
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADABON: ADAPTIVE BEST-OF-N ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in test-time alignment methods, such as Best-of-N sampling, of-
fer a simple and effective way to steer language models (LMs) toward preferred
behaviors using reward models (RM). However, these approaches can be compu-
tationally expensive, especially when applied uniformly across prompts without
accounting for differences in alignment difficulty. In this work, we propose a
prompt-adaptive strategy for Best-of-N alignment that allocates inference-time
compute more efficiently. Motivated by latency concerns, we develop a two-stage
algorithm: an initial exploratory phase estimates the reward distribution for each
prompt using a small exploration budget, and a second stage adaptively allocates
the remaining budget using these estimates. Our method is simple, practical, and
compatible with any LM-RM combination. Empirical results on prompts from the
AlpacaEval, HH-RLHF, and PKU-SafeRLHF datasets for 12 LM–RM pairs and
50 different batches of prompts show that our adaptive strategy outperforms the
uniform allocation with the same inference budget. Moreover, we show that our
adaptive strategy remains competitive against uniform allocations with 20% larger
inference budgets and improves in performance as the batch size grows.

1 INTRODUCTION

Language Models (LMs) have demonstrated human-like capabilities across a wide range of tasks,
including mathematics, coding, and creative writing (Brown et al., 2020; Achiam et al., 2023). While
pre-training on massive corpora equips these models with extensive knowledge, it is crucial that their
responses at inference-time adhere to ethical standards and safety guidelines. A common approach
involves leveraging preference data to steer the model toward more desirable outputs. For example,
post-training methods such as Reinforcement Learning with Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and
its variants (Glaese et al., 2022), fine-tune the model weights, while constraining the updated model
to remain close to a reference model.

Despite its empirical success, post-training methods are computationally expensive and can intro-
duce unintended and opaque changes to the base model (Ouyang et al., 2022; Bai et al., 2022).
Inference-time alignment techniques leave the model weights untouched, but modify the decoding
strategy to guide the output distribution at inference time (Li et al., 2023a; Wang et al., 2024a; 2025).

One of the simplest and most popular inference-time alignment methods is Best-of-N sampling,
which has gained significant traction due to its simplicity, model-agnostic nature, and strong em-
pirical performance (Nakano et al., 2021). Given a prompt and a reward model that scores outputs
by alignment quality, Best-of-N sampling generates N responses from the base LM and returns
the one with the highest reward. Despite its simplicity, Best-of-N alignment remains competitive
with fine-tuning approaches like DPO and RLHF. Its transparent mechanics makes it amenable to
theoretical analyses (Gui et al., 2024; Beirami et al., 2024; Huang et al., 2025; Yang et al., 2024),
efficiency improvements (Qiu et al., 2024; Sun et al., 2024; Wang et al., 2025), and use for synthetic
data generation in down-stream fine-tuning tasks (Touvron et al., 2023; Dubois et al., 2023)

Yet, a key limitation of Best-of-N sampling is its lack of adaptivity. In practice, the value of N is
typically chosen via hyperparameter tuning and applied uniformly across all prompts, regardless of
their difficulty (Nakano et al., 2021). This can be inefficient: some prompts may require only a few
samples to yield a high-reward response, while others may benefit from more extensive sampling

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Damani et al., 2024). Since one might need to pick N as large as 10, 000 to be competitive with
post-training methods (Gao et al., 2023), a naive uniform allocation leads to wasted computation.

In light of this issue, we introduce a prompt-adaptive approach to Best-of-N alignment by build-
ing on recent progress in input-adaptive compute allocation (Snell et al., 2024; Damani et al., 2024).
Specifically, we consider a setting in which we are given a batch of prompts x1, . . . , xK and a per-
prompt inference budget B, measured in the number of forward passes or queries to the LM. Our
goal is to allocate the total budget BK across the prompts to maximize the cumulative reward ob-
tained via Best-of-N sampling, where N may now vary across prompts. We focus on the regime
where the batch size K is small and the per-prompt budget B is large. This is relevant for personal-
ized on-device inference, where models are small and hence compute per prompt is large, while the
number of prompts is limited (Zhang et al., 2024b). Our main contributions are as follows.

(1) We find that the per-prompt reward distributions for the LM-RM pairs we consider are
smooth and easy to learn.

(2) Leveraging this, we propose a simple yet effective two-stage Adaptive Best-of-N (Ad-
aBoN) allocation scheme. In the first-stage, we use a small exploration budget to estimate
reward distributions for each prompt. In the second-stage, we use these estimates to com-
pute the marginal value of allocating additional samples and apply a greedy algorithm to
assign the remaining budget accordingly.

(3) We define two new evaluation metrics, termed the Batch Win Rate (BWR) and Expected
Survival Time (EST), which measure the ability for AdaBoN to outperform the uniform
allocation and compete against larger inference budgets respectively.

(4) Using these metrics, we evaluate AdaBoN on prompts from the AlpacaEval, HH-RLHF,
and PKU-SafeRLHF datasets. We sample 50 batches of prompts and find that:

a. AdaBoN consistently outperforms the uniform allocation across the 50 batches, with
some batches having win rates as high as 70%.

b. AdaBoN is competitive against uniform allocations with 20% larger inference bud-
gets.

c. AdaBoN improves in performance as the batch grows for the majority of LM-RM
pairs and is robust to changes in the inference budget, continuing to obtain win rates
significantly larger than 0.50 for smaller and larger inference budgets.

d. AdaBoN minimizes latency and has only a single hyperparameter that needs to be
tuned. Even then, we find that a single choice of this hyperparameter works well
across all experiments we run.

1.1 RELATED WORK

Inference-time Alignment and Best-of-N sampling. Compared to fine-tuning based approaches,
like DPO and RLHF, test-time alignment aims to steer a base policy purely at inference-time, without
changing the model weights. Some popular inference-time alignment methods include Best-of-N
sampling Gao et al. (2023); Stiennon et al. (2022), majority voting (Wang et al., 2022), weighted ma-
jority voting (Li et al., 2023b), hypothesis re-weighting Lee et al. (2024), and Markov chain Monte
Carlo (Faria and Smith, 2025). Controlled decoding (Mudgal et al., 2023) and ARGS (Khanov et al.,
2024) also fall into this broader family of test-time alignment methods.

Of particular interest to us is Best-of-N sampling, which has emerged as a prominent inference-
time alignment strategy, offering a simple yet effective mechanism for aligning LM outputs with
human preferences. Originally introduced as a baseline for inference-time alignment (Nakano et al.,
2021), Best-of-N has since found widespread use, both as a standalone method and as part of larger
alignment pipelines (Touvron et al., 2023). In addition to its standalone appeal, Best-of-N has been
integrated into more complex frameworks such as rejection sampling variants of DPO (Liu et al.,
2023) and RLHF (Dong et al., 2023).

A key aspect of Best-of-N ’s empirical success is its compelling reward-KL tradeoff curves (Gao
et al., 2023; Mudgal et al., 2023; Eisenstein et al., 2023). In particular, compared to KL-regularized
reinforcement learning (RL) techniques, Best-of-N often achieves comparable rewards while stay-
ing closer to the base model’s distribution. This empirical behavior has been substantiated theoreti-
cally, with several works deriving tight estimates of the KL divergence between the Best-of-N policy

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and the base policy (Coste et al., 2023; Gao et al., 2023; Go et al., 2023; Beirami et al., 2024; Gui
et al., 2024). Yang et al. (2024) prove that the Best-of-N and KL-regularized RL policies converge
to the same asymptotic behavior under reasonable assumptions.

Recent work has also proposed making Best-of-N more efficient through speculative decoding,
such as speculative rejection sampling (Sun et al., 2024) and TreeBoN (Qiu et al., 2024), which
prune low-reward candidates early. While these methods reduce the per-prompt cost of BoN, they
do not address the problem of distributing a fixed query budget across multiple prompts.

Input-adaptive Inference Allocation. The most closely related work to us is by Damani et al.
(2024), who address the same inference budget allocation problem: given a batch of prompts
x1, . . . , xK , the goal is to distribute a total budget across them to maximize the cumulative max-
imum per-prompt reward. While the setup is similar, their approach differs from ours in three ways.

