Susceptible to Noise than GBDT?

Recent contributions to the ongoing competition between tabular neural networks and gradient
boosted decision trees (GBDT) have found that neural networks are more susceptible to noise than
GBDT on small to medium datasets (up to 10,000 samples) [|Grinsztajn et al.,[2022]]. We scale this
experiment to larger datasets and showcase it as a motivating example for feature selection methods
and benchmarks specific to deep tabular models.

We explore the influence of uninformative features on tabular neural networks and assess the perfor-
mance of MLP and FT-Transformer models on datasets containing varying numbers of uninformative
Gaussian noise features. For reference, we also include a GBDT model into our comparison as
implemented in the popular XGBoost package [[Chen and Guestrin| 2016]. Figure[T]illustrates the
relationship between the performance of the three models and the proportion of uninformative features
in these datasets. Similarly to |Grinsztajn et al.| [2022]], we observe that the MLP architecture, on
average, exhibits more overfitting to uninformative features compared to XGBoost, motivating the
need for careful feature selection with tabular neural networks. Interestingly, as seen from the slope
of the blue and green curves in Figure[T] the FT-Transformer model is roughly as robust to noisy
features as the XGBoost model. The fact that the performance of the FT-Transformer model is not as

Random Features Corrupted Features Second-Order Features

o1 OImportance rank correlation is 0.69 1 OImportance rank correlation is 0.63 1 OImportance rank correlation is 0.61
gt X X
()
Q<
o 0.8 0.8 0.8
2]
%]
2ose 0.6 0.6
3
2
©
Loa 0.4
o
b=
0.2 0.2
5 I u l
X 0.0 L 0.0
X o X o o
R\ o<e oo‘*‘ 2% R 0@ oo‘*‘ 25° (\ 0@ 00‘*‘ 399
Ko \, ? \ R \, ? N R
o +© Oeaﬂ’ o © OQPQ o Oea

Figure 2: Percent of random, corrupted, and second-order features selected by different feature
selection algorithms. Importance rank correlation refers to pair-wise feature importance Spearman
correlation averaged across all feature selection algorithms and datasets. Random features are less
often ranked as important compared to corrupted and second-order features, and feature selection
algorithms have higher agreement when selecting from random features.

severely affected by noisy features could be attributed to the ability of the transformer architecture to
filter out uninformative features through its attention mechanism. Inspired by this observation, we
further investigate the effectiveness of utilizing the attention map importance within FT-Transformer
Gorishniy et al.| [2021]] as a feature selection method in our benchmark study.

5 Feature Selection Benchmark

It is not common for real-world datasets to contain completely random noise features with no predic-
tive power whatsoever, although engineered features often exhibit varying degrees of redundancy and
noise. Nonetheless, feature selection algorithms are often evaluated on datasets containing spurious
features generated from Gaussian noise. Not only does this differ significantly from real-world
feature selection scenarios, but it also presents a relatively straightforward task for many feature
selection algorithms to eliminate these random features. In light of these considerations, we propose
an alternative approach to establish a more challenging and realistic feature selection benchmark by
introducing three distinct methods for crafting additional features:

Random Features. In the simplest scenario, we sample uninformative features from a Gaussian
distribution and concatenate them with the original dataset features.

Corrupted Features. To simulate a scenario with noisy, yet still relevant features, we sample
extraneous features from the original ones and corrupt them with Gaussian noise. In addition, we
conduct experiments with Laplace noise corruption and report experimental results in Appendix [F.1]

Second-Order Features. To simulate a feature engineering scenario with redundant information
contained in engineered features, we add second-order features, i.e. products of randomly selected
original features.

Note that higher-order features are not spurious and are often used by data scientists precisely because
they can contain useful information. Therefore, selecting higher order features instead of original ones
may not be a bad thing. Such feature selection algorithms must be evaluated in terms of downstream
model performance as we do in the following section.

To gauge the difficulty of the proposed benchmark, we explore how often different feature selection
algorithms rank extraneous features among the top-k£ most important features, where & represents the
number of original features in the datasets. From Figure 2] we observe that all methods select fewer
random features than they do corrupted or second-order features. Additionally, to quantify the overall
agreement between different feature selection methods, we analyze the average pair-wise Spearman
correlation between the rankings of features generated by different selection algorithms. Notably, the
setup involving random extra features exhibits the highest correlation, indicating that filtering out
random features is relatively straightforward and all feature selection algorithms behave similarly. In

contrast, the setup with second-order extra features has the lowest rank correlation implying greater
disparity in selection preferences among the algorithms.

We note, that different feature selection algorithms may select similar features, but rank features dif-
ferently within "important” and "unimportant” groups, which would results in lower rank correlation
even in the settings where feature selection is straightforward (i.e. selecting from random features).

6 Benchmarking Feature Selection Methods

In this section, we benchmark various feature selection methods. In particular, we consider the
following feature selection approaches:

Univariate Statistical Test. This classical analysis checks the linear dependence between the
predictors and the target variable. It selects features based on the ANOVA F-values for classification
problems and univariate linear regression test F-values for regression problems.

Lasso uses L regularization to encourage sparsity in a linear regression model [Tibshirani, [1996].
After this sparse regression, features are ranked with respect to the magnitudes of their coefficients in
the model.

First-Layer Lasso (1L Lasso) is an extension of Lasso for MLPs with multiple layers. It applies a
Group Lasso penalty to the weights of the first layer parameters:

mlnaﬁg(X Y)+(1—-a) ZHW(] |2,

where W () is the j-th column of weight matrix of the first hidden layer corresponding to the j-th
feature. Similarly to Lasso, First-Layer Lasso ranks features with respect to their grouped weights in
the first layer.

Adaptive Group Lasso (AGL) is an extension of the Group Lasso regularization method [Dinh and
Ho, [2020]]. Similarly to the First-Layer Lasso, it applies a Group Lasso penalty to the weights of
the first layer parameters, however each group of coefficients is weighted with an adaptive weight
parameter:

minaly(X,Y)+ (1 —a) W@,
sl ;menz .

where W is the Group Lasso estimate of W. Adaptive Group Lasso then ranks features with respect
to their grouped weights in the first layer.

LassoNet is a neural network architecture that incorporates feature selection [Lemhadri et al., 2021].
LassoNet achieves feature sparsity by adding a skip (residual) layer and allowing the features to
participate only if their skip-layer connection is active.

Random Forest (RF) is a bagging ensemble of decision trees, and it ranks features with respect
to their contribution to the ensemble [Breiman, 2001]]. In particular, importance is calculated by
measuring the decrease in impurity when that feature is used for splitting at each node of the decision
trees in the forest.

XGBoost is a popular implementation for gradient boosted decision tree [Chen and Guestrinl 2016].
XGBoost computes feature importance as the average gain across all splits in trees where a feature
was used.

Attention Map Importance (AM) is computed for FT-Transformer model from one forward pass on
the validation set. We follow |Gorishniy et al.|[2021]] and calculate feature importance as the average
attention map for the [CLS] token across all layers, heads, and validation samples.

Deep Lasso is our generalization of Lasso to deep tabular models (and, in fact, any differentiable
model). Deep Lasso encourages feature gradient sparsity for deep tabular models by applying a
Group Lasso penalty to gradients of the loss with respect to input features during training. Intuitively,
this makes the model robust to changes in unimportant features. For train data (X, Y") with n samples
and m features, the Deep Lasso penalty is given by

Table 1: Benchmarking feature selection methods for MLP and FT-Transformer downstream
models on datasets with random extra features. We report performance of models trained on
features selected by different FS algorithms in terms of accuracy for classification and negative
RMSE for regression problems. % refers to percent of extra features in the dataset: either 50% or
75% features are random. Bold font indicates the best numbers dataset-wise and lower rank indicates
better overall result.

% FS method AL CH Cco EY GE HE HI HO JA MI oT YE rank
50 NoFS+MLP 0941 -0.480 0.961 0.538 0466 0366 0.798 -0.622 0.703 -0911 0.773 -0.801 8.08
50 Univariate + MLP 096 -0.447 0.970 0.575 0515 0379 0.811 -0.549 0.715 -0.891 0.808 -0.776 2.66
50 Lasso+ MLP 0949 -0.454 0969 0.547 0.458 0380 0.812 -0.599 0.715 -0.907 0.805 -0.787 5091
50 1L Lasso + MLP 0952 -0451 0969 0.564 0474 0375 0.811 -0.568 0.715 -0.897 0.796 -0.773 4091
50 AGL +MLP 0958 -0.512 0969 0.578 0473 0386 0.810 -0.557 0.718 -0.898 0.799 -0.778 433
50 LassoNet + MLP 0954 -0.445 0.969 0552 0495 0.385 0.811 -0.557 0.715 -0.907 0.783 -0.787 5.16
50 AM+MLP 0953 -0.444 0968 0.554 0498 0382 0.813 -0.566 0.722 -0.904 0.801 -0.777 3.83
50 RF+MLP 0955 -0.453 0969 0.589 0.594 0.386 0.814 -0.572 0.720 -0.904 0.806 -0.786 291

50 XGBoost + MLP 0956 -0.444 0969 0.59 0502 0385 0.812 -0.560 0.72 -0.893 0.805 -0.777 2.33
50 DeepLasso+MLP 0.959 -0.443 0968 0.573 0485 0383 0.814 -0.549 0.72 -0.894 0.802 -0.776 2.33

75 NoFS + MLP 0.925 -0.527 0955 0.502 0417 0348 0.778 -0.674 0.671 -0917 0.749 -0.812 741
75 Univariate + MLP 096 -0.447 0.970 0.575 0502 0.381 0.810 -0.549 0.713 -0.89 0.806 -0.776 2.50
75 Lasso+MLP 0.959 -0.454 0967 0.543 0491 0381 0811 -0.612 0.716 -0907 0.802 -0.789 4.33
75 1L Lasso + MLP 0.957 -0.448 0.968 0.555 0432 0380 0.809 -0.572 0.717 -0.903 0.799 -0.775 441
75 AGL + MLP 0954 -0.447 0968 0.561 0429 0382 0.809 -0.571 0.719 -0901 0.762 -0.777 433
75 LassoNet + MLP 0958 -0.452 0966 0.528 0475 0.383 0.809 -0.555 0.705 -0913 0.768 -0.794 4.75
75 RF+MLP 0949 -0.453 0968 0.584 0.61 0.386 0.814 -0.585 0.718 -0.902 0.808 -0.784 291

75 XGBoost + MLP 0958 -0.451 0.969 0576 0583 0382 0.810 -0.568 0.72 -0.892 0.804 -0.774 2.08
75 Deep Lasso+ MLP 0957 -0.446 0.969 0.569 0479 0.387 0.814 -0.559 0.721 -0.893 0.800 -0.774 2.33

50 NoFS+FT 0959 -0.432 0966 0.673 0500 0.384 0.817 -0.577 0.730 -0.902 0.813 -0.792 6.58
50 Univariate + FT 0.963 -0.424 0970 0.700 0519 0.389 0.819 -0.554 0.733 -0.897 0.819 -0.789 2.83
50 Lasso+FT 0952 -0.419 0960 0.682 0.489 0.388 0.819 -0.594 0.728 -0.999 0.817 -0.998 6.33
50 1L Lasso+FT 0963 -0.423 0.969 0.72 0489 0.382 0.818 -0.577 0.732 -0.904 0.819 -0.791 5.16
50 AGL+FT 0.899 -0.42 0969 0.701 0480 0.393 0.822 -0.586 0.733 -0915 0.814 -0.832 525
50 LassoNet +FT 0963 -0.426 0.970 0.670 0.505 0.392 0.818 -0.559 0.733 -0.904 0.808 -0.791 4.83
50 AM+FT 0962 -0.425 0968 0.657 0505 0.389 0.820 -0.554 0.735 -0.903 0.815 -0.789 3.75
50 RF+FT 0963 -042 0969 0.718 0.591 0.395 0.821 -0.558 0.737 -0.900 0.82 -0.791 175
50 XGBoost +FT 0963 -0.42 0969 0.725 0572 0392 0.820 -0.558 0.734 -0.898 0.82 -0.789 191

50 Deep Lasso + FT 0962 -0.419 0.969 0.703 0504 0.392 0.817 -0.560 0.733 -0.900 0.817 -0.788 3.66

. 0Ly(X,Y)
minale(X,Y) + Z H x|, (1)
where, for j-th feature (column of X), azg,)(()é,)y) = (aﬁgfcxfy), acgifo) e %) . Once
1j 27 nj
the model is trained with the above regularizer, the corresponding feature importance is provided by
. . OLy(X,Y)
importance of the j-th feature = ’ “axG) , 2)

Note that in the linear regression case, the classical Lasso is equivalent to the proposed input-gradient
sparsity regularizer applied to model output since in the linear case input gradients are the weights of
the linear model. We provide a formal proof of equivalence between Deep Lasso, classical Lasso, and
First-Layer Lasso in the linear regression case in Appendix Section[E| We also note that Deep Lasso is
related to methods used to promote network explainability by leveraging input gradients [Sundararajan
et al., 2017, |Shrikumar et al., 2017, |Smilkov et al.l 2017, |Levin et al.| 2022]. In addition, [[Liul 2021]]
examines input gradients for feature selection from a Bayesian perspective. This work uses Bayesian
Neural Networks (BNN5s) along with associated credible intervals to estimate uncertainty surrounding
input gradients, choosing features based on the plausibility that their corresponding gradients are
zero. On the one hand, this principled work comes with theoretical guarantees, but on the other hand
it requires Hamiltonian Monte Carlo, an expensive sampler which does not scale to large datasets and
models.

