
CG-SSL: Concept-Guided Self-Supervised Learning

Sara Atito∗1,2 Josef Kittler2 Imran Razzak3 Muhammad Awais1,2
1 Surrey Institute for People-Centred AI, University of Surrey, UK

2Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK
3 Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE

sara.atito@surrey.ac.uk,imran.razzak@mbzuai.ac.ae
j.kittler@surrey.ac.uk,muhammad.awais@surrey.ac.uk

Abstract

Humans understand visual scenes by first capturing a global impression and then
refining this understanding into distinct, object-like components. Inspired by this
process, we introduce Concept-Guided Self-Supervised Learning (CG-SSL), a
novel framework that brings structure and interpretability to representation learning
through a curriculum of three training phases: (1) global scene encoding, (2)
discovery of visual concepts via tokenised cross-attention, and (3) alignment of
these concepts across views. Unlike traditional SSL methods, which simply enforce
similarity between multiple augmented views of the same image, CG-SSL accounts
for the fact that these views may highlight different parts of an object or scene.
To address this, our method establishes explicit correspondences between views
and aligns the representations of meaningful image regions. At its core, CG-SSL
augments standard SSL with a lightweight decoder that learns and refines concept
tokens via cross-attention with patch features. The concept tokens are trained
using masked concept distillation and a feature-space reconstruction objective.
A final alignment stage enforces view consistency by geometrically matching
concept regions under heavy augmentation, enabling more compact, robust, and
disentangled representations of scene regions. Across multiple backbone sizes, CG-
SSL achieves state-of-the-art results on image segmentation benchmarks using k-
NN and linear probes, substantially outperforming prior methods and approaching,
or even surpassing, the performance of leading SSL models trained on over 100×
more data. Code and pretrained models will be released.

1 Introduction

Deep neural networks have achieved huge success across a wide range of computer vision tasks, but
this success has come at the cost of increasingly large and expensive labeled datasets. Self-supervised
learning (SSL) offers a scalable alternative, enabling models to learn generalisable representations
from unlabeled data. SSL has shown promise not only in mainstream tasks such as image classification
and segmentation [1, 2, 3], but also in domains where annotations are limited or costly, such as
medical imaging [4, 5, 6], satellite imagery [7], underwater exploration [8], and beyond.

Within the SSL landscape, two families of approaches have proven particularly effective. Generative
methods, such as masked image modeling (MIM) [9, 10, 11, 12, 13], train models to reconstruct
occluded patches of input images. These methods are particularly effective at learning spatially
grounded features and fine-grained textures. However, they often fall short when it comes to
capturing high-level semantic information, typically underperforming on transfer tasks that require
robust, discriminative features [14]. In practice, such models require extensive fine-tuning and
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Figure 1: (a) CG-SSL overview: The model segments an image into N coherent “concept” regions.
Original image is passed through the teacher to obtain attention masks. Using the known geometry of
the crops, these masks are accurately mapped to augmented views v1, v2. Tokens from each region
are aggregated and consistency loss is applied between corresponding regions. (b) We evaluate frozen
representations using k-NN and linear probes. CG-SSL outperforms prior baselines, scales well with
model size, and in some cases surpasses models pre-trained on much larger datasets.

fail to generalise well with simple linear probes. In contrast, invariance-based methods [15, 16,
17, 18, 19] focus on aligning the representations of different augmented views of the same image.
These approaches produce features that are generally more transferable and better suited to global
classification tasks. Nonetheless, they rely on a critical assumption that the applied augmentations
do not alter the semantic content of the scene. In cluttered or complex visual environments, this
assumption frequently breaks down. Moreover, by compressing the image into a single vector
representation, these methods tend to discard spatial information, making them poorly suited for tasks
that require localisation or fine-grained reasoning, such as object detection and segmentation.

Recent works have attempted to bridge the gap between these paradigms. Methods like iBoT [16, 20]
and DINOv2 [21] integrate token-level predictions and masked modeling objectives to enhance
spatial awareness. While these models demonstrate strong performance and scalability, they continue
to treat image patches largely as independent units and do not explicitly encourage the formation of
coherent visual entities. As such, they fall short of modeling the structured, hierarchical nature of
visual perception observed in humans, where coherent regions are grouped [22, 23].