First, their method relies on training an auxiliary model that predicts the expected marginal gain in
reward from allocating additional queries to a prompt. At test time, this model is queried for each
prompt in the batch to obtain a vector of estimated gains. This batch of vectors of estimated gains
is then used to determine the final allocation. A key limitation of this strategy is that the auxiliary
model must be retrained whenever the domain, underlying LM, decoding strategy, or total inference
budget changes. This makes it less flexible and potentially expensive, especially for large inference
budgets. In contrast, our method is entirely at test-time and hence model-agnostic: it requires no
auxiliary training, works out-of-the-box for any LM-RM pair, and adapts to the inference budget.

Second, their focus is on the regime where the batch size is large and the per-prompt budget is small.
We consider the opposite setting: small batch sizes with large per-prompt budgets. This is particu-
larly relevant for on-device LMs, which are smaller and cheaper to query, making high per-prompt
budgets more feasible. In this regime, our approach benefits from directly estimating marginal gains
via Monte Carlo sampling, removing the need for an auxiliary model. In contrast Damani et al.
(2024)’s method does not observe significant improvements for large inference budgets.

Third, while our work targets alignment with real-valued reward models, much of Damani et al.
(2024)’s evaluation focuses on binary rewards in domains such as math and coding. Although they
do include a real-valued reward setting in the chat domain, their experiments are limited to a single
LM, a single RM, and a single batch of prompts. In contrast, we conduct a broad empirical study
covering 12 LM–RM pairs and 50 distinct batches, providing a more comprehensive assessment of
prompt-adaptive alignment. In addition to Damani et al. (2024), there are few other works relevant
to us. We provide a summary of them in Appendix B.

2 PRELIMINARIES

2.1 NOTATION

Let X denote the space of prompts and Y be the space of responses. A LM π : X → ∆Y maps a
prompt to a distribution over responses, where we let ∆Y denote the set of all distributions on Y . A
reward model is a function r : X ×Y → R that maps a prompt and a response to a real-value. Given
a prompt x ∈ X , LM π, and reward model r, we will use r ◦ π(x) to denote the distribution over
rewards induced by passing x to π, sampling y ∼ π(x), and then computing r(x, y). Throughout the
paper, we use B to denote the per-prompt inference budget and K to denote the number of prompts
in a batch. Thus, for per-prompt budget B and batch size K, the total budget is BK. Finally, we
define [B] := {1, . . . , B} and abbreviate a sequence z1, . . . zn as z1:n.

2.2 INFERENCE-TIME ALIGNMENT AND BEST-OF-N SAMPLING

When aligning the responses of a LM with human values, one common approach is to use an external
reward model r : X × Y → R to evaluate the quality of its responses. Usually, the reward model is
trained using preference data and assigns higher scores to responses that exhibit desirable properties,
e.g. like helpfulness, harmlessness, coherence, relevance, and fluidity. In inference-time alignment,
the goal is modify the decoding procedure of π so as to maximize the the reward model r. Perhaps
the simplest way to do this is via Best-of-N sampling, which has received significant interest due to
being light-weight and model agnostic. Given a LM π, a sample budget N ∈ N, a reward model r,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and a prompt x, the Best-of-N alignment procedure involves sampling N responses y1, . . . , yN ∼
π(x) and returning argmaxy∈{y1,y2,...,yN} r(x, y).

Despite its flexibility, Best-of-N alignment suffers from high computational costs due to its lack of
adaptivity – N inference calls are made for every prompt x ∈ X , where the N is typically chosen
via hyperparameter search and can be very large. This can often be wasteful if certain prompts
are “easier" to generate aligned responses for than others. The focus of this work is to design a
prompt-adaptive version of Best-of-N alignment.

2.3 THE INFERENCE ALLOCATION PROBLEM

In this paper, we consider adaptive Best-of-N alignment in the context of the following resource al-
location problem. We are presented with a collection of K prompts x1:K and a per-prompt inference
budget B, measured in the total number of queries we can make to the base LM π. An allocation
a ∈ [BK]K , is a vector of size K such that

∑K
i=1 ai ≤ BK. Here, ai represents the number of LM

calls allocated to prompt xi. For a fixed allocation a ∈ [BK]K , the quantity

E
Ri,j∼r◦π(xi)

[
K∑
i=1

max
j=1,...,ai

Ri,j

]
. (1)

is the cumulative expected reward obtained by running Best-of-N sampling with base policy π and
reward model r. The goal is to find an allocation that maximizes Equation 1.

In general, without knowledge of the true distributions r ◦ π(x1), . . . , r ◦ π(xK), the uniform allo-
cation is the minimax optimal non-adaptive allocation. By non-adaptive, we mean that the uniform
allocation does not depend on the realization of some of the realized rewards. This is in contrast to
an adaptive allocation, which may depend on some of the realized rewards.

Unsurprisingly, adaptivity is crucial for maximizing the cumulative sum of per-prompt rewards. As
a simple example, consider the case where there are two prompts x1 and x2 and let B = 25 be the
per-prompt budget. Suppose the reward distribution for x1 and x2 are Bernoulli distributions with
parameters p1 = 0.95 and p2 = 0.05 respectively. The non-adaptive uniform allocation allocates
25 samples each to x1 and x2, resulting in an expected reward of 2 − (1 − p1)

25 − (1 − p2)
25.

Alternatively, consider the following simple two-stage allocation procedure. For each prompt x1

and x2, sample d = 10 rewards. Let R1
1:d and R2

1:d be the realized rewards for prompt x1 and
x2 respectively. Then, if max{R1

1:d} = max{R2
1:d} = 1, the procedure allocates the remaining

2B − 2d = 30 queries arbitrarily. On the other hand, if max{R1
1:d} = 1 and max{R2

1:d} = 0,
the procedure allocates the remaining 2B − 2d = 30 queries to prompt x2 and vice versa. Finally,
if both max{R1

1:d} = max{R2
1:d} = 0, the procedure uniformly allocates the remaining 2B − 2d

queries among x1 and x2. Brute force computation shows that the expected reward of the two-stage
adaptive allocation is 1.87 while the expected reward of the uniform allocation is only 1.72.

While simple, the previous examples highlights the power of adaptivity for the inference allocation
problem. This is in line with the results of Snell et al. (2024), who highlight the importance of
estimating prompt “difficulty" for optimal test-time compute scaling. To that end, our focus in this
paper will be towards designing adaptive allocation policies A which sequentially allocate the total
budget BK across the K different prompts. The policy A need not allocate the inference budget all
at once, but can allocate its budget one at a time, adapting to the past realized rewards. In this sense,
the allocation returned by A is a random variable, where the randomness is due to the randomness
of the base LM π as well as any internal randomness that A decides to use.

Given an allocation policy A and a matrix of rewards {Ri,j}i∈[K],j∈[BK], where Ri,j ∼ r ◦ π(xi),
we will use A({Ri,j}, B) to denote the distribution over allocations induced by A, when the realized
rewards are {Ri,j}i∈[K],j∈[BK] and the per-prompt inference budget is B. Rather than choosing a
fixed allocation, our objective now is to design a (randomized) allocation policy A so as to maximize

E
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j

]
.

Although the space of allocation policies is massive, in this paper, we will focus our attention on
two-stage allocation policies A. These are policies which use a pre-determined per-prompt initial

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

budget d ≤ B to explore each prompt, before committing to a fixed allocation for the remaining
budget. Our focus on two-stage policies is motivated by latency concerns – as the adaptivity of A
increases, one pays in latency as calls to the base LM π can no longer be parallelized. This is a
concern with existing adaptive Best-of-N sampling methods (Manvi et al., 2024; Sun et al., 2024).

3 AN ADAPTIVE TWO-STAGE ALLOCATION POLICY

In this section, we present a lightweight, two-stage allocation policy for the inference allocation
problem outlined in Section 2.3. Compared to Damani et al. (2024), our method does not require
training of any auxiliary model and can be used in a black-box fashion for any LM-RM combination.

