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Figure 1: Representative results of LoMOE on diverse images: Our algorithm can handlemulti-object edits in one go. The first
image in each example depicts the original image with the input mask (can be obtained using bounding boxes). Below each
image is the text caption describing the image and the text prompts (in color) describing the edits. The second image depicts the
edited image using LoMOE. Observe, that our method handles intricate localized object details such as multiple-cloud coloring,
editing animals on a wall painting, and lastly, editing tree and animal classes.

ABSTRACT
Recent developments in diffusion models have demonstrated an
exceptional capacity to generate high-quality prompt-conditioned
image edits. Nevertheless, previous approaches have primarily re-
lied on textual prompts for image editing, which tend to be less ef-
fective when making precise edits to specific objects or fine-grained
regions within a scene containing single/multiple objects. We intro-
duce a novel framework for zero-shot localized multi-object edit-
ing through a multi-diffusion process to overcome this challenge.
This framework empowers users to perform various operations
on objects within an image, such as adding, replacing, or editing
many objects in a complex scene in one pass. Our approach lever-
ages foreground masks and corresponding simple text prompts
that exert localized influences on the target regions resulting in
high-fidelity image editing. A combination of cross-attention and
background preservation losses within the latent space ensures that
the characteristics of the object being edited are preserved while
simultaneously achieving a high-quality, seamless reconstruction
of the background with fewer artifacts compared to the state-of-
the-art (SOTA). We also curate and release a dataset dedicated to
multi-object editing, named LoMOE-Bench. Our experiments against
existing SOTA demonstrate the improved effectiveness of our ap-
proach in terms of both image editing quality, and inference speed.
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1 INTRODUCTION
Diffusion models [39–41] have exhibited an outstanding ability to
generate highly realistic images based on text prompts. However,
text-based editing of multiple fine-grained objects precisely at given
locations within an image is a challenging task. This challenge pri-
marily stems from the inherent complexity of controlling diffusion
models to specify the accurate spatial attributes of an image, such
as the scale and occlusion during synthesis. Existing methods for
textual image editing use a global prompt for editing images, mak-
ing it difficult to edit in a specific region while leaving other regions
unaffected [6, 32]. Thus, this is an important problem to tackle, as
real-life images often have multiple subjects and it is desirable to
edit each subject independent of other subjects and the background
while still retaining coherence in the composition of the image. To
this end, we propose LocalizedMulti-Object Editing (LoMOE).

Our method draws inspiration from the recent literature on
compositional generative models [3, 18, 25]. It inherits generality
without requiring training, making it a zero-shot solution similar
to [3]. We utilize a pre-trained StableDiffusion 2.0 [40] as our base
generative model. Our approach involves the manipulation of the
diffusion trajectory within specific regions of an image earmarked
for editing. We employ prompts that exert a localized influence on
these regions while simultaneously incorporating a global prompt
to guide the overall image reconstruction process that ensures a
coherent composition of foreground and background with mini-
mal/imperceptible artifacts. To initiate our editing procedure, we
employ the inversion of the original image as a starting point, as
proposed in [37]. For achieving high-fidelity, human-like edits in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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our images, we employ two crucial steps: (a) cross-attention match-
ing and (b) background preservation. These preserve the integrity
of the edited image by guaranteeing that the edits are realistic and
aligned with the original image. This, in turn, enhances the overall
quality and perceptual authenticity of the final output. Additionally,
we also curate a novel benchmark dataset, named LoMOE-Bench for
multi-object editing. Our contributions in this paper are as follows:

(1) We present a framework LoMOE, for zero-shot text-based lo-
calized multi-object editing based on Multi-diffusion [3]. Our
framework facilitates multiple edits in a single iteration via
enforcement of cross-attention and background preservation,
resulting in high fidelity and coherent image generation.

(2) We introduce a new benchmark dataset for evaluating the
multi-object editing performance of existing frameworks,
termed LoMOE-Bench.