Finally, recent advances in region- and object-centric SSL [24, 25, 26, 27] have made progress toward
structured visual representations. However, many of these methods depend on pre-trained models or
heuristic objectives, which limits their scalability and hinders end-to-end learning.

To address these limitations, we propose Concept-Guided Self-Supervised Learning (CG-SSL),
a framework that explicitly discovers, tracks, and aligns coherent visual regions “referred to as
concepts” across augmented views. Rather than relying on implicit alignment through crop overlap,
CG-SSL learns a set of concept tokens dedicated embeddings that attend to image patches via
cross-attention. These tokens are refined using two auxiliary objectives: a masked concept distillation
loss that promotes consistency, and a feature-space reconstruction loss that encourages diversity
and completeness. In the final phase, CG-SSL tracks these discovered concepts across augmented
views by leveraging known geometric transformations. Using a reference image (a lightly augmented
version of the original - no cropping) as a stable anchor, we project attention masks into each
augmented view and aggregate the corresponding features to enforce cross-view consistency. This
structured alignment enables CG-SSL to learn stable and interpretable representations without any
supervision.

By combining global understanding with region-level structure and view-consistent alignment,
CG-SSL moves beyond existing limitations in SSL by producing representations that are not only
transferable but also interpretable and spatially coherent. We demonstrate that CG-SSL achieves
state-of-the-art (SOTA) performance on image segmentation benchmarks using only simple probes,
and approaches or surpasses models trained on orders of magnitude more data.

2 Related Works

SSL methods largely fall into two broad families: generative approaches that reconstruct input signals,
and invariance-based approaches that learn representations by enforcing consistency across views.
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As our work aligns more closely with the latter, we focus here on invariance-based methods, which
we organise into three levels of granularity: image-level, patch-level, and region-level.

Image-Level SSL. A key milestone in SSL was instance discrimination [28], where each image is
treated as its own class. This formulation paved the way for contrastive approaches such as InfoNCE
[29], SimCLR [19], and MoCo [17], which encourage agreement between views of the same image
while contrasting them against others. These methods achieved solid results on downstream tasks,
establishing cross-view consistency as a central principle in SSL. Subsequent work focused on
preventing collapse. Negative sampling [30] remains one solution, though it often relies on large
batch sizes. Alternatives include momentum encoders[15], clustering-based objectives [31, 18], and
entropy-based regularisation [32], all of which stabilise learning without explicit negatives.

While these methods vary in their learning objectives, they share a common assumption: the image
is treated as a holistic unit. However, this global perspective overlooks the rich spatial structure of
natural scenes. To address this, recent efforts have shifted toward learning at the patch or region level,
where spatial relationships and part-whole semantics play a central role.

Patch-Level SSL. Pixel- and patch-level SSL extends instance discrimination from global image
embeddings to local features within the spatial grid [33, 34, 35, 36, 16, 20, 21]. These methods aim
to learn dense representations by enforcing local consistency within and/or across augmented views.
The primary distinction among them lies in how positive patch correspondences are defined. Some
works [33, 28] use contrastive losses (e.g., InfoNCE) where matching pairs are drawn from the same
spatial location in the student and teacher outputs, while others [35, 36] rely on nearest-neighbor
patch alignment in feature space across views. Another class of methods, including iBOT [20] and
DINOv2 [21], extend global cross-entropy objectives to the patch level, matching representations of
masked and unmasked views in a studentteacher setup.

These patch-level objectives yield strong performance on dense prediction tasks. However, they still
treat each patch independently, without explicit modeling of spatial coherence across regions. As a
result, they may fail to capture structured patterns like compositional regions, which motivates the
transition to region-level methods that learn to group patches into coherent regions/concepts.

