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ABSTRACT

Recent advances in test-time alignment methods, such as Best-of-N sampling, of-
fer a simple and effective way to steer language models (LMs) toward preferred
behaviors using reward models (RM). However, these approaches can be compu-
tationally expensive, especially when applied uniformly across prompts without
accounting for differences in alignment difficulty. In this work, we propose a
prompt-adaptive strategy for Best-of-N alignment that allocates inference-time
compute more efficiently. Motivated by latency concerns, we develop a two-stage
algorithm: an initial exploratory phase estimates the reward distribution for each
prompt using a small exploration budget, and a second stage adaptively allocates
the remaining budget using these estimates. Our method is simple, practical, and
compatible with any LM-RM combination. Empirical results on prompts from the
AlpacaEval, HH-RLHF, and PKU-SafeRLHF datasets for 12 LM–RM pairs and
50 different batches of prompts show that our adaptive strategy outperforms the
uniform allocation with the same inference budget. Moreover, we show that our
adaptive strategy remains competitive against uniform allocations with 20% larger
inference budgets and improves in performance as the batch size grows.

1 INTRODUCTION

Language Models (LMs) have demonstrated human-like capabilities across a wide range of tasks,
including mathematics, coding, and creative writing (Brown et al., 2020; Achiam et al., 2023). While
pre-training on massive corpora equips these models with extensive knowledge, it is crucial that their
responses at inference-time adhere to ethical standards and safety guidelines. A common approach
involves leveraging preference data to steer the model toward more desirable outputs. For example,
post-training methods such as Reinforcement Learning with Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and
its variants (Glaese et al., 2022), fine-tune the model weights, while constraining the updated model
to remain close to a reference model.

Despite its empirical success, post-training methods are computationally expensive and can intro-
duce unintended and opaque changes to the base model (Ouyang et al., 2022; Bai et al., 2022).
Inference-time alignment techniques leave the model weights untouched, but modify the decoding
strategy to guide the output distribution at inference time (Li et al., 2023a; Wang et al., 2024a; 2025).

One of the simplest and most popular inference-time alignment methods is Best-of-N sampling,
which has gained significant traction due to its simplicity, model-agnostic nature, and strong em-
pirical performance (Nakano et al., 2021). Given a prompt and a reward model that scores outputs
by alignment quality, Best-of-N sampling generates N responses from the base LM and returns
the one with the highest reward. Despite its simplicity, Best-of-N alignment remains competitive
with fine-tuning approaches like DPO and RLHF. Its transparent mechanics makes it amenable to
theoretical analyses (Gui et al., 2024; Beirami et al., 2024; Huang et al., 2025; Yang et al., 2024),
efficiency improvements (Qiu et al., 2024; Sun et al., 2024; Wang et al., 2025), and use for synthetic
data generation in down-stream fine-tuning tasks (Touvron et al., 2023; Dubois et al., 2023)

Yet, a key limitation of Best-of-N sampling is its lack of adaptivity. In practice, the value of N is
typically chosen via hyperparameter tuning and applied uniformly across all prompts, regardless of
their difficulty (Nakano et al., 2021). This can be inefficient: some prompts may require only a few
samples to yield a high-reward response, while others may benefit from more extensive sampling
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(Damani et al., 2024). Since one might need to pick N as large as 10, 000 to be competitive with
post-training methods (Gao et al., 2023), a naive uniform allocation leads to wasted computation.

In light of this issue, we introduce a prompt-adaptive approach to Best-of-N alignment by build-
ing on recent progress in input-adaptive compute allocation (Snell et al., 2024; Damani et al., 2024).
Specifically, we consider a setting in which we are given a batch of prompts x1, . . . , xK and a per-
prompt inference budget B, measured in the number of forward passes or queries to the LM. Our
goal is to allocate the total budget BK across the prompts to maximize the cumulative reward ob-
tained via Best-of-N sampling, where N may now vary across prompts. We focus on the regime
where the batch size K is small and the per-prompt budget B is large. This is relevant for personal-
ized on-device inference, where models are small and hence compute per prompt is large, while the
number of prompts is limited (Zhang et al., 2024b). Our main contributions are as follows.

(1) We find that the per-prompt reward distributions for the LM-RM pairs we consider are
smooth and easy to learn.

(2) Leveraging this, we propose a simple yet effective two-stage Adaptive Best-of-N (Ad-
aBoN) allocation scheme. In the first-stage, we use a small exploration budget to estimate
reward distributions for each prompt. In the second-stage, we use these estimates to com-
pute the marginal value of allocating additional samples and apply a greedy algorithm to
assign the remaining budget accordingly.

(3) We define two new evaluation metrics, termed the Batch Win Rate (BWR) and Expected
Survival Time (EST), which measure the ability for AdaBoN to outperform the uniform
allocation and compete against larger inference budgets respectively.

(4) Using these metrics, we evaluate AdaBoN on prompts from the AlpacaEval, HH-RLHF,
and PKU-SafeRLHF datasets. We sample 50 batches of prompts and find that:

a. AdaBoN consistently outperforms the uniform allocation across the 50 batches, with
some batches having win rates as high as 70%.

b. AdaBoN is competitive against uniform allocations with 20% larger inference bud-
gets.

c. AdaBoN improves in performance as the batch grows for the majority of LM-RM
pairs and is robust to changes in the inference budget, continuing to obtain win rates
significantly larger than 0.50 for smaller and larger inference budgets.

d. AdaBoN minimizes latency and has only a single hyperparameter that needs to be
tuned. Even then, we find that a single choice of this hyperparameter works well
across all experiments we run.

1.1 RELATED WORK

Inference-time Alignment and Best-of-N sampling. Compared to fine-tuning based approaches,
like DPO and RLHF, test-time alignment aims to steer a base policy purely at inference-time, without
changing the model weights. Some popular inference-time alignment methods include Best-of-N
sampling Gao et al. (2023); Stiennon et al. (2022), majority voting (Wang et al., 2022), weighted ma-
jority voting (Li et al., 2023b), hypothesis re-weighting Lee et al. (2024), and Markov chain Monte
Carlo (Faria and Smith, 2025). Controlled decoding (Mudgal et al., 2023) and ARGS (Khanov et al.,
2024) also fall into this broader family of test-time alignment methods.

Of particular interest to us is Best-of-N sampling, which has emerged as a prominent inference-
time alignment strategy, offering a simple yet effective mechanism for aligning LM outputs with
human preferences. Originally introduced as a baseline for inference-time alignment (Nakano et al.,
2021), Best-of-N has since found widespread use, both as a standalone method and as part of larger
alignment pipelines (Touvron et al., 2023). In addition to its standalone appeal, Best-of-N has been
integrated into more complex frameworks such as rejection sampling variants of DPO (Liu et al.,
2023) and RLHF (Dong et al., 2023).

A key aspect of Best-of-N ’s empirical success is its compelling reward-KL tradeoff curves (Gao
et al., 2023; Mudgal et al., 2023; Eisenstein et al., 2023). In particular, compared to KL-regularized
reinforcement learning (RL) techniques, Best-of-N often achieves comparable rewards while stay-
ing closer to the base model’s distribution. This empirical behavior has been substantiated theoreti-
cally, with several works deriving tight estimates of the KL divergence between the Best-of-N policy
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and the base policy (Coste et al., 2023; Gao et al., 2023; Go et al., 2023; Beirami et al., 2024; Gui
et al., 2024). Yang et al. (2024) prove that the Best-of-N and KL-regularized RL policies converge
to the same asymptotic behavior under reasonable assumptions.

Recent work has also proposed making Best-of-N more efficient through speculative decoding,
such as speculative rejection sampling (Sun et al., 2024) and TreeBoN (Qiu et al., 2024), which
prune low-reward candidates early. While these methods reduce the per-prompt cost of BoN, they
do not address the problem of distributing a fixed query budget across multiple prompts.