The two-stage allocation policy follows in three steps. In the first step, for each prompt xi in the
batch, we sample d ≤ B times from r ◦ π(xi) and construct an estimate D̂i of r ◦ π(xi) using a
pre-specified distribution estimation procedure f . The total cost of this step is dK. In the second
step, for each prompt xi in the batch, we use D̂i to estimate the expected gain of sampling j more
times from r◦π(xi), for j = 1, . . . , (B−d)K. That is, if Ri,1:d is our sample of rewards for prompt
xi and D̂i is our estimate of the reward distribution r◦π(xi) constructed from Ri,1:d, then we would
like to compute for each j ∈ [(B − d)K], the scalar

Vi,j := EZ1,...,Zj∼D̂i
[max{Ri,1, . . . , Ri,d, Z1, . . . , Zj}] . (2)

In the last step, we use the vectors {Vi}i∈[K] to compute the remaining allocation A ∈ [(B−d)K]K

that maximizes
∑K

i=1 Vi,Ai
under the constraint that

∑K
i=1 Ai ≤ (B − d)K. We do so by using the

greedy procedure in Algorithm 1, which is optimal (Federgruen and Groenevelt, 1986) if the vectors
V1, . . . , VK are “concave" and monotonically increasing (i.e Vi,j+1 − Vi,j ≥ Vi,j+2 − Vi,j+1 and
Vi,j+1 ≥ Vi,j ). Fortunately, Proposition 3.1, proved in Appendix E, shows that this is the case.
Proposition 3.1. Let D be any distribution with finite first moment and c ∈ R be some constant.
Then, the function f(n) = EX1:n∼Dn [max{c,X1:n}] is concave and monotonically increasing.

Algorithm 1 Greedy Allocation
Input: Budget T ∈ N, monotonically increasing, “concave" reward vectors {Vi}i∈[K]

1 Initialize: a = [0]K .
2 for t = 1, . . . , T do
3 Let it ∈ argmaxi∈[K](Vi,ai+1 − Vi,ai

) and set ait = ait + 1

4 end
5 Return a.

In practice, we cannot compute Equation 2 exactly. Instead, we compute an estimate V̂i,j of Vi,j via
Monte Carlo sampling from D̂i, which can be done very efficiently based on our choice of the reward
distribution estimator in Section 3.1. While the greedy procedure may not be optimal when run on
the estimated vectors, it still serves as an efficient heuristic. Moreover, Monte Carlo estimation of
Vi,j does not exhaust our total budget BK as we no longer need to query the base LM.

Algorithm 2 Two-stage Adaptive Best-of-N (AdaBoN) Allocation Policy
Input: Per-prompt budget B, base LM π, reward function r, prompts x1:K , per-prompt exploration

budget d, estimation procedure f
1 For each i ∈ [K], use d inference calls to π to obtain initial rewards Ri,1, . . . , Ri,d.

2 For each i ∈ [K], pass Ri,1, . . . , Ri,d to f and obtain an estimate D̂i of r ◦ π(xi).

3 For each i ∈ [K] and j ∈ [(B − d)K], use Monte Carlo sampling to construct an estimate V̂i,j of

Vi,j = EZi,1,...,Zi,j∼D̂i
[max{Ri,1, . . . , Ri,d, Zi,1, . . . , Zi,j}] .

4 Get remaining allocation A by running Algorithm 1 with budget (B − d)K and vectors {V̂i}i∈[K].

A crucial property of AdaBoN is that it minimizes latency since calls to the base LM can be easily
parallelized. Indeed, only two calls to the base LM need to be made – the first call in the exploration

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Reward distribution for three different prompts from the AlpacaEval dataset when re-
sponses are generated from Meta-Llama-3-8B and evaluated using FsfairX-LLaMA3-RM-v0.1. We
provide reward distributions for the datasets in Appendix F.

.

stage and the second call once the remaining allocation has been determined. This is in contrast to
existing work which design more adaptive policies (Manvi et al., 2024). What remains now is how
to efficiently obtain an estimate of the reward distributions in Line 2 of Algorithm 2.

3.1 REWARD DISTRIBUTION ESTIMATION

To help guide our selection of estimation procedure in Algorithm 2, we plotted the histogram of sam-
ples from the reward distributions for several pairs of LMs, RMs, and prompts across the AlpacaE-
val, HH-RLHF, and PKU-SafeRLHF datasets. In Figure 1, we provide a few reward distribution
when the LM is Meta-Llama-3-8B and the RM is FsfairX-LLaMA3-RM-v0.1 for the AlpacaEval
dataset. Example reward distributions for the other datasets can be found in Appendix F. Across all
LM-RM pairs we consider (see Section 4), we find that reward distributions are mostly smooth, have
a few modes, and can be skewed. For such distributions, perhaps the simplest distribution estima-
tion procedure is kernel density estimation (KDE) using a Gaussian kernel (Węglarczyk, 2018). In
particular, given a sample of rewards Ri

1, . . . , R
i
d and a bandwidth parameter h, the Gaussian kernel

density estimate returns the density function f̂h(x) :=
1
dh

∑d
j=1 ϕ

(
x−Ri

j

h

)
, where ϕ is the density

function of a standard normal random variable. To pick the bandwidth h, we use Scott’s rule (Scott,
1979), a standard automatic bandwidth selection rule which sets h = σ̂d

1
5 , where σ̂ is the sample

standard deviation. To generate a sample according to a random variable with density f̂h, one first
samples a reward R ∼ {Ri

1, . . . , R
i
d} uniformly at random and then adds Gaussian noise with mean

0 and standard deviation h. Accordingly, Vi can be estimated efficiently via Monte Carlo sampling.

Despite its simplicity, in Section 4 we show that Gaussian KDE using Scott’s rule is remarkably
robust – it is sufficient to consistently outperform our benchmarks across all LM-RM pairs. To
compare, we also tried fitting Gaussian and Skew-Normal distributions using Maximum Likelihood
Estimation (MLE). We present these results in Table 16 in Appendix K.3 and find that they per-
formed worse than Gaussian KDE across most LM-RM pairs and datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We consider three datasets, AlpacaEval, HH-RLHF and PKU-SafeRLHF, and achieve
similar performance across all of them. For space reasons, we only present results for the AlpacaEval
dataset in the main text. Results for the two other datasets, HH-RLHF and PKU-SafeRLHF, are
in Appendix H. For each dataset, we construct n = 50 batches of size K by sampling prompts
uniformly at random without replacement from the total set of prompts. This ensures that all batches
have distinct prompts. For each batch size K we consider, we do this process once. The same
collections of 50 batches is then used across all experiments for that batch size and dataset.

Language and Reward Models. We consider a range of LMs and RMs, all around 8B parameters.
For LMs, we use Mistral-7B-v0.3, Gemma-7B, Qwen2.5-7B-Instruct, and Meta-Llama-3-8B. As
for RMs, we focus on real-valued RMs. In particular, we use RM-Mistral-7B, FsfairX-LLaMA3-
RM-v0.1, and ArmoRM-Llama3-8B-v0.1, all of which were also used by Sun et al. (2024).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EVALUATION METRICS AND BENCHMARKS

Although our allocation strategy is designed to maximize the cumulative sum of max rewards, the
main objective we use for evaluation is the Batch Win Rate (BWR). Formally, for a batch of prompts
x1, .., xK , LM π, RM r, per-prompt inference budget B ≥ 1, and an allocation policy A, the batch
win rate of A against the uniform allocation a = [B, . . . , B], is defined as

BWRA(x1:K , B) := P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j >

K∑
i=1

max
j=1,...,B

Ri,j

]
+

1

2
· P

Ri,j∼r◦π(xi)
A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j =

K∑
i=1

max
j=1,...,B

Ri,j

]
. (3)

This metric measures the probability, over both the random draws from the distributions r ◦ π(xi)
and A, that our allocation beats the uniform allocation with the same inference budget. We weight
the probability of a tie by 1/2 to ensure that the BWR of the uniform allocation against itself is 0.50.
Hence, obtaining BWRs> 0.50 indicates outperforming the uniform allocation.

Our choice of the win rate over the expected cumulative max reward is because the scalar outputs of
RMs are often only meaningful comparatively. That is, for a prompt x and two responses y1, y2 ∈ Y ,
the precise values of r(x, y1) and r(x, y2) are often meaningless, as they can be logits of a language
model (Son et al., 2024; Ouyang et al., 2022; Christiano et al., 2017). On the other hand, the
comparisons are meaningful as the RM is usually trained using preference data under the Bradley-
Terry model (Bradley and Terry, 1952). Hence, r(x, y1) > r(x, y2) tells us that the response y1
is preferred over response y2. Our benchmark of the uniform allocation is natural since, without
knowledge of the true reward distributions, it is the minimax optimal non-adaptive allocation.

