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ABSTRACT

Metamaterials are microstructured materials whose tailored geometries unlock
unusual mechanical responses. Metamaterial discovery aims at identifying novel
microstructures towards specific applications, such as transportation, robotics, etc.
Traditional knowledge-driven metamaterial discovery methods are computationally
expensive. While recent data-driven generative models accelerate design, they
demand explicit numerical targets and struggle to understand the language descrip-
tions of a concept or idea that is critical for the early design stage. Conversely,
large language models readily understand such language intents but lack geometric
awareness and physical constraints. To bridge this gap between language under-
standing and geometric awareness, we propose LinguaMate, an inference-time
multi-agent optimization framework that empowers language-guided Metamaterial
discovery via symbolic-driven latent optimization. By jointly aligning language,
geometry, and property spaces, LinguaMate discovers physically valid microstruc-
tures that extend beyond the boundaries of existing literature and training data.
Extensive experiments demonstrate that LinguaMate (1) improves structural va-
lidity by up to 34% in symmetry and nearly 98% in periodicity compared to the
strongest generative baselines; (2) achieves about 6–7% higher prompt-guidance
scores while maintaining superior diversity relative to advanced reasoning LLMs;
(3) qualitative analyses confirm the effectiveness of symbolic logic operators in
enabling programmable semantic alignment; and (4) real-world case studies further
validate its practical capability in metamaterial discovery. We publish our code in
https://anonymous.4open.science/r/LinguaMate-CC6F.

1 INTRODUCTION

Metamaterials, an emerging microstructured category of materials, are receiving increas-
ing attention due to their capability to achieve extraordinary mechanical properties, ex-
hibiting wide applications in various fields, such as biomedical devices, transportation
systems, robotics, etc. (Paul, 2010; Engheta and Ziolkowski, 2006; Jia et al., 2020).
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Figure 1: A two-dimensional conceptual
space of metamaterial design models.

Traditional metamaterial design aims to build microstruc-
tures with specific mechanical properties, such as targeted
elastic moduli or Poisson’s ratios (Deng et al., 2022).
Knowledge-driven methods, such as evolutionary meth-
ods (Deng et al., 2022) and optimization methods (Danesh
et al., 2025; Lee et al., 2024), heavily rely on domain
expertise to identify desired properties and conduct exten-
sive simulation and laboratory experiments, resulting in
high computational and experimental costs (Danesh et al.,
2025). To address the efficiency issue, data-driven meth-
ods, including variational autoencoders (VAEs) Kingma
and Welling (2014), diffusion models (DMs) (Podell et al.,
2023; Fu et al., 2024; Zhan et al., 2025), and generative
adversarial networks (GANs) (Tian et al., 2022; Pahla-
vani et al., 2024), have been introduced to learn structure–
property relationships for inverse design tasks (Zheng
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et al., 2023; Xie et al., 2022; Ma et al., 2019). However, despite their significance in exploring large
design spaces, these methods cannot comprehend existing literature and implicit domain knowledge,
instead requiring explicit property specifications from domain experts, as summarized in Figure 1.

Recent studies (Ha et al., 2023; Chen et al., 2024) indicate that metamaterial discovery often begins
with incomplete information, evolving constraints, and only vague conceptual goals. Traditional
methods, which rely on explicit numerical property inputs, struggle in such exploratory phases and
can even fail to produce valid outputs (Jin et al., 2023; Ronellenfitsch et al., 2019). By contrast, natural
language provides a flexible way to specify qualitative design intents (e.g., “lightweight and energy-
absorbing under impact”) without committing to precise targets, making it well suited for exploratory
workflows. Large language models (LLMs) further extend this flexibility: with strong capabilities
in language understanding, structured reasoning, and embedded domain knowledge, LLM-based
agents can propose candidate structures, query simulations, and refine designs (Tian et al., 2025; Qi
et al., 2024; Narayanan et al., 2025), as demonstrated by models like GPT-4o (Hurst et al., 2024) and
DeepSeek (Guo et al., 2025). However, while generative models naturally operate in geometric space
with physical constraints, LLMs lack such geometric awareness, resulting in their tendency to either
reproduce existing designs from known literature or propose physically-invalid designs.

These observations reveal a persistent modality gap: LLM agents excel at expressing language design
intents, while geometry-aware generators ensure physical realism, yet neither alone can bridge the two
domains. Therefore, a natural research question arises, can we have a knowledgeable metamaterial
scientist, which has multiple domain expertise in geometric topology awareness, flexible natural
language understanding, and effective metamaterial design?

To achieve this, we identify two critical challenges. C1: How can we bridge the modality gap, consid-
ering the large discrepancy between modalities? Language-guided metamaterial discovery involves
three distinct modalities: language, geometry, and properties. For language space, interpreting qualita-
tive design intents, such as "strong but flexible," requires robust reasoning capabilities and substantial
domain expertise. For geometric space, designing microstructures demands an understanding of
structural consistency and adherence to physical constraints. For property space, creating materials
to achieve targeted properties requires comprehensive knowledge of the mechanical properties. C2:
How can we expand the existing design space to enable broader hypothesis exploration? Both
LLMs and generative models typically operate within training data design spaces. However, the
metamaterial design targets often exceed the design space of both LLM and generative models.
Exploring unknown hypotheses beyond these initial spaces remains an important challenge.

To address these challenges, we propose LinguaMate, a multi-agent collaborative framework utilizing
symbolic-driven latent optimization for metamaterial discovery. Specifically, for C1, we introduce
three specialized agents, each focusing on one modality. Agent Designer, powered by an LLM,
provides language reasoning to interpret prompts and query the domain literature space. Agent
Generator is a generative model specialized in geometric modality, enabling exploration within vast
geometric design spaces. Agent Supervisor integrates property prediction and language reasoning,
facilitating targeted property-driven designs (Section 3.1). Moreover, a multi-agent collaboration
mechanism is developed with optional human-in-the-loop intervention to combine different modalities
(Section 3.2). For C2, motivated by the programmable methods (Bastek et al., 2022; Zhao et al.,
2025), we design a symbolic-driven latent optimization module to synthesize the language semantics
and geometries, achieving effective hypothesis exploration outside the literature domain and the
geometric domain (Section 3.1.2).

In summary, this work offers three major contributions: Conceptual Contribution: To enable a
practical metamaterial discovery process, this work first comprehends guidance in language modality,
generation in geometric modality, and mechanical responses in property modality into one solution,
enabling language-guided metamaterial discovery. Technical Contribution: We propose Lingua-
Mate, a multi-agent framework that enables human-in-the-loop intervention for efficient and robust
metamaterial discovery. Additionally, we propose a symbolic-driven latent optimization module
to enable inference-time cross-domain exploration. Empirical Benchmark: We benchmarked
state-of-the-art LLM-based and generative models, demonstrating that LinguaMate significantly
outperforms these baselines in structural validity, design diversity, and prompt guidance effectiveness.
Our analyses confirm the effectiveness of each component. A real-world case study shows the
practicality of LinguaMate in real metamaterial discovery scenarios.
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2 PRELIMINARY

𝑀𝑀(𝐿𝐿,𝑈𝑈)

𝑈𝑈 = (𝑷𝑷,𝐸𝐸) 𝒍𝒍1

𝒍𝒍2

𝒍𝒍3

Figure 2: Truss lattice.

Metamaterial Design. Metamaterials, as shown in Figure 2, are typ-
ically modeled as lattice structures, i.e., periodic arrangements of unit
cells composed of trusses in geometric space (Chen et al., 2025). For-
mally, a metamaterial can be represented as M = (L,U), each unit cell
U = (P, E) consists of node coordinates P ∈ RN×3 and edge set E spec-
ifying strut connections, and the lattice vectors L = [l1, l2, l3]

T ∈ R3×3

define the periodic tiling of unit cells in 3D space. The corresponding
mechanical properties of M are denoted by y ∈ Rdy . The central goal
of metamaterial discovery is to design structures with tailored properties
that satisfy specific functional requirements.

Limitations of Existing Works. Knowledge-driven approaches to metamaterial discovery largely
depend on domain experts’ intuition and iterative experimentation, often implemented through meth-
ods such as topology optimization (Sigmund and Maute, 2013) and evolutionary algorithms (Holliman
et al., 2022). Another line of designing novel lattice materials typically begins with the combination
of well-known classical structures (Bastek et al., 2022; Zhao et al., 2025), e.g., Kelvin cells or octet,
thereby enabling the exploration of novel metamaterials derived from existing building blocks. De-
spite their utility, as depicted in the upper part of Figure 1, these traditional approaches are generally
computationally expensive and remain heavily reliant on expert-driven experimental processes, which
limits their scalability and practicality in complex design spaces.

Generative models such as VAEs and DMs have been widely used for data-driven metamaterial
discovery by optimizing a conditional autoencoder qϕ(z | M) and pθ(M | z,y) with Gaussian
prior p(z) ∼ N (0, I) (more details in Appendix D). However, these approaches generally treat the
geometrical information and the semantical information within the same representation z space in
an entangled fashion, which hurts the generation quality. More recently, LLM-based approaches
fine-tuned with tokenized 3D material representations (Hayes et al., 2024; Gruver et al., 2024; Li
et al., 2025a;b; Zholus et al., 2025) have leveraged large model capacity to search broad design
spaces. Yet, they remain confined to tokenized geometric data and explicit condition vectors, lacking
free-form language guidance and limiting their applicability to concept-driven metamaterial design,
as shown in the lower part of Figure 1.

Multi-agent scientific discovery systems (Qi et al., 2024; Narayanan et al., 2025) demonstrate promise
for hypothesis reasoning, but current frameworks operate only in text space (Boiko et al., 2023). For
metamaterial discovery, the challenge lies in coupling rich geometric configurations with mechanical
property prediction. Thus, existing methods either lack conceptual flexibility (generative models) or
structural fidelity (language agents), motivating a hybrid paradigm that unifies language guidance
with geometry-aware generation.

Problem Statement. Given a human-authored language prompt and a set of well-trained agents
(Designer, Generator, and Supervisor), the objective of this work is to enable language-guided
metamaterial design by taking each agent as a modality expert and leveraging a proposed human-
in-the-loop multi-agent collaboration framework, along with a proposed symbolic-driven latent
optimization.

3 LINGUAMATE: LANGUAGE-GUIDED METAMATERIAL DISCOVERY

In this section, we introduce LinguaMate for language-guided metamaterial generation. To address the
modality gap challenge (Challenge C1), we introduce collaborative multi-modal agents (Section 3.1),
each specializing in one modality: interpreting language guidance, exploring geometric design spaces,
and providing fast approximated property feedback. To tackle hypothesis exploration beyond known
designs (Challenge C2), we leverage the insight that combining existing metamaterials can yield novel
structures with desired properties (Bastek et al., 2022; Zhao et al., 2025). Accordingly, we disentangle
the Gaussian latent space and propose four symbolic operators operating on this space, enabling
programmable and compositional metamaterial design (Section 3.1.2). The overall framework of
LinguaMate is illustrated in Figure 3.
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Agent Designer (Language Space)

Agent Generator (Geometric Space)
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(Mechanical Property Space)
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You are a 
metamaterial, 
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+
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Role:
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supervisor for 
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Objectives

Optional Init.