Input-adaptive Inference Allocation. The most closely related work to us is by Damani et al.
(2024), who address the same inference budget allocation problem: given a batch of prompts
x1, . . . , xK , the goal is to distribute a total budget across them to maximize the cumulative max-
imum per-prompt reward. While the setup is similar, their approach differs from ours in three ways.

First, their method relies on training an auxiliary model that predicts the expected marginal gain in
reward from allocating additional queries to a prompt. At test time, this model is queried for each
prompt in the batch to obtain a vector of estimated gains. This batch of vectors of estimated gains
is then used to determine the final allocation. A key limitation of this strategy is that the auxiliary
model must be retrained whenever the domain, underlying LM, decoding strategy, or total inference
budget changes. This makes it less flexible and potentially expensive, especially for large inference
budgets. In contrast, our method is entirely at test-time and hence model-agnostic: it requires no
auxiliary training, works out-of-the-box for any LM-RM pair, and adapts to the inference budget.

Second, their focus is on the regime where the batch size is large and the per-prompt budget is small.
We consider the opposite setting: small batch sizes with large per-prompt budgets. This is particu-
larly relevant for on-device LMs, which are smaller and cheaper to query, making high per-prompt
budgets more feasible. In this regime, our approach benefits from directly estimating marginal gains
via Monte Carlo sampling, removing the need for an auxiliary model. In contrast Damani et al.
(2024)’s method does not observe significant improvements for large inference budgets.

Third, while our work targets alignment with real-valued reward models, much of Damani et al.
(2024)’s evaluation focuses on binary rewards in domains such as math and coding. Although they
do include a real-valued reward setting in the chat domain, their experiments are limited to a single
LM, a single RM, and a single batch of prompts. In contrast, we conduct a broad empirical study
covering 12 LM–RM pairs and 50 distinct batches, providing a more comprehensive assessment of
prompt-adaptive alignment. In addition to Damani et al. (2024), there are few other works relevant
to us. We provide a summary of them in Appendix B.

2 PRELIMINARIES

2.1 NOTATION

Let X denote the space of prompts and Y be the space of responses. A LM π : X → ∆Y maps a
prompt to a distribution over responses, where we let ∆Y denote the set of all distributions on Y . A
reward model is a function r : X ×Y → R that maps a prompt and a response to a real-value. Given
a prompt x ∈ X , LM π, and reward model r, we will use r ◦ π(x) to denote the distribution over
rewards induced by passing x to π, sampling y ∼ π(x), and then computing r(x, y). Throughout the
paper, we use B to denote the per-prompt inference budget and K to denote the number of prompts
in a batch. Thus, for per-prompt budget B and batch size K, the total budget is BK. Finally, we
define [B] := {1, . . . , B} and abbreviate a sequence z1, . . . zn as z1:n.

2.2 INFERENCE-TIME ALIGNMENT AND BEST-OF-N SAMPLING

When aligning the responses of a LM with human values, one common approach is to use an external
reward model r : X × Y → R to evaluate the quality of its responses. Usually, the reward model is
trained using preference data and assigns higher scores to responses that exhibit desirable properties,
e.g. like helpfulness, harmlessness, coherence, relevance, and fluidity. In inference-time alignment,
the goal is modify the decoding procedure of π so as to maximize the the reward model r. Perhaps
the simplest way to do this is via Best-of-N sampling, which has received significant interest due to
being light-weight and model agnostic. Given a LM π, a sample budget N ∈ N, a reward model r,
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and a prompt x, the Best-of-N alignment procedure involves sampling N responses y1, . . . , yN ∼
π(x) and returning argmaxy∈{y1,y2,...,yN} r(x, y).

Despite its flexibility, Best-of-N alignment suffers from high computational costs due to its lack of
adaptivity – N inference calls are made for every prompt x ∈ X , where the N is typically chosen
via hyperparameter search and can be very large. This can often be wasteful if certain prompts
are “easier" to generate aligned responses for than others. The focus of this work is to design a
prompt-adaptive version of Best-of-N alignment.

2.3 THE INFERENCE ALLOCATION PROBLEM

In this paper, we consider adaptive Best-of-N alignment in the context of the following resource al-
location problem. We are presented with a collection of K prompts x1:K and a per-prompt inference
budget B, measured in the total number of queries we can make to the base LM π. An allocation
a ∈ [BK]K , is a vector of size K such that

∑K
i=1 ai ≤ BK. Here, ai represents the number of LM

calls allocated to prompt xi. For a fixed allocation a ∈ [BK]K , the quantity

E
Ri,j∼r◦π(xi)

[
K∑
i=1

max
j=1,...,ai

Ri,j

]
. (1)

is the cumulative expected reward obtained by running Best-of-N sampling with base policy π and
reward model r. The goal is to find an allocation that maximizes Equation 1.

In general, without knowledge of the true distributions r ◦ π(x1), . . . , r ◦ π(xK), the uniform allo-
cation is the minimax optimal non-adaptive allocation. By non-adaptive, we mean that the uniform
allocation does not depend on the realization of some of the realized rewards. This is in contrast to
an adaptive allocation, which may depend on some of the realized rewards.

Unsurprisingly, adaptivity is crucial for maximizing the cumulative sum of per-prompt rewards. As
a simple example, consider the case where there are two prompts x1 and x2 and let B = 25 be the
per-prompt budget. Suppose the reward distribution for x1 and x2 are Bernoulli distributions with
parameters p1 = 0.95 and p2 = 0.05 respectively. The non-adaptive uniform allocation allocates
25 samples each to x1 and x2, resulting in an expected reward of 2 − (1 − p1)

25 − (1 − p2)
25.

Alternatively, consider the following simple two-stage allocation procedure. For each prompt x1

and x2, sample d = 10 rewards. Let R1
1:d and R2

1:d be the realized rewards for prompt x1 and
x2 respectively. Then, if max{R1

1:d} = max{R2
1:d} = 1, the procedure allocates the remaining

2B − 2d = 30 queries arbitrarily. On the other hand, if max{R1
1:d} = 1 and max{R2

1:d} = 0,
the procedure allocates the remaining 2B − 2d = 30 queries to prompt x2 and vice versa. Finally,
if both max{R1

1:d} = max{R2
1:d} = 0, the procedure uniformly allocates the remaining 2B − 2d

queries among x1 and x2. Brute force computation shows that the expected reward of the two-stage
adaptive allocation is 1.87 while the expected reward of the uniform allocation is only 1.72.

While simple, the previous examples highlights the power of adaptivity for the inference allocation
problem. This is in line with the results of Snell et al. (2024), who highlight the importance of
estimating prompt “difficulty" for optimal test-time compute scaling. To that end, our focus in this
paper will be towards designing adaptive allocation policies A which sequentially allocate the total
budget BK across the K different prompts. The policy A need not allocate the inference budget all
at once, but can allocate its budget one at a time, adapting to the past realized rewards. In this sense,
the allocation returned by A is a random variable, where the randomness is due to the randomness
of the base LM π as well as any internal randomness that A decides to use.

Given an allocation policy A and a matrix of rewards {Ri,j}i∈[K],j∈[BK], where Ri,j ∼ r ◦ π(xi),
we will use A({Ri,j}, B) to denote the distribution over allocations induced by A, when the realized
rewards are {Ri,j}i∈[K],j∈[BK] and the per-prompt inference budget is B. Rather than choosing a
fixed allocation, our objective now is to design a (randomized) allocation policy A so as to maximize

E
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j

]
.

Although the space of allocation policies is massive, in this paper, we will focus our attention on
two-stage allocation policies A. These are policies which use a pre-determined per-prompt initial
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budget d ≤ B to explore each prompt, before committing to a fixed allocation for the remaining
budget. Our focus on two-stage policies is motivated by latency concerns – as the adaptivity of A
increases, one pays in latency as calls to the base LM π can no longer be parallelized. This is a
concern with existing adaptive Best-of-N sampling methods (Manvi et al., 2024; Sun et al., 2024).