To get a better sense of the performance of AdaBoN, we also evaluate AdaBoN against uniform
allocation strategies with strictly larger inference budgets. For a batch x1:K , per-prompt budget B,
and number N ∈ N,

BWTRA(x1:K , N,B) := P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j ≥
K∑
i=1

max
j=1,...,N

Ri,j

]
(4)

is the batch win-tie rate, i.e. the probability that A, with a total inference budget of BK, does at
least as good as the uniform allocation that allocates N queries to each prompt in the batch. The
main difference between Equations 3 and 4 is weighing the probability of a tie by 1 instead of a 1/2.
This is justified given that we will be competing against larger inference budgets.

One can also interpret BWTRA(x1:K , N,B) as the probability that AdaBoN survives against the
uniform allocation with a per-prompt budget N ∈ N. From this perspective,

SA(x1:K , B) :=

∞∑
N=1

BWTRA(x1:K , N,B) (5)

= E
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
argmax

N∈N

{
K∑
i=1

max
j=1,...,Ai

Ri,j ≥
K∑
i=1

max
j=1,...,N

Ri,j

}]

can be interpreted as the Expected Survival Time (EST) (Jenkins, 2005) for batch x1:K . Larger ESTs
indicate that AdaBoN with a per-prompt budget of B is competitive against uniform allocations with
larger budgets. Thus, larger ESTs imply computational savings – to obtain guarantees comparable
to having an inference budget of size SA(x1:K , B) ·K, one needs an inference budget of size BK.

Lastly, although Damani et al. (2024) study the same allocation problem, we do not compare with
their approach for the following reasons. First, we were unable to find an existing implementation of
their method or sufficient details about hyperparameter choices to implement their method faithfully.
Second, the approach by Damani et al. (2024) is more computationally demanding. It requires
training a separate MLP for each LM-RM pair and each value of b ∈ [BK]. For our experiments,
we set K = 5, B = 120 and consider 12 LM-RM pairs and 3 datasets. This results in needing to
train 216, 000 MLPs, which is computationally prohibitive.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.57, 0.60] 0.58 [0.55, 0.60] 0.59 [0.55, 0.62]
Qwen 0.60 [0.59, 0.63] 0.62 [0.59, 0.65] 0.54 [0.51, 0.56]
Gemma 0.56 [0.51, 0.59] 0.55 [0.54, 0.59] 0.56 [0.53, 0.58]
Llama 0.58 [0.54, 0.63] 0.59 [0.55, 0.62] 0.59 [0.56, 0.62]

Table 2: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B and (b) Percent batches
with BWR > 0.50 for K = 5, B = 120, and d = 0.75B, both for the AlpacaEval dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [148, 152] 150 [148, 152] 151 [150, 155]
Qwen 152 [150, 154] 151 [150, 154] 153 [150, 156]
Gemma 148 [146, 150] 148 [147, 151] 149 [147, 151]
Llama 151 [148, 153] 151 [148, 153] 151 [149, 154]

(b)

LM RM
Mistral FsfairX Armo

Mistral 94% 92% 96%
Qwen 100% 98% 78%
Gemma 76% 92% 86%
Llama 92% 96% 92%

4.3 MAIN RESULTS

In this section, we mostly present results for K = 5, B = 120, and d = 0.75B. We estimate
the EST by capping the sum in Equation 5 to 2B. In Appendix K, we perform ablations where we
test the performance against various choices of K and B, keeping d = 0.75B fixed. For our reward
distribution estimation procedure, we use Gaussian kernel density estimation and pick the bandwidth
using Scott’s rule, as described in Section 3.1. To estimate the Vi,j’s in Line 4 of Algorithm 2, we
use Monte Carlo sampling with a sample size m = 1024. For the sake of replicability, we use
the standard generation function from Hugging Face (Wolf et al., 2019), and thus use the default
decoding strategy for all LMs. For a batch of prompts, we estimated its BWR (Equation 3)and EST
(Equation 5) by taking the average of the empirical BWR and empirical survival times over 100
runs. Due to space constraints, we only present the results for the AlpacaEval dataset in the main
text. We find similar results for the HH-RLHF and PKU-SafeRLHF datasets in Appendix H.

AdaBoN consistently and often significantly outperforms the uniform allocation. Table 2b
shows that AdaBoN outperforms the uniform allocation for more than 75% of the batches across
all LM-RM pairs. The performance is most prominent for the Qwen-Mistral pair, where AdaBoN
achieves a BWR > 0.50 for all batches. Moreover, Table 1 shows that for many LM-RM pairs,
AdaBoN actually achieves BWRs ≳ 0.60 on 50% of the batches. Figure 2a provides a more fine-
grained view of the distribution of BWRs for the Qwen-Instruct LM. We find that on some batches
AdaBoN achieves BWRs as high as 0.70. Despite its strong performance on the Qwen-Mistral and
Qwen-FsfairX pairs, Figure 2a also shows that the performance of AdaBoN drops for Qwen-Armo.
We explain this phenomena in Appendix G.1 by showing that the vast majority of reward distribu-
tions for this LM-RM pair are left-skewed. Results for the other LM-RM pairs are in Appendix G.

AdaBoN is competitive against larger inference budgets. Table 2a gives the median [Q1, Q3]
ESTs for AdaBoN across the 50 batches. AdaBoN obtains comparable performance against uniform
allocations with 20% larger inference budget. Because batches vary in difficulty, we consider the
distribution of ESTs across the 50 batches. Figure 2b gives a box-plot of the ESTs for the Qwen
LM. We observe ESTs ≥ 160, meaning that for these batches, AdaBoN is competitive with unif.
allocations at 33% larger inference budget. ESTs for other LM-RM pairs are in Appendix G.2.

AdaBoN performs better as batch size increases. In Appendix K.2, we fix B = 120 and d =
0.75B, and vary K ∈ {3, 5, 10, 15, 20}. Figure 3 shows that for all LM-RM pairs, the average BWR
increases as K increases from 3 to 20. For some LM-RM pairs, like Qwen-Mistral, the average BWR

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) BWRs (b) ESTs

Figure 2: Box plots of BWRs and ESTs across the 50 batches for the Qwen-Instruct LM when
K = 5, B = 120, and the exploration budget d = 0.75B on the AlpacaEval dataset.

Figure 3: Avg. BWR (±1 SE) as a function of K ∈ {3, 5, 10, 15, 20} when B = 120 and d = 0.75B
on the AlpacaEval dataset.

increases by as much as 0.15. Finally, Table 14 in Appendix K.2 shows that across most pairs of
LM-RM, the percent of batches with BWR > 0.50 increases with K. The results for the Mistral LM
are striking – when K = 20, AdaBoN achieves a BWR > 0.50 for 100% of batches for every RM.

AdaBoN maintains performance across inference budgets. In Appendix K.1, we fix K = 5,
d = 0.75B, and vary B ∈ {80, 100, 120, 140, 160}. Figure 9 shows that for all LM-RM pairs,
the average BWR of AdaBoN generally increases with B, albeit modestly. The modest gain in
performance is expected as the uniform allocation gets powerful with larger B (see Appendix D).

AdaBoN requires minimal hyperparameter tuning. A notable feature of AdaBoN is that it re-
quires minimal hyperparameter tuning. By using Gaussian kernel density estimation with an au-
tomatic bandwidth selector, there is only one hyperparameter – the exploration budget d. We find
that simply fixing d = 0.75B is a good initial guess. Table 3 in Appendix G.1 presents the median
BWR across the 50 batches after tuning the exploration budget d ∈ {0.60B, 0.7B, 0.75B, 0.80B}
to maximize the median BWR. We find that that setting the exploration budget to d = 0.75B incurs
a minimal drop in median BWR compared to the optimal choice of exploration budget.