Score: 0.8
Improved Prompt: …
Improved Property: …

Designer&Generator Collaboration

Designer&Supervisor Collaboration

Generator&
Supervisor 
Collaboration

Score > 𝜏𝜏G/𝑆𝑆

Figure 3: Overview of LinguaMate. ED denotes disentangled encoder and D denotes decoder; µ
and σ denote the Gaussian mean and variance. Agent Designer translates the prompt into a scaffold
(language space), Agent Generator refines the design in latent geometric space via symbolic-driven
latent optimization, and Agent Supervisor evaluates properties to provide fast iterative feedback.

3.1 MULTI-MODAL AGENTS FOR METAMATERIAL DISCOVERY

3.1.1 AGENT DESIGNER: LANGUAGE-SPACE DESIGNER

To address the modality gap between conceptual-level language and complex geometric space, there
are two central issues: 1) the initial metamaterial design idea might be vague and incomplete (Ha
et al., 2023; Chen et al., 2024), which requires the Agent Designer to be equipped with a large amount
of domain literature to infer the intent from the initial prompt; 2) after the Designer could successfully
understand the prompt, the critical issue is how the model can depict the intent of language into
geometric space.

Fortunately, LLMs have been demonstrated to be a strong brain for understanding, retrieving, and
reasoning in language space for domain-specific scientific discovery, including metamaterials (Qi
et al., 2024; Narayanan et al., 2025). These previous works demonstrate the capability of LLMs to
infer the intent from a prompt: for example, the phrase “a hard material” statistically co-occurs with
“high Young’s modulus” in the training corpus, allowing the model to map the qualitative adjective
“hard” to a quantitative stiffness concept (Jin et al., 2023) (as examples validated in Appendix C.1).
Nevertheless, the second issue is non-trivial. Although LLMs can render existing classic lattices, they
often fail when it comes to more complex generation tasks and larger geometric design spaces. The
experiments for LLMs in Table 2 show that LLMs tend to generate repeated structures, indicating
their capability in successfully retrieving existing structures and limitations in exploration of a large
geometric design space. To balance this, we propose “scaffold”.

Scaffold, the output of Agent Dsigner, refers to existing simple geometric structures that imply
the core intent of the initial prompt. The high-level idea of it is to utilize the strong retrieving and
language-understanding power of LLMs while avoiding its limitations in geometric generation. For
example, given a prompt for generating “stable” structure, we expect LLMs to retrieve a scaffold of
an octet or triangle-like structure, rather than a cubic that is less stable. The model thus outputs a
concise scaffold description that is semantically consistent with the prompt.

3.1.2 AGENT GENERATOR: GEOMETRY-SPACE SYNTHESIZER

Given a scaffold that encodes semantics consistent with the initial design concept, Agent Generator
operates in the geometry modality. Naturally, its objectives are twofold: (1) integrate scaffold
semantics to bridge the modality gap between language and geometry (C1), and (2) enable hypothesis
exploration beyond the training design space (C2).
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On the one hand, generative models (VAEs and DMs) are effective for 3D geometric generation (Luo
et al., 2024a;b), while they are entangled in semantics in the generation process. Therefore, to
enable the semantic level alignment with the scaffold and a finer-grained control, we introduce
the disentangled framework. On the other hand, the success of traditional methods in discovering
novel metamaterial hypotheses (Bastek et al., 2022; Zhao et al., 2025) via programmable methods,
such as the combination of two existing ones, reuse of subtracts, motifs extractions, etc., inspires
us to expand the training design space via programming of existing structures in geometry space.
Therefore, we extend this insight into data-driven latent generative approach. Specifically, as Agent
Generator shown in Figure 3, we first disentangle the latent space to separate Gaussian distributions,
and apply the four proposed symbolic logic operators to synthesize the programmed structure under
the guidance of Gaussian latent optimization process. These operators not only enable exploring
novel hypotheses out of the existing design space, but also facilitate the semantic-level programming
between geometry and language through inference-time optimization.

Disentangling Latent Generation. Existing VAE-based frameworks (Xie et al., 2022; Luo et al.,
2024a;b) use a unified latent space, where different metamaterial attributes, i.e., P, E, L, and y, are
entangled in a single Gaussian space. This design struggles for compatibility across attributes, and
is inadequate for complex metamaterials where both edges and node positions influence semantics.
Moreover, a unified space is not suitable for semantic alignment (C1). These issues motivate us to
disentangle the latent space for finer-grained generation and control. Considering the complete meta-
material representationM = (L,U) with four components, i.e., lattice vector L, associated property
y, node positions P and edges E, we disentangle the latent variable z into four factors zl, zp, ze, zs
corresponding respectively to lattice, positions, edges, and semantic properties. Therefore, the
inference and generative process are derived as:

pθ(M,y, z) = p(z)pθ(M | y, z) = p(z)pθl(L | zl,y)pθp(P | zp,y)pθe(E | ze,y)pθs(y | zs),
qϕ(z | M) = qϕ(zl, zp, ze, zs | M) = qϕ1(zl | M) qϕ2(zp | M) qϕ3(ze | M) qϕ4(zs | M),

p(z) = p(zl)p(zp)p(ze)p(zs), where each p(·) ∼ N (0, I).

(1)

Symbolic Logic Operators. To ensure language guidance and programmability, the final results
should preserve and program the semantics from the language prompt. Given the coarse scaffold that
carries internal semantics with the prompt, a critical challenge of semantic alignment for Agent Gen-
erator is how to program the disentangled semantic latents of the initialized structure with the latents
of the scaffold. To achieve this, we propose four symbolic operators for programmable generation,
termed Union, Mix, Intersection, and Negation. The four symbolic operators propose a closed-form
solution for semantics program in Gaussian space, resulting in semantic-fused optimization targets
(more related details are in Appendix B.3). To be specific:

• Union aims to expand the node set of the source metamaterial M according to the guidance scaffold
M ′ at the node level. More than a simple expansion of the node set, it further fuses the semantics.
Therefore, we introduce the Sinkhorn (Frogner et al., 2015) method to match nodes.

• Mix blends the latent distributions of the original metamaterial M and the scaffold M ′ into a single
composite distribution, so that the contribution of the scaffold is modulated by a guidance coefficient
λmix ∈ [0, 1]. The probabilistic form of Mix is pmix(z | λmix) = (1− λmix)pM (z) + λmixpM ′(z).

• Intersection aims to identify the common semantics or overlapping components between the two
distributions of M and M ′ in the latent space. With the concept of Product of Expert (PoE) (Kant
et al., 2024; Hinton, 2002a), we derive the intersection probability as: pint(z) ∝ pM (z) · pM ′(z).

• Negation aims to suppress the influence of high-density regions in the latent space of M ′ from
that of M , unlike Intersection that emphasizes common high-density regions. Accordingly, its
probability model is expressed as pneg(z) ∝ pM (z)α

pM′ (z)β
.

Gaussian Latent Optimization. Although a symbolic logic operator yields a closed-form target
Gaussian, decoding from that distribution directly poses two problems. (1) In a disentangled AE, the
decoder is trained only on the latent manifold induced by the encoder. Closed-form operations such
as Mixture, Intersection, or Negation can push the target distribution far outside this manifold, leading
the decoder producing invalid results. (2) Symbolic operators act component-wise and therefore
fuse two latents within the same sub-space; statistical dependencies across the four disentangled
sub-spaces vanish, breaking the compatibility that the decoder relies on.
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Table 1: Designer&Supervisor Collaboration and Generator&Supervisor Collaboration steps. Init(z |
y) represents initializing z given property y, which is instantiated as 1-nearest neighbors (Cover and
Hart, 1967) algorithm that matches in the dataset, and encodes the sample to Gaussian latent.

Designer&Supervisor Collaboration Generator&Supervisor Collaboration

Step 1: V (t)
m = A1(V

(t)
p ), Step 1: M

(t)
= A2(z

(t)), where z(0) ∼ N (0, I),
Step 2: y(t)

s = Apred
3 (fVm/M(V

(t)
m )), Step 2: y(t)

m = Apred
3 (M

(t)
),

Step 3: s(t), V (t+1)
p = Aeval

3 (V
(t)
m , V

(t)
p y

(t)
s ), Step 3: s(t),y′(t)

m = Aeval
3 (fM/Vm(M

(t)
), Vp,y

(t)
m ),

Step 4: Repeat until s(t) ≥ τD/S . Step 4: z(t+1) = Init(z(t)|y′(t)
m ) (optional),

Step 5: Repeat until s(t) ≥ τG/S .

To solve both issues, we optimize the original latent vector via gradient descent toward a closed-form
target. A Sinkhorn-based soft-matching loss is imposed on node and edge distributions to ensure
cross-space coherence and constrain updates within the learned manifold. Using µ and σ to denote
distribution mean and variance, the overall loss is a weighted sum of the following components:

Ls = KL(N (µs,σs)||N (µ′
s,σ

′
s)) (Semantic-level optimization),

Lp,e =
∑

k∈{p,e}

NM∑
i=1

NM′∑
j=1

PijKL(N (µk,i,σk,i)||N (µ′
k,j ,σ

′
k,j)) (Sinkhorn-weighted KL alignment),

Lr =
∑

k∈{p,e}

∑
i∈{i|ri<τo}

KL(N (µk,i,σk,i)||N (µold
k,i ,σ

old
k,i )) (Regularization for alone node/edges),

Lprior =
∑

i∈{l,e,p,s}

∥∥zi∥∥2

2
(ℓ2 regularization to prevent latent drift).

(2)

Here, N (µold
k,i ,σ

old
k,i ) is the pre-optimization distribution, N (µ′,σ′) is the target, and {i|ri < τo}

denotes unmatched nodes in M from Sinkhorn matching (Appendix Alg. 1) with threshold τo = 0.1.
More implementation and theoretical details are in Appendix B.3.

3.1.3 AGENT SUPERVISOR: PROPERTY-SPACE EVALUATOR

Agent Designer and Generator enable both language and geometry awareness. However, the gap
between them and mechanical properties still hinders the automated metamaterial discovery (C1).
Here, inspired by the discussion for LLM as a judge (Gu et al., 2024), we design Agent Supervisor to
provide efficient and approximate feedback during the material design process, offering fast evalua-
tions that support rapid iterations, and resolving the high-computational burdens of simulation (Lee
et al., 2024). Consequently, Agent Supervisor consists of two components: a property predictor
trained on structure–property data for fast response estimation, and an LLM-based module that
interprets prompts and predicted properties to retrieve semantically relevant references. This design
allows Agent Supervisor to replace computationally expensive simulation with efficient, literature-
informed feedback, supporting fast iteration and better alignment across the generation process.