3 AN ADAPTIVE TWO-STAGE ALLOCATION POLICY

In this section, we present a lightweight, two-stage allocation policy for the inference allocation
problem outlined in Section 2.3. Compared to Damani et al. (2024), our method does not require
training of any auxiliary model and can be used in a black-box fashion for any LM-RM combination.

The two-stage allocation policy follows in three steps. In the first step, for each prompt xi in the
batch, we sample d ≤ B times from r ◦ π(xi) and construct an estimate D̂i of r ◦ π(xi) using a
pre-specified distribution estimation procedure f . The total cost of this step is dK. In the second
step, for each prompt xi in the batch, we use D̂i to estimate the expected gain of sampling j more
times from r◦π(xi), for j = 1, . . . , (B−d)K. That is, if Ri,1:d is our sample of rewards for prompt
xi and D̂i is our estimate of the reward distribution r◦π(xi) constructed from Ri,1:d, then we would
like to compute for each j ∈ [(B − d)K], the scalar

Vi,j := EZ1,...,Zj∼D̂i
[max{Ri,1, . . . , Ri,d, Z1, . . . , Zj}] . (2)

In the last step, we use the vectors {Vi}i∈[K] to compute the remaining allocation A ∈ [(B−d)K]K

that maximizes
∑K

i=1 Vi,Ai
under the constraint that

∑K
i=1 Ai ≤ (B − d)K. We do so by using the

greedy procedure in Algorithm 1, which is optimal (Federgruen and Groenevelt, 1986) if the vectors
V1, . . . , VK are “concave" and monotonically increasing (i.e Vi,j+1 − Vi,j ≥ Vi,j+2 − Vi,j+1 and
Vi,j+1 ≥ Vi,j ). Fortunately, Proposition 3.1, proved in Appendix E, shows that this is the case.
Proposition 3.1. Let D be any distribution with finite first moment and c ∈ R be some constant.
Then, the function f(n) = EX1:n∼Dn [max{c,X1:n}] is concave and monotonically increasing.

Algorithm 1 Greedy Allocation
Input: Budget T ∈ N, monotonically increasing, “concave" reward vectors {Vi}i∈[K]

1 Initialize: a = [0]K .
2 for t = 1, . . . , T do
3 Let it ∈ argmaxi∈[K](Vi,ai+1 − Vi,ai

) and set ait = ait + 1

4 end
5 Return a.

In practice, we cannot compute Equation 2 exactly. Instead, we compute an estimate V̂i,j of Vi,j via
Monte Carlo sampling from D̂i, which can be done very efficiently based on our choice of the reward
distribution estimator in Section 3.1. While the greedy procedure may not be optimal when run on
the estimated vectors, it still serves as an efficient heuristic. Moreover, Monte Carlo estimation of
Vi,j does not exhaust our total budget BK as we no longer need to query the base LM.

Algorithm 2 Two-stage Adaptive Best-of-N (AdaBoN) Allocation Policy
Input: Per-prompt budget B, base LM π, reward function r, prompts x1:K , per-prompt exploration

budget d, estimation procedure f
1 For each i ∈ [K], use d inference calls to π to obtain initial rewards Ri,1, . . . , Ri,d.

2 For each i ∈ [K], pass Ri,1, . . . , Ri,d to f and obtain an estimate D̂i of r ◦ π(xi).

3 For each i ∈ [K] and j ∈ [(B − d)K], use Monte Carlo sampling to construct an estimate V̂i,j of

Vi,j = EZi,1,...,Zi,j∼D̂i
[max{Ri,1, . . . , Ri,d, Zi,1, . . . , Zi,j}] .

4 Get remaining allocation A by running Algorithm 1 with budget (B − d)K and vectors {V̂i}i∈[K].

A crucial property of AdaBoN is that it minimizes latency since calls to the base LM can be easily
parallelized. Indeed, only two calls to the base LM need to be made – the first call in the exploration
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Figure 1: Reward distribution for three different prompts from the AlpacaEval dataset when re-
sponses are generated from Meta-Llama-3-8B and evaluated using FsfairX-LLaMA3-RM-v0.1. We
provide reward distributions for the datasets in Appendix F.

.

stage and the second call once the remaining allocation has been determined. This is in contrast to
existing work which design more adaptive policies (Manvi et al., 2024). What remains now is how
to efficiently obtain an estimate of the reward distributions in Line 2 of Algorithm 2.

3.1 REWARD DISTRIBUTION ESTIMATION

To help guide our selection of estimation procedure in Algorithm 2, we plotted the histogram of sam-
ples from the reward distributions for several pairs of LMs, RMs, and prompts across the AlpacaE-
val, HH-RLHF, and PKU-SafeRLHF datasets. In Figure 1, we provide a few reward distribution
when the LM is Meta-Llama-3-8B and the RM is FsfairX-LLaMA3-RM-v0.1 for the AlpacaEval
dataset. Example reward distributions for the other datasets can be found in Appendix F. Across all
LM-RM pairs we consider (see Section 4), we find that reward distributions are mostly smooth, have
a few modes, and can be skewed. For such distributions, perhaps the simplest distribution estima-
tion procedure is kernel density estimation (KDE) using a Gaussian kernel (Węglarczyk, 2018). In
particular, given a sample of rewards Ri

1, . . . , R
i
d and a bandwidth parameter h, the Gaussian kernel

density estimate returns the density function f̂h(x) :=
1
dh

∑d
j=1 ϕ

(
x−Ri

j

h

)
, where ϕ is the density

function of a standard normal random variable. To pick the bandwidth h, we use Scott’s rule (Scott,
1979), a standard automatic bandwidth selection rule which sets h = σ̂d

1
5 , where σ̂ is the sample

standard deviation. To generate a sample according to a random variable with density f̂h, one first
samples a reward R ∼ {Ri

1, . . . , R
i
d} uniformly at random and then adds Gaussian noise with mean

0 and standard deviation h. Accordingly, Vi can be estimated efficiently via Monte Carlo sampling.

Despite its simplicity, in Section 4 we show that Gaussian KDE using Scott’s rule is remarkably
robust – it is sufficient to consistently outperform our benchmarks across all LM-RM pairs. To
compare, we also tried fitting Gaussian and Skew-Normal distributions using Maximum Likelihood
Estimation (MLE). We present these results in Table 16 in Appendix K.3 and find that they per-
formed worse than Gaussian KDE across most LM-RM pairs and datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We consider three datasets, AlpacaEval, HH-RLHF and PKU-SafeRLHF, and achieve
similar performance across all of them. For space reasons, we only present results for the AlpacaEval
dataset in the main text. Results for the two other datasets, HH-RLHF and PKU-SafeRLHF, are
in Appendix H. For each dataset, we construct n = 50 batches of size K by sampling prompts
uniformly at random without replacement from the total set of prompts. This ensures that all batches
have distinct prompts. For each batch size K we consider, we do this process once. The same
collections of 50 batches is then used across all experiments for that batch size and dataset.

Language and Reward Models. We consider a range of LMs and RMs, all around 8B parameters.
For LMs, we use Mistral-7B-v0.3, Gemma-7B, Qwen2.5-7B-Instruct, and Meta-Llama-3-8B. As
for RMs, we focus on real-valued RMs. In particular, we use RM-Mistral-7B, FsfairX-LLaMA3-
RM-v0.1, and ArmoRM-Llama3-8B-v0.1, all of which were also used by Sun et al. (2024).
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4.2 EVALUATION METRICS AND BENCHMARKS

Although our allocation strategy is designed to maximize the cumulative sum of max rewards, the
main objective we use for evaluation is the Batch Win Rate (BWR). Formally, for a batch of prompts
x1, .., xK , LM π, RM r, per-prompt inference budget B ≥ 1, and an allocation policy A, the batch
win rate of A against the uniform allocation a = [B, . . . , B], is defined as

BWRA(x1:K , B) := P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j >

K∑
i=1

max
j=1,...,B

Ri,j

]
+

1

2
· P

Ri,j∼r◦π(xi)
A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j =

K∑
i=1

max
j=1,...,B

Ri,j

]
. (3)

This metric measures the probability, over both the random draws from the distributions r ◦ π(xi)
and A, that our allocation beats the uniform allocation with the same inference budget. We weight
the probability of a tie by 1/2 to ensure that the BWR of the uniform allocation against itself is 0.50.
Hence, obtaining BWRs> 0.50 indicates outperforming the uniform allocation.