5 DISCUSSION AND LIMITATIONS

This work revisits Best-of-N sampling and demonstrates that significant efficiency gains can be
achieved through prompt-adaptive allocation of the sampling budget. There are several limitations
to our approach. First, our method assumes that Gaussian kernel density estimation can sufficiently
estimate the reward distributions. This may not hold for discrete RMs. An interesting future direc-
tion is to better understand the choice of reward estimation procedure on AdaBoN. Second, while
our two-stage procedure is simple and effective, it does not dynamically refine its estimates during
allocation. A more sophisticated bandit-based method could potentially improve performance guar-
antees, at the cost of increased latency. Finally, our method assumes access to a batch of prompts,
making it less suitable for purely single-prompt settings. As such, it is an interesting future direction
to study our setup in the online setting, where prompts arrive sequentially.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
arXiv preprint arXiv:2401.01879, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
to think: Input-adaptive allocation of lm computation. arXiv preprint arXiv:2410.04707, 2024.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36:30039–30069, 2023.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Gonçalo Faria and Noah A Smith. Sample, don’t search: Rethinking test-time alignment for lan-
guage models. arXiv preprint arXiv:2504.03790, 2025.

Awi Federgruen and Henri Groenevelt. The greedy procedure for resource allocation problems:
Necessary and sufficient conditions for optimality. Operations research, 34(6):909–918, 1986.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of
dialogue agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Composi-
tional preference models for aligning lms. arXiv preprint arXiv:2310.13011, 2023.

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and
the sweetness of best-of-n sampling. arXiv preprint arXiv:2406.00832, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Dylan J Foster, and Akshay Krishnamurthy.
Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. arXiv
preprint arXiv:2503.21878, 2025.

Stephen P Jenkins. Survival analysis. Unpublished manuscript, Institute for Social and Economic
Research, University of Essex, Colchester, UK, 42:54–56, 2005.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694, 2024.

Yoonho Lee, Jonathan Williams, Henrik Marklund, Archit Sharma, Eric Mitchell, Anikait
Singh, and Chelsea Finn. Test-time alignment via hypothesis reweighting. arXiv preprint
arXiv:2412.08812, 2024.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36:41451–41530, 2023a.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5315–
5333, 2023b.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

David W Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge &
reward model: What they can and cannot do. arXiv preprint arXiv:2409.11239, 2024.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
https://arxiv.org/abs/2009.01325.

11

https://arxiv.org/abs/2009.01325


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Pengyu Wang, Dong Zhang, Linyang Li, Chenkun Tan, Xinghao Wang, Ke Ren, Botian Jiang,
and Xipeng Qiu. Inferaligner: Inference-time alignment for harmlessness through cross-model
guidance. arXiv preprint arXiv:2401.11206, 2024a.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao
Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-efficient
reasoning. arXiv preprint arXiv:2408.13457, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025.

Stanisław Węglarczyk. Kernel density estimation and its application. In ITM web of conferences,
volume 23, page 00037. EDP Sciences, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad Beirami.
Asymptotics of language model alignment. In 2024 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 2027–2032. IEEE, 2024.

Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, and Lei Li. Scaling llm inference
with optimized sample compute allocation. arXiv preprint arXiv:2410.22480, 2024a.

Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language mod-
els: A survey. arXiv preprint arXiv:2411.00027, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DISCLOSURE OF LLM USAGE

LLMs were only used to aid and polish the writing in the Introduction, Related Works, and Discus-
sion sections.

B OTHER RELATED WORK

Beyond input-adaptive inference allocation, prior work has also explored adaptivity at different gran-
ularities.

Wang et al. (2024b) propose Difficulty-Adaptive Self-Consistency (DSC), a cost-efficient decoding
method for reasoning tasks that allocates sample budgets based on estimated query difficulty using
both prior and posterior signals. Unlike DSC, which focuses on difficulty-adaptive sampling for
reasoning tasks like arithmetic and commonsense QA, our work tackles inference-time alignment
in open-ended generation by allocating queries based on learned reward distributions rather than
problem difficulty.

Manvi et al. (2024) introduce capability-aware and mid-generation self-evaluations, allowing LMs
to decide,during or after generation,whether further sampling would yield better outputs, thereby
reducing compute without external reward models. Unlike this approach, which relies on self-
evaluation to adaptively terminate or continue sampling per prompt, our method uses a learned
model of reward distributions to allocate a fixed budget across prompts, focusing on batch-level
optimization in open-ended generation.

Finally, Zhang et al. (2024a) propose OSCA, a method for optimizing how inference-time compute
is distributed across a set of sampling configurations (e.g., temperature, model, prompt), aiming
to improve pass rates under tight compute budgets across coding and reasoning tasks. In contrast,
our work focuses on allocating a fixed compute budget across prompts, not configurations, based
on learned reward distributions, enabling prompt-adaptive inference in open-ended generation tasks
rather than pass@k accuracy in structured problem-solving.

These methods target different axes of adaptivity but do not address how to allocate a fixed budget
across multiple prompts. In contrast, we focus on the cross-prompt budget allocation problem,
aiming to maximize the sum of per-prompt maxima while retaining the low-latency, parallelizable
structure of Best-of-N sampling.

C DATASET AND MODEL ASSET DETAILS

Datasets. We consider three datasets:

• AlpacaEval (v2.0) : https://github.com/tatsu-lab/alpaca_eval, CC-BY-
NC-4.0 license.

• HH-RLHF: https://huggingface.co/datasets/Anthropic/hh-rlhf,
MIT License.

• PKU-SafeRLHF: https://huggingface.co/datasets/PKU-Alignment/
PKU-SafeRLHF,CC-BY-NC-4.0 license.

We did not perform any additional data scraping. For each dataset separately, we construct 50
batches of prompts per batch size setting using uniform random sampling without replacement.

Language Models (LMs). We use the following publicly available language models:

• Mistral-7B-v0.3: https://huggingface.co/mistralai/Mistral-7B-v0.
3, Apache 2.0 License.

• Gemma-7B: https://huggingface.co/google/gemma-7b, Gemma License
(non-commercial).

• Qwen2.5-7B-Instruct: https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct, Apache 2.0 License.

13

https://github.com/tatsu-lab/alpaca_eval
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/google/gemma-7b
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Meta-Llama-3-8B: https://huggingface.co/meta-llama/
Meta-Llama-3-8B, Llama 3 Community License.

Reward Models (RMs). We use externally provided real-valued reward models:

• RM-Mistral-7B: https://huggingface.co/weqweasdas/RM-Mistral-7B.
• FsfairX-LLaMA3-RM-v0.1: https://huggingface.co/sfairXC/
FsfairX-LLaMA3-RM-v0.1, CC-BY-NC-4.0 License

• ArmoRM-Llama3-8B-v0.1: https://huggingface.co/RLHFlow/
ArmoRM-Llama3-8B-v0.1, Llama 3 Community License

For all models and datasets, we follow their licensing terms and acknowledge the original sources.

D IMPACT OF INCREASING PER-PROMPT INFERENCE BUDGET B ON BWR

In this section, we corroborate our claim in Section 4.3 that the uniform allocation gets more pow-
erful as B increases. To see this, consider the same example considered in Section 2.3. Brute force
computation showed that when B = 25 and d = 0.20B = 5, the expected reward of the uniform
allocation was 1.72 while the expected reward of the simple two-stage allocation procedure was
1.87.

Now, if one considers B = 50 and keeps d = 0.20B, then brute force computation shows that
the expected reward of the uniform allocation is 1.92 while the expected reward of the simple two-
stage allocation procedure is only 1.98. Notice that the gap between the expected reward of the
simple two-stage allocation procedure and the uniform allocation has decreased as B increased.
This highlights the fact that the uniform allocation gets relatively more powerful as B increases.

E PROOF OF PROPOSITION 3.1

Proof. Let D be any distribution with finite first moment and c ∈ R. Consider the function f(n) =
EX1:n∼Dn [max{c,X1:n}] . We first show that f is monotonically non-decreasing. It suffices to
show that f(n) ≥ f(n − 1) for all n ≥ 2. Fix some n ≥ 2 and define the random variable Mn =
max{c,X1:n}, where X1:n ∼ Dn. Then, observe that Mn ≥ Mn−1 pointwise for every realization
of random variables X1:n ∼ Dn. Taking expectations of both sides, gives that f(n) ≥ f(n − 1),
completing this part of the proof.