Agent Designer 
(Language Space)

Agent Generator 
(Geometric Space)

Agent Supervisor 
(Property Space)

Human-in-the-Loop Intervention 
with wet lab experiments.

C_D/G

C_D/S C_G/S

Figure 4: LinguaMate collaborations.

We denote the language space as V , with a human prompt
Vp ∈ V and a scaffold from Agent Designer Vm ∈ Vm ⊆
V . Metamaterial geometries lie inM, where M ∈ M,
and Agent Generator maps a latent z ∈ Rd to a new struc-
ture M . Textual and geometric descriptions are connected
by a bijection f(M/Vm) :M↔ Vm. Mechanical prop-
erties are y ∈ Rdy , with Agent Supervisor recording eval-
uations as Vr ∈ V . Table 1 formulates the collaborations
between Designer&Supervisor and Generator&Superviser.

3.2 HUMAN-IN-THE-LOOP MULTI-AGENT COLLABORATION MECHANISM

The collaboration framework of LinguaMate (Figure 4) begins with Designer, where a human
provides a natural language prompt. Designer and Generator collaborate (C_D/G) via symbolic
latent optimization for prompt-conditioned geometric generation, while Supervisor interacts with

6
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Table 2: Quantitative comparisons. Validity metrics include symmetry (VS%) and periodicity (VP %).
Diversity metrics include coverage recall (Cov R.%), and Repeat Ratio. The prompt guidance metric
is denoted as Prompt Guide Score (running three times and reporting the average).

Approach VS%↑ VP %↑ Cov R.% ↑ Repeat
Ratio%↓

Prompt Guide
score (GPT-4.1)↑

Repeat
Num.↓

Generative Models
CDVAE (Xie et al., 2022) 57.03 0.40 55.85 N/A N/A N/A
DiffCSP (Jiao et al., 2023) 34.46 6.50 95.80 N/A N/A N/A
SyMat (Luo et al., 2024b) 41.10 0.00 79.34 N/A N/A N/A
Cond-CDVAE Luo et al. (2024a) 19.37 2.00 68.60 N/A N/A N/A

LLMs
GPT-4o-mini (Hurst et al., 2024) 47.29 0.0 73.6 39.66 0.4155 59
Llama-4-maverick (Touvron et al., 2023) 32.06 0.82 65.1 93.39 0.4463 80
Qwen3-235b (Yang et al., 2024) 41.22 4.95 97.1 83.47 0.3820 73
Deepseek-chat (Liu et al., 2024) 46.90 16.53 73.1 85.95 0.4189 65
Gemini-2.0-flash-lite (Team, 2025) 44.31 41.86 27.5 92.56 0.4755 67
Deepseek-Reasoning Guo et al. (2025) 85.5 65.3 86.9 67.7 0.4993 76

LinguaMate (Gemini2.0, Mix) 64.53 91.74 93.3 0.00 0.5464 0
LinguaMate (GPT4o-mini, Mix) 76.84 94.17 98.2 0.83 0.5234 0
LinguaMate (Gemini2.0, Union) 89.65 95.97 99.2 10.07 0.4966 56
LinguaMate (GPT4o-mini, Union) 91.31 98.35 98.7 7.43 0.5531 40

both (as C_D/S and C_G/S) to provide fast property-based feedback, enabling rapid refinement of
prompts and structures without costly simulations. Benefiting from the accessibility to language
space of the modality agents framework, human-in-the-loop intervention can further strengthen
this process: experts can (1) guide Designer with domain-specific literature for scaffold design, (2)
constrain Generator through initial structures, symbolic operators, or conditional property vectors
y, and (3) refine Supervisor outputs by incorporating simulation results and domain knowledge for
more accurate feedbacks.

4 EXPERIMENTS

To conduct experiments, we focus on three questions: Q1: Validity. Does LinguaMate generate
metamaterials that are more valid than existing baselines? Q2: Diversity. Does LinguaMate gen-
erate diverse structures that escape existing design space? (Section 4.1) Q3: Language-Guidance
Effectiveness (Section 4.1). How effectively can natural-language prompts guide the generative
process? Q4: Operator-based Programability (Section 4.2). Do the proposed symbolic logic operators
successfully program generation when a scaffold is provided? Finally, to further analyze LinguaMate,
we conduct experiments to investigate the latent optimization loss, model convergence, and the
validity of the predictor in Agent Supervisor (Section 4.3).

4.1 QUANTITATIVE ANALYSIS

Experimental Setup. We compare four material generative models with various symmetry con-
straints, and six LLMs, including two reasoning-enhanced LLMs. Experiments are conducted on the
Metamodulus dataset (Lumpe and Stankovic, 2021; Chen et al., 2025) with 8/2 train/test split, and
100 metamaterial design prompts for prompt-based evaluation. We assess performance using three
categories of metrics: (1) Validity, measured by symmetry (VS) and periodicity (VP ); (2) Diversity, as-
sessed by Coverage Recall (Cov. R.) (Xie et al., 2022) and Repeat Ratio; and (3) Language-guidance
effectiveness, quantified by a prompt guidance score from an external Agent Supervisor (a full-data
trained AE predictor following GPT-4.1), with LinguaMate evaluated under a single generation round
where Agent Designer produces scaffolds and Agent Generator refines them. We also report the
number of repeated outputs (Repeat Num.). More details are provided in Appendix B.

Validity. LinguaMate with the Union operator achieves the highest validity across both symmetry
(VS) and periodicity (VP ). Specifically, LinguaMate (GPT4o-mini, Union) reaches 91.31% in VS
and 98.35% in VP , while LinguaMate (Gemini2.0, Union) follows closely with 89.65% and 95.97%,
respectively. In contrast, the best-performing generative baseline, CDVAE, only achieves 57.03%
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Scaffold

Initialization Intersection Initialization Negation Initialization Mix 0.5

Increasing mixture coefficient

Increasing mixture coefficient

ScaffoldInitialization Mix
0.1 0.5 0.7

Scaffold Initialization Union

Position 
Space 

𝐳𝐳𝑝𝑝 ∈ ℝ𝑁𝑁×𝑑𝑑

Semantic 
Space
𝐳𝐳𝑠𝑠 ∈ ℝ𝑑𝑑

(a) Union Operator. (b) Mix Operator.

(c) Results of Intersection, Negation, and Mix operator.

Figure 5: Qualitative analysis, implying the success of controlled semantic alignment.
Table 3: Ablation study.

Variant VS %↑ VP %↑ Cov. R%↑
w/o Ls 50.9 57.1 93.1
w/o Lp,e 47.8 45.7 93.6
w/o Lr 51.6 62.8 94.3
w/o Lprior 58.0 62.8 95.1

Table 4: Convergence analysis. Loss change of iterations.
Loss 0 50 100 150 300
Ls 28.6 1.85 (−26.8) 1.21 (−0.64) 0.93 (−0.28) 0.78 (−0.15)
Lp,e 147.4 82.2 (−65.2) 78.9 (−3.3) 81.2 (+2.3) 81.9 (+0.7)
Lr 0.0 123.4 (+123.4) 95.8 (−27.6) 85.3 (−10.5) 76.8 (−8.5)
Lprior 2.22 2.20 (−0.02) 2.22 (+0.02) 2.24 (+0.02) 2.27 (+0.03)

and 0.40%, and reasoning LLM baseline, Deepseek-R, only achieves validity with 75.5% and 65.3%.
This answers Q1 that our variants achieve a higher validity rate.
Diversity. All LinguaMate variants show high Coverage Rrecall (>90%) regarding test dataset and
low Repeat Ratio (< 11%). This indicates that LinguaMate is able to generate metamaterials that
exceed training design space and generate novel metamaterials. In contrast, LLMs tend to generate
repeated structures, and they show lower Coverage Recall. Notably, GPT-4o-mini shows low Repeat
Ratio with 39.66%, while performing weakly in validity (0% VP ). The comparisons show superior
diversity of LinguaMate regarding Q2.
Language-Guidance Effectiveness. Prompt alignment is measured by the prompt guidance score
evaluated by an AE predictor following GPT-4.1. LinguaMate (GPT4o-mini) achieves the highest
score (0.5531), followed by LinguaMate (Gemini2.0, Mix) with 0.5464. All LinguaMate variants out-
perform baseline LLMs (scores ranging from 0.3820 to 0.4755), demonstrating better controllability
and alignment with the design intent, confirming superiority of LinguaMate for Q3.
4.2 QUALITATIVE ANALYSIS

We conduct a qualitative analysis to answer Q4, focusing on the visualization of the four symbolic
operators. Given the same scaffold generated by Agent Designer, we examine whether symbolic-
driven latent optimization can effectively blend semantics from both scaffold and initial structure.

Figure 5 (a) illustrates the results of the Union operator. In addition to the straightforward results
shown in the top row, the bottom rows visualize the distributions in the position space zp and semantic
space zs. The final Union result combines the characteristics of both scaffold and initialization, as
reflected by the Gaussian peaks implied in the union distributions in semantic and position spaces.
Figure 5 (b) shows the effect of the Mix operator with increasing mixture coefficient λmix in Eq. 10.
As λmix increases, the structure transitions gradually from the initialization towards the scaffold,
demonstrating smooth and controllable semantic interpolation. Figure 5 (c) provides examples of
the Intersection and Negation operators. The outputs are not literal intersections or subtractions but
instead reflect the semantic intent of each operation. The results show that the symbolic operators
guide the latent space towards meaningful structural transformations aligned with designed effects,
but not a simple operation in geometric positions.
4.3 MODEL ANALYSIS

Ablation Study. We report the ablation experiments regarding each term in Eq. 2. As shown in
Table 3, Lp,e is the most critical term, which indicates the proposed Sinkhorn weighted node/edge
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Prompt: Design a metamaterial with negative Poisson's ratio and high young's modulus and shear modulus.

Score: 0.3
Improved Prompt: Design a periodic cubic metamaterial with a 1 mm unit cell composed of slender struts that achieves isotropic auxetic 
behavior (ν_xy, ν_yz, ν_zx ≤ –0.1) and high stiffness (E_x, E_y, E_z ≥ 2×10^–3; G_xy, G_yz, G_zx ≥ 1.5×10^–3). Specify strut diameter, 
connectivity pattern, target relative density, and expected directional properties.

Score: 0.5
Improved Prompt: Design a periodic cubic metamaterial with re-entrant cell geometry that achieves auxetic behavior (Poisson’s ratio ≤ –0.2 in 
all principal directions) at a relative density of ~20%, while maximizing isotropic Young’s modulus (Ex, Ey, Ez ≥ 0.002) and shear modulus (Gxy, 
Gyz, Gzx ≥ 0.0005). Specify target ranges for direction-dependent moduli and manufacturing constraints (minimum strut diameter, allowable 
angles), and define loading conditions for characterization.