Our choice of the win rate over the expected cumulative max reward is because the scalar outputs of
RMs are often only meaningful comparatively. That is, for a prompt x and two responses y1, y2 ∈ Y ,
the precise values of r(x, y1) and r(x, y2) are often meaningless, as they can be logits of a language
model (Son et al., 2024; Ouyang et al., 2022; Christiano et al., 2017). On the other hand, the
comparisons are meaningful as the RM is usually trained using preference data under the Bradley-
Terry model (Bradley and Terry, 1952). Hence, r(x, y1) > r(x, y2) tells us that the response y1
is preferred over response y2. Our benchmark of the uniform allocation is natural since, without
knowledge of the true reward distributions, it is the minimax optimal non-adaptive allocation.

To get a better sense of the performance of AdaBoN, we also evaluate AdaBoN against uniform
allocation strategies with strictly larger inference budgets. For a batch x1:K , per-prompt budget B,
and number N ∈ N,

BWTRA(x1:K , N,B) := P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
K∑
i=1

max
j=1,...,Ai

Ri,j ≥
K∑
i=1

max
j=1,...,N

Ri,j

]
(4)

is the batch win-tie rate, i.e. the probability that A, with a total inference budget of BK, does at
least as good as the uniform allocation that allocates N queries to each prompt in the batch. The
main difference between Equations 3 and 4 is weighing the probability of a tie by 1 instead of a 1/2.
This is justified given that we will be competing against larger inference budgets.

One can also interpret BWTRA(x1:K , N,B) as the probability that AdaBoN survives against the
uniform allocation with a per-prompt budget N ∈ N. From this perspective,

SA(x1:K , B) :=

∞∑
N=1

BWTRA(x1:K , N,B) (5)

= E
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
argmax

N∈N

{
K∑
i=1

max
j=1,...,Ai

Ri,j ≥
K∑
i=1

max
j=1,...,N

Ri,j

}]

can be interpreted as the Expected Survival Time (EST) (Jenkins, 2005) for batch x1:K . Larger ESTs
indicate that AdaBoN with a per-prompt budget of B is competitive against uniform allocations with
larger budgets. Thus, larger ESTs imply computational savings – to obtain guarantees comparable
to having an inference budget of size SA(x1:K , B) ·K, one needs an inference budget of size BK.

Lastly, although Damani et al. (2024) study the same allocation problem, we do not compare with
their approach for the following reasons. First, we were unable to find an existing implementation of
their method or sufficient details about hyperparameter choices to implement their method faithfully.
Second, the approach by Damani et al. (2024) is more computationally demanding. It requires
training a separate MLP for each LM-RM pair and each value of b ∈ [BK]. For our experiments,
we set K = 5, B = 120 and consider 12 LM-RM pairs and 3 datasets. This results in needing to
train 216, 000 MLPs, which is computationally prohibitive.
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Table 1: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.57, 0.60] 0.58 [0.55, 0.60] 0.59 [0.55, 0.62]
Qwen 0.60 [0.59, 0.63] 0.62 [0.59, 0.65] 0.54 [0.51, 0.56]
Gemma 0.56 [0.51, 0.59] 0.55 [0.54, 0.59] 0.56 [0.53, 0.58]
Llama 0.58 [0.54, 0.63] 0.59 [0.55, 0.62] 0.59 [0.56, 0.62]

Table 2: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B and (b) Percent batches
with BWR > 0.50 for K = 5, B = 120, and d = 0.75B, both for the AlpacaEval dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [148, 152] 150 [148, 152] 151 [150, 155]
Qwen 152 [150, 154] 151 [150, 154] 153 [150, 156]
Gemma 148 [146, 150] 148 [147, 151] 149 [147, 151]
Llama 151 [148, 153] 151 [148, 153] 151 [149, 154]

(b)

LM RM
Mistral FsfairX Armo

Mistral 94% 92% 96%
Qwen 100% 98% 78%
Gemma 76% 92% 86%
Llama 92% 96% 92%

4.3 MAIN RESULTS

In this section, we mostly present results for K = 5, B = 120, and d = 0.75B. We estimate
the EST by capping the sum in Equation 5 to 2B. In Appendix K, we perform ablations where we
test the performance against various choices of K and B, keeping d = 0.75B fixed. For our reward
distribution estimation procedure, we use Gaussian kernel density estimation and pick the bandwidth
using Scott’s rule, as described in Section 3.1. To estimate the Vi,j’s in Line 4 of Algorithm 2, we
use Monte Carlo sampling with a sample size m = 1024. For the sake of replicability, we use
the standard generation function from Hugging Face (Wolf et al., 2019), and thus use the default
decoding strategy for all LMs. For a batch of prompts, we estimated its BWR (Equation 3)and EST
(Equation 5) by taking the average of the empirical BWR and empirical survival times over 100
runs. Due to space constraints, we only present the results for the AlpacaEval dataset in the main
text. We find similar results for the HH-RLHF and PKU-SafeRLHF datasets in Appendix H.

AdaBoN consistently and often significantly outperforms the uniform allocation. Table 2b
shows that AdaBoN outperforms the uniform allocation for more than 75% of the batches across
all LM-RM pairs. The performance is most prominent for the Qwen-Mistral pair, where AdaBoN
achieves a BWR > 0.50 for all batches. Moreover, Table 1 shows that for many LM-RM pairs,
AdaBoN actually achieves BWRs ≳ 0.60 on 50% of the batches. Figure 2a provides a more fine-
grained view of the distribution of BWRs for the Qwen-Instruct LM. We find that on some batches
AdaBoN achieves BWRs as high as 0.70. Despite its strong performance on the Qwen-Mistral and
Qwen-FsfairX pairs, Figure 2a also shows that the performance of AdaBoN drops for Qwen-Armo.
We explain this phenomena in Appendix G.1 by showing that the vast majority of reward distribu-
tions for this LM-RM pair are left-skewed. Results for the other LM-RM pairs are in Appendix G.

AdaBoN is competitive against larger inference budgets. Table 2a gives the median [Q1, Q3]
ESTs for AdaBoN across the 50 batches. AdaBoN obtains comparable performance against uniform
allocations with 20% larger inference budget. Because batches vary in difficulty, we consider the
distribution of ESTs across the 50 batches. Figure 2b gives a box-plot of the ESTs for the Qwen
LM. We observe ESTs ≥ 160, meaning that for these batches, AdaBoN is competitive with unif.
allocations at 33% larger inference budget. ESTs for other LM-RM pairs are in Appendix G.2.

AdaBoN performs better as batch size increases. In Appendix K.2, we fix B = 120 and d =
0.75B, and vary K ∈ {3, 5, 10, 15, 20}. Figure 3 shows that for all LM-RM pairs, the average BWR
increases as K increases from 3 to 20. For some LM-RM pairs, like Qwen-Mistral, the average BWR
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(a) BWRs (b) ESTs

Figure 2: Box plots of BWRs and ESTs across the 50 batches for the Qwen-Instruct LM when
K = 5, B = 120, and the exploration budget d = 0.75B on the AlpacaEval dataset.