6.1 Results

We benchmark feature selection methods for downstream MLP and FT-Transformer models. In the
case of the MLP downstream model, we explore scenarios where either 50% or 75% of the features

Table 2: Benchmarking feature selection methods for MLP and FT-Transformer downstream
models on datasets with corrupted extra features. We report performance of models trained on
features selected by different FS algorithms in terms of accuracy for classification and negative RMSE
for regression problems. % refers to percent of extra features in the dataset: either 50% or 75%
features are corrupted. Bold font indicates the best numbers dataset-wise and lower rank indicates
better overall performance.

% FS method + Model AL CH CO EY GE HE HI HO JA MI oT YE rank

50 NoFS +MLP 0.946 -0.475 0.965 0.557 0.525 0370 0.802 -0.607 0.703 -0.909 0.778 -0.797 8.00
50 Univariate + MLP 0.955 -0.451 0.966 0.556 0514 0346 0.810 -0.620 0.717 -0.920 0.795 -0.828 7.33
50 Lasso+ MLP 0.955 -0.449 0968 0.548 0512 0382 0.813 -0.602 0.713 -0903 0.796 -0.795 542
50 1L Lasso + MLP 0955 -0.447 0.968 0.566 0515 0.382 0.812 -0581 0.718 -0.902 0.795 -0.780 4.75
50 AGL +MLP 0.953 -0450 0968 0.588 0.538 0.386 0.813 -0.561 0.722 -0.902 0.796 -0.780 3.00
50 LassoNet + MLP 0.955 -0.452 0969 0.570 0.556 0382 0.811 -0.551 0.719 -0905 0.795 -0.777 3.83
50 AM+MLP 0955 -0.449 0.967 0.583 0527 0381 0.814 -0.555 0.722 -0905 0.797 -0.780 3.58
50 RF+MLP 0951 -0.453 0.967 0.574 0.568 0.383 0.810 -0.565 0.724 -0.904 0.788 -0.786 4.67

50 XGBoost + MLP 0954 -0.454 0.969 0.583 0.510 0.385 0.815 -0.553 0.722 -0.892 0.803 -0.779 2.67
50 DeepLasso+MLP 0955 -0.447 0968 0.577 0525 0388 0.815 -0.567 0.721 -0.895 0.801 -0.776 2.58

75 NoFS + MLP 0.921 -0.516 0956 0.518 0.503 0.356 0.788 -0.632 0.686 -0913 0.762 -0.808 7.58
75 Univariate + MLP 0955 -0.569 0.941 0.510 0495 0347 0.742 -0.620 0.686 -0.921 0.779 -0.838 7.50
75 Lasso+MLP 0.948 -0.454 0963 0.565 0.490 0.373 0.810 -0.593 0.717 -0.903 0.795 -0.791 5.00
75 1L Lasso + MLP 0.955 -0.444 0.967 0.549 0495 0380 0811 -0576 0715 -0.903 0.797 -0.779 3.25
75 AGL + MLP 0928 -0.566 0.967 0.548 0.490 0.382 0.811 -0.574 0.714 -0.904 0.788 -0.780 4.92
75 LassoNet + MLP 0.947 -0452 0969 0.539 0.533 0.383 0.805 -0.572 0.708 -0.908 0.791 -0.785 4.33
75 RF+MLP 0.952 -0.450 0.963 0.547 0.533 0372 0.805 -0.573 0.716 -0903 0.765 -0.788 4.92

75 XGBoost + MLP 0954 -0515 0968 0.571 0.53 0381 0.811 -0.571 0.721 -0.895 0.800 -0.784 2.58
75 Deep Lasso+MLP 0.959 -0.441 0968 0.554 0.517 0.386 0.813 -0.563 0.718 -0.898 0.804 -0.778 1.42

50 NoFS+FT 0.960 -0430 0967 0.686 0.576 0386 0.818 -0.574 0.731 -0.901 0.809 -0.793 6.08
50 Univariate + FT 0963 -0.422 0.965 0.681 0.574 0.345 0.812 -0.628 0.733 -0.920 0.812 -0.826 6.17
50 Lasso+FT 0952 -0422 0936 0.697 0.556 0387 0.820 -0.586 0.732 -0.937 0.812 -0915 642
50 1L Lasso+FT 0962 -0.419 0969 0.718 0571 0389 0.820 -0.570 0.731 -0.899 0.816 -0.795 3.50
50 AGL+FT 0906 -0.426 0.969 0.697 0591 0392 0.820 -0.552 0.735 -0914 0.816 -0.830 4.08
50 LassoNet + FT 0.962 -0426 097 0.679 0578 0393 0.814 -0.572 0.736 -0903 0.813 -0.79 3.92
50 AM+FT 0962 -0.424 0.969 0.680 0.572 0.392 0.820 -0.549 0.734 -0.901 0.817 -0.790 3.42
50 RF+FT 0.962 -0422 0969 0.711 0.6 0.387 0.819 -0.557 0.735 -0.898 0.806 -0.793 3.42
50 XGBoost + FT 0963 -0.422 097 0.706 0564 0392 0.821 -0.548 0.735 -0.897 0.816 -0.790 2.42

50 Deep Lasso + FT 0961 -0.422 0968 0.725 0577 0393 0.821 -0.561 0.736 -0.898 0.809 -0.788 2.67

in the dataset are extraneous. For the FT-Transformer, we focus on evaluating FS methods solely
on datasets with 50% added features. For simplicity, we train the downstream models on the top-k
important features determined by the feature selection algorithms, where k corresponds to the original
number of features in the datasets. We include more details on our experimental setup in Section

We report dataset-wise downstream performance based on the proposed benchmark, as well as overall
rank of the methods in Tables|[I] 2] and [3]and we include results with standard errors computed across
seeds in Tables[I6] [T7] [T8] While we did not discover a universally optimal feature selection method
that performed the best across all datasets and extra feature types, we did identify several noteworthy
patterns, which we will discuss below.

Random Features. In the easy scenario where extraneous features are Gaussian noise, we observe
in Table[I] that XGBoost, Random Forest, univariate statistical test and Deep Lasso perform on par
for MLP downstream models, while for FT-Transformer downstream models, Random Forest and
XGBoost outperform other methods. Conversely, Lasso, 1L Lasso, AGL, LassoNet and Attention
Map Importance are less competitive. These findings align with the results depicted in Figure [2}
which highlight the high similarity in importance rank between the methods and the greater tendency
of Lasso based methods to assign higher ranks to random features. In addition to downstream
performance, we report ROC-AUC and precision scores in Tables[TT} [I2]

Corrupted Features. In a more challenging scenario involving corrupted extra features, both Deep
Lasso and XGBoost significantly outperform the other feature selection methods. Specifically, Deep
Lasso exhibits superior performance for the MLP downstream model, while XGBoost performs
slightly better for the FT-Transformer downstream model, see Table [2]

Second-Order Features. Finally, in the most challenging scenario of choosing among original and
second-order features, Deep Lasso demonstrates a significant performance advantage over the other
methods, see Table[3] Interestingly, we discover that the relative rank of Deep Lasso is lower when
75% of all features were generated, indicating that Deep Lasso excels in more challenging feature

Table 3: Benchmarking feature selection methods for MLP and FT-Transformer downstream
models on datasets with second-order extra features. We report performance of models trained
on features selected by different FS algorithms in terms of accuracy for classification and negative
RMSE for regression problems. % refers to percent of extra features in the dataset: either 50% or
75% features are second-order. Bold font indicates the best numbers dataset-wise and lower rank
indicates better overall result.

% FS method AL CH €O EY GE HE HI HO JA Ml OT YE rank
50 NoFS+MLP 0960 -0443 0969 0631 0605 0383 0811 -0.549 0719 -0.891 0.800 -0.786 4.50
50 Univariate + MLP 0961 -0.439 0959 0584 0582 0357 0817 -0.614 0724 -0902 0798 -0.810 6.8
50 Lasso+MLP 0955 0443 0966 0608 0590 0366 0816 -0.564 0724 -0.891 0.806 -0.783 533
50 ILLasso+MLP 0959 -0.445 0969 0.634 0571 0380 0815 -0.565 0.728 -0.89 0.808 -0.780 3.92
50 AGL+MLP 0961 0443 0953 0637 0594 0383 0807 -0.565 0730 -0.89 0.806 -0.776 3.5
50 LassoNet+MLP 0959 -0.442 0969 0.641 0611 0379 0816 -0.595 0.724 -0.893 0.797 -0.784 4.50
50 AM +MLP 0.961 0439 0968 0622 0604 0381 0819 -0.566 0730 -0.892 0.802 -0.778 3.50
50 RF+MLP 0958 -0437 0969 0639 0619 0370 0818 -058 0735 -0.89 0801 -0.781 3.5

50 XGBoost + MLP 0.870 -0.438 0.97 0.635 0.604 0373 0.818 -0.579 0.734 -0.891 0.805 -0.786 3.83
50 DeepLasso+MLP 0961 -0.441 0.969 0.648 0.600 0.384 0.815 -0.572 0.733 -0.89 0.805 -0.776 2.67

75 NoFS + MLP 0952 -0.451 0.969 0.630 0.598 0.388 0.808 -0.542 0.717 -0.900 0.792 -0.792 4.92
75 Univariate + MLP ~ 0.960 -0.530 0.4838 0.553 0.531 0352 0.812 -0.608 0.720 -0.908 0.785 -0.820 7.25
75 Lasso + MLP 096 -0434 0968 0.612 0519 0363 0.820 -0.554 0.739 -0.894 0.807 -0.793 3.67
75 1L Lasso + MLP 096 -0452 0966 0.654 0579 0375 0.818 -0.549 0.741 -0.893 0.805 -0.782 3.33
75 AGL +MLP 0958 -0.438 0.968 0.647 0.601 0.384 0.819 -0.545 0.736 -0.893 0.800 -0.781 2.67
75 LassoNet + MLP 0958 -0.454 0.968 0.633 0.615 0362 0.813 -0.569 0.726 -0.895 0.793 -0.786 4.83
75 RF+MLP 0956 -0.445 0968 0.627 0.566 0.339 0.819 -0.615 0.728 -0.892 0.794 -0.789 5.08

75 XGBoost + MLP 0459 -0.495 0968 0.627 0.555 0.358 0.821 -0.588 0.738 -0.892 0.803 -0.795 5.00
75 DeepLasso+ MLP 0959 -0.448 0.969 0.647 0582 0.378 0.821 -0.568 0.74 -0.89 0.805 -0.78 2.17

50 NoFS+FT 0962 -0425 0968 0.733 0558 0391 0.819 -0.552 0.732 -0.901 0.818 -0.790 4.08
50 Univariate + FT 0.963 -0.419 0942 0.615 0573 0351 0.820 -0.613 0.728 -0910 0.810 -0.819 6.25
50 Lasso+FT 0962 -0.422 0.967 0.720 0.560 0.381 0.823 -0.561 0.733 -0.905 0.816 -0.874 5.08
50 1L Lasso + FT 0.964 -0.421 0970 0.748 0.604 0.391 0.812 -0.557 0.736 -0.896 0.817 -0.795 2.83
50 AGL+FT 0935 -0.421 0950 0.747 0540 0.388 0.821 -0.557 0.730 -0.907 0.821 -0.821 4.16
50 LassoNet+ FT 0.963 -0.423 0970 0.729 0.612 0.378 0.817 -0.592 0.733 -0.901 0.808 -0.792 5.00
50 AM+FT 0963 -0.418 0.970 0.719 0597 0.387 0.820 -0.579 0.736 -0.902 0.819 -0.791 3.83
50 RF+FT 0963 -0.422 0970 0.733 0.615 0.365 0.822 -0.600 0.738 -0.895 0.816 -0.793 3.66
50 XGBoost + FT 0.871 -0.424 0962 0.737 0594 0379 0.822 -0.587 0.736 -0.896 0.812 -0.792 4.08

50 Deep Lasso + FT 0.963 -0.422 0970 0.726 0.608 0.388 0.822 -0.558 0.738 -0.897 0.819 -0.789 2.41

selection problems involving a significant proportion of spurious or redundant features, as observed
in both corrupted and second-order extra features.