2 RELATEDWORK
Image Synthesis andTextual Guidance:Text-to-image synthesis
has made significant strides in recent years, with its early develop-
ments rooted in RNNs [31] and GANs [17], which were effective
in generating simple objects such as flowers, dogs and cats but
struggled in generating complex scenes, especially with multiple
objects [4]. These models have now been superseded by diffusion-
based methods which produce photorealistic images, causing a
paradigm shift [21, 40, 41]. In a separate line of work, CLIP [38]
was introduced, which is a vision-language model trained on a
dataset of 400 million image-text pairs using techniques such as
contrastive training. The rich embedding space CLIP provides has
enabled variousmulti-modal applications such as text-based imaged
generation [12, 13, 16, 24, 36, 39, 40, 46].
Compositional Diffusion Model: Kim et al. [25] observe text-to-
image models fail to adhere to the positional/layout prompting via
text. Thus, compositional diffusion models try to address the task
of image generation conditioned on masks, where each mask is
associated with a text prompt. In Make-a-Scene [15], the initial step
involves predicting a segmentation mask based on the provided
text. Subsequently, this generated mask is employed in conjunction
with the text to produce the final predicted image. Methods such
as ControlNet and GLIGEN [29, 49] have propose fine-tuning for
synthesizing images given text descriptions and spatial controls
based on adapters. Finally, methods like [3, 18, 25], aim to utilise the
pre-trained models and masked regions with independent prompts
to generate images without re-training.
Image Editing: Paint-by-Word [1] was one of the first approaches
to tackle the challenge of zero-shot local text-guided image manip-
ulation. But this method exclusively worked with generated images
as input and it required a distinct generative model for each input
domain. Later, Meng et al.[32] showed how the forward diffusion
process allows image editing by finding a common starting point
for the original and the editing image. This popularised inversion
among image editing frameworks such as [24, 37]. This approach
was further improved upon by adding a structure prior to the edit-
ing process using cross-attentionmatching [19, 37]. Moreover, there
have been improvements in inversion techniques producing higher
quality reconstruction which results in more faithful edits [23, 33].
However, many of the aforementioned methods generate the whole

image from the inversion. This compromises the quality of recon-
struction in regions where the image was not supposed to be edited.

Recently [5, 8] try to address the problem with the above mask-
free methods by incorporating an implicit masking strategy based
on cross-attentionmasks similar to [11]. Thus reinforcing the notion
that masking (either implicit or explicit) is essential for restrict-
ing the generation process to a certain region [2, 34]. However,
when it comes to multi-object editing, these methods fall short on
3 counts: (1) editing multiple regions in one pass, (2) maintaining
consistency between the edited and the non-edited regions of the
image, (3) accumulating error over the multiple edit passes. Our
method explicitly takes care of these aspects of image editing while
incorporating all the advancements of our predecessor methods.

3 PROPOSED METHOD
Problem Statement: In a multi-object editing scenario, the ob-
jective is to simultaneously make local edits to several objects
within an image. Formally, we are given a pretrained diffusion
model Φ, an image x0 from image space X ⊂ R𝑤×ℎ×3 (x0 ∈ X
(for stable diffusion-based models, X ⊂ R512×512×3), and 𝑁 binary
masks {𝑀1, · · · , 𝑀𝑁 } along with a corresponding set of prompts
{𝑐1, · · · , 𝑐𝑁 }, where 𝑐𝑖 ∈ C, the space of encoded text prompts.
They are used to obtain an edited image x∗ such that the editing
process precisely manifests at the locations dictated by the masks,
in accordance with the guidance provided by the prompts.
Overview of LoMOE: LocalizedMulti-Object Image Editing (LoMOE)
comprises of three key steps (a) Inversion of the original image x0
to obtain the latent code 𝑥𝑖𝑛𝑣 , which initiates the editing procedure
and ensures a coherent and controlled edit (b) Applying the Mul-
tiDiffusion process for localized multi-object editing to limit the
edits to mask-specific regions, and (c) Attribute and Background
Preservation via cross attention and latent background preserva-
tion to retain structural consistency with the original image. Fig. 2
depicts an overview of our method.

3.1 Inversion for Editing
In this work, we employ a pretrained Stable Diffusion [40] model,
denoted as Φ. This model encodes an input image x0 ∈ R512×512×3

into a latent code 𝑥0 ∈ E ⊂ R64×64×4.
Given an image x0 and it’s corresponding latent code 𝑥0, in-

version entails finding a latent 𝑥𝑖𝑛𝑣 which reconstructs 𝑥0 upon
sampling. We adopt a deterministic DDIM reverse process to model
the inversion step [37]. This process is deterministic when 𝜎𝑡 = 0
∀ 𝑡 ∈ [𝑇 ], where 𝜎 ∈ R𝑇+ parameterizes the family Q of inference
distributions [41] and 𝑇 is the number of timesteps. The latent
𝑥𝑖𝑛𝑣 = 𝑥𝑇 and the intermediate latents are related by

𝑥𝑡+1 =
√
𝛼𝑡+1

(
𝑥𝑡 −
√

1 − 𝛼𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡)√
𝛼𝑡

)
+
√

1 − 𝛼𝑡+1 𝜖𝜃 (𝑥𝑡 , 𝑡) (1)

where 𝛼𝑡 represents a prefixed noise schedule and 𝜖𝜃 (𝑥𝑡 , 𝑡) is a
neural network trained to predict the noise 𝜖𝑡 added to a sample
𝑥𝑡 . This network can also be conditioned on text, images, or em-
beddings [22], denoted by 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐, ⊘), where 𝑐 is the encoded
condition and ⊘ is the null condition. In LoMOE, 𝜖𝜃 is conditioned
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Figure 2: LoMOE comprises of 3main steps: Inversion (Sec. 3.1) produces 𝑥𝑖𝑛𝑣 and 𝑐0 corresponding to input x0. A MultiDiffusion
process (Sec. 3.2) helps restrict the edits to regions𝑀1, 𝑀2 guided by 𝑐1, 𝑐2. The Preservation of Attributes (Sec. 3.3) is achieved
via L𝑥𝑎 and L𝑏 , using reference cross-attention maps and background latents obtained through a reconstruction process.

on 𝑐0, a text prompt encoded using CLIP [38], during inversion.
The underlying prompt is generated utilizing a text-embedding
framework such as BLIP [28] on the image x0.