Figure 3: Avg. BWR (±1 SE) as a function of K ∈ {3, 5, 10, 15, 20} when B = 120 and d = 0.75B
on the AlpacaEval dataset.

increases by as much as 0.15. Finally, Table 14 in Appendix K.2 shows that across most pairs of
LM-RM, the percent of batches with BWR > 0.50 increases with K. The results for the Mistral LM
are striking – when K = 20, AdaBoN achieves a BWR > 0.50 for 100% of batches for every RM.

AdaBoN maintains performance across inference budgets. In Appendix K.1, we fix K = 5,
d = 0.75B, and vary B ∈ {80, 100, 120, 140, 160}. Figure 9 shows that for all LM-RM pairs,
the average BWR of AdaBoN generally increases with B, albeit modestly. The modest gain in
performance is expected as the uniform allocation gets powerful with larger B (see Appendix D).

AdaBoN requires minimal hyperparameter tuning. A notable feature of AdaBoN is that it re-
quires minimal hyperparameter tuning. By using Gaussian kernel density estimation with an au-
tomatic bandwidth selector, there is only one hyperparameter – the exploration budget d. We find
that simply fixing d = 0.75B is a good initial guess. Table 3 in Appendix G.1 presents the median
BWR across the 50 batches after tuning the exploration budget d ∈ {0.60B, 0.7B, 0.75B, 0.80B}
to maximize the median BWR. We find that that setting the exploration budget to d = 0.75B incurs
a minimal drop in median BWR compared to the optimal choice of exploration budget.

5 DISCUSSION AND LIMITATIONS

This work revisits Best-of-N sampling and demonstrates that significant efficiency gains can be
achieved through prompt-adaptive allocation of the sampling budget. There are several limitations
to our approach. First, our method assumes that Gaussian kernel density estimation can sufficiently
estimate the reward distributions. This may not hold for discrete RMs. An interesting future direc-
tion is to better understand the choice of reward estimation procedure on AdaBoN. Second, while
our two-stage procedure is simple and effective, it does not dynamically refine its estimates during
allocation. A more sophisticated bandit-based method could potentially improve performance guar-
antees, at the cost of increased latency. Finally, our method assumes access to a batch of prompts,
making it less suitable for purely single-prompt settings. As such, it is an interesting future direction
to study our setup in the online setting, where prompts arrive sequentially.
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A DISCLOSURE OF LLM USAGE

LLMs were only used to aid and polish the writing in the Introduction, Related Works, and Discus-
sion sections.

B OTHER RELATED WORK

Beyond input-adaptive inference allocation, prior work has also explored adaptivity at different gran-
ularities.

Wang et al. (2024b) propose Difficulty-Adaptive Self-Consistency (DSC), a cost-efficient decoding
method for reasoning tasks that allocates sample budgets based on estimated query difficulty using
both prior and posterior signals. Unlike DSC, which focuses on difficulty-adaptive sampling for
reasoning tasks like arithmetic and commonsense QA, our work tackles inference-time alignment
in open-ended generation by allocating queries based on learned reward distributions rather than
problem difficulty.

Manvi et al. (2024) introduce capability-aware and mid-generation self-evaluations, allowing LMs
to decide,during or after generation,whether further sampling would yield better outputs, thereby
reducing compute without external reward models. Unlike this approach, which relies on self-
evaluation to adaptively terminate or continue sampling per prompt, our method uses a learned
model of reward distributions to allocate a fixed budget across prompts, focusing on batch-level
optimization in open-ended generation.

Finally, Zhang et al. (2024a) propose OSCA, a method for optimizing how inference-time compute
is distributed across a set of sampling configurations (e.g., temperature, model, prompt), aiming
to improve pass rates under tight compute budgets across coding and reasoning tasks. In contrast,
our work focuses on allocating a fixed compute budget across prompts, not configurations, based
on learned reward distributions, enabling prompt-adaptive inference in open-ended generation tasks
rather than pass@k accuracy in structured problem-solving.

These methods target different axes of adaptivity but do not address how to allocate a fixed budget
across multiple prompts. In contrast, we focus on the cross-prompt budget allocation problem,
aiming to maximize the sum of per-prompt maxima while retaining the low-latency, parallelizable
structure of Best-of-N sampling.

C DATASET AND MODEL ASSET DETAILS

Datasets. We consider three datasets:

• AlpacaEval (v2.0) : https://github.com/tatsu-lab/alpaca_eval, CC-BY-
NC-4.0 license.

• HH-RLHF: https://huggingface.co/datasets/Anthropic/hh-rlhf,
MIT License.

• PKU-SafeRLHF: https://huggingface.co/datasets/PKU-Alignment/
PKU-SafeRLHF,CC-BY-NC-4.0 license.

We did not perform any additional data scraping. For each dataset separately, we construct 50
batches of prompts per batch size setting using uniform random sampling without replacement.

Language Models (LMs). We use the following publicly available language models:

• Mistral-7B-v0.3: https://huggingface.co/mistralai/Mistral-7B-v0.
3, Apache 2.0 License.

• Gemma-7B: https://huggingface.co/google/gemma-7b, Gemma License
(non-commercial).

• Qwen2.5-7B-Instruct: https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct, Apache 2.0 License.
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• Meta-Llama-3-8B: https://huggingface.co/meta-llama/
Meta-Llama-3-8B, Llama 3 Community License.

Reward Models (RMs). We use externally provided real-valued reward models:

• RM-Mistral-7B: https://huggingface.co/weqweasdas/RM-Mistral-7B.
• FsfairX-LLaMA3-RM-v0.1: https://huggingface.co/sfairXC/
FsfairX-LLaMA3-RM-v0.1, CC-BY-NC-4.0 License

• ArmoRM-Llama3-8B-v0.1: https://huggingface.co/RLHFlow/
ArmoRM-Llama3-8B-v0.1, Llama 3 Community License

For all models and datasets, we follow their licensing terms and acknowledge the original sources.

D IMPACT OF INCREASING PER-PROMPT INFERENCE BUDGET B ON BWR

In this section, we corroborate our claim in Section 4.3 that the uniform allocation gets more pow-
erful as B increases. To see this, consider the same example considered in Section 2.3. Brute force
computation showed that when B = 25 and d = 0.20B = 5, the expected reward of the uniform
allocation was 1.72 while the expected reward of the simple two-stage allocation procedure was
1.87.

Now, if one considers B = 50 and keeps d = 0.20B, then brute force computation shows that
the expected reward of the uniform allocation is 1.92 while the expected reward of the simple two-
stage allocation procedure is only 1.98. Notice that the gap between the expected reward of the
simple two-stage allocation procedure and the uniform allocation has decreased as B increased.
This highlights the fact that the uniform allocation gets relatively more powerful as B increases.

E PROOF OF PROPOSITION 3.1

Proof. Let D be any distribution with finite first moment and c ∈ R. Consider the function f(n) =
EX1:n∼Dn [max{c,X1:n}] . We first show that f is monotonically non-decreasing. It suffices to
show that f(n) ≥ f(n − 1) for all n ≥ 2. Fix some n ≥ 2 and define the random variable Mn =
max{c,X1:n}, where X1:n ∼ Dn. Then, observe that Mn ≥ Mn−1 pointwise for every realization
of random variables X1:n ∼ Dn. Taking expectations of both sides, gives that f(n) ≥ f(n − 1),
completing this part of the proof.

We now prove that f is “concave". For n ≥ 2, define ∆n := f(n) − f(n − 1). It suffices to show
that ∆n+1 ≤ ∆n for all n ≥ 2. Fix some n ≥ 2. Observe that we can write

∆n = E
X1:n∼Dn

[Mn −Mn−1] = E
X1:n∼Dn

[(Xn −Mn−1)+]

where (x)+ = max(x, 0). Likewise, we can write

∆n+1 = E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] .

Hence, we need to show that

E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] ≤ E
X1:n∼Dn

[(Xn −Mn−1)+] .