7 Similarity between Feature Selection Methods

In this section we analyze which feature selection algorithms are more similar to each other in terms
of feature ranking. In Figure 3] we present a heatmap of pair-wise Spearman correlation between
feature rankings of different FS methods averaged across datasets. We focus on the setup involving
second-order features, as we discovered the lowest level of agreement between methods within this
configuration. It is worth noting that we provide results for methods fine-tuned for both MLP and
FT-Transformer models, ensuring a comprehensive comparison.

We find related similarity patterns for both downstream models. In particular, we observe that Random
Forest and XGBoost rankings exhibit high correlation, indicating a strong agreement between these
both tree-based methods. We find that First-Layer Lasso is highly correlated with Adaptive Group
Lasso, which is an extension of First-Layer Lasso. Additionally, Random Forest results are also
correlated with results from the Univariate Test. Deep Lasso is most correlated with Lasso-based
methods, such as classical Lasso, First-Layer Lasso and Adaptive Group Lasso and with Attention
Map Importance.

8 Discussion

In this paper, we present a challenging feature selection benchmark for deep tabular models, address-
ing the need for more realistic scenarios in feature selection evaluation. Our benchmark encompasses
real-world datasets with extraneous uninformative, corrupted, and redundant features. Through
comprehensive experimentation, we compare various feature selection methods on our proposed
benchmark. Our findings reveal that while classical feature selection methods, including tree-based

MLP FT-Transformer

Univariate Univariate
Lasso Lasso
1L Lasso 1L Lasso
AGL AGL
LassoNet LassoNet
AM AM
Forest Forest
XGBoost XGBoost
Deep Lasso Deep Lasso

UV 0 O d v = i B © O 0 O d ¥ = 7 n ©

spa2zT 88y spEzT 88y

=58 3 2 e m 2 58 3 3 e m J

2 — pa g o 2 - 9 g o

c — g X o c — 5 X @

> a > o

Figure 3: Similarity between feature selection methods tuned for downstream MLP and FT-
Transformer models. Heatmap depicts pair-wise Spearman correlation of feature importances for
the setup with second-order features. Correlations are averaged across the datasets.

algorithms perform competitively in the random and corrupted setups, specialized deep tabular
feature selection methods, like the proposed Deep Lasso outperform other methods in selecting
from second-order features. This indicates the benefits of neural network inductive biases in feature
selection algorithms. Overall, our study contributes a systematic new benchmark with analysis, a
new feature selection method, and insights into improving the performance and robustness of deep
tabular models. The benchmark code and Deep Lasso implementation are made available to facilitate
reproducibility and practical usage.

Acknowledgements

This work was made possible by the ONR MURI program and the AFOSR MURI program. Com-
mercial support was provided by Capital One Bank, the Amazon Research Award program, and Open
Philanthropy. Further support was provided by the National Science Foundation (IIS-2212182), and
by the NSF TRAILS Institute (2229885).

References

R. Agarwal, A. Muralidhar, A. Som, and H. Kowshik. Self-supervised representation learning across
sequential and tabular features using transformers. In NeurIPS 2022 First Table Representation
Workshop, 2022. URL https://openreview.net/forum?id=wIIJ1mriDsk.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2623-2631, 2019.

S. O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI, volume 35, pages
6679-6687, 2021.

S. Badirli, X. Liu, Z. Xing, A. Bhowmik, K. Doan, and S. S. Keerthi. Gradient boosting neural
networks: Grownet. arXiv preprint arXiv:2002.07971, 2020.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature communications, 5(1):4308, 2014.

M. F. Balin, A. Abid, and J. Zou. Concrete autoencoders: Differentiable feature selection and
reconstruction. In International conference on machine learning, pages 444-453. PMLR, 2019.

10

https://openreview.net/forum?id=wIIJlmr1Dsk

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song dataset. 2011.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and electronics in
agriculture, 24(3):131-151, 1999.

V. Bolon-Canedo, N. Sanchez-Marofio, and A. Alonso-Betanzos. A review of feature selection
methods on synthetic data. Knowledge and information systems, 34:483-519, 2013.

V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, J. M. Benitez, and F. Herrera. A review
of microarray datasets and applied feature selection methods. Information sciences, 282:111-135,
2014.

A. Bommert, X. Sun, B. Bischl, J. Rahnenfiihrer, and M. Lang. Benchmark for filter methods for
feature selection in high-dimensional classification data. Computational Statistics & Data Analysis,
143:106839, 2020.

V. Borisov, J. Haug, and G. Kasneci. Cancelout: A layer for feature selection in deep neural
networks. In Artificial Neural Networks and Machine Learning—ICANN 2019: Deep Learning:
28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19,
2019, Proceedings, Part II 28, pages 72-83. Springer, 2019.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pages 785-794, 2016.

S. S. Darshan and C. Jaidhar. Performance evaluation of filter-based feature selection techniques in
classifying portable executable files. Procedia Computer Science, 125:346-356, 2018.

V. C. Dinh and L. S. Ho. Consistent feature selection for analytic deep neural networks. Advances in
Neural Information Processing Systems, 33:2420-2431, 2020.

G. Forman et al. An extensive empirical study of feature selection metrics for text classification. J.
Mach. Learn. Res., 3(Mar):1289-1305, 2003.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189-1232, 2001.

J.-M. Geusebroek, G. J. Burghouts, and A. W. Smeulders. The amsterdam library of object images.
International Journal of Computer Vision, 61:103-112, 2005.

I. A. Gheyas and L. S. Smith. Feature subset selection in large dimensionality domains. Pattern
recognition, 43(1):5-13, 2010.

Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko. Revisiting deep learning models for tabular
data. arXiv preprint arXiv:2106.11959, 2021.

Y. Gorishniy, I. Rubachev, and A. Babenko. On embeddings for numerical features in tabular deep
learning. arXiv preprint arXiv:2203.05556, 2022.

L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?id=
Fp7__phQszn.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine
learning research, 3(Mar):1157-1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support
vector machines. Machine learning, 46:389—422, 2002.

I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray, M. Saeed,
M. Sebag, et al. Analysis of the automl challenge series. Automated Machine Learning, 177, 2019.

11

https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn

H. Hazimeh, N. Ponomareva, P. Mol, Z. Tan, and R. Mazumder. The tree ensemble layer: Differen-

tiability meets conditional computation. In International Conference on Machine Learning, pages
4138—4148. PMLR, 2020.

X. Huang, L. Zhang, B. Wang, F. Li, and Z. Zhang. Feature clustering based support vector machine
recursive feature elimination for gene selection. Applied Intelligence, 48:594—-607, 2018.

X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin. Tabtransformer: Tabular data modeling using
contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. Regularization is all you need: Simple neural
nets can excel on tabular data. arXiv preprint arXiv:2106.11189, 2021.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages 1942—-1948. IEEE, 1995.

J. Kittler. Feature set search algorithms. Pattern recognition and signal processing, pages 41-60,
1978.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1):
273-324, Dec. 1997. ISSN 0004-3702. doi: 10.1016/S0004-3702(97)00043-X. URL https:
//www.sciencedirect.com/science/article/pii/S000437029700043X.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo. Deep neural decision forests. In Proceedings
of the IEEFE international conference on computer vision, pages 1467-1475, 2015.

J. Kossen, N. Band, C. Lyle, A. N. Gomez, T. Rainforth, and Y. Gal. Self-attention between datapoints:
Going beyond individual input-output pairs in deep learning. Advances in Neural Information
Processing Systems, 34, 2021.

A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko. Tabddpm: Modelling tabular data with
diffusion models. arXiv preprint arXiv:2209.15421, 2022.

C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque,
H. Bersini, and A. Nowe. A survey on filter techniques for feature selection in gene expression

microarray analysis. IEEE/ACM transactions on computational biology and bioinformatics, 9(4):
1106-1119, 2012.

I. Lemhadri, F. Ruan, L. Abraham, and R. Tibshirani. Lassonet: A neural network with feature
sparsity. The Journal of Machine Learning Research, 22(1):5633-5661, 2021.

R. Levin, M. Shu, E. Borgnia, F. Huang, M. Goldblum, and T. Goldstein. Where do models go wrong?
parameter-space saliency maps for explainability. Advances in Neural Information Processing
Systems, 35:15602—-15615, 2022.

R. Levin, V. Cherepanova, A. Schwarzschild, A. Bansal, C. B. Bruss, T. Goldstein, A. G. Wilson,
and M. Goldblum. Transfer learning with deep tabular models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
bORuGUYo8pA.

H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering.
IEEE Transactions on knowledge and data engineering, 17(4):491-502, 2005.

J. Liu. Variable selection with rigorous uncertainty quantification using deep bayesian neural networks:
Posterior concentration and bernstein-von mises phenomenon. In International Conference on
Artificial Intelligence and Statistics, pages 3124-3132. PMLR, 2021.

Y. Lu, Y. Fan, J. Lv, and W. Stafford Noble. Deeppink: reproducible feature selection in deep neural
networks. Advances in neural information processing systems, 31, 2018.

R. C. Madeo, C. A. Lima, and S. M. Peres. Gesture unit segmentation using support vector machines:
segmenting gestures from rest positions. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 46-52, 2013.

12

https://www.sciencedirect.com/science/article/pii/S000437029700043X
https://www.sciencedirect.com/science/article/pii/S000437029700043X
https://openreview.net/forum?id=b0RuGUYo8pA
https://openreview.net/forum?id=b0RuGUYo8pA

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The annals of mathematical statistics, pages 50-60, 1947.

J. Nam, J. Tack, K. Lee, H. Lee, and J. Shin. Stunt: Few-shot tabular learning with self-generated
tasks from unlabeled tables. arXiv preprint arXiv:2303.00918, 2023.

R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):
291-297, 1997.

A. Passemiers, P. Folco, D. Raimondi, G. Birolo, Y. Moreau, and P. Fariselli. How good neu-
ral networks interpretation methods really are? a quantitative benchmark. arXiv preprint
arXiv:2304.02383, 2023.

S. Popov, S. Morozov, and A. Babenko. Neural oblivious decision ensembles for deep learning on
tabular data. arXiv preprint arXiv:1909.06312, 2019.

T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

I. Rubachev, A. Alekberov, Y. Gorishniy, and A. Babenko. Revisiting pretraining objectives for
tabular deep learning. arXiv preprint arXiv:2207.03208, 2022.

J. Salojiarvi, K. Puolamaiki, J. Simola, L. Kovanen, 1. Kojo, and S. Kaski. Inferring relevance from
eye movements: Feature extraction. In Workshop at NIPS 2005, in Whistler, BC, Canada, on
December 10, 2005., page 45, 2005.

N. Sanchez-Marofio, A. Alonso-Betanzos, and M. Tombilla-Sanroman. Filter methods for feature
selection—a comparative study. Lecture notes in computer science, 4881:178-187, 2007.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating
activation differences. In International conference on machine learning, pages 3145-3153. PMLR,
2017.

W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature selection. Pattern
recognition letters, 10(5):335-347, 1989.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein. Saint: Improved
neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342,2021.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pages 3319-3328. PMLR, 2017.

R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267-288, 1996. ISSN 0035-9246. doi: 10.1111/.
2517-6161.1996.tb02080.x. URL https://www. jstor.org/stable/2346178,

T. Ucar, E. Hajiramezanali, and L. Edwards. Subtab: Subsetting features of tabular data for self-
supervised representation learning. Advances in Neural Information Processing Systems, 34,
2021.

Y. B. Wah, N. Ibrahim, H. A. Hamid, S. Abdul-Rahman, and S. Fong. Feature selection methods:
Case of filter and wrapper approaches for maximising classification accuracy. Pertanika Journal of
Science & Technology, 26(1), 2018.