Score: 0.6
Improved Properties from Agent Supervisor:
Young’s modulus: 2.5e-4, 1.6e-4, 2.2e-3, 
Shear modulus: 3.9e-4, 3.7e-4, 5.50e-4, 
Poisson’s ratio: 0.19, 0.25, 0.20, 0.16, 0.05, 0.08

Score: 0.1
Improved Properties from Agent Supervisor:
Young’s modulus: 7.04e-4, 6.36e-4, 1.505e-3
Shear modulus: 1.41e-4, 2.19e-4, 3.36e-4
Poisson’s ratio: 0.654, 0.469, 0.047, 0.575, 0.37, 0.067

Score: 0.65
Improved Prompt: Design a periodic, three-dimensional metamaterial unit cell (lattice constant = 1 mm) that exhibits a fully auxetic response 
(Poisson’s ratio ≤ –0.2 in all principal directions), a high effective Young’s modulus (Ex, Ey, Ez ≥ 0.01 GPa at a relative density of ≤ 20%), and a 
high shear modulus (Gxy, Gyz, Gzx ≥ 0.005 GPa). Specify target material (e.g., base polymer E₀ = 2 GPa), manufacturing constraints, and 
symmetry requirements for isotropy.

Final Predicted Properties by Predictor:
Young’s modulus: 2.45e-4, 1.63e-4, 2.2e-3, 
Shear modulus: 3.90e-4, 3.71e-4, 5.51e-4, 
Poisson’s ratio: -0.19, -0.25, 1.17, 0.20, 0.06, 1.17

FE Simulation 3D Printing

Scaffold

Design Concept Agent 1&3 Collaboration Agent 2&3 Collaboration Lab Experiments

Figure 7: Case study with LinguaMate. FE simulation denotes finite-element simulation.

optimization is imperative for latent optimization. Without Lprior and Lr, the generation validity is
substantially hurt since they encourage preserving original valid structures. Ls impacts all metrics
since it may influence semantic level perturbations.
Convergence Analysis. Table 4 presents the average loss curve of two randomly selected example
with the Mix operator, showing that the Ls and Lp,e decrease until they converge while other two
regularization terms Lr and Lprior tend to converge to a specific value.

Figure 6: Property
prediction.

Validity of Proposed VAE Framework for Property Prediction. The eval-
uation of Agent Supervisor depends on the property prediction performance
of proposed framework. Therefore, we evaluate the effectiveness of the dis-
entangled VAE in property prediction. Figure 6 illustrates the fitting ability
in Poisson’s ratio property (Y-axis and X-axis denotes prediction and ground
truth). The high R2 (0.877) demonstrates strong fitting ability of proposed
methods. We further compare the performance with other 3D material repre-
sentation models in Appendix C.2, which also show superior results.

5 CASE STUDY

Figure 7 presents a case study demonstrating our multi-agent framework for metamaterial design with
negative Poisson’s ratio and high stiffness. Starting from a high-level prompt, Agent Designer and
Agent Supervisor collaboratively refine the prompt to progressively incorporate structural constraints,
mechanical targets, and manufacturing feasibility. The best refined prompt achieves a score of
0.65, specifying a periodic, isotropic structure with fully auxetic response and high modulus. Agent
Generator and Agent Supervisor then start from the scaffold, select an initialization with improved
mechanical properties. The final selected design undergoes simulation and approximation via
asymptotic homogenization (Andreassen and Andreasen, 2014; Arabnejad and Pasini, 2013; hom,
2019), and is fabricated via 3D printing through lab experiments for further confirmation. From the
final property prediction results, we can observe negative Poisson’s ratio (i.e., -0.19, -0.25) and higher
shear modulus terms, highlighting the practical effectiveness of LinguaMate in real scenarios.

6 CONCLUSION

In this paper, we address the emerging challenge of language-guided metamaterial discovery and
introduce LinguaMate, a multi-agent framework that bridges the modality gap through human-in-
the-loop collaboration and symbolic-driven latent optimization. Our key contributions include: (1) a
modality-specialized collaboration framework combining language, geometry, and property reasoning
via three agents; (2) a disentangled latent space and a set of symbolic logic operators (Union, Mix,
Intersection, Negation) that enable interpretable and controllable structure generation; and (3) a
human-in-the-loop design mechanism for iterative refinement and real-world applicability. Empirical
experiments demonstrate the strong capability of LinguaMate in real-world applications, highlighting
its practical role in metamaterial discovery.
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REPRODUCIBILITY STATEMENT

We provide material to ensure that our work is fully reproducible. In particular, we provide derivations
and theoretical proofs of the theoretical results in Appendix B.3 and Appendix D; we include a detailed
description of each agent in Appendix B, along with a detailed architecture illustration in Figure 10
and training details in Appendix B.4.4. The experimental details, including the baselines, metrics, and
datasets, are outlined in Appendix B.4. An anonymized version of the code used to reproduce our re-
sults can be found at https://anonymous.4open.science/r/LinguaMate-CC6F. All
datasets used in our experiments are publicly accessible.
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STATEMENT OF LLM USAGE

Large language models (LLMs) were used in this work in three ways: as integral components of our
framework (Agent Designer and Agent Supervisor), as baselines for experimental comparison (e.g.,
GPT-4o-mini, Llama-4-Maverick, Gemini-2.0-flash-lite, Qwen3-235b, Deepseek-chat, Deepseek-
Reasoning), and as assistive tools to polish the manuscript’s language and presentation; all scientific
ideas, methodological contributions, experimental designs, and final claims were conceived and
verified by the authors.

A DETAILED RELATED WORKS

A.1 METAMATERIAL INVERSE DESIGN

The inverse design of metamaterials involves generating microstructures that achieve user-specified
mechanical responses, such as target elastic moduli or Poisson’s ratios. Traditional approaches rely
on topology optimization or evolutionary strategies (Deng et al., 2022), but these methods often
struggle with multi-objective formulations and are computationally expensive.

To overcome these limitations, ML models have been introduced to learn structure–property rela-
tionships and enable efficient inverse mapping (Ma et al., 2019). Early works apply variational
autoencoders (VAEs) (Tian et al., 2022; Pahlavani et al., 2024) or generative adversarial networks
(GANs) to model the one-to-many nature of the inverse problem, capturing diverse valid solutions.
More recent efforts such as CDVAE (Xie et al., 2022), Cond-CDVAE (Luo et al., 2024a), and
SyMat (Luo et al., 2024b) extend this paradigm to periodic and symmetric materials, incorporating
physical invariance and conditioning on accurate parameters. DiffCSP (Jiao et al., 2023) furthers this
by applying diffusion models over periodic structures with equivariant geometry.

Beyond generative modeling, approaches like Deep-DRAM (Pahlavani et al., 2024) and Cycle-
GAN (Tian et al., 2022) offer modular solutions for multi-objective or deformation-dependent inverse
design. These frameworks demonstrate size-agnostic predictions, property-aware sampling, and
resistance to fatigue or fracture. However, they typically rely on numerical conditioning and do not
accept conceptual or language design queries.
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Our work addresses this gap by enabling language-conditioned inverse design through multi-agent
collaborations. Compared to prior methods that require exact target vectors, our framework supports
symbolic and language prompts and incorporates multi-modality agents that operate over geometry,
physics properties, and language. This design philosophy enables more interpretable, flexible, and
interactive design workflows.

A.2 AGENTIC AI FOR MATERIAL DISCOVERY

Recent advances in LLMs have shown remarkable potential in augmenting scientific and engi-
neering workflows through reasoning, planning, and symbolic manipulation. In the metamaterial
domain, where design spaces are combinatorially vast and high-fidelity evaluation is computationally
expensive, LLMs offer a promising interface for intuitive, high-level control of generative pipelines.

Several works integrate LLMs with physical constraints for 3D material generation. For example,
ESM3 Hayes et al. (2024) jointly models sequence, structure, and function via tokenized multimodal
prompts; BindGPT Zholus et al. (2025) generates 3D molecules via a language model trained
on spatial data; CrystaLLM (Gruver et al., 2024) fine-tunes LLMs to generate inorganic crystal
structures as text; EquiLLM (Li et al., 2025a) combines LLMs with equivariant GNNs to model
physical systems; Geo2Seq (Li et al., 2025b) introduces SE(3)-invariant tokenization for LLMs to
generate 3D molecules. However, these works based on tokenization of geometric structures, have
limited exploration in geometric space. MetaSymbO similarly spans modalities, but uniquely enables
inference-time symbolic composition and extrapolative design beyond training distributions.

In addition, the latest related works, such as CrossMatAgent (Tian et al., 2025), demonstrate multi-
agent systems that couple LLMs with visual generation models and physics-based simulators to
automate design tasks. These systems enable LLMs to act as supervisory agents that propose
structures, query simulations, and refine designs, leveraging capabilities from models like GPT-
4o (Hurst et al., 2024), DeepSeek (Liu et al., 2024), Gemini (Team, 2025), and Qwen2.5 (Yang et al.,
2024) for multimodal understanding and structured reasoning.

Complementary research (Jadhav and Farimani, 2024) frames LLMs as autonomous mechanical
designers capable of iteratively generating and refining truss structures via feedback from finite
element analysis (FEA), achieving performance competitive with traditional optimization methods.
These findings support the feasibility of deploying LLMs in complex inverse design settings without
task-specific training.

However, challenges remain: LLMs often lack geometric awareness and are not pretrained on physical
design tasks. To bridge this gap, our approach introduces LLMs as language agents operating in a
cooperative multi-agent setting. Rather than relying on zero-shot generation alone, our system aligns
language-derived intents with latent structural priors and property constraints, amplifying LLM utility
via multimodal feedback loops.

By combining the natural abstraction power of LLMs with geometry-aware agents and predictive
supervision, we demonstrate that LLMs can serve not only as query interfaces but as active participants
in the multi-agent collaboration framework.

B IMPLEMENTATION DETAILS

B.1 DETAILS OF PROMPT FOR AGENTS INSTANTIATION

To instantiate the goals as we discussed in Section 3.1, we provide the detailed prompts for Agent
Designer and Agent Supervisor to deal with the inputs, outputs, and constraints. Figures 8 and 9
illustrate the prompt for the designer and supervisor. Specifically, Designer highlights locate from
existing literature for a simple structure containing semantics similar to the input text. Alternatively,
the supervisor emphasizes utilizing not only the literature but also the predicted mechanical properties
to obtain the score, as well as an improved prompt that will provide feedback to designer for the next
design iteration.
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Agent Designer Prompt 

You are a metamaterial scientist specializing in structural design and mechanical characterization. You 
have expert knowledge of canonical 3‑D architectures (octet‑truss, BCC, SC, Kelvin cell, Diamond, 
TPMS, etc.) and their typical mechanical responses. 