Additionally, at each step during the inversion process, we softly
enforce gaussianity using a pairwise regularizationL𝑝𝑎𝑖𝑟 [37] and a
divergence lossL𝐾𝐿 [26] weighted by 𝜆. This adaptation is inspired
by findings in [37], which highlighted deviations from the desired
statistical properties of uncorrelated, white gaussian noise in the
noise maps generated by 𝜖𝜃 , leading to poor editability. Details of
these losses can be found in Sec. 1 of the supplementary.

The inversion step offers a solid foundation for the editing pro-
cess, outperforming random latent initialization (Ref. Supplemen-
tary Sec. 2.1). However, employing a standard diffusion process
for editing poses limitations in controlling local regions within the
image via simple prompts. To address this challenge, we adopt a
MultiDiffusion approach [3] for localized multi-object editing.

3.2 Diffusion for Multi-Object Editing
For a diffusion model Φ, the backward process entails generating
a sequence of latents {𝑥𝑖 }0𝑖=𝑇−1 starting from 𝑥𝑇 , progressively
denoising it over time. Here, 𝑥𝑡−1 = Φ(𝑥𝑡 |𝑐), where 𝑐 is the encoded
condition. Utilizing a deterministic DDIM reverse process,

𝑥𝑡−1 =
√
𝛼𝑡−1

(
𝑥𝑡 −
√

1 − 𝛼𝑡 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐, ⊘)√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐, ⊘) (2)

By running this backward process with 𝑥𝑇 = 𝑥𝑖𝑛𝑣 and the source
prompt 𝑐0, we obtain a reconstructed version, 𝑥 ′0, of the original
latent code 𝑥0. This step is termed the reconstruction phase. To ad-
dress any deviations between 𝑥 ′0 and 𝑥0, we adopt a strategy of
preserving noise latents during the inversion process [23]. Addi-
tionally, we store the latents 𝑥 ′𝑡 and cross-attention maps 𝐴𝑟𝑡 (Sec.
3.3.1) at each timestep 𝑡 .

A simple approach to edit x0 involves running a backward pro-
cess with 𝑥𝑇 = 𝑥𝑖𝑛𝑣 and guiding it using a target prompt [32]. How-
ever, this method applies prompt guidance across the entire image,

rendering the output susceptible to unintended edits. Thus, we
propose a localized prompting solution, confining edits to a masked
region. To edit 𝑁 regions corresponding to 𝑁 masks concurrently,
one might initially consider utilizing 𝑁 + 1 distinct diffusion pro-
cesses {Φ(𝑥 𝑗𝑡 |𝑐 𝑗 )}𝑁𝑗=0. Here, {𝑥

𝑗
𝑡 , 𝑐 𝑗 } 𝑗≥1 denote the latent code and

encoded prompt for mask 𝑗 , while {𝑥0
𝑡 , 𝑐0} correspond to those of

the background (source image x0). However, LoMOE adopts a single
MultiDiffusion process [3] denoted by Ψ for zero-shot conditional
editing of regions within all the masks.

Given masks {𝑀1, · · · , 𝑀𝑁 } and𝑀0 = 1−𝑚𝑖𝑛{⋃𝑁
𝑖=1 𝑀𝑖 , 1}, with

a corresponding set of encoded text prompts 𝑧 = (𝑐0, 𝑐1, · · · , 𝑐𝑁 ),
the goal is to come up with a mapping function Ψ : E ×C𝑁+1 → E,
solving the following optimization problem:

Ψ (𝑦𝑡 , 𝑧) = argmin
𝑦𝑡−1

L𝑚𝑑 (𝑦𝑡−1 |𝑦𝑡 , 𝑧) (3)

Starting from 𝑦𝑇 , Ψ generates a sequence of latents {𝑦𝑖 }0𝑖=𝑇−1
during the backward process, where 𝑦𝑡−1 = Ψ(𝑦𝑡 |𝑧). The objective
in Eq. 3 is designed to follow the denoising steps of Φ as closely as
possible, enforced using the constraint L𝑚𝑑 defined as:

L𝑚𝑑 (𝑦𝑡−1 |𝑦𝑡 , 𝑧) =
𝑁∑︁
𝑖=0

𝑀𝑖 ⊗ [
𝑦𝑡−1 − Φ(𝑥𝑖𝑡 | 𝑐𝑖 )

]2
(4)

where ⊗ is the Hadamard product. The optimization problem in Eq.
3 has a closed-form solution given by:

Ψ (𝑦𝑡 , 𝑧) =
𝑁∑︁
𝑖=0

𝑀𝑖∑𝑁
𝑗=0 𝑀𝑗

⊗ Φ
(
𝑥𝑖𝑡 | 𝑐𝑖

)
(5)

Thus, editing in LoMOE is accomplished by running a backward
process using Ψ with 𝑥0

𝑇
= 𝑥1

𝑇
= · · · = 𝑥𝑁

𝑇
= 𝑥𝑖𝑛𝑣 and in turn 𝑦𝑇 =

𝑥𝑖𝑛𝑣 via a deterministic DDIM reverse process for Φ (i.e, Φ
(
𝑥𝑖𝑡 | 𝑐𝑖

)
is given by Eq. 2). This step is termed the edit phase. Additionally,
the latents and attention maps stored during the reconstruction
phase are used to define losses (Sec. 3.3) that guide the edit.
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Figure 3: Comparison among contemporary methods for Single Object Edits: We observe that InstructP2P [6] tends to modify
the whole image. GLIDE [35] often removes the subject of the edit in cases where it fails to generate the edit. DiffEdit [11]
often fails to make a successful edit although it is based on Stable Diffusion. BLD [2] and SDInpaint [40] don’t preserve the
structure of the input and make unintended attribute edits to the masked subject. Finally, we observe that our proposed LoMOE
makes the intended edit, preserves the unmasked region and avoids unintended attribute edits.

3.2.1 Bootstrapping. To enable Ψ(𝑦𝑡 |𝑐𝑖 ) to focus on region𝑀𝑖
during the early stages of the backward process (up to timestep 𝑇𝑏 ,
referred to as the bootstrap parameter), while incorporating the
entire image context later on [3], we introduce a time-dependency
in 𝑦𝑡 , as follows:

𝑦𝑡 =

{
𝑀𝑖 · 𝑦𝑡 + (1 −𝑀𝑖 ) · 𝑏𝑡 , if 𝑡 < 𝑇𝑏
𝑦𝑡 , otherwise

(6)

where 𝑏𝑡 serves as a background and is obtained by noising the
encoded version of a random image with a constant color to the
noise level of timestep 𝑡 , i.e. 𝑏𝑡 = 𝜉 (x) where x ∈ X and 𝜉 is the
Stable Diffusion encoder. This contributes to improved fidelity in
generated images, particularly in scenarios involving tight masks.

3.3 Attribute Preservation during Editing
While Ψ addresses multi-object editing, it faces challenges in (1)
maintaining structural consistency with the source image and (2)
faithfully reconstructing the background. To address these short-
comings, we introduce losses L𝑥𝑎 and L𝑏 as post-hoc guidances.
These losses are jointly optimized at each iteration during the edit
process, thereby constraining the diffusion process.

3.3.1 Cross-Attention Preservation. Diffusion models such as
Stable Diffusion [40] incorporate cross-attention (CA) layers [43]

within 𝜖𝜃 to effectively condition their generation on text. These
layers facilitate interaction between image and text modalities dur-
ing denoising, resulting in spatial attention maps for each textual
token. These attention maps are represented as:

𝐴 = Softmax
(
𝑄𝐾𝑇
√
𝑑

)
(7)

where𝑄 denotes the projection of intermediate spatial features from
𝜖𝜃 onto a query matrix𝑊𝑄 , 𝐾 denotes the projection of the text
embedding 𝑐 onto a key matrix𝑊𝐾 , 𝑑 signifies the latent projection
dimension, and 𝐴𝑖, 𝑗 represents the weight of the 𝑗𝑡ℎ text token on
the 𝑖𝑡ℎ pixel.

Studies [19, 42] validate that UNet encodings, especially CA
maps, encode valuable information about structure and spatial
layout. Consequently, constraints on intermediate CA maps can
guide sampling and control generation, as shown in [14, 37]. While
techniques such as mask-based blending [11] and attention injec-
tion [19] aid in preserving structure, they often yield suboptimal
results (Ref. Table 1). Additionally, [19] suggests that attention in-
jection may overly constrain geometry, favoring a softer constraint.