Z. Wang and J. Sun. Transtab: Learning transferable tabular transformers across tables. arXiv preprint
arXiv:2205.09328, 2022.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83, 1945.
ISSN 00994987. URL http://wuw. jstor.org/stable/3001968.

B. Xue, M. Zhang, W. N. Browne, and X. Yao. A survey on evolutionary computation approaches to
feature selection. IEEE Transactions on evolutionary computation, 20(4):606-626, 2015.

13

https://www.jstor.org/stable/2346178
http://www.jstor.org/stable/3001968

B. Zhu, X. Shi, N. Erickson, M. Li, G. Karypis, and M. Shoaran. Xtab: Cross-table pretraining for
tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

Z.Zhu, Y. Fan, Y. Kong, J. Lv, and F. Sun. Deeplink: Deep learning inference using knockoffs with
applications to genomics. Proceedings of the National Academy of Sciences, 118(36):¢2104683118,
2021.

14

A Limitations

In this section we discuss limitations of our work. We note that Deep Lasso feature selection is more
computationally demanding than using GBDT-based feature selection methods, especially when
large-scale hyperparameter optimization is performed. In fact, for this work we ran over 80 thousand
experiments. Combined with computationally intense methods, this may have resulted in excessive
carbon emissions. In addition, while we introduce challenging feature selection tasks and use sizeable
datasets, the scale of these datasets is still smaller than truly large-scale industrial tabular data with
billions of samples.

B Benchmark Detail

Our benchmark comprises of datasets used in [Gorishniy et al.,[2021} 2022]]. We select datasets with
up to 150 numerical features and no categorical features.

B.1 Datasets

* ALOI [Geusebroek et al.l 2005]] (AL, image data)

* California Housing [Pace and Barry} [1997]] (CH, real estate data)

* Covertype [Blackard and Dean, [1999] (CO, forest characteristics)

* Eye Movements [Salojarvi et al.,|2005] (EY, eye movement trajectories)
* Gesture Phase Prediction [Madeo et al., 2013]] (GE, gesture phase segmentation)
* Helena [[Guyon et al.,|2019|] (HE, anonymized)

* Higgs 98 [Baldi et al.} [2014]] (HI, simulated physical particles)

* House 16H(HO, house pricing)

e Jannis [[Guyon et al.,|2019]] (JA, anonymized)

* Microsoft [Qin and Liul 2013]] (MI, search queries)

e Otto E] (OT, product categories)

¢ Year [Bertin-Mahieux et al.,2011]] (YE, audio features)

Table 4: Dataset Details. Number of classes is reported for classification problems.

AL CH CO EY GE HE HI HO JA MI oT YE

#samples 108000 20640 581012 10936 9873 65196 98050 22784 83733 1200192 61878 515345
features 128 8 54 26 32 27 28 16 54 136 93 90
#classes 1000 - 7 3 5 100 2 - 4 - 9 -

B.2 Extraneous Features

In the random features setup we draw extraneous features from the Gaussian distribution. After
preprocessing the original features with quantiler transformation, both original and extraneous features
follow normal distribution. In the corrupted features setup we randomly sample n original features and
corrupt them with Gaussian noise with the same standard deviation z. = 0.5z + 0.5¢, e ~ N (0, 7).
For generating second-order features we randomly sample two subsets of original features and
compute their products.

*https://www.openml.org/search?type=data&sort=runs&id=574
*https://www.kaggle.com/c/otto-group-product-classification-challenge/data

15

B.3 Data Preprocessing

We follow [Gorishniy et al.l|2021] and apply quantiler transformation to normalize numerical features
in all datasets, except for Helena and ALOI, where standardization is applied instead. For the
regression tasks we also standardize the target variable. Due to limited computational resources, we
restrict the number of samples in the Microsoft dataset to 500,000. We reserve 20% of samples for
test set and 15% of samples as a validation set for tuning the hyperparameters of feature selection
and downstream models.

B.4 Code

We include the benchmark code as well as instructions for reproducing our results in the supplementary.
We will release our code as a GitHub Repository under the MIT License.

C Experimental Detail

C.1 Hardware

We ran our experiments on NVIDIA GeForce RTX 2080 Ti machines. Each hyperparameter tuning
experiment took from 1 to 72 hours depending on the model and the dataset size. Overall we ran
756 experiments, each with hyperparameter tuning for 100 trials and 10 subsequent seed runs, which
resulted in ~ 83160 training runs.

C.2 Implementation Licenses

For the model implementations we adapt the code from the following publicly available repositories
and libraries:

* MLP and FT-Transformer models from RTDL repositoryﬂunder MIT License
* GBDT model from XGBoost library E] under Apache License

* Random Forest, Lasso and Univariate statistical test models from Scikit-Learn library[ﬂ
under BSD 3-Clause License.

C.3 Training Details

We train all deep tabular models for 200 epochs with early stopping after 20 epochs, meaning that
training stops if the validation accuracy does not improve after 20 consecutive epochs. XGBoost
models are trained with a maximum of 2000 estimators and 50 early stopping rounds. We utilize the
AdamW optimizer and apply a Linear learning rate scheduler after epochs 40 and 80. The batch size
for all experiments is set to 512. Other training parameters, including learning rate and weight decay,
are determined through hyperparameter tuning.

C.4 Statistical Significance

We run each experiment with 10 random model initializations (seeds) after we find the optimal
hyperparameters for feature selection and downstream models. We report average test metrics in
Tables[I|2]3]as well as model ranks. When calculating the average ranks, we consider the statistical
significance of performance differences among the models. Specifically, we assign rank 1 to the
top-performing models that do not exhibit statistically significant differences. We determine statistical
significance with the one-sided Wilcoxon Rank-Sum test/Wilcoxon|[[1945]], Mann and Whitney|[1947]]
with p = 0.05.

*https://github.com/Yura52/tabular-dl-revisiting-models
Shttps://xgboost.ai/
Shttps://scikit-learn.org/stable/

16

https://github.com/Yura52/tabular-dl-revisiting-models
https://xgboost.ai/
https://scikit-learn.org/stable/

D Hyperparameter Tuning

We carefully tune the parameters of all models for each experiment using the Bayesian hyperparame-
ter optimization library Optunal|Akiba et al.,2019]). For the feature selection experiments we tune
parameters for both feature selection and downstream models simultaneously to optimize for down-
stream validation accuracy. We run 100 trials to identify the optimal parameters for each experiment.
We adapt the hyperparameter search spaces from the original papers with slight modifications, which
are provided below.

* Hyperparameters for the MLP model are provided in Table 3]

* Hyperparameters for the FT-Transformer model are provided in Table|[]

» Hyperparameters for the XGBoost feature selection model are provided in Table

» Hyperparameters for the Random Forest feature selection model are provided in Table

» Hyperparameters for feature selection regularizers (Lasso, Deep Lasso, First-Layer Lasso,
Adaptive Group Lasso) are provided in Table[9]

Table 5: Optuna hyperparameter search space for MLP

Parameter Search Space

Number of layers ~ UniformInt[1, 8]

Layer size UniformInt[1, 512]

Dropout {0, Uniform[0, 0.5]}

Learning rate LogUniform[le — 5, 1le — 2]
Weight decay {0, LogUniform[le — 6, 1e — 3]}

Table 6: Optuna hyperparameter search space and default configuration for FT-Transformer

Parameter Search Space Default
Number of layers ~ UniformInt[1, 4] 3
Residual dropout {0, Uniform[0, 0.2]} 0.0
Attention dropout Uniform[0, 0.5] 0.2
FEN dropout Uniform|0, 0.5] 0.1
FFN factor Uniform[2/3, 8/3] 4/3
Learning rate LogUniform[le — 5,1e — 3] le—3
Weight decay LogUniform[le — 6,1e — 3] 2e —4

Table 7: Optuna hyperparameter search space for XGBoost

Parameter Search Space

Max depth UniformInt[3, 10]

Min child weight ~ LogUniform[le — 8, 1e5]
Subsample Uniform[0.5, 1]

Learning rate LogUniform[le — 5, 1]

Col sample by tree Uniform|[0.5, 1]

Gamma {0, LogUniform[le — 8, 1e2]}
Lambda {0, LogUniform[le — 8, 1e2]}

Table 8: Optuna hyperparameter search space for Random Forest

Parameter Search Space

Num estimators ~ UniformInt[10, 2000]
Max depth UniformInt[3, 10]

17

Table 9: Optuna hyperparameter search space for Feature Selection regularizers penalty weights

Feature Selection Penalty Search Space

Lasso Uniform [le — 3, 5e — 1]
Deep Lasso LogUniform[le — 2, 5e — 1]
First-Layer Lasso LogUniform[le — 2, 5e — 1]

Adaptive Group Lasso LogUniform[le — 3, 5e — 1]

For certain datasets training XGBoost (ALOI dataset) and FT-Transformer (Microsoft, Year, ALOI,
Covtype) models can be excessively time-consuming. Due to these time constraints, we do not
perform parameter tuning for these particular pairs of models and datasets and instead utilize the
default configurations of the models. We also note that the computational complexity of attention
mechanisms grows quadratically as the number of features in the dataset increases. Finally, LassoNet
implementation performs hyperparameter tuning automatically, therefore we do not use Optuna to
tune LassoNet model, and only tune parameters of the downstream models.

E Deep Lasso for Linear Regression

Consider the case of linear regression, where the model is

fup(X) = XwT +0.

We follow the PyTorch-style notation and w is a row vector with m entries where m is the number of
features — columns of X. We show that Deep Lasso applied to the model output (rather than loss) is
equivalent to regular Lasso and First-Layer Lasso.

Proof:
Deep Lasso applied to the model output is given by:
m
. afw,b(X)
minaly(X,Y) + (1 —a)z ‘W R 3)
Now, for j-th feature (column of X), we have
Ofwp(X) I(XwT + b) —w T
oxo axm i
That is, we get:
Z 8X<J ZIIwJ nllp = leglll nllp = llwl ©)

Finally, we get the equivalence of Deep Lasso to regular Lasso (with the adjustment of the Lasso
penalty by /n):

mmaﬁg(X Y) ZHa‘fwb :m@inaﬁg(X,Y)—l—(l—a)\/ﬁ||w||1. (5)

X ()

F

Additionally, we show the equivalence to First-Layer Lasso too. First-Layer Lasso applies a Group
Lasso penalty to the weights of the first layer parameters:

mmaﬁg(X Y)+(1-« Z||W(J)||2
j=1

where W) is the j-th column of weight matrix of the first hidden layer corresponding to the j-th
feature. However, in the case of linear regression, the first layer output coincides with the model

18

Table 10: Benchmarking feature selection methods for MLP and FT-Transformer downstream
models on datasets with corrupted with Laplace noise extra features.