Region-/Concept-Level SSL. While image- and patch-level SSL has seen great success, recent work
has shifted toward learning structured visual representations by grouping regions or objects within
images. However, many of these methods are primarily designed for unsupervised segmentation
or object discovery, rather than general-purpose SSL. For example, PiCIE [37], STEGO [38], and
SegDiscover [39] cluster dense pixel features to enable semantic segmentation, often relying on
hand-tuned spatial priors or post-processing. Other approaches like SlotCon [24, 25], CrOC [26],
and CrIBo [27] aim to learn object-centric representations, but often depend on clustering or external
region grouping, limiting scalability.

In contrast, CG-SSL is designed as a general-purpose self-supervised framework. It learns to
discover and align coherent visual concepts in a fully end-to-end manner, without pretraining, offline
clustering, or handcrafted proposals. Concept tokens emerge via attention-based grouping, and
cross-view consistency is enforced through geometric alignment of discovered regions.

3 Methodology

We propose CG-SSL framework, which follows a three-phase curriculum: (1) capturing the global
image gist, (2) segmenting the scene into coherent regions, and (3) aligning these regions across
viewpoints. Each phase builds on the previous one, progressively enriching the learned representations.
Training is staged, with each phase introducing new objectives while retaining earlier ones which
enables the model to develop from broad understanding to fine-grained, aligned representations,
resulting in robust and interpretable SSL. An overview and results are shown in Figure 1.

3.1 Phase 1: Global Representation Learning

Human perception begins with an immediate grasp of the global structure of a scene [40, 41].
Cognitive psychology refers to this as global precedence, where low spatial frequency information
helps the visual system quickly form a “gist” of a scene before identifying individual components.
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The content of a gist usually includes a conceptual understanding of a scene, e.g. birthday party, the
spatial layout of the environment, and the identity of a few objects [42].

In machine vision, SSL has paralleled this phase through invariance-based methods, which aim to
learn global representations by making the model recognise that different views of the same image
correspond to the same underlying content. While this first phase of global feature learning is crucial,
it is also a well-established and heavily explored subfield of SSL. Rather than proposing a new
formulation, we adopt iBoT [20], a successor to DINO [18], because of its strong empirical results
and architectural simplicity. iBoT aligns both image-level cls token and patch-level embeddings
produced by a studentteacher pair of Vision Transformers (ViTs).

Let Es, Et denote the student and teacher encoders, and P [cls]
s , P [cls]

t , P [patch]
s , P [patch]

t their
respective projection heads for the cls and patch streams. From a single image x ∈ RH×W we
draw two stochastic augmentations v1, v2 ∼ T (x) ∈ Rh×w, typically h = 224, w = 224. Note
that channel dimensions are dropped for simplicity. The teacher receives the fully visible view v2,
whereas the student is given v1 after randomly masking a subset of its patches, denoted as v̂1. The
projected probability vectors are

a[cls]s,v1 = softmax
(P[cls]

s

(
E[cls]
s (v̂1)

)
τs

)
, a

[cls]
t,v2 = softmax

(P[cls]
t

(
E[cls]
t (v2)

)
−c[cls]

τt

)
, (1)

and analogously a
[patch]
s ,a

[patch]
t for patch tokens are computed. Here τs and τt are temperature

parameters and c[cls] is a running mean (centering) of the cls features, which prevents collapse.

The student is updated by minimising the cross entropy between its predictions and those of the
teacher. The cls token features are matched across views and the patch token features are matched
within the same view.
Lcls = −a

[cls]
t,v2

log a[cls]
s,v1 − a

[cls]
t,v1

log a[cls]
s,v2 , Lpatch = −a

[patch]
t,v1

log a[patch]
s,v1 − a

[patch]
t,v2

log a[patch]
s,v2 (2)

The overall iBoT objective is the weighted sum: LiBot = α1 × L[cls] + α2 × L[patch], where
α1, α2 > 0 balance the class- and patch-level signals. The teacher parameters are updated via an
exponential moving average (EMA) of the student: θt ← λθt + (1− λ)θs, with λ following a cosine
schedule from 0.996 to 1 during training [15].