Task 
----- 

Given a single *design requirement*, locate in the metamaterial literature the simplest existing basic 
substructure (motif) that meets the requirement. Describe this motif as an undirected graph: 

- **Nodes** — 3‑D fractional coordinates.
- **Edges** — pairs of node indices.

Output the graph in a code block exactly as shown below; provide **no additional text, commentary, 
or reasoning**. 

Input 
----- 

Design prompt (free text). 

Output format 
------------- 
~~~ 
Node number: <N> 
Node coordinates: 
(x0, y0, z0) 
... 
(xN-1, yN-1, zN-1) 

Edges: 
(i0, j0) 
... 
(iM-1, jM-1) 
~~~ 

Constraints 
----------- 

- Keep the motif as simple as possible (minimal nodes/edges).
- Return the output *only* in the specified layout and code‑block format.
- Do not include any other information.

Figure 8: Prompt for Designer.
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Agent Supervisor Prompt 

You are a metamaterial scientist specializing in structural design and mechanical characterization. You are fluent in the 
geometry and typical property ranges of canonical 3‑D architectures such as octet‑truss, BCC, SC, Kelvin cell, 
Diamond, and TPMS families. 

Task 
----- 

Given one *design prompt* and a corresponding *metamaterial structure* with its mechanical properties (Young's 
modulus, Shear modulus, and Poisson's ratio), output: 

1. **Score** — a single real number in **[0, 1]** evaluating how well the structure and the provided properties (if
have) fulfills the design prompt (0 = poor, 1 = perfect).
2. **Improved Prompt** — the original design requirement rewritten with clearer, more specific engineering details.
3. **Predicted Properties** — your best estimate of the structure’s mechanical response:

• *Young’s modulus* (Ex, Ey, Ez)
• *Shear modulus* (Gxy, Gyz, Gzx)
• *Poisson ratio* (νxy, νyx, νxz, νzx, νyz, νzy)

Input Format 
------------ 

Prompt: <free‑text design requirement> 

Structure: 
~~~ 
Node number: <N> 
Node coordinates: 
(x1, y1, z1) 
... 
(xN, yN, zN) 

Edges: 
(i0, j0) 
... 
(iM, jM) 
~~~ 

Lattice lengths: [a, b, c] 
Lattice angles: [α, β, γ] 

Properties: 
Young's modulus: [Ex, Ey, Ez] 
Shear modulus: [Gxy, Gyz, Gzx] 
Poisson ratio: [νxy, νyx, νxz, νzx, νyz, νzy] 

Output Format 
------------- 

Score: <float in [0,1]> 
Improved Prompt: <refined design requirement> 
Improved Properties: 
Young's modulus: [Ex, Ey, Ez] 
Shear modulus: [Gxy, Gyz, Gzx] 
Poisson ratio: [νxy, νyx, νxz, νzx, νyz, νzy] 

Constraints 
----------- 

- Return *only* the fields specified above, in the exact order and layout.
- Provide no additional commentary, explanations, or reasoning steps.
- For mechanical properties, their value has scales: Ex, Ey, Ez in [0, 1e-2]; Gxy, Gyz, Gzx in [0, 1e-2]; νxy, νyx, νxz,
νzx, νyz, νzy in [-20, +20].
"""

Figure 9: Prompt for Supervisor.
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Figure 10: Implementation details of the disentangled encoder and decoder. After the geometry
is encoded to a disentangled latent Gaussian space, it is trivial to implement VAEs and DMs for
generation as the upper part shown. Please find more details in our codebase.

B.2 DETAILS OF MULTI-AGENT COLLABORATION MECHANISM

Table 1 shows the collaboration steps of Agent 1&3 collaboration and Agent 2&3 collaboration. To
clarify, we further introduce the collaboration steps as follows in detail.

Agent Designer&Supervisor Collaboration. Agent Designer receives the prompt Vp from human
and outputs the best-matched basic structures (i.e., scaffold) Vm = A1(Vp) by exploiting its literature
base. After that, the scaffold is fed into Agent Supervisor, which first predicts the associated
mechanical properties ys = Apred

3 (Vm). Based on both the predicted properties ys and the original
input-output pairs (Vp, Vm), Agent Supervisor computes a match score and provide an improved
prompt s, V ′

p = Aeval
3 (Vm, Vp,ys). Finally, it returns score s and improved prompt V ′

p to Agent
Designer. This loop repeats till a good evaluation score is received. Formally, using t to denote
iteration and τD/S be threshold.

Agent Generator&Supervisor Collaboration. Agent Generator begins by initializing a latent
Gaussian noise vector or randomly select an initialization from dataset, which serves as the starting
point in the generation process, denoted as M = A2(z), where z ∼ N (0, I). The generated structure
M is then passed to Agent Supervisor to predict its mechanical properties as ym = Apred

3 (M).
Subsequently, Agent Supervisor evaluates the quality of the structure by computing a match score
s and generating an updated property target y′

m using the evaluation function Aeval
3 . The updated

properties y′
m are then (optionally) used to guide the initialization of the latent vector z for the next

iteration in Agent Generator. This iterative process continues until the evaluation score s reaches the
threshold τG/S as shown in the right column of Table 1.
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B.3 DETAILS OF SYMBOLIC-DRIVEN LATENT OPTIMIZATION

In this section, we focus on Agent 1&2 collaboration. To achieve the deeply controllable inference-
time guidance for the metamaterial generation, we address the two core questions: (1) How to adapt
traditional latent generation models to metamaterial generation? And (2) how to achieve efficient
generation guidance in inference time? For the first question, we propose to disentangle the latent
space into four subspaces with physical meanings; For the second question, we introduce four
symbolic logic operators to find the fused target latent distribution, and propose an inference-time
Gaussian latent optimization method to optimize the semantic latents towards scaffold.

Disentangling Latent Generation. Figure 10 describes the implementation of the encoder and
decoder for latent space construction. Considering the complete metamaterial representationsM =
(L,U) and U = (P, E), with four representation dimension, i.e., lattice vector L, associated property
y, node positions P and edges E, we disentangle the latent z to zl, zp, ze, zs implying the latice,
coordinate position, edges, and metamaterial semantics (referring to the mechanical properties) with
Gaussian prior:

qϕ(z | M) = qϕ(zl, zp, ze, zs | M) = qϕ1(zl | M) qϕ2(zp | M) qϕ3(ze | M) qϕ4(zs | M),

p(z) = p(zl)p(zp)p(ze)p(zs), where each p(·) ∼ N (0, I).
(3)

Therefore, the metamaterial-specific decoder reconstruct the full metamaterial spaces M using
conditional likelihood:

pθ(M | z) = pθ1(L | z1)pθ2(P | zp)pθ3(E | ze)pθ4(y | zs), (4)

which imposes the four latent spaces with specific physical meanings. Finally, the derived ELBO for
the disentangled VAE can be expressed as:

LELBO(θ, ϕ;M) = Eqϕ(z|M) [log pθ1(L | zl) + log pθ2(P | zp) + log pθ3(E | ze) + log pθ4(y | zs)]
−KL (qϕ1(zl | M) ∥ p(zl))−KL (qϕ2(zp | M) ∥ p(zp))
−KL (qϕ3(ze | M) ∥ p(ze))−KL (qϕ4(zs | M) ∥ p(zs))

(5)

Similarly, we can derive the objective for disentangled LDM with the AE (Eqs. 3 and 4) as follows:

L(t)

LDM(θ) =
∑

i∈{l,p,e,s}

E
z
(0)
i ,ϵi,t

[∥∥∥ϵi − ϵθi(z
(t)
i , t)

∥∥∥2
]
. (6)

Note that the four encoder parameters {ϕi}4i=1 and decoder/denoising parameters {θi}4i=1 contain
shared layers, and only the final head layers need to be fine-tuned for disentangling. In addition, we
can implement conditional generation by concatenating condition ycond in the decoder/denoising
model as pθ(M | z,ycond) or ϵθ(z, t,ycond).

With this design, we are able to control the generation process regarding all four aspects of a
metamaterial in four latent spaces, respectively, achieving a fine-grained generation control.

Symbolic Logic Operators. We introduce four symbolic logic operators for the scaffold guidance,
i.e., Union, Mix, Intersection, and Negation.

Union aims to expand the node set of the source metamaterial M according to the guidance scaffold
M ′ in node level. More than a simple expansion of node set, it further fuses the semantics in
semantic space. Formally, let zi ∼ N (µi,Σi), i ∈ IM = {1, ..., NM} and z′j ∼ N (µ′

j ,Σ
′
j),

j ∈ I ′M = {1, ..., NM ′} be the node-level latents of original M and scaffold M ′, where NM and
NM ′ denotes their node numbers. We introduce a differentiable soft matching algorithm–Sinkhorn
transport (Frogner et al., 2015) that measures the probability mass of two distributions being regarded
as the same physical node–for differentiable assignment matrix (where differentiability enables
gradient-based latent optimization):

P = [Pij ]i∈IM,j∈IM′ ∈ [0, 1]NM×NM′ . (7)

Therefore, ri =
∑

j Pij , cj =
∑

i Pij , 0 ≤ ri, cj ≤ 1 gives the probability of overlaped nodes in M

and M ′, respectively, and ρ =
∑

i ri =
∑

j cj representing the number of overlapping nodes. The
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Algorithm 1 SINKHORN_LOG: Log-Stabilised Sinkhorn Iteration

Require: Cost matrix C ∈ RNs×Nt , entropic weight ε > 0,
1: maximum iterations T , tolerance τ

Ensure: Transport plan P ∈ RNs×Nt

2: K ← −C
ε ▷ kernel in the log domain

3: f ← 0Ns
, g ← 0Nt

4: for t = 1 to T do
5: fprev ← f

//— row scaling update —//
6: K̃ ← K + g⊤ ▷ K̃ij = Kij + gj
7: K̃ ← K̃ −maxj K̃ij ▷ row-wise stabilisation
8: f ← −LSEj(K̃ij)

//— column scaling update —//
9: K̂ ← K + f

10: K̂ ← K̂ −maxi K̂ij ▷ column-wise stabilisation
11: g ← −LSEi(K̂ij)

12: δ ← ∥f − fprev∥∞
13: if δ > 104 then ▷ numerical blow-up guard
14: break
15: if δ < τ then ▷ convergence reached
16: break
17: P ← exp

(
K + f + g⊤

)
18: return P

detailed computation of the Sinkhorn matrix P is illustrated in Algorithm 1. Using δ(µ,Σ) denotes
Dirac measure centered at the parameter pair (µ,Σ), which indicates one node in the union has
distribution N (µ,Σ), we can construct the discrete measure of Union on continuous Gaussian space
as π∪ in Eq. 8 for gradient-based optimization.