Since Mn = max{Xn,Mn−1} and Xn ∼ D, we have that Mn ≥ Mn−1 pointwise for every
realization of random variables X1:n ∼ Dn. Thus, pointwise for any x ∈ R and realization of
random variables X1:n ∼ Dn, we have that

(x−Mn)+ ≤ (x−Mn−1)+.
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Taking expectations of both sides, we have that

E
X∼D,X1:n∼Dn

[(X −Mn)+] ≤ E
X∼D,X1:n−1∼Dn−1

[(X −Mn−1)+] .

Finally, noting that

E
X∼D,X1:n∼Dn

[(X −Mn)+] = E
X1:n+1∼Dn+1

[(Xn+1 −Mn)+] ,

and

E
X∼D,X1:n−1∼Dn−1

[X −Mn−1)+] = E
X1:n∼Dn

[(Xn −Mn−1)+]

completes the proof. ■

F REWARD DISTRIBUTIONS FOR HH-RLHF AND PKU-SAFERLHF
DATASETS

In this section, we provide some plots of reward distributions for Meta-Llama-3-8B and and FsfairX-
LLaMA3-RM-v0.1 for prompts from the HH-RLHF and PHU-SafeRLHF datasets respectively.
Like AlpacaEval, we observe that the reward distributions are general smooth and amenable to
Gaussian KDE.

(a) HH-RLHF dataset

(b) PKU-SafeRLHF dataset

Figure 4: Reward distributions for three different prompts when responses are generated from Meta-
Llama-3-8B and evaluated using FsfairX-LLaMA3-RM-v0.1.

G MISSING TABLES AND FIGURES FOR ALPACAEVAL DATASET

In this section, we provide the missing tables and figures from the main text for the AlpacaEval
Dataset.

G.1 BATCH WIN RATES

In this section, we provide box-plots of the BWRs for the remaining LM-RM pairs when K = 5,
B = 120, and d = 0.75B for the AlpacaEval dataset. We find that across all LM-RM pairs, AdaBoN

15
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achieves a BWR > 0.50 for the vast majority of batches. Moreover, AdaBoN consistently achieves
BWRs larger than 0.60 for ≈ 25% of batches for all LM-RM pairs.

(a) Mistral (b) Gemma (c) Llama

Figure 5: Box plots of BWRs for batch size K = 5, inference budget B = 120 and the exploration
budget d = 0.75B on the AlpacaEval dataset.

Table 3 provides the BWR for K = 5 and B = 120, when the exploration budget d is optimized
between {0.60B, 0.70B, 0.75B, 0.80B}. Here, we find that setting the exploration budget to d =
0.75B is a good guess as the optimized median BWR is not too much higher across all LM-RM
pairs.

Table 3: Median BWR for batch size K = 5, inference budget B = 120, and exploration budget
d optimized between {0.60B, 0.70B, 0.75B, 0.80B} to maximize the median dataset BWR on the
AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 0.58 0.59

Qwen 0.60 0.63 0.54

Gemma 0.56 0.56 0.56

Llama 0.59 0.59 0.59

Table 3 shows that the Qwen LM exhibits a significant drop in median BWR between the Mistral/Fs-
fairX RMs and the Armo RM. To investigate this, we plotted the reward distribution for the Qwen-
Armo LM-RM pair across several prompts. Compared to the Qwen-Mistral and Qwen-FsfariX LM-
RM pairs, we find that the reward distributions for the Qwen-Armo LM-RM pair are significantly
left skewed. This makes adaptivity less useful as the uniform allocation for batches with left-skewed
reward distributions is close to optimal. To capture this, Figure 6 plots a histogram of the skewness
(i.e. Pearson’s moment coefficient of skewness) of the reward distributions across all prompts for
the Qwen LM.
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Figure 6: Histograms of skewness (i.e. Pearson’s moment coefficient of skewness) of reward dis-
tributions for the Qwen LM across all prompts from the AlpacaEval dataset. We observe that
the reward distributions for the Qwen-Armo LM-RM pair is significantly more left-skewed than
Qwen-Mistral or Qwen-FsfairX. In fact, we find that the reward distributions for the vast majority
of prompts are left-skewed for the Qwen-Armo pair.

From here, we observe that indeed the reward distributions for the Qwen-Armo LM-RM pair are
significantly more left-skewed than the reward distributions of the Qwen-Mistral and Qwen-FsfairX
LM-RM pair. We provide the histogram of the skewness for the remaining LMs in Figure 7.

(a) Mistral (b) Gemma (c) Llama

Figure 7: Histograms of skewness (i.e. Pearson’s moment coefficient of skewness) of reward distri-
butions for the Mistral, Gemma, and Llama LM on prompts from the AlpacaEval dataset. Unlike
the Qwen LM, we observe that the skewness of the reward distributions for the other LMs do not
deviate significantly between RMs.

Compared to the Qwen LM, for the remaining LMs, we find that the histograms of skewness across
the reward distributions do not vary significantly between different RMs. This corroborates our
results in Table 3, which shows that the optimal median BWR is roughly the same across all RMs
for the Mistral, Gemma, and Llama LM.

G.2 EXPECTED SURVIVAL TIMES

Figure 8 provides the box-plots of ESTs for the remaining pairs of LM and RMs for K = 5,
B = 120, and d = 0.75B.
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(a) Mistral (b) Gemma (c) Llama

Figure 8: Box plot of ESTs for batch size K = 5, budget B = 120 and exploration budget d =
0.75B on the AlpacaEval dataset.

H RESULTS FOR THE HH-RLHF AND PKU-SAFERLHF DATASETS

In this section, we present our experimental results for the HH-RLHF and PKU-SafeRLHF datasets,
where we produce tables similar to Tables 1, 2a, and 2b in the main paper. Overall, we find that the
results resemble those for the AlpacaEval dataset for both BWRs and ESTs. Like the AlpacaEval
dataset, we find that the performance for the Qwen-Armo LM-RM pair is significantly lower than
the other LM-RM pairs for both datasets. Again, we found that for this LM-RM pair, the majority
of its reward distributions are left-skewed.

Table 4: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the HH-RLHF dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.55, 0.61] 0.60 [0.57, 0.62] 0.55 [0.53, 0.59]

Qwen 0.55 [0.52, 0.58] 0.54 [0.51, 0.57] 0.53 [0.50, 0.55]]

Gemma 0.54 [0.49, 0.57] 0.53 [0.47, 0.56] 0.55 [0.51, 0.57]

Llama 0.59 [0.56, 0.61] 0.57 [0.53, 0.59] 0.57 [0.55, 0.60]

Table 5: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B. (b) Percent batches with
BWR > 0.50 for K = 5, B = 120, and d = 0.75B on the HH-RLHF dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [146, 163] 151 [146, 169] 151 [146, 167]

Qwen 148 [141, 182] 150 [143, 222] 154 [147, 221]

Gemma 149 [143, 162] 149 [143, 157] 150 [144, 227]

Llama 153 [148, 182] 150 [144, 162] 154 [146, 183]

(b)

LM RM
Mistral FsfairX Armo

Mistral 94% 94% 92%

Qwen 80% 76% 72%

Gemma 70% 54% 76%

Llama 98% 82% 92%
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Table 6: Median [Q1, Q3] BWRs for K = 5, B = 120, and d = 0.75B on the PKU-SafeRLHF
dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.57 [0.55, 0.60] 0.57 [0.53, 0.60] 0.57 [0.55, 0.61]

Qwen 0.54 [0.53, 0.57] 0.56 [0.52, 0.60] 0.49 [0.46, 0.51]

Gemma 0.53 [0.50, 0.58] 0.58 [0.55, 0.60] 0.57 [0.53, 0.60]

Llama 0.56 [0.52, 0.59] 0.59 [0.54, 0.62] 0.61 [0.58, 0.62]

Table 7: (a) Median [Q1, Q3] EST for K = 5, B = 120, and d = 0.75B and (b) Percent batches
with BWR > 0.50 for K = 5, B = 120, and d = 0.75B, both for the PKU-SafeRLHF dataset.