% FS method + Model AL CH EY GE HE HI HO JA MI oT YE rank

50 NoFS +MLP 0942 -0.471 0.546 0525 0372 0.804 -0.616 0.704 -0909 0.781 -0.797 8.27
50 Univariate + MLP 0.955 -0.448 0.532 0.531 0345 0.810 -0.627 0.717 -0.920 0.791 -0.827 7.00
50 Lasso+ MLP 0.953 -0.456 0.560 0.507 0.374 0.810 -0.594 0.718 -0.902 0.797 -0.789 6.55
50 1L Lasso + MLP 0955 -0.445 0.594 0521 0378 0.816 -0.572 0.721 -0.902 0.798 -0.776 3.09
50 AGL+MLP 0955 -0.443 0.570 0.518 0384 0.810 -0.577 0.721 -0.900 0.8 -0.782 3.36
50 LassoNet + MLP 0951 -0.451 0.554 0551 0387 0.812 -0.55 0716 -0904 0.797 -0.778 445
50 AM+MLP 0.953 -0.453 0.593 0526 0387 0.813 -0.560 0.719 -0905 0.795 -0.778 3.91
50 RF+MLP 0953 -0.449 0.563 0558 0.379 0.810 -0.583 0.723 -0.905 0.789 -0.787 5.00

50 XGBoost + MLP 0.956 -0.454 0.570 0.6 0.385 0.813 -0.560 0.720 -0.894 0.8 -0.787 2.64
50 Deep Lasso+MLP 0.957 -0.441 0.589 0.539 0.383 0.816 -0.556 0.720 -0.900 0.801 -0.776 1.91

75 NoFS + MLP 0919 -0.504 0.505 0.514 0357 0.786 -0.645 0.687 -0913 0.765 -0.808 7.73
75 Univariate + MLP 0950 -0.612 0.515 0493 0338 0.739 -0.621 0.688 -0.921 0.779 -0.838 7.64
75 Lasso + MLP 0952 -0.447 0.545 0482 0376 0.811 -0.568 0.714 -0.902 0.796 -0.794 4.36
75 1L Lasso + MLP 0955 -0.447 0.543 0519 0372 0.814 -0.596 0.714 -0902 0.791 -0.781 3.73
75 AGL + MLP 0.954 -0.443 0.550 0519 0382 0.810 -0.566 0.722 -0.904 0.792 -0.784 3.09
75 LassoNet + MLP 0.947 -0.460 0.548 0.543 0375 0.807 -0.575 0.712 -0909 0.791 -0.787 5.09
75 RF+MLP 0951 -0.450 0.564 0.524 0367 0.805 -0.561 0.716 -0902 0.770 -0.790 4.45

75 XGBoost + MLP 0956 -0.454 0.571 0.558 0.380 0.810 -0.555 0.721 -0.896 0.797 -0.787 2.00
75 DeepLasso+MLP 0953 -0.443 0.552 0.527 0377 0812 -0.557 0.72 -0.898 0.798 -0.78 2.00

output and has only a single logit. That is, the weight matrix W is in fact a single row vector w with
m entries giving us the equivalence between the First-Layer Lasso and regular Lasso, and therefore
between First-Layer Lasso and Deep Lasso too in the case of linear regression:

nbinozﬁg(X, Y)+(1-a) Z [[wD ||y = r%inozﬁg(X, Y)+ (1 —a)||w|;.

Jj=1

F More Results

Tables [I6] [T7] [[8]are similar to the tables in the main body, but they include the standard deviations
computed across seeds for each experiment. We also report performance of XGBoost baseline model
for comparison, however we exclude it from rank computations.

F.1 Corrupting features with Laplace noise

In addition to the experiments with Gaussian noise corruption, we conduct experiments with corrupt-
ing features with Laplace noise. In particular, we sample additional features from the original ones
and corrupt them with Laplace noise with the standard deviation of original features:

1
x. = 0.5z + 0.50¢;, ¢, ~ Laplace(0, E)
We include results for this setup in Table [I0} Similarly to the experiments with Gaussian noise
corruption we observe that Deep Lasso along with XGBoost feature selection achieve the best
downstream performance in terms of average rank.

F.2 ROC-AUC, Precision and Recall Metrics

One common way of measuring performance of feature selection methods is using ROC-AUC,
precision and recall scores, which indicate how often these methods choose "correct” and "incorrect"
features. We instead focus on the downstream performance metric since in the case of corrupted and
more prominently second-order extraneous features, it is not possible to treat feature selection as
binary classification problems because additional features may contain useful information. However
in this section we report precision, recall and ROC-AUC scores for the setup with random features,
which can be reasonably treated as a binary classification problem. Tables [IT][I2] present ROC-AUC,
and precision scores correspondingly with ranks computed taking importance into account. We note

19

Table 11: ROC-AUC scores for feature selection methods trained on datasets with random
extraneous features Bold font indicates the best numbers dataset-wise and lower rank indicates
better overall result.

% FS method AL CH CcO EY GE HE HI HO JA MI oT YE rank

50 Univariate 1.0 1.0 1.0 0916 0926 0.982 0.866 1.0 0.706 0993 1.0 0.990 2.50
50 Lasso 0988 1.0 1.000 0.795 0.371 0976 0.847 0.920 0.735 0.596 0.991 0.965 5.00

50 1L Lasso 0.785 0.995 0969 0.7890 0.513 0.980 0.888 0.879 0.716 0.947 0952 0.998 4.8
50 AGL 0972 0.827 0.862 0870 0471 0.999 0.786 1.0 0.746 0925 0.931 0.999 4.25
50 LassoNet 1.0 0999 1.0 0.681 0.664 0.998 0.862 0979 0.674 0.630 0.722 0.966 4.83
50 AM 0.848 0992 0.752 0.765 0.770 1.0 0.876 0980 0.759 0.704 0972 0.988 433
50 RF 0.906 1.0 0.898 0.884 0.998 1.0 0.874 0934 0.729 0559 0995 0.891 4.17

50 XGBoost 0945 1.0 0944 0993 0943 1.0 0.890 1.0 0.75 0968 0.992 0988 2.33
50 DeepLasso 1.0 0.998 0.981 0.927 0482 1.0 0922 0993 0.699 0957 1.0 1.0 233

75 Univariate 1.0 1.0 1.0 0918 0.872 0986 0.846 1.0 0.731 0.993 1.0 0.991 2.08

75 Lasso 1.0 1.0 0976 0.771 0.781 0976 0.837 0.858 0.77 0.597 0.991 0943 4.08
75 1L Lasso 0979 0998 0932 0841 0477 0983 0.784 0910 0.739 0.830 0.963 1.0 4.33
75 AGL 0922 1.0 0.862 0.815 0.492 0986 0.791 0.908 0.726 0.891 0.831 1.000 4.92
75 LassoNet 1.0 1.0 0998 0.582 0.531 0965 0.821 0.974 0.613 0.448 0.589 0.931 5.08
75 Forest 0927 1.0 0.957 0916 1.0 1.0 0.88 0990 0.730 0.700 0.998 0.942 3.50

75 XGBoost 0945 1.0 0948 0946 1.0 1.0 0.700 0997 0.737 1.0 0.981 0.999 292
75 DeepLasso 1.000 0994 0.985 0919 0273 1.0 0.895 0995 0.762 0.959 1.000 1.0 225

Table 12: Precision scores for feature selection methods trained on datasets with random
extraneous features Bold font indicates the best numbers dataset-wise and lower rank indicates
better overall result.

% FSmethod AL CH CO EY GE HE HI HO JA MI oT YE rank

50 Univariate 1.0 1.0 1.0 0.808 0.844 0963 0.786 1.0 0.648 0.986 1.0 0.967 275
50 Lasso 0.987 1.0 0989 0.704 0403 0963 0.750 0.875 0.661 0.588 0.969 0.922 5.00

50 1L Lasso 0.776 0.988 0.954 0.719 0497 0.937 0811 0.856 0.644 0.882 0915 0.988 4.67
50 AGL 0946 0.738 0.794 0.777 0469 0.989 0.704 1.0 0.665 0870 0.875 0.987 4.50
50 LassoNet 1.0 0.988 1.0 0.619 0.625 0985 0.771 0931 0.644 0.582 0.692 0.908 5.00
50 AM 0.768 0.962 0.715 0.692 0.684 1.0 0.789 0938 0.676 0.646 0.920 0.953 4.58
50 RF 0.901 1.0 0.893 0.885 0.984 1.0 0.807 0.875 0.661 0.553 0985 0.809 4.25

50 XGBoost 0945 1.0 0944 0969 0.894 1.0 0.818 1.0 0.981 0956 0.992 0977 217
50 Deep Lasso 1.0 0988 0974 0.835 0488 1.0 0.861 0969 0.641 0950 1.0 1.0 2.67

75 Univariate 1.0 1.0 1.0 0.769 0.688 0.963 0.643 1.0 0.537 0987 1.0 0.967 2.67
75 Lasso 1.0 1.0 0.957 0.608 0.766 0963 0.679 0.812 0.622 0.401 0963 0878 3.75

75 1L Lasso 0.882 0.975 0909 0.665 0.231 0.948 0.632 0.881 0.531 0.721 0933 0.996 5.17
75 AGL 0.856 1.0 0.743 0.685 0.253 0952 0.654 0.869 0541 0.775 0.704 0987 4.75
75 LassoNet 1.0 1.0 0976 0.458 0488 0919 0.650 0912 0415 0331 0524 0.770 5.08
75 RF 0918 1.0 0943 0.888 1.0 1.0 0.789 0912 0.559 0.664 0995 0.836 3.17

75 XGBoost 0938 1.0 0946 0.873 0.994 1.0 0.643 0938 0.567 0.993 0974 0.981 2.67
75 DeepLasso 0990 0.95 0957 0.777 0.262 1.0 0.775 0956 0.576 0946 0.992 1.0 2.17

that in our setup the recall numbers are identical to the precision numbers, since we always "select"
top-k features, where k is fixed. Therefore, the number of false positives is equal to the number of
false negatives. We observe similar trends to results in the Table[T} where we evaluated algorithms
with respect to the downstream performance. In particular, GBDT based approaches, univariate
statistical test and Deep Lasso outperforming other considered feature selection methods.

F.3 Does feature selection help bridging the gap with GBDT models?

In Section [} we demonstrated that neural networks are more sensitive to noise than GBDT models,
particularly the MLP architecture. In this section, we analyze whether feature selection helps narrow
the gap between neural networks and GBDT models in the presence of noisy features. In Tables T3}
@, [E] we present results for the baseline XGBoost models, neural networks trained without feature
selection, and neural networks trained with Deep Lasso feature selection, based on our benchmark.
We observe that with feature selection, MLP models perform comparably to the XGBoost models in
second-order setup and significantly better in random and corrupted features setup, while transformer
models consistently outperform GBDT models in terms of average rank.

20

Table 13: Benchmarking Neural Networks with feature selection against XGBoost models on

datasets with random extra features.

% FS method AL CH CcO EY GE HE HI HO JA MI oT YE rank
50 XGBoost Baseline 0.858 -0.416 0.951 0.665 0.613 0.360 0.728 -0.562 0.725 -0.885 0.801 -0.797 1.83
50 NoFS+MLP 0941 -0.480 0.961 0.538 0.466 0366 0.798 -0.622 0.703 -0911 0.773 -0.801 2.58
50 Deep Lasso+MLP 0.959 -0.443 0968 0.573 0485 0.383 0.814 -0.549 0.720 -0.894 0.802 -0.776 1.42
75 XGBoost Baseline 0.839 -042 0941 0.626 0.583 0.349 0.726 -0.57 0.718 -0.894 0.796 -0.802 1.92
75 NoFS + MLP 0.925 -0.527 0955 0.502 0417 0348 0.778 -0.674 0.671 -0917 0.749 -0.812 2.67
75 Deep Lasso+ MLP 0957 -0.446 0.969 0.569 0479 0.387 0.814 -0.559 0.721 -0.893 0.8 -0.774 1.25
50 XGBoost Baseline 0.858 -0.416 0951 0.665 0.613 0360 0.728 -0.562 0.725 -0.885 0.801 -0.797 2.25
50 NoFS+FT 0.959 -0.432 0.966 0.673 0500 0.384 0.817 -0.577 0.730 -0.902 0.813 -0.792 2.08
50 Deep Lasso + FT 0962 -0.419 0.969 0.703 0504 0.392 0.817 -0.56 0.733 -0.900 0.817 -0.788 1.17

Table 14: Benchmarking Neural Networks with feature selection against XGBoost models on
datasets with corrupted extra features.

% FS method AL CH CcO EY GE HE HI HO JA MI oT YE rank
50 XGBoost Baseline 0.854 -0.415 0946 0.666 0.618 0359 0.726 -0.559 0.723 -0.891 0.796 -0.797 1.83
50 NoFS +MLP 0946 -0475 0965 0.557 0525 0370 0.802 -0.607 0.703 -0.909 0.778 -0.797 2.67
50 DeepLasso+MLP 0955 -0.447 0.968 0.577 0525 0.388 0.815 -0.567 0.721 -0.895 0.801 -0.776 1.58
75 XGBoost Baseline 0.830 -0.425 0.929 0.625 0.58 0.353 0.721 -0.573 0.719 -0.894 0.795 -0.801 1.92
75 NoFS +MLP 0921 -0.516 0.956 0518 0503 0356 0.788 -0.632 0.686 -0913 0.762 -0.808 2.67
75 Deep Lasso+MLP 0959 -0.441 0.968 0.554 0517 0.386 0.813 -0.563 0.718 -0.898 0.804 -0.778 1.42
50 XGBoost Baseline 0.854 -0.415 0.946 0.666 0.618 0.359 0.726 -0.559 0.723 -0.891 0.796 -0.797 225
50 NoFS+FT 0960 -0.430 0.967 0.686 0576 0.386 0.818 -0.574 0.731 -0.901 0.809 -0.793 2.17
50 Deep Lasso + FT 0.961 -0.422 0968 0.725 0577 0393 0.821 -0.561 0.736 -0.898 0.809 -0.788 1.25

Table 15: Benchmarking Neural Networks with feature selection against XGBoost models on
datasets with secondorder extra features.