π∪ =
µ∪

Z
, where Z = NM +NM ′ − ρ, and

µ∪ =
∑
i∈IM

(1− ri) δ(µi,Σi)︸ ︷︷ ︸
nodes unique to M

+
∑

j∈IM′

(1− cj) δ(µ′
j ,Σ

′
j)︸ ︷︷ ︸

nodes unique to M ′

+
∑
i,j

Pij δ(µi,Σi)︸ ︷︷ ︸
overlapping nodes, preserving M

(8)

Mix. Unlike Union, the Mix operator blends the latent distributions of the original metamaterial M
and the scaffold M ′ into a single composite distribution, where the contribution of the scaffold is
modulated by a guidance coefficient λmix ∈ [0, 1]. Its probabilistic form is expressed as:

pmix(z | λmix) = (1− λmix)pM (z) + λmixpM ′(z), (9)

where pM and pM ′ denote the empirical latent distributions induced by M and M ′ respectively.
However, Eq. 9 is typically intractable due to the complexity of pM and pM ′ . Considering that latent
distributions are Gaussian, we adopt a simplified moment-matching approximation (Bishop and
Nasrabadi, 2006):

pmix(z | λmix) ≈ N
(
z ; (1− λmix)µM + λmix µM′ , diag

(
( (1− λmix)σM + λmix σM′ )2

))
(10)

Intersection operator aims at identifying the common semantics or overlapping components between
the two distributions of M and M ′ in the latent space. To do so, we introduce Product-of-Expert
(PoE), which results in the distribution focusing on regions of high probability shared by both pM
and pM ′ . This can effectively sharpen the distribution, making generated samples focus more on
shared structure features. Formally, the Intersection of two distribution using PoE is:

pint(z) ∝ pM (z) · pM ′(z). (11)
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Considering both pM (z) and pM ′(z) hold Gaussian prior, the resulting Intersection distribution can
be derived as:

pint(z) = N (z;µint,Σint),

where Σint = (Σ−1
M +Σ−1

M′)
−1, and µint = Σint(Σ

−1
M µM +Σ−1

M′µM′)
(12)

Negation is contrary to Intersection that emphasizes common high-density regions, Negation aims to
suppress the influence of high-density regions in the latent space of M ′ from that of M . Accordingly,
we can define the unnormalized probability density as:

pneg(z) ∝
pM (z)α

pM ′(z)β
, (13)

where α, β > 0 are hyperparameters that respectively control the strength of preservation and
suppression.

However, under this construction, the resulting distribution pneg(z) is no longer strictly Gaussian,
potentially leading collapse of decoding. Therefore, we perform moment-matching to approximate it
as a single Gaussian, as shown in Eq. 14.

pneg(z) ≈ N (z;µneg,Σneg),

where Σ−1
neg = αΣ−1

M − βΣ−1
M′ , and µneg = Σneg

(
αΣ−1

M µM − βΣ−1
M′µM′

) (14)

Here, α and β are hyperparameters that control the strength of preservation and negation, respectively.
A larger β increases the degree of suppression exerted by the latent distribution of M ′.

Gaussian Latent Optimization. Although a symbolic–logic operator yields a closed-form target
Gaussian, decoding from that distribution directly poses two problems. (1) In a disentangled AE
the decoder is trained only on the latent manifold induced by the encoder. Closed-form operations
such as Mixture, Intersection, or Negation can push the target distribution far outside this manifold,
so the decoder may produce implausible geometries. (2) Symbolic operators act component-wise
and therefore fuse two latents within the same sub-space; statistical dependencies across the four
disentangled sub-spaces vanish, breaking the compatibility that the decoder relies on.

To resolve both issues, we optimize the original latent vector toward the closed-form target by
gradient descent. During this process, we impose a Sinkhorn-based soft-matching loss on node and
edge distributions, which preserves cross-space coherence and keeps the trajectory on the learned
manifold. Formally, the latent optimization loss can be the weighted sum of Eq. 15. In detail, KL
between the semantic distribution Ls is to learn targeted semantics; Sinkhorn weighted KL between
the node position/edge distributions Lp,e is to learn node alignment in both edge and node space;
regularization Lr is to preserve original distributions of non-overlapping nodes; and latent prior ℓ2
norm Lprior is to prevent distribution drift.

Ls = KL(N (µs,σs)||N (µ′
s,σ

′
s)) (Graph-level semantic optimization),

Lp,e =
∑

k∈{p,e}

NM∑
i=1

NM′∑
j=1

PijKL(N (µk,i,σk,i)||N (µ′
k,j ,σ

′
k,j)) (Node-level pos./edge alignment),

Lr =
∑

k∈{p,e}

∑
i∈{i|ri<τo}

KL(N (µk,i,σk,i)||N (µold
k,i ,σ

old
k,i )) (Node-level regularization),

Lprior =
∑

i∈{l,e,p,s}

∥∥zi∥∥2

2
(Prior regularization).

(15)

Here,N (µold
k,i ,σ

old
k,i ) denotes the original latent distribution before optimization,N (µ′,σ′) represents

computed target distribution, and {i|ri < τo} denotes the alone nodes in M as computed in Eq. 7,
where τo = 0.1 .

B.4 DETAILS OF EXPERIMENTAL SETUPS

B.4.1 BASELINES

We compare four material generative models and six LLMs, including two reasoning-focused LLMs.
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Generative Models.

• CDVAE (Xie et al., 2022): A variational autoencoder (VAE)-based model for crystal
generation, imposing periodic boundary constraints to capture lattice invariance. It encodes
both fractional coordinates and lattice vectors, enabling physically valid crystalline outputs.

• DiffCSP (Jiao et al., 2023): A diffusion model (DM) that incorporates SE(3)-equivariant
constraints over lattices and fractional coordinates, ensuring rotational and translational
invariance during crystal structure prediction.

• SyMat (Luo et al., 2024b): A VAE-based framework with symmetry-aware constraints that
explicitly enforce geometric symmetry in periodic metamaterials, thereby improving validity
under symmetry-preserving transformations.

• Cond-CDVAE (Luo et al., 2024a): A conditional extension of CDVAE that integrates
property vectors into the generative process, enabling structure generation conditioned on
target physical properties while preserving periodicity.

Large Language Models (LLMs).

• GPT-4o-mini (Hurst et al., 2024): A lightweight multimodal variant of GPT-4, optimized
for efficiency (tens of billions of parameters), capable of text–vision understanding but not a
deep-thinking model.

• Llama-4-maverick (Touvron et al., 2023): An open-weight LLM with around 70B parame-
ters, trained for general reasoning and generation. It is not specialized as a reasoning model
but provides balanced accuracy and efficiency.

• Deepseek-chat (Liu et al., 2024): A chat-optimized conversational LLM (hundreds of
billions of parameters) designed for dialogue and general problem solving; not a dedicated
reasoning model.

• Qwen3-235b (Yang et al., 2024): A 235B-parameter deep-thinking model with chain-of-
thought style reasoning abilities, explicitly optimized for multi-step reasoning and complex
scientific problem solving.

• Deepseek-Reasoning Guo et al. (2025): A reasoning-specialized variant of Deepseek, trained
with reinforcement learning to enhance long-chain reasoning. It belongs to the emerging
class of deep-thinking LLMs.

• Gemini-2.0-flash-lite (Team, 2025): A highly efficient multimodal LLM from Google’s
Gemini family (tens of billions of parameters), designed for fast inference across text, vision,
and structured data, not explicitly reasoning-focused.

B.4.2 METRICS

To evaluate the performance, we first employ validity from two aspects, i.e., symmetries and peri-
odicity (Luo et al., 2024b;a). To evaluate the generation diversity, we conduct coverage recall that
measures how many structures in the test dataset are covered by the generated structures (Chen et al.,
2025). In addition, we introduce the repeat ratio to indicate how many of the same structures are
generated by one model. The more detailed computation of these metrics is illustrated as follows.

Symmetry Validity. Symmetry validity is to evaluate the symmetry of a structure by computing
the central symmetry ratio (VS) of a graph in the 3D Cartesian space. Specifically, VS is defined as:

VS =
1

NL

NL∑
k

NSk
·
∑Nk

i sdegreei
Nk

2 , (16)

where NL is the number of generated structures, Nk is the node number of k-th structure, and NSk

is the number of Symmetrical Node that is defined in Definition. ??[WZ: ?] in k-th structure, and
sdegreei denotes Symmetry Degree that is defined in Definition 2. In detail, we define a symmetrical
node as a node that can find central symmetrical ones within an error range:
Definition 1 (Symmetrical Node). pc denotes central coordinates in this structure, and ϵ is a positive
hyperparameter. We consider node i with coordinates pi to be a symmetrical node iff exists another
node j in the structure satisfies: ∥pi + pj − 2pc∥2 < ϵ.
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In addition, the symmetry degree of a node is defined as the error value of the corresponding "most
symmetric" node pair divided by the distance between the central coordinates and the farthest node.

Definition 2 (Symmetry Degree). pc denotes central coordinates in this structure, and j is a node in
this structure. The symmetry degree of node i in a structure is defined as: sdegreei =

ϵmax−serrori
ϵmax

,

where ϵmax = maxj ∥pc − pj∥2, and serrori = minj ∥pi + pj − 2pc∥2.

Periodicity Validity. According to Definition 3, a lattice is formed by periodically repeating unit
cell structures along the lattice vectors L. Therefore, the periodicity, denoted as VP , aims to assess the
generated structures at the lattice level. This metric aims to evaluate whether the structures can repeat
for constructing a lattice, Formally, we define the necessary condition of periodicity of a structure:

Definition 3 (Periodicity). Given a structure with node positions P and lattice vectors L, for each
dimension d ∈ {0, 1, 2}, there exist at least one pair of coordinate points pi and pj such that pi + ld
is approximately equal to pj in the L1 norm within a tolerance range ϵ. Formally,

∀d ∈ {0, 1, 2},
∃i ∈ {0, 1, . . . , N − 1},∃j ∈ {0, 1, . . . , N − 1},
s.t. ∥(ci + ld)− cj∥1 < ϵ.

Eventually, the evaluation of the periodicity of generated lattices can be computed by VP = NP

NL
,

where NP denotes the number of generated structures that satisfy Definition 3.

Coverage Recall (Cov. R). Intuitively, coverage recall measures how many structures in the ground
truth dataset are covered by generated structures,i.e.,

COVR =
1

Nt
|{i ∈ [1, . . . , Nt] : ∃k ∈ [1, . . . , NL],

D(P∗
i ,Pk) < ϵcov}|,

(17)

where D(P∗
i ,Pk) is a distance metrics to evaluate the distance between ith structure and jth structure.

Repeat Ratio. In detail, for all generated structures, we compute their distance D(P∗
i ,Pk) and

regard the D(P∗
i ,Pk) < ϵ as matched structures. To avoid repeat count, we constrain that each

structure matches once.

In addition, for the validity and diversity of LLMs that require a prompt input, we use the same
prompt of LLMs and ours as “Design a valid and diverse structure, ensure it satisfies symmetry, and
periodicity”.