We now prove that f is “concave". For n ≥ 2, define ∆n := f(n) − f(n − 1). It suffices to show
that ∆n+1 ≤ ∆n for all n ≥ 2. Fix some n ≥ 2. Observe that we can write

∆n = E
X1:n∼Dn

[Mn −Mn−1] = E
X1:n∼Dn

[(Xn −Mn−1)+]

where (x)+ = max(x, 0). Likewise, we can write

∆n+1 = E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] .

Hence, we need to show that

E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] ≤ E
X1:n∼Dn

[(Xn −Mn−1)+] .

Since Mn = max{Xn,Mn−1} and Xn ∼ D, we have that Mn ≥ Mn−1 pointwise for every
realization of random variables X1:n ∼ Dn. Thus, pointwise for any x ∈ R and realization of
random variables X1:n ∼ Dn, we have that

(x−Mn)+ ≤ (x−Mn−1)+.

14

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/weqweasdas/RM-Mistral-7B
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Taking expectations of both sides, we have that

E
X∼D,X1:n∼Dn

[(X −Mn)+] ≤ E
X∼D,X1:n−1∼Dn−1

[(X −Mn−1)+] .

Finally, noting that

E
X∼D,X1:n∼Dn

[(X −Mn)+] = E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] ,

and

E
X∼D,X1:n−1∼Dn−1

[X −Mn−1)+] = E
X1:n∼Dn

[(Xn −Mn−1)+]

completes the proof. ■

F REWARD DISTRIBUTIONS FOR HH-RLHF AND PKU-SAFERLHF
DATASETS

In this section, we provide some plots of reward distributions for Meta-Llama-3-8B and and FsfairX-
LLaMA3-RM-v0.1 for prompts from the HH-RLHF and PHU-SafeRLHF datasets respectively.
Like AlpacaEval, we observe that the reward distributions are general smooth and amenable to
Gaussian KDE.

(a) HH-RLHF dataset

(b) PKU-SafeRLHF dataset

Figure 4: Reward distributions for three different prompts when responses are generated from Meta-
Llama-3-8B and evaluated using FsfairX-LLaMA3-RM-v0.1.

G MISSING TABLES AND FIGURES FOR ALPACAEVAL DATASET

In this section, we provide the missing tables and figures from the main text for the AlpacaEval
Dataset.

G.1 BATCH WIN RATES

In this section, we provide box-plots of the BWRs for the remaining LM-RM pairs when K = 5,
B = 120, and d = 0.75B for the AlpacaEval dataset. We find that across all LM-RM pairs, AdaBoN

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

achieves a BWR > 0.50 for the vast majority of batches. Moreover, AdaBoN consistently achieves
BWRs larger than 0.60 for ≈ 25% of batches for all LM-RM pairs.

(a) Mistral (b) Gemma (c) Llama

Figure 5: Box plots of BWRs for batch size K = 5, inference budget B = 120 and the exploration
budget d = 0.75B on the AlpacaEval dataset.

Table 3 provides the BWR for K = 5 and B = 120, when the exploration budget d is optimized
between {0.60B, 0.70B, 0.75B, 0.80B}. Here, we find that setting the exploration budget to d =
0.75B is a good guess as the optimized median BWR is not too much higher across all LM-RM
pairs.

Table 3: Median BWR for batch size K = 5, inference budget B = 120, and exploration budget
d optimized between {0.60B, 0.70B, 0.75B, 0.80B} to maximize the median dataset BWR on the
AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 0.58 0.59

Qwen 0.60 0.63 0.54

Gemma 0.56 0.56 0.56

Llama 0.59 0.59 0.59

Table 3 shows that the Qwen LM exhibits a significant drop in median BWR between the Mistral/Fs-
fairX RMs and the Armo RM. To investigate this, we plotted the reward distribution for the Qwen-
Armo LM-RM pair across several prompts. Compared to the Qwen-Mistral and Qwen-FsfariX LM-
RM pairs, we find that the reward distributions for the Qwen-Armo LM-RM pair are significantly
left skewed. This makes adaptivity less useful as the uniform allocation for batches with left-skewed
reward distributions is close to optimal. To capture this, Figure 6 plots a histogram of the skewness
(i.e. Pearson’s moment coefficient of skewness) of the reward distributions across all prompts for
the Qwen LM.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: Histograms of skewness (i.e. Pearson’s moment coefficient of skewness) of reward dis-
tributions for the Qwen LM across all prompts from the AlpacaEval dataset. We observe that
the reward distributions for the Qwen-Armo LM-RM pair is significantly more left-skewed than
Qwen-Mistral or Qwen-FsfairX. In fact, we find that the reward distributions for the vast majority
of prompts are left-skewed for the Qwen-Armo pair.

From here, we observe that indeed the reward distributions for the Qwen-Armo LM-RM pair are
significantly more left-skewed than the reward distributions of the Qwen-Mistral and Qwen-FsfairX
LM-RM pair. We provide the histogram of the skewness for the remaining LMs in Figure 7.

(a) Mistral (b) Gemma (c) Llama

Figure 7: Histograms of skewness (i.e. Pearson’s moment coefficient of skewness) of reward distri-
butions for the Mistral, Gemma, and Llama LM on prompts from the AlpacaEval dataset. Unlike
the Qwen LM, we observe that the skewness of the reward distributions for the other LMs do not
deviate significantly between RMs.

Compared to the Qwen LM, for the remaining LMs, we find that the histograms of skewness across
the reward distributions do not vary significantly between different RMs. This corroborates our
results in Table 3, which shows that the optimal median BWR is roughly the same across all RMs
for the Mistral, Gemma, and Llama LM.

G.2 EXPECTED SURVIVAL TIMES

Figure 8 provides the box-plots of ESTs for the remaining pairs of LM and RMs for K = 5,
B = 120, and d = 0.75B.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Mistral (b) Gemma (c) Llama

Figure 8: Box plot of ESTs for batch size K = 5, budget B = 120 and exploration budget d =
0.75B on the AlpacaEval dataset.

H RESULTS FOR THE HH-RLHF AND PKU-SAFERLHF DATASETS

In this section, we present our experimental results for the HH-RLHF and PKU-SafeRLHF datasets,
where we produce tables similar to Tables 1, 2a, and 2b in the main paper. Overall, we find that the
results resemble those for the AlpacaEval dataset for both BWRs and ESTs. Like the AlpacaEval
dataset, we find that the performance for the Qwen-Armo LM-RM pair is significantly lower than
the other LM-RM pairs for both datasets. Again, we found that for this LM-RM pair, the majority
of its reward distributions are left-skewed.

Table 4: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the HH-RLHF dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.55, 0.61] 0.60 [0.57, 0.62] 0.55 [0.53, 0.59]

Qwen 0.55 [0.52, 0.58] 0.54 [0.51, 0.57] 0.53 [0.50, 0.55]]

Gemma 0.54 [0.49, 0.57] 0.53 [0.47, 0.56] 0.55 [0.51, 0.57]

Llama 0.59 [0.56, 0.61] 0.57 [0.53, 0.59] 0.57 [0.55, 0.60]

Table 5: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B. (b) Percent batches with
BWR > 0.50 for K = 5, B = 120, and d = 0.75B on the HH-RLHF dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [146, 163] 151 [146, 169] 151 [146, 167]

Qwen 148 [141, 182] 150 [143, 222] 154 [147, 221]

Gemma 149 [143, 162] 149 [143, 157] 150 [144, 227]

Llama 153 [148, 182] 150 [144, 162] 154 [146, 183]

(b)

LM RM
Mistral FsfairX Armo

Mistral 94% 94% 92%

Qwen 80% 76% 72%

Gemma 70% 54% 76%

Llama 98% 82% 92%

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the PKU-SafeRLHF
dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.57 [0.55, 0.60] 0.57 [0.53, 0.60] 0.57 [0.55, 0.61]

Qwen 0.54 [0.53, 0.57] 0.56 [0.52, 0.60] 0.49 [0.46, 0.51]

Gemma 0.53 [0.50, 0.58] 0.58 [0.55, 0.60] 0.57 [0.53, 0.60]

Llama 0.56 [0.52, 0.59] 0.59 [0.54, 0.62] 0.61 [0.58, 0.62]