In LoMOE, we employ a soft CA guidance throughL𝑥𝑎 , controlled
by 𝜆𝑥𝑎 . During the edit process, we update the attention maps

(
𝐴𝑒𝑡

)
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Method Mask Target CLIP
Score (↑)

Background
LPIPS (↓)

Structural
Distance (↓)

IR
(↑)

HPS
(↑)

Source CLIP
Score (↑)

Background
SSIM (↑)

Input - 23.584 ± 0.221 - - - - 25.639 ± 0.178 -

SDEdit [32] ✗ 23.042 ± 0.250 0.199 ± 0.0071 0.084 ± 0.0035 -0.600 ± 0.074 0.237 ± 0.003 21.362 ± 0.266 0.788 ± 0.0086
I-P2P [6] ✗ 25.038 ± 0.216 0.242 ± 0.0123 0.090 ± 0.0042 -0.217 ± 0.079 0.254 ± 0.003 22.513 ± 0.273 0.762 ± 0.0105
NTI (w/P2P) [33] ✗ 25.152 ± 0.226 0.098 ± 0.0069 0.074 ± 0.0039 0.205 ± 0.073 0.257 ± 0.003 23.415 ± 0.247 0.842 ± 0.0082

MasaCtrl [7] ✗ 24.389 ± 0.227 0.197 ± 0.0074 0.085 ± 0.0037 -0.465 ± 0.073 0.238 ± 0.003 24.034 ± 0.231 0.782 ± 0.0087

GLIDE [34] ✓ 24.299 ± 0.215 0.104 ± 0.0041 0.094 ± 0.0035 -0.646 ± 0.068 0.215 ± 0.003 22.756 ± 0.235 0.938 ± 0.0031

DiffEdit [11] ✓ 24.094 ± 0.234 0.057 ± 0.0019 0.076 ± 0.0036 -0.381 ± 0.074 0.247 ± 0.003 23.269 ± 0.248 0.875 ± 0.0063
SDInpaint [40] ✓ 25.556 ± 0.230 0.067 ± 0.0072 0.093 ± 0.0057 0.149 ± 0.077 0.253 ± 0.002 23.068 ± 0.246 0.854 ± 0.0095

BLD [2] ✓ 25.867 ± 0.206 0.058 ± 0.0021 0.077 ± 0.0034 0.374 ± 0.069 0.263 ± 0.002 22.761 ± 0.238 0.877 ± 0.0062

LoMOE ✓ 26.074 ± 0.201 0.054 ± 0.0022 0.066 ± 0.0031 0.457 ± 0.069 0.271 ± 0.002 23.545 ± 0.219 0.885 ± 0.0060

Table 1: Comparison with different baselines for Single-Object Edits: We use a large array of classical and neural metrics
that provide valuable statistical insights regarding the edit properties of considered methods. The best and the second best
methods are highlighted. In particular, LoMOE outperforms the baselines on all neural metrics indicating realistic image
generation. Additionally, LoMOE also performs faithful edits, as indicated by it’s high classical metrics.

(a) Input Image (b) Point Selection (c) Box Selection

Figure 4: Mask Generation using SAM [27].

to match those during reconstruction
(
𝐴𝑟𝑡

)
at each timestep 𝑡 by

𝐴𝑒𝑡 ← 𝜖𝜃

(
[𝑥0
𝑡 , · · · , 𝑥𝑁𝑡 ], 𝑡, [𝑐0, · · · , 𝑐𝑁 ] , ⊘

)
(8)

L𝑥𝑎 = ∥𝐴𝑟𝑡 −𝐴𝑒𝑡 ∥2 (9)

Additionally, we incorporate a temperature parameter 𝜏 in Eq. 7
to ensure distributional smoothness (Ref. Supplementary Sec. 2.1).

3.3.2 Background Preservation. In order to preserve the back-
ground in the output, we match the backgrounds of the latents
during the edit process (𝑦∗𝑡 ) with those stored during reconstruction
(𝑥 ′𝑡 ) at each timestep using a loss L𝑏 .

L𝑏 = ∥𝑀0 · (𝑦∗𝑡 − 𝑥 ′𝑡 )∥2 (10)

where𝑀0 is the background mask.
This approach is preferred over simple copy-pasting of the back-

ground [11] to ensure natural and photorealistic edits while avoid-
ing border artifacts through improved blending of multiple regions
generated by separate diffusion processes.

3.3.3 Joint Optimization. During each timestep of the edit pro-
cess, we update the attention maps and latent vectors by optimizing
the combined loss:

Δ𝑥𝑖𝑡 = ∇𝑥𝑖𝑡 (𝜆𝑥𝑎 L𝑥𝑎 + 𝜆𝑏 L𝑏 ) ∀ 𝑖 ∈ [0, 𝑁 ] (11)[
𝑥0
𝑡 , · · · , 𝑥𝑁𝑡

]
=

[
𝑥0
𝑡 − Δ𝑥0

𝑡 , · · · , 𝑥𝑁𝑡 − Δ𝑥𝑁𝑡

]
(12)

where 𝜆𝑥𝑎 and 𝜆𝑏 represent the weights assigned to the cross-
attention and background preservation losses, respectively. The
updated latent is given by:

𝑦∗𝑡−1 =

𝑁∑︁
𝑖=0

𝑀𝑖∑𝑁
𝑗=0 𝑀𝑗

⊗ Φ
(
𝑥𝑖𝑡 | 𝑐𝑖

)
(13)

where Φ represents the diffusion model, {𝑀1, · · · , 𝑀𝑁 } are fore-
ground masks, and𝑀0 is the background mask with corresponding
encoded prompts {𝑐1, · · · , 𝑐𝑁 } and 𝑐0 respectively. Additionally, 𝑥𝑖𝑡
is the latent associated with mask𝑀𝑖 at timestep 𝑡 .