B.4.3 DATASET

MetaModulus Dataset. In this section, we describe the details of MetaModulus (Lumpe and
Stankovic, 2021) dataset, which contains three mechanical properties, i.e., Young’s modulus, Shear
modulus, and Poisson’s ratio. This dataset provides a comprehensive mechanical illustration for a
metamaterial. Specifically, this dataset contains 16,707 samples originally. To filter out some invalid
structures with clustered nodes and non-edge nodes, we conduct two criteria in data preprocessing by
following previous works (Zheng et al., 2023; Lumpe and Stankovic, 2021; Chen et al., 2025):(1)
filtering out the structure that contains nodes with less than two edges (dangling nodes). (2) filtering
out the structure whose node number is more than 100, since generally a metamaterial structure
with too many nodes would be unstable and hard to construct in the real world. Finally, the dataset
contains a total of 9871 structures, and we select 8000 for training the VAE (Generator) and others
for testing the coverage rate (Cov. R). Figure 11 shows six example structures in this dataset.

Prompts for Language Guidance. In order to evaluate the language-guidance effectiveness, we
introduce 100 design prompts to test if the model can generate effective structures that fit the prompt
semantically. These prompt targets on high-level design concepts, containing terms such as, “high-
stiffness”, “hard material”, “extremely flexible”, etc. Table 5 illustrates 10 example prompts from the
prompt dataset. We publish the full design prompts data in our code base.
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Figure 11: Samples in MetaModulus dataset.

Design Prompts

Design a structure with high stiffness.
Create a metamaterial with negative Poisson’s ratio (auxetic).
Generate a structure with ultra-lightweight and moderate stiffness.
Optimize a design for maximum load-bearing capacity.
Design a structure that is extremely flexible in one direction but rigid in the orthogonal direction.
Build a material with a specific Young’s modulus value (e.g., 100 MPa).
Maximize shear strength while minimizing density.
Create a structure with directionally dependent compressive strength.
Design a metamaterial that behaves like a spring under compression.
Create a structure that can absorb large impacts without permanent deformation.

Table 5: 10 samples from all 100 design prompts.

B.4.4 IMPLEMENTATION DETAILS

LinguaMate contains three agents, among which there are two architectures required to be trained,
i.e., the latent generative model in Agent Generator and the property predictor in Agent Supervisor.
All training processes are conducted in NVIDIA A100 or H200 GPUs.

Training Details of Latent Generative Model. At first, we train the VAE according to the
disentangled Evidence Lower Bound (ELBO) loss Eq. 5. After that, if the instantiation is diffusion
model (as depicted in Figure 10), we freeze the VAE and train the denoising model according to the
score function Eq. 6. In our experiments, we use VAE as the instantiation rather than the diffusion
model. In addition, in the training process, we train the VAE for at most 5000 epochs with early
stopping trick on the training data without using validation dataset. We select the checkpoint with the
lowest training loss.

Training Details of Predictor in Agent Supervisor. After the VAE is trained, we incorporate a
predictor head of MLPs in the VAE. Specifically, the encoded latents are fed into the predictor head
and output the demanded mechanical properties. In the training process, we freeze parameters in
the VAE, and only update the parameters in the Predictor head using Mean Squared Error (MSE)
loss between prediction and ground truth. We train it for at most 2000 epochs with early stopping
strategy. We randomly select 500 samples from training dataset as validation set, and finally use
the checkpoint with lowsest MSE in validation set. Moreover, the predictions and ground truth are
max-min normalized for a more stable training.

Training Details of Predictor in Agent Supervisor for Evaluation. In the evaluation process of
Section 4.1, we use Supervisor with GPT-4.1 and predictor for scoring. In this phase, the predictor is
trained using full dataset, with 500 randomly selected as validation set.

Prompt Details of the LLM in Agent Supervisor for Evaluation. In the evaluation process of
Section 4.1, we use Supervisor with GPT-4.1 as evluator. The overall prompt idea is similar to
Figure 9. Differently, we only require it to output scores, without improved properties. Specifically,
the prompt in evaluation process is shown in Figure 12.
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Agent Supervisor Prompt for Evaluation 

You are a metamaterial scientist specializing in structural design and mechanical characterization. You are fluent in the 
geometry and typical property ranges of canonical 3-D architectures such as octet-truss, BCC, SC, Kelvin cell, 
Diamond, and TPMS families.. 

Task 
----- 

Given one *design prompt* and a corresponding *metamaterial structure* with its mechanical properties (Young's 
modulus, Shear modulus, and Poisson's ratio), output: 

**Score** — a single real number in **[0, 1]** evaluating how well the structure and the provided properties (if have) 
fulfills the design prompt (0 = poor, 1 = perfect). 

Input Format 
------------ 

Prompt: <free‑text design requirement> 

Structure: 
~~~ 
Node number: <N> 
Node coordinates: 
(x1, y1, z1) 
... 
(xN, yN, zN) 

Edges: 
(i0, j0) 
... 
(iM, jM) 
~~~ 

Lattice lengths: [a, b, c] 
Lattice angles: [α, β, γ] 

Properties: 
Young's modulus: [Ex, Ey, Ez] 
Shear modulus: [Gxy, Gyz, Gzx] 
Poisson ratio: [νxy, νyx, νxz, νzx, νyz, νzy] 

Output Format 
------------- 

Score: <float in [0,1]> 

Constraints 
----------- 

- Return *only* the fields specified above, in the exact order and layout.
- Provide no additional commentary, explanations, or reasoning steps.
- For mechanical properties, their value has scales: Ex, Ey, Ez in [0, 1e-2]; Gxy, Gyz, Gzx in [0, 1e-2]; νxy, νyx, νxz,
νzx, νyz, νzy in [-20, +20].

Figure 12: The prompt in Agent Supervisor for evaluation.
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C MORE RESULTS

C.1 VALIDITY EXPERIMENTS FOR AGENT DESIGNER

To further verify Agent 1’s ability to produce reasonable scaffolds, we provide additional examples
that can be independently checked.

• Prompt: Provide a very stable structure with low stiffness.

Node number: 14
Node coordinates (fractional):
(0.0, 0.0, 0.0)
(1.0, 0.0, 0.0)
(0.0, 1.0, 0.0)
(1.0, 1.0, 0.0)
(0.0, 0.0, 1.0)
(1.0, 0.0, 1.0)
(0.0, 1.0, 1.0)
(1.0, 1.0, 1.0)
(0.5, 0.5, 0.0) # face center (z=0)
(0.5, 0.5, 1.0) # face center (z=1)
(0.5, 0.0, 0.5) # face center (y=0)
(0.5, 1.0, 0.5) # face center (y=1)
(0.0, 0.5, 0.5) # face center (x=0)
(1.0, 0.5, 0.5) # face center (x=1)

Edges:
(8, 0)
(8, 1)
(8, 2)
(8, 3)
(9, 4)
(9, 5)
(9, 6)
(9, 7)
(10, 0)
(10, 1)
(10, 4)
(10, 5)
(11, 2)
(11, 3)
(11, 6)
(11, 7)
(12, 0)
(12, 2)
(12, 4)
(12, 6)
(13, 1)
(13, 3)
(13, 5)
(13, 7)

Structural rationale:
High Stability: Triangle crossed struts increase stability. Octet structure is stable.
Low Stiffness: Minimal edge connectivity along principal directions reduces stiffness,
providing flexibility and deformation capacity under loading.

• Prompt: Provide a BCC structure.

Node number: 9
coordinates:
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(a) Generated from prompt: Provide a very stable
structure with low stiffness.

(b) Generated from prompt: Provide a BCC struc-
ture.

Figure 13: Visualization of two generated unit cells produced by Agent Designer.

(0,0,0)
(1,0,0)
(1,1,0)
(0,1,0)
(0,0,1)
(1,0,1)
(1,1,1)
(0,1,1)
(0.5,0.5,0.5)
Edges:
(0,8)
(1,8)
(2,8)
(3,8)
(4,8)
(5,8)
(6,8)
(7,8)

According to the results, we can visualize the scaffold examples as in Figures 13.

C.2 MORE ANALYSIS FOR PROPERTY PREDICTOR IN AGENT SUPERVISOR

Figure 14 shows the fitting performance of the proposed disentangled predictor on the test set
regarding three mechanical properties (i.e., Young’s modulus, Shear modulus, and Poisson’s ratio). It
can be seen that all fitting R2 > 0.8, demonstrating effective fitting performance. Mover, Table 6
compared our proposals with several existing works, includding invariant model SphereNet (Liu et al.,
2022), Equivariant model (Liao and Smidt, 2023) and ViSNet (Wang et al., 2024), and valina VAE,
demonstrating the superiority of disentangled semantic latent in effectively capturing mechanical
proeprties.

C.3 MORE CASE STUDEIS

In this section, we show more case studies given a design concept. Figures 15 and 16 show two
other case studies, which demonstrate the effectiveness of multi-agent collaborations. Specifically,
Case study 2 proposes a simple scaffold that has extreme flexibility at first, and combines it with
a possible structure that contains the most suitable mechanical properties to generate final results.
In addition, Case study 3 shows that the evaluation score increases with multi-agent collaboration
iterations. Finally, it generates a complicated but suitable structure.
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Figure 14: Prediction results of the proposed disentangled VAE on three properties. All R2 > 0.8
demostrates the strong prediction results on the three mechanical properties.

Table 6: Performance comparison of different models on predicting mechanical properties (MAE).
Show the superior performance of the proposed framework.

Models Young’s Modulus Shear Modulus Poisson’s Ratio
Vanilla VAE 6.3e−4 1.4e−4 0.39
SphereNet (Liu et al., 2022) 4.7e−4 1.0e−4 0.35
Equiformer (Liao and Smidt, 2023) 6.6e−4 2.2e−4 0.36
ViSNet (Wang et al., 2024) 6.2e−4 6.3e−2 0.37
MetaSymbO (disentangled VAE) 3.5e−4 7.3e−5 0.14

D THEORETICAL ANALYSIS

D.1 LATENT GENERATION MODELS

Auto-encoder (AE) is widely used in the material discovery domain to compress discrete material
data to a continuous latent space for downstream tasks (especially inverse material design) (Zeng
et al., 2025; Hanakata et al., 2020). VAEs (Kingma and Welling, 2014) introduce a Gaussian prior and
derive evidence lower bound optimization (ELBO). More recently, latent diffusion models (LDMs)
are extensively explored due to its strong ability in reconstructing high-fidelity data (Rombach et al.,
2022; Podell et al., 2023; Fu et al., 2024). Both VAEs and LDMs typically impose a multivariate
Gaussian prior on the latent space, thereby enabling the application of symbolic logic operators
directly within the latent Gaussian manifold.

Therefore, Agent Generator is instantiated as an AE-based latent generation model in this work, and
we implement the basic version of VAEs and LDMs for experiments.