Table 7: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B and (b) Percent batches
with BWR > 0.50 for K = 5, B = 120, and d = 0.75B, both for the PKU-SafeRLHF dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [145, 179] 152 [146, 190] 151 [146, 228]

Qwen 153 [147, 211] 151 [144, 197] 152 [146, 234]

Gemma 148 [145, 180] 151 [146, 210] 150 [143, 182]

Llama 151 [144, 163] 152 [145, 182] 154 [148, 197]

(b)

LM RM
Mistral FsfairX Armo

Mistral 96% 92% 88%

Qwen 88% 80% 38%

Gemma 74% 96% 90%

Llama 78% 94% 98%

I COMPARISON TO VARIANCE-BASED ADAPTIVE BASELINE

In this section, we benchmark the performance of AdaBoN against a simple variance-based adaptive
allocation policy we call VarBoN. VarBoN operates as follows. Similar to AdaBoN, VarBoN fixes
an exploration budget d = 0.75B, and samples d responses and rewards for each prompt in the
batch. Let {Ri,j}i∈[K],j∈[d] denote the corresponding set of rewards, where Ri,j denotes the the
j’th reward for the i’th prompt in the batch. Then, for each prompt i ∈ [K], VarBoN computes the
empirical standard deviation of Ri,1:d which denote by σ̂i. Finally, VarBoN constructs a distribution
π over [K] such that πi =

σ̂i∑
i σ̂i

and allocates a πi fraction of the remaining budget (B − d)K to
prompt i. In other words, the remaining inference budget is allocated proportionally to the empirical
standard deviation of rewards obtained during the exploration phase. Tables 8 and 9 compare the
BWR of AdaBoN against VarBoN and VarBoN against the uniform allocation respectively, for the
AlpacaEval dataset.

Table 8: Median [Q1, Q3] BWR of AdaBoN vs VarBoN for K = 5, B = 120, and d = 0.75B on
the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.56, 0.61] 0.60 [0.58, 0.63] 0.59 [0.56, 0.61]
Qwen 0.56 [0.53, 0.59] 0.55 [0.52, 0.58] 0.54 [0.51, 0.56]
Gemma 0.57 [0.54, 0.60] 0.57 [0.54, 0.61] 0.55 [0.51, 0.59]
Llama 0.59 [0.56, 0.62] 0.60 [0.56, 0.62] 0.60 [0.57, 0.62]

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Median [Q1, Q3] BWR of VarBoN vs Uniform Allocation for K = 5, B = 120, and
d = 0.75B on the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.49 [0.48, 0.50] 0.49 [0.48, 0.50] 0.49 [0.48, 0.50]
Qwen 0.49 [0.46, 0.50] 0.48 [0.47, 0.50] 0.50 [0.48, 0.51]
Gemma 0.48 [0.46, 0.49] 0.50 [0.49, 0.51] 0.48 [0.47, 0.51]
Llama 0.50 [0.47, 0.51] 0.49 [0.48, 0.50] 0.48 [0.46, 0.49]

We find that VarBoN performs comparably to the uniform allocation, but worse than AdaBoN across
all LLM-RM pairs.

J PER-PROMPT WIN RATES

In this work, our main evaluation metric is the BWR, which compares the sum of the rewards across
the batch of prompts. This is natural given that our optimization objective, stated in Equation 1, is the
cumulative sum of rewards across the batch of prompts. However, in practice, the per-prompt win
rate is also important to ensure that our performance is not too bad for any particular prompt. Given
a batch of prompts x1:K and a per-prompt inference budget B, we define the average per-prompt
win rate as

WTRA(x1:K , B) :=
1

K

K∑
i=1

P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
max

j=1,...,Ai

Ri,j ≥ max
j=1,...,B

Ri,j

]
.

In Table 10, we give the Median [Q1, Q3] WTR of AdaBoN across 50 batches of prompts from the
AlpacaEval dataset.

Table 10: Median [Q1, Q3] WTR of AdaBoN for K = 5, B = 120, and d = 0.75B on the
AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.51 [0.51, 0.52] 0.52 [0.51, 0.52] 0.52 [0.51, 0.52]
Qwen 0.51 [0.50, 0.52] 0.51 [0.50, 0.52] 0.51 [0.50, 0.51]
Gemma 0.51 [0.51, 0.52] 0.51 [0.51, 0.52] 0.51 [0.50, 0.52]
Llama 0.52 [0.51, 0.52] 0.52 [0.51, 0.52] 0.52 [0.51, 0.52]

From here, we find that despite AdaBoN only optimizing for the cumulative sum of rewards (and
hence the BWTR), it is still competitive with the uniform allocation on a per-prompt basis.

K ABLATIONS

In this section, we sweep over choices of B and K. We keep our choice of exploration budget
d = 0.75B fixed throughout and focus only on the AlpacaEval dataset.

K.1 VARYING BUDGET B

Keeping K = 5 fixed, we consider budgets B ∈ {80, 100, 120, 140, 160}. Since the result for
B = 120 is presented in the main text, we only present the results for the other four choices of
B. Table 11 summarizes the results and showcases that AdaBoN continues to outperform uniform
allocations at larger and smaller budget.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Percent of batches with BWR > 0.50 for budgets B ∈ {80, 100, 140, 160} on the Al-
pacaEval dataset, fixing batch size K = 5, and exploration budget d = 0.75B.

LM RM
Mistral FsfairX Armo

(a) B = 80

Mistral 96% 96% 92%

Qwen 90% 98% 66%

Gemma 68% 78% 54%

Llama 86% 96% 90%

(b) B = 100

Mistral 98% 100% 98%

Qwen 100% 100% 72%

Gemma 80% 84% 74%

Llama 96% 94% 100%

(c) B = 140

Mistral 92% 98% 98%

Qwen 100% 100% 60%

Gemma 68% 82% 82%

Llama 90% 94% 100%

(d) B = 160

Mistral 100% 100% 94%

Qwen 98% 100% 86%

Gemma 80% 92% 78%

Llama 90% 98% 100%

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Median [Q1, Q3] BWRs for budgets B ∈ {80, 100, 140, 160} on the AlpacaEval dataset,
fixing batch size K = 5 and exploration budget d = 0.75B.

LM RM
Mistral FsfairX Armo

(a) B = 80

Mistral 0.58[0.54, 0.61] 0.57[0.55, 0.60] 0.56[0.53, 0.59]
Qwen 0.57[0.54, 0.59] 0.59[0.56, 0.61] 0.52[0.48, 0.55]
Gemma 0.53[0.49, 0.56] 0.54[0.51, 0.58] 0.51[0.49, 0.55]
Llama 0.55[0.52, 0.59] 0.58[0.55, 0.60] 0.57[0.52, 0.60]

(b) B = 100

Mistral 0.59[0.57, 0.61] 0.59[0.56, 0.60] 0.59[0.56, 0.61]
Qwen 0.57[0.55, 0.59] 0.60[0.56, 0.62] 0.53[0.50, 0.55]
Gemma 0.54[0.51, 0.58] 0.56[0.52, 0.59] 0.55[0.50, 0.58]
Llama 0.56[0.53, 0.59] 0.57[0.55, 0.60] 0.58[0.56, 0.62]

(c) B = 140

Mistral 0.59[0.55, 0.61] 0.59[0.56, 0.64] 0.59[0.55, 0.61]
Qwen 0.61[0.59, 0.64] 0.62[0.59, 0.65] 0.52[0.49, 0.56]
Gemma 0.53[0.50, 0.57] 0.56[0.52, 0.58] 0.55[0.51, 0.58]
Llama 0.58[0.55, 0.60] 0.59[0.55, 0.63] 0.58[0.56, 0.61]

(d) B = 160

Mistral 0.60[0.57, 0.63] 0.58[0.56, 0.64] 0.58[0.55, 0.61]
Qwen 0.59[0.56, 0.62] 0.60[0.58, 0.64] 0.53[0.52, 0.56]
Gemma 0.54[0.51, 0.59] 0.57[0.53, 0.60] 0.54[0.51, 0.59]
Llama 0.58[0.54, 0.61] 0.60[0.56, 0.62] 0.59[0.57, 0.63]

In fact, Figure 9 shows that the performance of AdaBoN improves as the per-prompt inference
budget B grows, although to a lesser extent than when K increases.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Mistral (b) Qwen-Instruct

(c) Gemma (d) Llama

Figure 9: Average BWR (±1 SE) as a function of B ∈ {80, 100, 120, 140, 160} when K = 5 and
d = 0.75B on the AlpacaEval dataset. Generally, we observe an increase in BWR as B increases,
although the improvements are modest.