% FS method AL CH Cco EY GE HE HI HO JA MI oT YE rank
50 XGBoost Baseline 0923 -0.429 0.969 0.709 0.683 0.374 0.729 -0.541 0.726 -0.846 0.825 -0.781 1.58
50 NoFS +MLP 0960 -0.443 0.969 0.631 0.605 0.383 0.811 -0.549 0.719 -0.891 0.800 -0.786 2.42
50 DeepLasso+MLP 0.961 -0.441 0969 0.648 0.600 0.384 0.815 -0.572 0.733 -0.890 0.805 -0.776 1.83
75 XGBoost Baseline 0917 -0.414 0.968 0.74 0.691 0.376 0.731 -0.542 0.725 -0.849 0.825 -0.789 1.67
75 NoFS + MLP 0952 -0.451 0969 0.630 0598 0.388 0.808 -0.542 0.717 -0.900 0.792 -0.792 225
75 Deep Lasso+ MLP 0.959 -0.448 0.969 0.647 0.582 0.378 0.821 -0.568 0.74 -0.890 0.805 -0.78 1.67
50 XGBoost Baseline 0.923 -0429 0969 0.709 0.683 0.374 0.729 -0.541 0.726 -0.846 0.825 -0.781 2.00
50 NoFS+FT 0962 -0425 0968 0.733 0558 0391 0.819 -0.552 0.732 -0901 0.818 -0.790 225
50 Deep Lasso + FT 0963 -0.422 097 0.726 0.608 0.388 0.822 -0.558 0.738 -0.897 0.819 -0.789 1.58

21

99°¢ T00'0F88L0- CTO0'0FLISO S00°0F6'0- C00'0FEEL'0 TIO0FIS'0- SOO'0FLI8O TOO'0FC6E0 T10°0F¥0S'0 TT10°0FEOL'0 100°0F696'0 €00°0F6I+°0- 100°0¥296'0 14 +ossepdoaq 0

16'T 100°0¥68L°0- TO0'0FT80 S00°0F868°0- €00'0FYEL'O 800'0F8SS O~ 100'0¥C8°0 100°0¥C6£'0 CTIO'0FCLS'0 TIOOFSTL'0O 100°0F696°0 TOO'0FTH'0- T00°0F€96°0 L4 +1s00gDX 0S
SL'T T00°0FI6L0- T00°0FC8°0 700'0F6'0- TO0'OFLEL0 LOO'0OF8SS0- TO0'0FIC8'0 TOO'0FS6E'0 TTO0FI6S0 HIOOFSIL'0 T00'0F696'0 €00°0FTH0- 100°0F£96°0 Id+d4 0§
SL'E T00°0F68L°0- CO0'0FSI8O 900°0FE06'0- TO00FSELO TIO0FPSS0- 100°0¥28°0 C00°0F68¢°0 10°0¥S0S°0 LYO'OFLS9'0 100°0F896°0 €00°0FSTH0- 100°0¥¢96°0 Id+AV 0§
€87 T00°0FI6L°0- TO0'0F808°'0 +00°0FF06'0- COO'0FEEL0 SO0'0F6SS0- TOO'0FBIB0 CTOO'0FC6E0 SO0°0FSOSO 10°0¥L9°0 100°0¥L6°0 ¥00°0F9CY'0- T00°0F€96°0 LA +19NOsseT 0§
ST'S TEO'0FCE8'0- TO0'0FPI80 900°0FSI6°0- COO'0FEEL0 800'0F98S0- T00°0FCT80 CTOO'0FE6E0D 910°0F8Y°0 10°0FI0L'0 T00'0F696'0 €00°0FCH0- €C0'0F668°0 14 +7T1OV 0§
9I'S €00°0FI6L0- TO0'0F6IS80 +00'0FF06'0- €00'0FCEL'0 800'0FLLS0- T00'0F8I80 €00'0FC8E'0 CIO'0F68Y'0 TIOOFTL'O 00F696'0 ¥00'0FECH'0- 100°0F€96°0 IJ+0sseT Il 05
€9 0'0F866'0- TO0'0FLI80 0'0F666'0- TO0'0F8TLO T10°0F¥6S0- 0°0F6180 €00°0F88¢'0 €10°0F687'0 810°0FC890 10°0796'0 €00°0F6I¥°0- €00'0FCS6°0 LA +0sseT 0§
€8°C 100°0F68L°0- T00°0F6I8°0 +00°0FL68°0- £00°0FEEL0 €00°0FPSS'0- 100°0F618°0 CTO0'0F68E0 10°0¥615°0 600°0FL°0 100°0¥L6°0 CO0'0FVCY'0- T00°0F€96°0 Ld + 9elieAlun) - 0g
869 TO0'0FCOL0- €00°0FEI80 +00°0FC06'0- TOO'0FELO SO0'0FLLSO- T00'0FLIBO TOO'0F¥8E0 $00°0¥S°0 ST00FEL90 100°0F996°0 CTOO'0FCEY'0- TOO'0F656'0 14+ Sd0N 0§

€€C T00°0FPLLO" C00°0¥8°0 100°0F€68°0- TO0OFITL'O0 ST0°0F6SS°0- T00°0FHI80 T00°0FL8E'0 LOO'OFOLY'O €10°0F69S°0 00¥696'0 $00°0F9F'0- 100°0FLS6'0 TN +osseTdoad 6L
80°C T00°0FPLLO- TO0'0F¥080 0'0F¢68°0- TO0'0FTL0 600°0F8950- 100°'0FI8°0 C00'0FC8E'0 S10°0FE8S'0 LOO'OFILSO 0°0¥696'0 €00°0FIS¥'0- 100°0¥8S6°0 dTIN +13500gDX 6L

16C 100°0F¥8L°0- €00°0F808°0 0'0FC06'0- COO'0FSILO CTIO'0OFS8S0- TO0°0FPIS0 TO0'0FISE'0 800°0FI9°0 800°0FH8S'0 100°0F896°0 €00'0FESH'0- 100°0F6¥6°0 dTIN+dd SL
SL'Y TO0'0FF6L'0- €00°0F89L0 T00°0FEI60- +¥00'0FSOL'O PIO'0FSSS0- €00°0F608'0 +00'0FEBE'0 SO00OFSLY'O 600°0F8CS0 TOO'0FI96'0 900°0FCSH0- T00'0F856°0 d'TIN +19NOSSBT GL
€€y T00°0FLLL'O- SE0'0FCIL0 0°0F106'0- €00°0F61L°0 CIOOFILSO- S00°0F608°0 CTO0'0FC8E'0 €0'0F6CH'0 €I0°0FI9S0 T[00°0F896°0 €00°0FLYY'0- CO0'0FYS6'0 dTN+TDV SL
7'y TOO'OFSLL0- €00°0F66L°0 €00°0FE06'0- T000FLIL'O €I0°0FCLSO- T00°0F608'0 TOO'0FBE'0 9S00FCEY'O0 SIO0OFSSSO T00°0F896°0 +¥00°0F8HH0- CO0'0FLS6'0 dTN +O0sseTTl GL
€€y 100°0F68L°0- €00°0FC08'0 100°0FLO6'0- COO'0FIIL'0 +00°0FCI90- T00°0FII8'0 TOO'0OFIBED 600°0FI6¥0 €I00FEYSO 0°0¥L96'0 CO0'0F¥S¥'0- 100°0F6S6°0 dTN +OsseT G/
0s'C 0'0F9LL'O- €00°0F908°0 T00°0F68°0- [000FCIL'0 800°0F6HS'0- 100'0FI8°0 CO0'0FI8E'0 SO0'0FCOS0 800°0FSLSO 0'0FL6'0 POO'OFLYY'0- T100°0F96°0 dTIN +elreAluny ¢/
I¥'L T00°0FCI80- €00°0F6¥L'0 T00'0FLI60- CTOO'OFILO0 LOO'OFFLI'0- TOO'0F8LL'O CO0'0F8FE0 SOO0OFLIF'O LOO'0OFTOSO TOO'0FSS6'0 900°0FLTS0- TOO'0FSTOHO dTN+Sd0N SL

0'0F68L°0- T00'0FST80 0'0F6¥80- TO0'0FSTL'O TOO'0FCYS0- TO00OFIEL'0 TO0'0FILE'D €00'0FI69°0 TOO'0OFFL'O 0°0¥896'0 €00°0F¥1+°0- 0'0FLI6'0 Qul[eseqg1soogDX SL

€€°T 100°0F9LL0- TOO'0FTO80 [00°0FH68°0- €00°0FTL'O S00°0F6HS'0- 1000FFIS0O TOO'0FESE0 900°0FS8Y'0 LOOOFELSO 100'0F896°0 TOO'OFEPP'0- T00°0F6S6'0 d TN +osse1deod 0§
€€°T T00°0FLLLO- €00°0FSO80 T100°0FE680- €00°0FCL0 #10°0F9S0- 0°0FCI80 T00°0FS8E0 €I10°0FC0S0 ST0°0F6S°0 00F696'0 TO0'0FF¥Y0- 100°0F956°0 dTIA +1s00gDX 0§

16 100°0F98L°0- C00°0F908°0 0°0F106'0- 100°0¥CL'0 900°0FCLS'0- TO0°0FPIS8O TO0°0FI8E'0 €C0°0F¥6S°0 TT10°0F68S°0 0°0¥696'0 €00°0F€SY'0- 100°0FSS6°0 dIN+dd 0S
€8'¢ TO0'0FLLL'O- €00°0FIO8°0 €00°0FF06°0- TO0'0FCTL0 TIO'0F99S0- TO0'0FEI80 CTOO'0FC8E'0 LOO'0OF86Y'0 910°0FFSS0 100°0¥896°0 €00°0FhHH'0- 100°0FE€S6°0 dTN+IV 0§
9I'S TOO0'0FL8LO- €00°0FE€8L'0 T00°0FLO6'0- P00'0FSIL'O 800°0FLSSO- €00°0FII80 CTOO'0FSBE0 10°0FS6¥°0 900°0FCSS'0 100°0¥696'0 #00°0FSHP'0- 100°0F7S6°0 d'TIN +19NOsseT 0§
€€y T00'0F8LL'0- SO0'0F66L0 100°0F868°0- €00°0F8ILO €00°0FLSS O~ 100'0FI8°0 €00°0F98€°0 8I00FELY'0 LIO'0F8LS'O 00F696'0 ¥90°0FCIS0- 100'0F¥856°0 dTN+TOV 0§
16y T000FELL0- 800°0F96L0 0'0FL680- ¥00'0FSIL'O S00'0F89S°0- TOO0OFII80 €000FSLED STO0FPLY'O 610077950 T00°0F696'0 €00'0FISH0- T100°0FTS6'0 dTN +OSSeTTIL 0§
16°S T00°0¥L8L°0- ¥00°0F¥S08°0 T00°0FL060- €00'0FSIL'O0 €00°0F66S5°0- 0°0¥CI80 C000F¥8C0 8IO0OF8SH'O 9I00FLYS'O 100°0¥696'0 ¥00°0F¥S¥'0- 100°0F676°0 dTIN + OsseT 0§
99C 100°0F9LLO- T00°0F808°0 T00°0FI68°0- <COO'0OFSILO 800°0F6¥S°0- [000FIIS0 COO'0OF6LED SOO'OFSISO 10°0FSLS0 0'0FL6'0 ¥00'0FLYY'O- T00°0F96'0 dTIN + elreAluny oS
808 100°0FI08°0- #00'0FELL'O TOO'OFII6°0- T00°0FEOL0 LOO'0OFTTY0- 100°0F86L'0 100°0F99€°0 LOO'0FI9¥'0 SOO'0FBES'0 100°0F196'0 LOO'0F8¥'0- 100°0FI¥6°0 dTAN+Sd0N 0§

0°0FI8L°0- 100°0FST80 0°0F9%8°0- 100°0F9CL'0 CO0'0FI¥S0- [00°0F6CL'0 T00°0FPLE'D €00°0FEB9'0 €00°0F60L0 0'0¥696'0 100°0F6C¥'0- 0'0F€C6'0 dulfeseg 1s0ogDX 0S
quel qdA LO IN vI OH H dH t9] Ad 0D HO v poyew S %