Formally, given a metamaterial M = (L,U), Both VAEs and LDMs operate by encoding M into
a continuous latent variable z ∈ Z ⊆ Rd via a stochastic encoder: qϕ(z | M), and reconstruct the
input through a decoder: pθ(M | z). Similar for VAEs and LDMs, a standard Gaussian prior is
imposed over the latent space: p(z) = N (z | 0, I). The difference lies in the objectives. Specifically,
VAEs conduct ELBO for optimization:

LVAE(ϕ,θ) = Eqϕ(z|M) [log pθ(M | z)]−KL (qϕ(z |M) ∥ p(z)) , (18)

while in LDMs, latent variables z0 are further corrupted over T steps via a diffusion process and
denoising process:

q(zt | z0) = N (zt |
√
ᾱtz0, (1− ᾱt)I),

pθ(zt−1 | zt) = N (zt−1 | µθ(zt, t),Σθ(t)),
(19)

where ᾱt =
∏t

s=1 αs, and {αt} is a predefined noise schedule. The training objective mini-
mizes the expected noise prediction to learn the parameters θ in denoising model LLDM(θ) =

Ez0,ϵ,t ∥ϵ− ϵθ(zt, t)∥2,where zt =
√
ᾱtz0 +

√
1− ᾱtϵ, and ϵ ∼ N (0, I) is standard Gaussian

noise.
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Prompt: Design a structure that is extremely flexible in one direction but rigid in the orthogonal direction.

Score: 0.3
Improved Prompt: Design a metamaterial unit cell with highly anisotropic elasticity, exhibiting very low Young's modulus (Ex < 0.0002) in the x-
direction (extremely flexible), and significantly higher Young's modulus (Ey, Ez > 0.002) in the y and z-directions (high rigidity). Ensure minimal 
lateral coupling (Poisson's ratio |νxy|, |νxz| < 0.5) to maintain directional decoupling.

Score: 0.53
Improved Prompt: Design a 3D metamaterial structure with high flexibility (Young's modulus < 0.001) along the y direction and high rigidity 
(Young's modulus > 0.005) along the x direction, suitable for directional compliance and structural support in orthogonal axes.

Score: 0.78
Improved Properties from Agent Supervisor:
Young’s modulus: 2.0e-04, 4.0e-04, 2.2e-03, 
Shear modulus: 8.0e-05, 2.0e-04, 2.9e-04,
Poisson’s ratio: 2.5e-01, 2.0e-01, 2.2e+00, 1.9e-01, 2.6e-01, 1.25e+00

Score: 0.53
Improved Prompt: Design a 3D architected material with pronounced anisotropy, exhibiting a Young’s modulus in one principal direction at 
least 5× lower than the orthogonal direction(s), to create a structure that is extremely flexible along one axis and significantly stiffer along the 
others.

Final Predicted Properties by Predictor:
Young’s modulus: 2.45e-4, 1.63e-4, 2.2e-3, 
Shear modulus: 3.90e-4, 3.71e-4, 5.51e-4, 
Poisson’s ratio: -0.19, -0.25, 1.17, 0.20, 0.06, 1.17

FE Simulation 3D Printing

Scaffold

Design Concept Agent 1&3 Collaboration Agent 2&3 Collaboration Lab Experiments

Figure 15: Second case study.

D.2 DERIVATION OF SYMBOLIC OPERATORS IN GAUSSIAN

D.2.1 DERIVATION OF MIX OPERATOR (EQ. 10)

Given two diagonal-Gaussian latent posteriors qM (z) = N
(
µM ,diagσ2

M

)
and qM ′(z) =

N
(
µM ′ ,diagσ2

M ′

)
, their convex combination is

pmix(z) = (1− λmix) qM (z) + λmix qM ′(z), λmix ∈ [0, 1]. (20)

Epmix [z] = (1− λmix)µM + λmixµM ′ = µmix.

Let ΣM = diagσ2
M and ΣM ′ = diagσ2

M ′ . Then

Σmix = (1− λmix)ΣM + λmixΣM ′ + λmix(1− λmix)(µM − µM ′)(µM − µM ′)⊤. (21)

To maintain diagonal structure and avoid the expensive cross term, we drop the outer-product term
and interpolate standard deviations:

σmix,k ≈ (1− λmix)σM,k + λmix σM ′,k.

With σmix defined above and a small constant ε for numerical stability,

pmix(z | λmix) = N
(
z ; (1− λmix)µM + λmixµM ′ ,diag

(
( (1− λmix)σM + λmixσM ′ )2 + ε

))
(22)

Remark. Equation 22 is a heuristic single-Gaussian approximation: it preserves the exact mean
but underestimates the true covariance by omitting the cross term in 21. This trade-off yields a
numerically stable, fully differentiable latent representation while retaining controllable guidance
via λmix.
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Prompt:  Generate a special design that minimizes material usage without sacrificing strength.

Score: 0.82
Improved Prompt: Design a 3D lattice metamaterial that achieves maximal specific stiffness (highest Young's modulus per unit volume) using 
minimal material, while maintaining isotropic mechanical response and a compressive strength of at least 0.001 in all principal directions.

Score: 0.84
Improved Prompt: Design a periodic metamaterial that minimizes material volume fraction while achieving maximum specific stiffness 
(Young's modulus > 0.001 in all directions) for lightweight structural load-bearing applications.

Score: 0.95
Improved Prompt: Design a lightweight cellular structure that minimizes material usage while maintaining a high specific strength (≥0.002 
Young’s modulus in all directions) for efficient load-bearing applications.

Final Predicted Properties by Predictor:
Young’s modulus: 1.5e-03,  1.7e-03,  1.1e-03, 
Shear modulus: -8.3e-05, -1.2e-04, -8.4e-05, 
Poisson’s ratio: 4.1e-01,  2.6e-01,  7.1e-02,  
1.3e-01, 8.1e-02,  1.6e-02

FE Simulation 3D Printing

Scaffold

Score : 0.73 
Improved Properties from Agent Supervisor:
Young’s Modulus: 3.2e-03, 3.2e-03, 1.4e-03
Shear Modulus: 9.0e-05, 9.0e-05, 8.0e-05
Poisson’s Ratio, 1.4e-01, 1.6e-01, 1.8e-01, 4.0e-02,0.0, 2.9e-01

Score: 0.83
Improved Properties from Agent Supervisor: 
Young’s Modulus: 2.0e-3, 2.0e-03, 3.0e-03 
Shear Modulus: 1.5e-04, 1.1e-04, 0.0
Poisson’s Ratio: 1.2e-01, 1.4e-01, 4.0e-02, 1.0e-01, 1.4e-01, 0.0

Score: 0.87
Improved Properties from Agent Supervisor:
Young’s Modulus: 1.5e-03, 1.6e-03, 1.1e-03
Shear Modulus: 8.0, 5.0, 1.3
Poisson’s Ratio: 4.1e-01, 2.7e-01, 7.0e-02,  1.3e-01, 8.0e-02, 2.0e-02

Score: 0.31
Improved Properties from Agent Supervisor: 
Young’s Modulus: 7.0e-04, 7.0e-04, 1.5e-03
Shear Modulus: 3.0e-04, 3.0e-04, 7.0e-04
Poisson’s Ratio: 1.8e-01, 1.5e-01, 3.1e-01, 3.1e-01, 2.5e-01, 2.5e-01
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Figure 16: Third case study.

D.2.2 DERIVATION OF INTERSECTION OPERATOR (EQ. 12)

Recall the formula of PoE (Eq. 11) and the Gaussian distribution of pM and pM ′ , we have the
following derivation by following (Kant et al., 2024; Hinton, 2002b).
pint(z) ∝ pM (z) pM ′(z)

=
1

(2π)d/2|ΣM |1/2
exp

[
− 1

2 (z− µM )⊤Σ−1
M (z− µM )

]
︸ ︷︷ ︸

pM (z)

1

(2π)d/2|ΣM ′ |1/2
exp

[
− 1

2 (z− µM ′)⊤Σ−1
M ′(z− µM ′)

]
︸ ︷︷ ︸

pM ′(z)

∝ exp
[
− 1

2

(
z⊤(Σ−1

M +Σ−1
M ′)z− 2z⊤(Σ−1

M µM +Σ−1
M ′µM ′)

)]
.

Let the precision matrix be Λint = Σ−1
M +Σ−1

M ′ and define ηint = Σ−1
M µM +Σ−1

M ′µM ′ . Completing
the square gives

pint(z) ∝ exp
[
− 1

2 (z− µint)
⊤Λint(z− µint)

]
, µint = Λ−1

int ηint.

Since Σint = Λ−1
int , we arrive at

pint(z) = N
(
z ; µint,Σint

)
, Σint = (Σ−1

M +Σ−1
M ′)

−1, µint = Σint

(
Σ−1

M µM +Σ−1
M ′µM ′

)
.

Remark. The intersection (PoE) weights each mean by its precision, yielding a sharper Gaussian
concentrated where both experts agree.

D.2.3 DERIVATION OF NEGATION OPERATOR (EQ. 14)

Similar to the derivation of PoE (Kant et al., 2024; Hinton, 2002b), we can derive the following for
the negation operator.
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Remember that the original and scaffold latent distributions are two multivariate Gaussians

pM (z) = N
(
µM ,ΣM

)
, pM ′(z) = N

(
µM ′ ,ΣM ′

)
.

We suppress the density peaks of M ′ inside M by defining

pneg(z) ∝
pM (z)α

pM ′(z)β
, α, β > 0.

Because the log-density of any Gaussian is quadratic, we write

log pneg(z) = α log pM (z)− β log pM ′(z) + const

= − 1
2z

⊤(αΣ−1
M − βΣ−1

M ′

)
z+ z⊤

(
αΣ−1

M µM − βΣ−1
M ′µM ′

)
+ const.

After that, to ensure the Gaussian, we conduct the moment-matched Gaussian approximation. Specifi-
cally, treat the quadratic form above as the (unnormalised) log of a new Gaussian. Define the negation
precision

Λneg ≜ αΣ−1
M − βΣ−1

M ′ , (Λneg ≻ 0 required),

and invert it to obtain the covariance Σneg = Λ−1
neg.

Multiplying the linear term by Σneg gives the mean:

µneg = Σneg
(
αΣ−1

M µM − βΣ−1
M ′µM ′

)
.

Finally, we obtain the approximated Gaussian as

pneg(z) ≈ N
(
z; µneg,Σneg

)
, Σ−1

neg = αΣ−1
M − βΣ−1

M ′ .

The approximation is valid only when αΣ−1
M ≻ βΣ−1

M ′ , ensuring Λneg (and hence Σneg) is positive
definite.

Remark. Choosing α>β or scaling ΣM ′ slightly upward guarantees the precision matrix remains
positive definite, making the negation operator a well-defined Gaussian.
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