3.4 Implementation Details
We utilized Stable Diffusion v2.0 as our pretrained model Φ. Addi-
tionally, we set the hyperparameters: 𝜆𝑏 = 1.75, 𝜆𝑥𝑎 = 1.00, 𝜏 = 1.25,
and𝑇𝑏 = 10, based on empirical validation conducted on a held-out
set comprising ten images. The majority of our experiments were
conducted on a system equipped with a GeForce RTX-3090 with
24 GB of memory. For multi-object edits involving more than five
masks, we utilized an A6000 GPU with 48 GB of memory. The code
will be made available post-acceptance.

4 EXPERIMENTAL SETTING
We consider two sets of experiments: (a) single-object edits and (b)
multi-object edits. For the multi-object editing experiments, while
LoMOE can be employed as it is, we resort to iterative editing for
other methods, specifically dealing with mask-based methods from
Table 1. We report both qualitative and quantitative outcomes of
our experiments.

4.1 Datasets
For single-object edits, we utilized a modified subset of the PIE-
Bench [23] dataset, supplemented with images from AFHQ [9],
COCO [30], and Imagen [44]. For multi-object edits, we introduce a
new dataset named LoMOE-Bench, comprising∼1000 edit operations
featuring images with 2 to 7 masks, each paired with corresponding
text prompts. Each image has 4 masks on average yielding 15 edit
combinations per image through combinatorial selection (

∑4
𝑖=1

4𝐶𝑖 ),
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Figure 5: Comparison with contemporary methods for Multi-Object Edits: While the baselines are either unable to make the
edit, accumulate artifacts, edit the unmasked region, or make unintended attribute edits, LoMOE is able to faithfully edit in
accordance with the target prompts.

resulting in ∼1,000 operations across diverse images. The details of
the curated dataset can be found in Sec. 4.1 of the supplementary
material. The LoMOE-Bench dataset will be made public in due time.

To obtain masks for LoMOE-Bench, we employ SAM [27], where
users can generate masks either by clicking on objects of interest
or by drawing bounding boxes around them, as illustrated in Fig. 4.
Additionally, for masks required in addition tasks for both datasets,
we developed a simple Python GUI where users can draw masks
directly onto the target regions of the images.

4.2 Baseline Methods
We benchmark LoMOE against SOTA, including SDEdit [32], Instruct-
Pix2Pix (I-P2P) [6], MasaCtrl [7], Null Text Inversion with Prompt-
to-Prompt (NTI w/ P2P) [33], GLIDE [34], DiffEdit [11], Stable
Diffusion Inpaint (SDInpaint) [40] and Blended Latent Diffusion

(BLD) [2]. Official implementations were used for all methods, ex-
cept for SDEdit and DiffEdit. GLIDE, DiffEdit, SDInpaint, BLD, and
LoMOE leverage masks, whereas the other methods operate on the
whole image. Additionally, there are differences among the methods
in terms of the types of text prompts they require. SDEdit, DiffEdit,
NTI (w/P2P) and MasaCtrl necessitate both source and target text
prompts, and I-P2P takes edit instructions as prompts, prompting
us to extend PIE-Bench to accommodate these methods. Similar to
LoMOE, GLIDE, SDInpaint, and BLD only use edit prompts corre-
sponding to the masks. Finally, given the considerably noisy masks
generated by DiffEdit, we opted to provide it with ground truth
masks.
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Method Single
Pass

Target CLIP
Score (↑)

Background
LPIPS (↓)

Structural
Distance (↓)

IR
(↑)

HPS
(↑)

Source CLIP
Score (↑)

Background
SSIM (↑)

Input - 22.489 ± 0.236 - - - - 26.956 ± 0.141 -

GLIDE [34] ✗ 22.754 ± 0.526 0.192 ± 0.0151 0.085 ± 0.0065 -1.224 ± 0.052 0.187 ± 0.002 27.038 ± 0.308 0.894 ± 0.0104

DiffEdit [11] ✗ 23.898 ± 0.445 0.188 ± 0.0119 0.071 ± 0.0063 -0.574 ± 0.069 0.227 ± 0.002 26.417 ± 0.306 0.756 ± 0.0168
SDInpaint [40] ✗ 24.804 ± 0.457 0.302 ± 0.0155 0.089 ± 0.0129 -0.214 ± 0.063 0.244 ± 0.002 26.506 ± 0.302 0.761 ± 0.0204