*J[NSAI [[BISAO0 13139q SIIBIIPUI
Juel I9MO] PUB 9SIM-JOSBIEp SIOqUINU 1S9q AU} S9IBdIPUl JUOJ P[og "JOPIO-PUOIAS Tk SAINJBIJ %G/ IO 9()§ JOYII :JaseIep 9y} Ul SaINjea) eI)Xe JO Juadiad 0) s10ja1
9, *swa[qoxd uorssaISal 10§ FSIAY SANESoU pue UONBIYISSEO J0J A0BINOJR JO SULIS) UT SUNLIOS[e S JUSIQJJIP £q Palo9[as $2INea) U0 paures} S[9poul Jo aouerofiad
110da1 9p\ *S9INJBIJ BIIXd WOPUEI YJIM SJISBIEP U0 SPPOW WIBIIISUMOP JIULIOJSURI],-LJ PUe J'TIA 10J SPOYIdW UOIIIIS 3INJed) Sunjrewryoudg 9| 9[qeL,

22

L9°C T00°0F88L°0- €00°0F608°0 #00°0¥868°0- TO0'0FIEL'0 CI00FIOSO- T000FIT80 <TO0'0FEGED VIOOFLLSO 800°0FSTL'O0 100°0F896'0 +00'0FCCr'0- 100°0F196°0 LA +ossepdoaq 0§

wT 100'0F6L°0- T00°0F9I80 €00°0FL68°0- TO00°0FSEL'0 €00°0F8YS0- T00°0FIT80 100°0FC6£0 600°0FF9S0 T10°0F90L0 0°0FL6°0 CO0'0FCCH'0- T00°0F€96°0 L4 +1s00gDX 0S
e TO0'0FEO6L'0- TOO'0FI08'0 TO0'0F868°0- TOO'OFSEL0 SOO'0FLSS0- TOO'0F6I80 TOO'0FLSEO 600°0F9°0 9T00FITL0 T000F696'0 +00'0FCCy0- 100°0FC96°0 Id+dd 0S
e CT000F6L°0- TO0OFLISO ¥00°0FI06°0- T000FFEL'O LOO'0OF6HS O~ 100°0¥28°0 T00°0FT6E0 8I0°0FCLSO LIO'0F890 0°0¥696'0 C00'0F¥C¥'0- 100°0FC96°0 Id+AV 0§
¢6'c T00°0F6L0- CTO00FEI80O ¥00°0FE06'0- TOOOFIEL'0 T10°0FCLSO- SO0'0FVI8O TOO0FEGE'0D +10°0F8LS'0 CTIO0F6L90 TO0°0FL6'0 £00°0FICH'0- T100°0FC96°0 LA +19NOsseT 0§
80 910°0F¢8'0- €00°0F9I80 SO0'0FVI60- TOOOFSEL'OD SO0'0FCSSO- 100°0FC8°0 TOO'0FT6E0 600°0F16S°0 8I00FL690 100°0F696'0 €00°0FICH'0- 120°0F906°0 LA+7T1OV 0S
0S¢ ¥00'0FS6L'0- €00°0FII80 €00°0F6680- T000FIELO ¥00OFLS O~ 100'0¥C8'0 T00'0F68€'0 600°0FILS'0 800'0F8IL'0 100'0F696'0 TOO'0F6IF'0- 100°0FT96°0 IJ+0sseT I 05
w9 100°0FST6°0- TOO'0FCIB 0 0'0FLE6G'O- €00°0FCEL'O 900°0F98S0- 0'0FC80 CTOO'0FLBE'O TIOOFISS'O TTOOFLOE9O LEOOFIL6'0 €00'0FCCH 0~ ¥00'0FCS6'0 LA +0sseT 06
LT'9 0°0F9¢80- TO0'0FCIB0 CTO0'0FC6'0- T00°0FEEL'O0 LOO0OF8TY'0- COO0OFCISO TOO'0FSYED €I10°0FPLS'O T10°0FI89°0 [00°0FS96°0 €00°0FCCy'0- 100°0FE96°0 LA + 9welieAlun) - 0§
809 100°0F€6L0- CO0'0F608°0 €00°0F106°0- CTOO'OFIEL'O LOO'OFYLSO- T00°0F8I80 COO'0FI8E'0D CTCO'OFILS'O 800'0F989°0 100°0FL96'0 +00'0FEY O~ 100°0¥96°'0 Id+Sd0N 0§

W T00°0F8LL0- €00°0FH08°0 [00°0F868°0- €000F8IL'O 600°0FEIS'0- TO0'0FEI80 CTO0'0FI8E'0 900°0FLISO SIO0OFVSSO 0'0¥896'0 T00'0FIFH'0- 100°0F6S6'0 TN +osseTdooq L
8S°C T00'0F¥8L0- €00'0¥8°0 T00°0¥S68°0- TO0'0FITL'0 ITO'OFILE0- [00'0FLI80 <CTOOOFIBE0 10°0F€S°0 600°0FILSE'0 [00°0F896'0 8YO'0OFSISO- 100°0FYS6'0 dTIN +13500gDX GL

6y 100°0F88L°0- €00°0FS9L0 0°0F€06'0- TOO'0FIIL'0 SO00FELSO- TOO'0FSO8'0 €00°0FCLEO LOO'OFEES'0 TT10°0FLPS'O T00°0F€96°0 €00'0FSH'0- 100°0FCS6'0 dIN+dd SL
€€y TO0'0FS8L'0- €00°0FI6L0 T00°0F806°0- +#00°'0FB0L'0 TIO'OFCLSO- SO0'0FSO8'0 TOO'0FEBEO 600°0FEES0 B0O'0FOESO T00°0F696°0 900°0FCSH0- T00'0FLY6'0 d'TIN +19NOSSBT GL
[{a4 100°0F8L°0- CTO0'0F88L0 0°0¥706'0- COO'0FVIL'0 SO00FPLSO- T000FII80O €00°0FC8E0 610°0F6¥'0 T10°0F8YS'0 [00°0FL960 661°0F99S°0- SI0°0F8C6'0 dTN+7T1DV SL
ST’ 100°0F6LLO- ¥00'0FLO6L'O €00°0FE06°0- 800°0FSTL0 LOO'0FILSO- TO0'OFII80 CTOO'0FE'0D ICO0FS6V'0 920°0F6¥S0 0°0¥L96'0 CO0'0F¥¥¥'0- 100°0FSS6°0 dTN+OsseT Tl GL
00°¢S 0°0F16L°0- TOO'0FS6L'0 100°0F€06'0- CTOO'OFLIL'O SO0'0FE6S0- 100°0FI8°0 €00°0FELED 120°0F6¥'0 T0°0FS9S°0 100°0F€96'0 SO0°0FVS¥'0- 100°0F8¥6°0 dTIN +OsseT G/
0S’L 100°0F8€8°0- TOO'0F6LLO 0'0FIT6'0- €00'0F989°0 ¥00'0FC9'0- 100'0FCKPL'0 TOO'0FLYE'0 SO0'0FS6Y'0 800'0FISO [000FIV6'0 ¥00'0F69S°0- 0'0FSS6'0 dTIN + ¥elleAIu) ¢/
8G'L 100°0F808°0- €00°0FC9L0 T00°0FEI6°0- <C00'0F989°0 S00'0FCES0- T100°0F88L'0 CTOO'0OFISEO SOO'0OFEOS O 10°0F8IS0 T00°0F9S6'0 ¥00'0F9IS0- 100°0FIC6'0 dTN+SION SL

0'0F108°0- T00'0FS6L0 T00'0FF68°0- T000F6IL0 T00°0FELS0O- TOO'OFITLO T00°0FESE0 TO0'0FSO €00°0FSTY0 0°0¥626'0 100°0FSCH 0~ 0°0F€8°0 ulEsegIs00gDX SL

8S°T T00°0FILL0- TOO'0FIO80 100°0FS680- CTOO'OFICLO SO0'0FLIS0O- TO0'0FSI80 TO0'0F88E'0 SI0'0FSCS'0O [T0'0FLLSO 0'0F896°0 €00°0FLPY'0- T00°0FSS6'0 dTN +osse1dead 0§
L9'C TO0'0F6LL0- TO0'0FE08'0 T00°0FT68°0- COO'0FCTLO 900°0FESS'0- TOO'OFSISO €000FS8E'0 600°0FISO TIO'0FESSO 0°07696'0 £00'0FFSH'0- 100'0F¥S6°0 dTIA +1s00gDX 0§

L9y T00°0F98L'0- TOO'0F88LO 0°0F706'0- TO0'OFPTL'0 ¥00°0FS9S0- CO0'0FI80O T00°0FE8E0 T0°0F89S'0 LOO'OFPLS'O [000FL96°0 €00°0FESY'O- TO0'0FIS6'0 dTIN+dd 0S
8G'¢ CO0'0F8L0- €00°0FLO6LO ¥00'0FS06°0- T00°0FCCL'O TIOOFSSS0- 100°0FVI8'0 CTOO'0FI8E'0 600°0FLCSO CIO'0FESS'0 100°0FL96°0 €00°0F6¥H'0- T00°0FSS6'0 dTIN+IAV 0§
€8¢ T00°0FLLL'O- $00'0FS6L0 T00°0FS06°0- COO'0FOIL0 LOO'OFISS'0- TOO'0OFIIB0 TO0'0FC8E'OD 600°0F9SS0 9I10°0FLS0 T00°0F696°0 SO000FCSY'0- T00°0FSS6'0 d'TIN +19NOsseT 0
00°¢ 100°0¥8L°0- TOO'0F96L'0 100°0FC06'0- CTOO'OFCCL'O 900°0FI9S°0- T00'0FCI80 T00'0F98E'0 600°0F8CS’0 STO'0F88S'0 100°0F896'0 SO0'0FSH'0- 100°0FES6'0 dTN+7TOV 0§
SLY v00'0F8L0- CO0'0FS6L0 €00°0FC06'0- €00°0F8IL0 900°0FI8S0- T100°0FCI80 CTOO'0FC8EOD 8IOOFSISO 10°07996°0 T00°0F896°0 TOO'0FLYY'0- T00°0FSS6°0 dTN +OSSeTTIl 0S
'S 100°0FS6L°0- T00°0F96L°0 0°0F€06'0- €00°0FEIL'0 CO0°0FC09°0- T00°0FCI80 TO0'0FC8E'0 T10°0FCISO LIOOF8YS'O [00°0F896°0 €00°0F6¥¥°0- 100°0FSS6°0 dTIN + OSseT 0§
€€'L 100°0F8C8'0- T00°0FS6L0 0°0¥¢6'0- TOO'0FLIL'O ¥00°0FC9°0- 100°0F18°0 €00°0F9v€0 SO0'0FYISTO LOO'0FISSO 10009960 +v00'0FISHO- T00°0FSS6'0 d'TIN +deLeAIlUn O
008 100°0FL6L0- ¥00°0F8LL'O T00°0F606'0- €00°0FEOL'0 SO0'0FLO9'0- TO0'0FC08'0 100°0FLE'0 €00°0FSTS'0 LOO'OFLSS'O [00°0FS96°0 #00°0FSLY'O- 100°0F9¥6°0 dTAN+Sd0N 0§

0°0FL6L'0- 100°0¥96L°0 100°0F168°0- 100°0F€CL'O0 TO0'0F6SS0- [00°0FICL'O T00°0F6SE0 €00°0F819°0 €00°0F999°0 0'0¥9¥6'0 100°0¥S1¥°0- 0'0FvS80 oulfeseg IsoogDX 0S
Juel qdA LO IN vI OH IH dH 4D Ad 0D HO v poyRw Sd %

*J[NSI [[BISAO0 13139q SIIBIIPUI YULT I3MO]
PUEB 9SIM-}seIep SIaqUINU 1Saq dY) SOJEdIPUI JUO P[Og “JOPIO-PUOIIS AL SAINJBJ %G/ IO %) JOYIIS :JaSeIep oY} Ul SaINJed) eIIxe Jo Juadiad 03 s10Ja1 9, "swojqoxd
uo1s$a1321 10 FSIAY 2AIESoU pue UONBOYISSLO J0J AOBINOOE JO SWLIS) UT SWYILIOS e S USISMJIP AQ PO1Od[es SQINjea) Uo paures} S[powl Jo souewioyiad jrodax
9M\ "SIINJEIJ BIJXI JIPIO-PUOIIS (I $JISBIEP U0 S[PPOW UWIBIIJSUMOP JIULIOJSUBI] -] PUe J'TIA 10J SPOYIIW UOI}IIIS dIN)ed) Supjrewryoudg :/] 9[qel,