This is further substantiated by Table 13, where each cell is the median [Q1, Q3] of the differences
BWRA(x

(1)
1:K , 160) − BWRA(x

(1)
1:K , 80), . . . ,BWRA(x

(50)
1:K , 160) − BWRA(x

(50)
1:K , 80) across all

50 batches x
(1)
1:K , . . . , x

(50)
1:K . Here, we observe strictly positive improvements in median per-batch

BWR as B increases from 80 to 160.

Table 13: Median [Q1, Q3] increase in BWR as budget increases from B = 80 to B = 160 on the
AlpacaEval dataset, keeping K = 5 and d = 0.75B fixed.

LM RM
Mistral FsfairX Armo

Mistral 0.022[-0.0088, 0.065] 0.015[-0.015, 0.050] 0.022[-0.024, 0.059]
Qwen 0.040[-0.0037, 0.060] 0.030[-0.015, 0.060] 0.030[-0.014, 0.054]
Gemma 0.028[-0.024, 0.069] 0.028[-0.014, 0.066] 0.030[-0.015, 0.049]
Llama 0.020[-0.01, 0.060] 0.025[0.0013, 0.045] 0.033[0.0, 0.071]

K.2 VARYING BATCH SIZE K

Keeping B = 120 fixed, we vary K with values in {3, 5, 10, 15, 20}. Since the result for K = 5 is
presented in the main text, we only present the results for the other four choices of K. Tables 14
and 15 summarize these results and showcases that the performance of AdaBoN improves with the
batch size K.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 14: Percent of batches with BWR > 0.50 for batch sizes K ∈ {3, 10, 15, 20} on the Al-
pacaEval dataset. The per-prompt inference budget B and exploration budget d are fixed to 120
and 0.75B respectively.

LM RM
Mistral FsfairX Armo

(a) K = 3

Mistral 84% 84% 88%
Qwen 96% 100% 70%
Gemma 84% 68% 82%
Llama 88% 86% 84%

(b) K = 10

Mistral 98% 100% 100%
Qwen 100% 100% 82%
Gemma 86% 88% 80%
Llama 100% 100% 100%

(c) K = 15

Mistral 98% 98% 100%
Qwen 100% 100% 88%
Gemma 82% 90% 82%
Llama 96% 98% 100%

(d) K = 20

Mistral 100% 100% 100%
Qwen 100% 100% 82%
Gemma 88% 86% 88%
Llama 100% 100% 100%

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 15: Median [Q1, Q3] BWRs for batch sizes K ∈ {3, 10, 15, 20} for the AlpacaEval dataset,
fixing budget B = 120, and exploration budget d = 0.75B

LM RM
Mistral FsfairX Armo

(a) K = 3

Mistral 0.55[0.52, 0.57] 0.54[0.52, 0.56] 0.54[0.52, 0.56]
Qwen 0.56[0.54, 0.58] 0.57[0.55, 0.58] 0.53[0.50, 0.55]
Gemma 0.54[0.51, 0.57] 0.53[0.50, 0.56] 0.54[0.52, 0.56]
Llama 0.55[0.52, 0.58] 0.55[0.52, 0.56] 0.55[0.53, 0.58]

(b) K = 10

Mistral 0.63[0.59, 0.67] 0.61[0.58, 0.64] 0.61[0.59, 0.66]
Qwen 0.67[0.64, 0.70] 0.67[0.64, 0.69] 0.56[0.52, 0.61]
Gemma 0.56[0.53, 0.60] 0.56[0.53, 0.61] 0.57[0.52, 0.60]
Llama 0.62[0.59, 0.65] 0.63[0.59, 0.66] 0.65[0.62, 0.69]

(c) K = 15

Mistral 0.66[0.61, 0.70] 0.65[0.62, 0.70] 0.65[0.62, 0.69]
Qwen 0.71[0.67, 0.75] 0.69[0.65, 0.72] 0.57[0.54, 0.61]
Gemma 0.57[0.53, 0.60] 0.58[0.54, 0.62] 0.57[0.52, 0.60]
Llama 0.65[0.61, 0.68] 0.66[0.60, 0.70] 0.67[0.63, 0.70]

(d) K = 20

Mistral 0.69[0.65, 0.72] 0.66[0.63, 0.70] 0.65[0.62, 0.70]
Qwen 0.74[0.71, 0.77] 0.72[0.70, 0.75] 0.63[0.58, 0.68]
Gemma 0.59[0.55, 0.62] 0.59[0.53, 0.63] 0.57[0.52, 0.64]
Llama 0.67[0.64, 0.70] 0.68[0.62, 0.72] 0.69[0.65, 0.72]

K.3 IMPACT OF REWARD DISTRIBUTION ESTIMATOR

In this section, we present results for two other reward estimation procedures: Maximum Likelihood
Estimation for the Gaussian and Gumbel distributions. We show that for all LM-RM pairs and
datasets, these alternate reward estimations procedures perform worse than using Gaussian Kernel
Density Estimation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Median BWRs for K = 5, B = 120, and d = 0.75B for the three reward distribution
estimations procedures we consider: Gaussian KDE (left), Gaussian MLE (middle), Skew-Normal
MLE (right). We find that for the majority of LM-RM combinations, using the Gaussian KDE
reward estimator results in the highest BWR, across all datasets.

LM RM
Mistral FsfairX Armo

AlpacaEval
Mistral 0.58, 0.56, 0.55 0.58, 0.61, 0.56 0.59, 0.57, 0.56
Qwen 0.60, 0.53, 0.49 0.62, 0.53, 0.49 0.54, 0.51, 0.48
Gemma 0.56, 0.52, 0.49 0.55, 0.54, 0.53 0.56, 0.54, 0.49
Llama 0.58, 0.59, 0.55 0.59, 0.58, 0.57 0.59, 0.58, 0.56

HH-RLHF
Mistral 0.58, 0.56, 0.55 0.60, 0.59, 0.56 0.55, 0.53, 0.52
Qwen 0.55, 0.53, 0.46 0.54, 0.52, 0.47 0.53, 0.52, 0.43
Gemma 0.54, 0.51, 0.48 0.53, 0.50, 0.48 0.55, 0.52, 0.49
Llama 0.59, 0.58, 0.52 0.57, 0.57, 0.53 0.57, 0.58, 0.54

PKU-SafeRLHF
Mistral 0.57, 0.55, 0.58 0.57, 0.58, 0.57 0.57, 0.57, 0.55
Qwen 0.54, 0.53, 0.45 0.56, 0.52, 0.46 0.49, 0.47, 0.44
Gemma 0.53, 0.52, 0.52 0.58, 0.57, 0.54 0.57, 0.56, 0.53
Llama 0.56, 0.53, 0.51 0.59, 0.58, 0.56 0.61, 0.58, 0.57

26


	Introduction
	Related Work

	Preliminaries
	Notation
	Inference-time Alignment and Best-of-N Sampling
	The Inference Allocation Problem

	An Adaptive Two-Stage Allocation Policy
	Reward Distribution Estimation

	Experiments
	Experimental Setup
	Evaluation Metrics and Benchmarks
	Main Results

	Discussion and Limitations
	Disclosure of LLM Usage
	Other Related Work
	Dataset and Model Asset Details
	Impact of increasing per-prompt inference budget B on BWR
	Proof of Proposition 3.1
	Reward Distributions for HH-RLHF and PKU-SafeRLHF datasets
	Missing Tables and Figures for AlpacaEval Dataset
	Batch Win Rates
	Expected Survival Times

	Results for the HH-RLHF and PKU-SafeRLHF Datasets
	Comparison to Variance-based Adaptive Baseline
	Per-prompt Win Rates
	Ablations
	Varying Budget B
	Varying Batch Size K
	Impact of Reward Distribution Estimator