BLD [2] ✗ 25.394 ± 0.450 0.126 ± 0.0086 0.074 ± 0.0062 0.043 ± 0.070 0.242 ± 0.002 26.330 ± 0.268 0.800 ± 0.0150

LoMOE ✓ 26.154 ± 0.187 0.107 ± 0.0040 0.066 ± 0.0027 0.527 ± 0.061 0.264 ± 0.002 25.959 ± 0.111 0.826 ± 0.0073

Table 2: Comparison with SOTA for Multi-Object Edits: We use a large array of classical, neural and aesthetic metrics that
provide valuable statistical insights regarding the edit properties of considered methods. The best and the second best have
been highlighted. We observe that only LoMOE has a higher target CS compared to source CS.

4.3 Metrics
We quantitatively analyze the edited images on a set of neural
metrics, namely Clip Score (CS) [20] with both source and target
prompts, Background (BG)-LPIPS [50], and Structural Distance [10].
Additionally, we employed classical metrics such as BG-SSIM [45].
The neural metrics evaluate the perceptual similarity of the image,
emphasizing realism. On the other hand, classical metrics focus on
pixel-level similarity and doesn’t comment on the realism or quality
of the edit. In contrast to previous approaches, we propose evaluat-
ing edits based on the target CS and offer target prompts for all
images in both datasets. This approach enhances the effectiveness
of measuring edit quality, as a high target CS indicates successful
editing. Finally, we also use state-of-the-art image aesthetic met-
rics such as Image Reward (IR) [48] and Human Preference Score
(HPS) [47] which have not been used previously to evaluate editing,
to the best of our knowledge. These metrics validate which method
produces images that are pleasing to the human eye. To ensure
robustness in our assessments, we averaged all the metrics over
5 seeds and reported the average standard error for all methods.
Additionally, we conduct a subjective evaluation experiment to
assess the quality of edits, described in Sec. 5.4.

5 RESULTS AND DISCUSSION
5.1 Single Object Edits
In comparing LoMOE with various baselines Table 1, LoMOE demon-
strates superior neural metrics, highlighting its proficiency in main-
taining fidelity with source image and target prompt while mak-
ing realistic edits. However, GLIDE outperforms LoMOE in classical
BG-SSIM, suggesting a trade-off between realism and pixel-wise
faithfulness, as observed in prior works [32]. While GLIDE does
well on BG-SSIM due to its inpainting model design, it falls short
on neural and aesthetic metrics, resulting in less realistic/incorrect
edits. Other methods like MasaCtrl, NTI (w/P2P), and I-P2P perform
well on target CS, but lack in other aspects, especially background
metrics, due to their operation without a mask. Notably, instances
where the target CS is close to the first-row in Table 1 suggest the
absence of applied edits. Therefore, target CS is the most important
metric in this context. Masked methods like DiffEdit, BLD, and SD-
Inpaint collectively rank second best across most metrics, indicating
the preference for utilizing a mask in our edit context. Qualitative

evaluation in Fig. 3 provides visual comparisons. Finally, LoMOE
achieves the highest scores in the aesthetic metrics indicating that
it’s edits have the least artifacts and are most pleasant to humans.
Further, Fig. 6 validates this in the user study.

5.2 Multi-Object Edits
Similar to our observations in single-object editing, LoMOE exhibits
superior performance across all neural and aesthetic metrics in
multi-object editing, except for source CS. This deviation is an-
ticipated, given the substantial image transformations in multi-
object editing. Ideally, such transformations lead to images that are
markedly different from the source prompt and more aligned with
the target prompt. Therefore, elevated BG-LPIPS and Structural
Distance better indicate perceptual quality, while a high target CS
signifies successful editing. Conversely, all other methods display
a considerably lower target CS compared to source CS, indicat-
ing unsuccessful edits. Intuitively, as the number of edited objects
increases, the source CS tends to decrease, while the target CS
tends to increase. Furthermore, given our single-pass approach, we
achieve significant savings in edit time compared to methods that
perform multi-edits iteratively. Additional details can be found in
Sec. 3.4 of the supplementary. Fig. 5 shows qualitative results on all
the compared methods on a few sample images. This demonstrates

L𝑥𝑎 L𝑏
Source CLIP
Score (↑)

Structural
Distance (↓)

Target CLIP
Score (↑)

✗ ✗ 23.0906 0.0763 26.2555
✗ ✓ 23.3925 0.0728 26.2662
✓ ✗ 23.6611 0.0699 26.1338
✓ ✓ 23.5445 0.0661 26.0740

L𝑥𝑎 L𝑏
Background
LPIPS (↓)

Background
PSNR (↑)

Background
SSIM (↑)

✗ ✗ 0.1088 26.4474 0.8537
✗ ✓ 0.0554 30.1475 0.8818
✓ ✗ 0.0749 26.9587 0.8698
✓ ✓ 0.0546 30.3154 0.8847

Table 3: Ablation Study: We observe that both our losses
complement each other and result in improved metrics
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LoMOE’s impressive performance in preserving the intricate details
during edits.