23

wWT T00°0F68L°0- 100076180 €00'0FL680- TO0'OF8EL0 SO0'0F8SS'0- [00'0FCC8'0 COO'0F88E'0 TI0°0F809°0 [10°0FOCL'0 TO0'0FL6'0 800'0FCCY'0- T00°0F€96°0 Ld +osse1doag 0g

€€y 100°0FC6L°0- €00°0FCI80 TO0°0F968°0- 100°0F9€L'0 ¥YI00FLBSO- 100°0FCC80 TOO'0FOLED €100FF6S0 YIOOFLEL'O 100°0FC96°0 €00'0FYCy'0- 100°0FIL80 L4 +1s00gDX 0S
L9'€ TOO'0FEO6L'0- TOO'0FIIB0 +00°0FS68°0- TO0'0FSEL0 €10°079°0- T00°0FCC80 800°0FS9E'0 800°0FST9°0 LOOOFEELO TO0°0FL60 900°0FCCy'0- T100°0FE96°0 Id+dd 0S
€8¢ CO0'0FI6L0- TO0'0F6I8°0 SO0'0FC06'0- CO00FIEL'0 ¥CO'0F6LS 0~ 100°0¥C8°0 €00°0FL8E'0 610°0FL6S0O 600°0F61L0 100°0¥L6°0 T00°0F8IF'0- 100°0F€96°0 Id+AV 0§
00°S 100°0¥C6L0- CO00'0F¥808°0 ¥00°0FI060- [000FEEL'O SO0°0FCO6S0- €00°0FLISO ¥O0'0F8LE'0 TTOOFCI90 CTIOOF6CL'O TO0°0FL6'0 900°0FECH'0- T100°0FE96°0 LA +19NOsseT 0§
LUy ¥I0°0FIT80- TOO'0FIC80 +00'0FLO6'0- BOO'OFELO 800°0FLSS 0~ 0'0FIC80 CTO0'0FE8E'O0 CTIO'OFYS'O 800°0FLYL'O €90°0FS6°0 800°0FITH0- ¥CO'0FSE6'0 14 +7T19V 0§
€8'C ¥00'0FS6L°0- TOO'0FLISO TO0'0F968°0- TOO'0FIEL'O 800'0FLSSO- T10°0FCIZ0 TOO'OFI6ED 610°0FH09°0 800°0F8YL'0 T00°0FL6'0 +000OFICHO- T00°0FH96°0 IJ+O0sseT Il 05
ST’S 100°0FPL8°0- CO0°0FII80 CO0'0FS06'0- CO0'0FEELO TI0O0OFIOSO- 0°0F€T80 €00'0FIBEO STO0FISO TT0°0FCL'0 ¥00°0FL96°0 €00°0FCTHO- TO0'0FC96°0 LA +0sseT 06
L9'9 100°0F618°0- 100°0F18°0 €00°0¥16°0- T00°0F¥8CL'O0 SO0°0FEI9°0- 0°0¥¢80 CO0'0FISE0 TTO0FELSO 600°0FSI90 CTOO'0OFCH6'0 €00°0F6I¥0- T00°0FE€96°0 LA + 9melieAlun) 0§
LTy 100°0F6L°0- CTO0'0F8I80 +¥00'0FI06'0- COO'OFCELD 800°0FCSS0- [00°0F6I8°0 TOO'OFL6E'0 [10°0F8SS'0 [10°0FEEL’'0 T00°0F896°0 €00'0FSTH0- 100°0FC96°0 Id+Sd0N 0§

LT’ T00°0F8L0- <C00°0FS08°0 0°0¥68°0- T00°0FPL'0 TO'0F89S'0- T00°0FIT80 T[00°0FSLED SI00FI8SO SIOOFLYY0 T00°0¥696°0 LOO0F8YF'0- 100°0¥6S6'0 dTIN +osseTdoaq 6L
00°S T100°0¥S6L°0- €00°0F€08°0 [00°0F¥C68°0- <CO0'0F8EL'O0 8I0°0F88S'0- TO0'0FIT80 LOOOFBSE'0 TIO'0OFSSS'O 600°0FLT90 0°0¥896°0 ¥SO'0F¥S6¥'0- 100°0F6S¥°0 dTIN +13500gDX GL

80'S 100°0F68L'0- TOO'0FF6L0 0°0¥C68°0- TO0'0F8TLO T10°0FS19°0- 0076180 TO0'0F6E£L'0 900°0F99S°0 TIO'0FLTI'0 T100°0¥896'0 SO0°0FSH¥'0O- 100°0F9S6°0 dIN+dd SL
€87 T00'0F98L0- €00°0FE6L0 0'0FS68°0- TOO'0FITLO T10'0F69S0- SO0'0FEI0 TOO'0FCIL0 TIOOFSIV0 STO0FEEL90 T00°0F896'0 LTOOFVSHO- 100°0F8S6°0 d'TIN +19NOSSeT GL
L9C T00'0FI8L0- €00°0¥8°0 0°0F€68°0- CTOO'0F9EL'0 LOO'OFSPS0- 100°0F6I8°0 TO0'0FY8E'0 LOOOFIONO 6I0°0FLP9'0 10008960 SO0'0F8EY'0- T00°0F8S6°0 dTN+7T1DV SL
€€'c 100°0FC8L0- TO0'0FS08°0 TOO'0FE68°0- TO0'OFIYL'0O LOO'0OFO6VSO- T100°0F8I8'0 ¥00'0FSLEQD CTOOFOLSO TO0OFPS9'0 900°0F996'0 ¥¥0'0FCSY'O- T100°0F96°0 dTN+OsseT Tl GL
L9 100°0F€6L°0- T00'0FL0O80 [00°0F768°0- TO00F6EL0 SO0'0FFSSO- 100°0¥C8°0 S00'0FE9E'0 6£0°0F61S0 €CO'0FCIO0 T100°0¥896°0 TOO'0FHEY'0- 100°0F96°0 dTIN +0sseT 6L
STL 100°0¥C8°0- T00'0FS8L'0 0'0F806'0- TOO'0FCLO ¥00'0F809°0- 100'0FCI80 TOO'0OFCSE'0 SOO'OFIESO 800'0FESSO 00F887'0 ¥000FES 0" 10007960 dTIA + 2eleAluny ¢/
o'y TO0'0FTO6L'0- €00°0FCOL0 100°0¥6°0- TOO'OFLIL'O 900°0FTHS0- T00°0F808°0 T00°0FSSE'0 900°0F86S°0 900°0F£9°0 0°07696'0 £00'0FISH0- 100'0FCS6'0 dTN+SION SL

0'0F68L°0- T00'0FST80 0'0F6¥80- T00'0FSTL'O TOO'0FCYS0- TO0O0OFIEL'0 TO0O'0FILE'D €00'0FI69°0 TOO'0OFFL'O 0°0¥896'0 €00°0F¥1+°0- 0'0FLI6'0 Quleseq1soogDX SL

L9°T TO0°0FILL0- €00°0FS08'0 T00°0F68°0- T00°0FEELO LIOOFCLSO- T100'0FSI80 TO0'0FH8E0 10090 600°0F8F9°0 10006960 LOO0FIPY'0- T00°0FI96'0 dTA +osse1dead 0§
€8'¢ T00'0F98L°0- TO0'0FS08'0 T00'0FI68°0- TOO'OFYELQ 10°0F6LS°0- T00'0F8I80 +00'0FELED LOOOFFO9'0 600°0FSE90 T00'0FL6'0 TOO0FSEY 0~ 100°0¥L8°0 d'TIN +1800gDX 05
ST’ T100°0FI8L0- CTOO'0FIO80 0°0768°0- TO0°0FSEL'0 TO0'0F98S0- T00°0F8I80 CTOO0OFLEO LOO'0F6I9°0 B8OO'0F6£9°0 0°0¥696'0 $00°0FLEY'0- 100°0F8S6°0 dTIN+dd 0S
0S¢ TO0'0F8LLO- €00°0F¥CO8°0 TO0'0FC68°0- TOO'0FELO €£0°0F99S°0- T00°0F6I8°0 €£00'0FIBE0 10°0¥709°0 600°0FCC9°0 100°0F896°0 S00°0F6£H°0- T100°0F196°0 dTIN+IAV 0§
0S'v TO0'0F¥8L0- TOO'0FLOLO 0°0F€68°0- €00°0F¥CLO [0°0FS6S°0- C00°0F9I8'0 100°0F6LE'0 900°0FI19°0 TTO'0FIF9'0 0°0¥696'0 ¥00°0¥CH¥'0- 100°0F65S6°0 dTIN +19NOsseT 0§
STE TO0°0FILL0- €00°0F908°0 T00°0F68°0- 600°0FELO LOO'OFSISO- LOO'OFLOBO TOO0FEBE'O 610°0FF6S0 SIO0FLEYD TSO'OFES6'0 BOOOFEVY0- 100°0F196°0 dTN+TOV 0§
' 100°0F8L°0- €00°0F808°0 0°0¥68°0- 100°0F8¢L0 10°0FS9S°0- LOO'OFST8 0 €000F8EO 9€OOFILSO +IO0OFFEI0 100076960 SO00FSHY 0- 0°0F6S6°0 dTN +OSSeTTIl 0S
[3%Y 0°0F€8L°0- T00°0F908°0 0°0F168°0- CTOO'0FYCL'O ¥00°'0FF9S°0- T00°0F9I8°0 LOO'0FI9E'0 TTO'0F6S0 CTIO'0FB09'0 ¥00°0F996'0 ¥00'0FEYY'0- T00'0FSS6'0 dTIN +OSseT 0§
869 100°0F18°0- C00'0F86L°0 0°0¥206'0- TOO'0FYCL'O 600°0F¥19°0- T00°0FLI80 T000FLSEO 10°0¥285°0 €10°0F¥8S°0 0'0¥6S6'0 TO0'0F6E¥'0- T00°0F196°0 d'TIN + 9BLIeAIU) OS
0Sv 100°0F98L°0- €00°'0F8°0 TOO'0FI68°0- COO'0F6IL'0O 900°0F6¥S0- 0'0FI1180 T000FE8E0 CIO'0FS09'0 600°0FIE9'0 100°0F696'0 CTOO0FEYY O~ 100°0F96°0 dTN+ SAON 0S

0°0F18L°0- 100°0F¥ST80 0°0F9%8°0- 100°0F9CL'0 CO0'0FIPS0- [00°0F6CL'0 T00°0FPLE'D €00°0FE89'0 €00°0F60L0 0'0¥696'0 100°0F¥6C¥ 0" 0'0F€C6'0 dulfesed 1s00gDX 0S
Juel qdA LO IN vI OH IH dH 4D Ad 0D HO v poyRw Sd %

*J[NSI [[BISAO0 13139q SIIBIIPUI YULT I3MO]
PUEB 9SIM-}seIep SIaqUINU 1Saq dY) SOJEdIPUI JUO P[Og “JOPIO-PUOIIS AL SAINJBJ %G/ IO %) JOYIIS :JaSeIep oY} Ul SaINJed) eIIxe Jo Juadiad 03 s10Ja1 9, "swojqoxd
uo1s$a1321 10 FSIAY 2AIESoU pue UONBOYISSLO J0J AOBINOOE JO SWLIS) UT SWYILIOS e S USISMJIP AQ PO1Od[es SQINjea) Uo paures} S[powl Jo souewioyiad jrodax
9M\ "SIINJEIJ BIJXI JIPIO-PUOIIS (I $JISBIEP UO S[PPOW WIBIIISUMOP JIULIOJSUBI] -] PUe J'TIA 10J SPOYIIW UOI}IIIS 3IN)ed) Supjrewryoudg 8] 9[qel,

24

	Introduction
	Related Work
	Tabular Deep Learning
	Feature Selection
	Feature Selection Benchmarks

	Experimental Setup
	Are Deep Tabular Models More Susceptible to Noise than GBDT?
	Feature Selection Benchmark
	Benchmarking Feature Selection Methods
	Results

	Similarity between Feature Selection Methods
	Discussion
	Limitations
	Benchmark Detail
	Datasets
	Extraneous Features
	Data Preprocessing
	Code

	Experimental Detail
	Hardware
	Implementation Licenses
	Training Details
	Statistical Significance

	Hyperparameter Tuning
	Deep Lasso for Linear Regression
	More Results
	Corrupting features with Laplace noise
	ROC-AUC, Precision and Recall Metrics
	Does feature selection help bridging the gap with GBDT models?