(a)

LM RM
Mistral FsfairX Armo

Mistral 151 [145, 179] 152 [146, 190] 151 [146, 228]

Qwen 153 [147, 211] 151 [144, 197] 152 [146, 234]

Gemma 148 [145, 180] 151 [146, 210] 150 [143, 182]

Llama 151 [144, 163] 152 [145, 182] 154 [148, 197]

(b)

LM RM
Mistral FsfairX Armo

Mistral 96% 92% 88%

Qwen 88% 80% 38%

Gemma 74% 96% 90%

Llama 78% 94% 98%

I COMPARISON TO VARIANCE-BASED ADAPTIVE BASELINE

In this section, we benchmark the performance of AdaBoN against a simple variance-based adaptive
allocation policy we call VarBoN. VarBoN operates as follows. Similar to AdaBoN, VarBoN fixes
an exploration budget d = 0.75B, and samples d responses and rewards for each prompt in the
batch. Let {Ri,j}i∈[K],j∈[d] denote the corresponding set of rewards, where Ri,j denotes the the
j’th reward for the i’th prompt in the batch. Then, for each prompt i ∈ [K], VarBoN computes the
empirical standard deviation of Ri,1:d which denote by σ̂i. Finally, VarBoN constructs a distribution
π over [K] such that πi =

σ̂i∑
i σ̂i

and allocates a πi fraction of the remaining budget (B − d)K to
prompt i. In other words, the remaining inference budget is allocated proportionally to the empirical
standard deviation of rewards obtained during the exploration phase. Tables 8 and 9 compare the
BWR of AdaBoN against VarBoN and VarBoN against the uniform allocation respectively, for the
AlpacaEval dataset.

Table 8: Median [Q1, Q3] BWR of AdaBoN vs VarBoN for K = 5, B = 120, and d = 0.75B on
the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.58 [0.56, 0.61] 0.60 [0.58, 0.63] 0.59 [0.56, 0.61]
Qwen 0.56 [0.53, 0.59] 0.55 [0.52, 0.58] 0.54 [0.51, 0.56]
Gemma 0.57 [0.54, 0.60] 0.57 [0.54, 0.61] 0.55 [0.51, 0.59]
Llama 0.59 [0.56, 0.62] 0.60 [0.56, 0.62] 0.60 [0.57, 0.62]
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Table 9: Median [Q1, Q3] BWR of VarBoN vs Uniform Allocation for K = 5, B = 120, and
d = 0.75B on the AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.49 [0.48, 0.50] 0.49 [0.48, 0.50] 0.49 [0.48, 0.50]
Qwen 0.49 [0.46, 0.50] 0.48 [0.47, 0.50] 0.50 [0.48, 0.51]
Gemma 0.48 [0.46, 0.49] 0.50 [0.49, 0.51] 0.48 [0.47, 0.51]
Llama 0.50 [0.47, 0.51] 0.49 [0.48, 0.50] 0.48 [0.46, 0.49]

We find that VarBoN performs comparably to the uniform allocation, but worse than AdaBoN across
all LLM-RM pairs.

J PER-PROMPT WIN RATES

In this work, our main evaluation metric is the BWR, which compares the sum of the rewards across
the batch of prompts. This is natural given that our optimization objective, stated in Equation 1, is the
cumulative sum of rewards across the batch of prompts. However, in practice, the per-prompt win
rate is also important to ensure that our performance is not too bad for any particular prompt. Given
a batch of prompts x1:K and a per-prompt inference budget B, we define the average per-prompt
win rate as

WTRA(x1:K , B) :=
1

K

K∑
i=1

P
Ri,j∼r◦π(xi)

A∼A({Ri,j},B)

[
max

j=1,...,Ai

Ri,j ≥ max
j=1,...,B

Ri,j

]
.

In Table 10, we give the Median [Q1, Q3] WTR of AdaBoN across 50 batches of prompts from the
AlpacaEval dataset.

Table 10: Median [Q1, Q3] WTR of AdaBoN for K = 5, B = 120, and d = 0.75B on the
AlpacaEval dataset.

LM RM
Mistral FsfairX Armo

Mistral 0.51 [0.51, 0.52] 0.52 [0.51, 0.52] 0.52 [0.51, 0.52]
Qwen 0.51 [0.50, 0.52] 0.51 [0.50, 0.52] 0.51 [0.50, 0.51]
Gemma 0.51 [0.51, 0.52] 0.51 [0.51, 0.52] 0.51 [0.50, 0.52]
Llama 0.52 [0.51, 0.52] 0.52 [0.51, 0.52] 0.52 [0.51, 0.52]

From here, we find that despite AdaBoN only optimizing for the cumulative sum of rewards (and
hence the BWTR), it is still competitive with the uniform allocation on a per-prompt basis.

K ABLATIONS

In this section, we sweep over choices of B and K. We keep our choice of exploration budget
d = 0.75B fixed throughout and focus only on the AlpacaEval dataset.

K.1 VARYING BUDGET B

Keeping K = 5 fixed, we consider budgets B ∈ {80, 100, 120, 140, 160}. Since the result for
B = 120 is presented in the main text, we only present the results for the other four choices of
B. Table 11 summarizes the results and showcases that AdaBoN continues to outperform uniform
allocations at larger and smaller budget.
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Table 11: Percent of batches with BWR > 0.50 for budgets B ∈ {80, 100, 140, 160} on the Al-
pacaEval dataset, fixing batch size K = 5, and exploration budget d = 0.75B.

LM RM
Mistral FsfairX Armo

(a) B = 80

Mistral 96% 96% 92%

Qwen 90% 98% 66%

Gemma 68% 78% 54%

Llama 86% 96% 90%

(b) B = 100

Mistral 98% 100% 98%

Qwen 100% 100% 72%

Gemma 80% 84% 74%

Llama 96% 94% 100%

(c) B = 140

Mistral 92% 98% 98%

Qwen 100% 100% 60%

Gemma 68% 82% 82%

Llama 90% 94% 100%

(d) B = 160

Mistral 100% 100% 94%

Qwen 98% 100% 86%

Gemma 80% 92% 78%

Llama 90% 98% 100%
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Table 12: Median [Q1, Q3] BWRs for budgets B ∈ {80, 100, 140, 160} on the AlpacaEval dataset,
fixing batch size K = 5 and exploration budget d = 0.75B.

LM RM
Mistral FsfairX Armo

(a) B = 80

Mistral 0.58[0.54, 0.61] 0.57[0.55, 0.60] 0.56[0.53, 0.59]
Qwen 0.57[0.54, 0.59] 0.59[0.56, 0.61] 0.52[0.48, 0.55]
Gemma 0.53[0.49, 0.56] 0.54[0.51, 0.58] 0.51[0.49, 0.55]
Llama 0.55[0.52, 0.59] 0.58[0.55, 0.60] 0.57[0.52, 0.60]

(b) B = 100

Mistral 0.59[0.57, 0.61] 0.59[0.56, 0.60] 0.59[0.56, 0.61]
Qwen 0.57[0.55, 0.59] 0.60[0.56, 0.62] 0.53[0.50, 0.55]
Gemma 0.54[0.51, 0.58] 0.56[0.52, 0.59] 0.55[0.50, 0.58]
Llama 0.56[0.53, 0.59] 0.57[0.55, 0.60] 0.58[0.56, 0.62]

(c) B = 140

Mistral 0.59[0.55, 0.61] 0.59[0.56, 0.64] 0.59[0.55, 0.61]
Qwen 0.61[0.59, 0.64] 0.62[0.59, 0.65] 0.52[0.49, 0.56]
Gemma 0.53[0.50, 0.57] 0.56[0.52, 0.58] 0.55[0.51, 0.58]
Llama 0.58[0.55, 0.60] 0.59[0.55, 0.63] 0.58[0.56, 0.61]

(d) B = 160

Mistral 0.60[0.57, 0.63] 0.58[0.56, 0.64] 0.58[0.55, 0.61]
Qwen 0.59[0.56, 0.62] 0.60[0.58, 0.64] 0.53[0.52, 0.56]
Gemma 0.54[0.51, 0.59] 0.57[0.53, 0.60] 0.54[0.51, 0.59]
Llama 0.58[0.54, 0.61] 0.60[0.56, 0.62] 0.59[0.57, 0.63]

In fact, Figure 9 shows that the performance of AdaBoN improves as the per-prompt inference
budget B grows, although to a lesser extent than when K increases.
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(a) Mistral (b) Qwen-Instruct

(c) Gemma (d) Llama

Figure 9: Average BWR (±1 SE) as a function of B ∈ {80, 100, 120, 140, 160} when K = 5 and
d = 0.75B on the AlpacaEval dataset. Generally, we observe an increase in BWR as B increases,
although the improvements are modest.