5.3 Ablation Studies
To assess the significance of each loss component in LoMOE, we
conducted a comprehensive ablation study, maintaining a fixed
seed, 𝜏 and 𝑇𝑏 . The findings presented in Table 3 reveal that incor-
porating L𝑥𝑎 enhances neural metrics, contributing to the realism
of the edited image. Meanwhile, the inclusion of L𝑏 improves our
classical metrics, enhancing the faithfulness of the edited image.
Notably, these two aspects - realism and faithfulness are orthog-
onal qualities in image generation and editing. The combination
of both losses in LoMOE yields improved performance, achieving a
balanced enhancement in both the realism and faithfulness of the
edit. Detailed ablation results for varying values of 𝜏 and𝑇𝑏 , can be
found in Sec. 3 of the supplementary.

5.4 User Study
We performed a user study using images from the single-object
dataset to assess user preferences among images edited using the
various baseline methods. We had 40 participants in the age range
of 23-40. The majority of them expressed a preference for the edits
generated by LoMOE over those from the other baseline methods.
The results are summarized in Fig. 6, and our observations from
the user preference survey are as follows:

The user study revealed that LoMOE is the most favored image
editing method, with 46% of participants ranking it as their first
preference and 37% as their second preference. Users expressed
overall satisfaction with LoMOE’s reliability, even in cases where
edits weren’t entirely successful. Following LoMOE, BLD and I-
P2P garnered appreciation, with 25% and 13% respectively for
first preference. However, BLD’s failures were noted to be drastic,
rendering some images unusable, while I-P2P’s unintended back-
ground changes often resulted in visually appealing edits. GLIDE,
DiffEdit, and SDEdit emerged as the least preferred methods, with
only single-digit percentages for first preference. Dissatisfaction
stemmed from GLIDE’s tendency to replace subjects with poor-
quality targets, and users found DiffEdit and SDEdit to be similar,
with the former preserving unmasked regions of input images.
Overall, LoMOE stood out as the preferred choice, while BLD and
I-P2P offered viable alternatives despite their drawbacks.

Figure 6: User Study: The first & second preference images for
users who were shown results produced by SOTA methods.

Figure 7: Illustrating LoMOE’s limitations, we reveal challenges
in realism and its ineffectiveness to handle size or pose
changes, stemming from its mask-based nature. These limi-
tations highlight promising avenues for future research.

6 LIMITATIONS
The limitations of LoMOE are illustrated in Fig. 7. These limitations
are inherent to its underlying architecture, which is shared by the
broader class of models it belongs to. Although LoMOE utilizes stable
diffusion for generation, there are instances where, despite gener-
ating a very high fidelity edit, the quote "monster in the woods"
also appears on the body (Row 2, Col 1, Fig. 7) due to the model
interpreting the prompt as a text generation task [2]. Additionally,
although the model adheres to the prompt in adding clouds to the
masked region (Row 1, Col 1, Fig. 7), the edit is not very realistic,
which can be attributed to the realism and faithfulness trade-off,
as discussed in Sec. 5.1. Furthermore, similar to other mask-based
generation methods, our model faces constraints in generating be-
yond specified regions, such as changes in pose or scale, where the
input and output silhouettes of the object in question differ. This
limitation is evident in the mouse and unicorn edits (Col 2, Fig.
7), where the model is constrained by the mask and is, therefore,
unable to create a smaller mouse inside the mask or the unicorn
horn outside the mask. However, it is essential to recognize that this
limitation prevents unintended edits, distinguishing mask-based
editing models from mask-free editing frameworks. Despite these
constraints, our model demonstrates effectiveness within its scope
of capabilities while maintaining precision in complex edits.

7 CONCLUSION
We present LoMOE, a framework designed to address a task of lo-
calized multi-object editing using diffusion models. Our approach
enables (mask and prompt)-driven multi-object editing without the
need for prior training, allowing diverse operations on complex
scenes in a single pass, thereby having improved inference speed
compared to iterative single-object editing methods. Our frame-
work achieves high-quality reconstructions with minimal artifacts
through cross-attention and background preservation losses. Fur-
ther, we curate LoMOE-Bench, a benchmark dataset that provides a
valuable platform for evaluating multi-object image editing frame-
works. We believe that LoMOE would serve as an effective tool for
artists and designers.
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