This is further substantiated by Table 13, where each cell is the median [Q1, Q3] of the differences
BWRA(x

(1)
1:K , 160) − BWRA(x

(1)
1:K , 80), . . . ,BWRA(x

(50)
1:K , 160) − BWRA(x

(50)
1:K , 80) across all

50 batches x
(1)
1:K , . . . , x

(50)
1:K . Here, we observe strictly positive improvements in median per-batch

BWR as B increases from 80 to 160.

Table 13: Median [Q1, Q3] increase in BWR as budget increases from B = 80 to B = 160 on the
AlpacaEval dataset, keeping K = 5 and d = 0.75B fixed.

LM RM
Mistral FsfairX Armo

Mistral 0.022[-0.0088, 0.065] 0.015[-0.015, 0.050] 0.022[-0.024, 0.059]
Qwen 0.040[-0.0037, 0.060] 0.030[-0.015, 0.060] 0.030[-0.014, 0.054]
Gemma 0.028[-0.024, 0.069] 0.028[-0.014, 0.066] 0.030[-0.015, 0.049]
Llama 0.020[-0.01, 0.060] 0.025[0.0013, 0.045] 0.033[0.0, 0.071]

K.2 VARYING BATCH SIZE K

Keeping B = 120 fixed, we vary K with values in {3, 5, 10, 15, 20}. Since the result for K = 5 is
presented in the main text, we only present the results for the other four choices of K. Tables 14
and 15 summarize these results and showcases that the performance of AdaBoN improves with the
batch size K.
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Table 14: Percent of batches with BWR > 0.50 for batch sizes K ∈ {3, 10, 15, 20} on the Al-
pacaEval dataset. The per-prompt inference budget B and exploration budget d are fixed to 120
and 0.75B respectively.

LM RM
Mistral FsfairX Armo

(a) K = 3

Mistral 84% 84% 88%
Qwen 96% 100% 70%
Gemma 84% 68% 82%
Llama 88% 86% 84%

(b) K = 10

Mistral 98% 100% 100%
Qwen 100% 100% 82%
Gemma 86% 88% 80%
Llama 100% 100% 100%

(c) K = 15

Mistral 98% 98% 100%
Qwen 100% 100% 88%
Gemma 82% 90% 82%
Llama 96% 98% 100%

(d) K = 20

Mistral 100% 100% 100%
Qwen 100% 100% 82%
Gemma 88% 86% 88%
Llama 100% 100% 100%
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Table 15: Median [Q1, Q3] BWRs for batch sizes K ∈ {3, 10, 15, 20} for the AlpacaEval dataset,
fixing budget B = 120, and exploration budget d = 0.75B

LM RM
Mistral FsfairX Armo

(a) K = 3

Mistral 0.55[0.52, 0.57] 0.54[0.52, 0.56] 0.54[0.52, 0.56]
Qwen 0.56[0.54, 0.58] 0.57[0.55, 0.58] 0.53[0.50, 0.55]
Gemma 0.54[0.51, 0.57] 0.53[0.50, 0.56] 0.54[0.52, 0.56]
Llama 0.55[0.52, 0.58] 0.55[0.52, 0.56] 0.55[0.53, 0.58]

(b) K = 10

Mistral 0.63[0.59, 0.67] 0.61[0.58, 0.64] 0.61[0.59, 0.66]
Qwen 0.67[0.64, 0.70] 0.67[0.64, 0.69] 0.56[0.52, 0.61]
Gemma 0.56[0.53, 0.60] 0.56[0.53, 0.61] 0.57[0.52, 0.60]
Llama 0.62[0.59, 0.65] 0.63[0.59, 0.66] 0.65[0.62, 0.69]

(c) K = 15

Mistral 0.66[0.61, 0.70] 0.65[0.62, 0.70] 0.65[0.62, 0.69]
Qwen 0.71[0.67, 0.75] 0.69[0.65, 0.72] 0.57[0.54, 0.61]
Gemma 0.57[0.53, 0.60] 0.58[0.54, 0.62] 0.57[0.52, 0.60]
Llama 0.65[0.61, 0.68] 0.66[0.60, 0.70] 0.67[0.63, 0.70]

(d) K = 20

Mistral 0.69[0.65, 0.72] 0.66[0.63, 0.70] 0.65[0.62, 0.70]
Qwen 0.74[0.71, 0.77] 0.72[0.70, 0.75] 0.63[0.58, 0.68]
Gemma 0.59[0.55, 0.62] 0.59[0.53, 0.63] 0.57[0.52, 0.64]
Llama 0.67[0.64, 0.70] 0.68[0.62, 0.72] 0.69[0.65, 0.72]

K.3 IMPACT OF REWARD DISTRIBUTION ESTIMATOR

In this section, we present results for two other reward estimation procedures: Maximum Likelihood
Estimation for the Gaussian and Gumbel distributions. We show that for all LM-RM pairs and
datasets, these alternate reward estimations procedures perform worse than using Gaussian Kernel
Density Estimation.
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Table 16: Median BWRs for K = 5, B = 120, and d = 0.75B for the three reward distribution
estimations procedures we consider: Gaussian KDE (left), Gaussian MLE (middle), Skew-Normal
MLE (right). We find that for the majority of LM-RM combinations, using the Gaussian KDE
reward estimator results in the highest BWR, across all datasets.

LM RM
Mistral FsfairX Armo

AlpacaEval
Mistral 0.58, 0.56, 0.55 0.58, 0.61, 0.56 0.59, 0.57, 0.56
Qwen 0.60, 0.53, 0.49 0.62, 0.53, 0.49 0.54, 0.51, 0.48
Gemma 0.56, 0.52, 0.49 0.55, 0.54, 0.53 0.56, 0.54, 0.49
Llama 0.58, 0.59, 0.55 0.59, 0.58, 0.57 0.59, 0.58, 0.56

HH-RLHF
Mistral 0.58, 0.56, 0.55 0.60, 0.59, 0.56 0.55, 0.53, 0.52
Qwen 0.55, 0.53, 0.46 0.54, 0.52, 0.47 0.53, 0.52, 0.43
Gemma 0.54, 0.51, 0.48 0.53, 0.50, 0.48 0.55, 0.52, 0.49
Llama 0.59, 0.58, 0.52 0.57, 0.57, 0.53 0.57, 0.58, 0.54

PKU-SafeRLHF
Mistral 0.57, 0.55, 0.58 0.57, 0.58, 0.57 0.57, 0.57, 0.55
Qwen 0.54, 0.53, 0.45 0.56, 0.52, 0.46 0.49, 0.47, 0.44
Gemma 0.53, 0.52, 0.52 0.58, 0.57, 0.54 0.57, 0.56, 0.53
Llama 0.56, 0.53, 0.51 0.59, 0.58, 0.56 0.61, 0.58, 0.57
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