3.2 Phase 2: Discovering Visual Concepts

While the global representations learned in Phase 1 capture overall scene identity, many downstream
tasks demand finer, object-level understanding. Cognitive research shows that humans naturally
organise visual input into coherent groups based on principles such as similarity, proximity, and
continuity, a process known as perceptual grouping or segmentation [43, 44]. Inspired by this, we
propose to decompose each image into N distinct regions. Each region is represented by a dedicated
concept token, as illustrated in Figure 2, which serves as a compact representation of that visual
component. Several elements of this phase are informed by insights from the object-centric learning
literature [45, 46] and are designed to promote the emergence of structured representations.

Given an augmented view v, the student and teacher ViT encoders produce patch-level features:

Fs = E [patch]
s (v̂), Ft = E [patch]

t (v) ∈ RS×D (3)

Here S = Sx × Sy denotes the total number of image patches, where Sx = h/p and Sy = w/p
correspond to the number of patches along the height and width dimensions, respectively, given a
patch stride of p. D represents the embedding dimension of the ViT backbone.

A learnable matrix C0 ∈ RN×D is used to initialise N concept queries, each intended to capture a
distinct, high-level visual component. These concept tokens interact with the student patch features
Fs via a lightweight clustering module C, composed of L Transformer decoder blocks. Within each
block, cross-attention mechanisms enable the concept tokens to attend to and integrate information
from the patch-level features. The cross-attention update at the `-th layer is given by:

Z`+1 = MHA(Q = Z`, K = Fs, V = Fs) + Z`, ` = 0, . . . , L− 1, Z0 = C0,

where MHA denotes multi-head attention. This iterative process produces the final set of concept
representations Z = ZL ∈ RN×D. Each decoder block also includes LayerNorm and feed-forward
sublayers, though these components are omitted from the equation for brevity.
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Figure 2: Overview of Phase 2. Given patch-level features from a masked student view, a set of
learnable concept tokens iteratively interact with the patch grid via a lightweight clustering module to
produce coherent region representations. The training is guided by two complementary objectives:
masked concept distillation, enforced by the loss Lcpt, and feature-space reconstruction, guided by
Lrec, both encouraging the emergence of meaningful and consistent region groupings.

Two design choices require clarification. First, stacking multiple cross-attention layers, L, allows each
token to iteratively refine its region representation, querying patches based on increasingly informed
prototypes. This results in sharper, more coherent region boundaries. Second, although many works
apply entropy-based regularisation (e.g., Sinkhorn) to prevent token collapse, we observed no such
issue with the concept tokens, thanks to Phase 1’s spatially diverse features. We show in the ablations
that adding Sinkhorn modestly reducing performance, so we omit it for simplicity.

To ensure the concept tokens are both meaningful and useful, we introduce two auxiliary objectives:
concept-level distillation and feature-space reconstruction.

Concept-level Distillation. The first objective builds directly on the asymmetric masking strategy
employed in Phase 1 and leverages it to guide concept-level learning. Given that the student network
receives a masked view of the image, while the teacher processes the full, unmasked version. As
a result, the student is encouraged to infer the structure of missing regions based on limited input,
while aligning with the teacher’s holistic understanding. The concept token sets from the student and
teacher, denoted as Zs,v and Zt,v respectively, are projected through a projection head and compared
using cross-entropy loss:

a[cpt]
s,v = softmax

(
P [cpt]
s (Zs,v)

τs

)
, a

[cpt]
t,v = softmax

(
P [cpt]
t (Zt,v)− c[cpt]

τt

)
, (4)

where P [cpt]
s and P [cpt]

t denote the student and teacher projection heads for the concept tokens and
c[cpt] is a running mean of concept features. The concept-level distillation loss is then defined as:

Lcpt = −a[cpt]
t,v1

log a[cpt]
s,v1
− a

[cpt]
t,v2

log a[cpt]
s,v2 (5)

Unlike the patch alignment objective in Phase 1, this loss encourages each concept token to capture
the global structure of its corresponding region, despite partial masking. As such, it serves as a
high-level signal that promotes consistency and the emergence of coherent region representations.

Feature-space Reconstruction. The second objective ensures that each concept token captures
sufficient information to reconstruct the teacher’s patch-level features. To achieve this, we use a
lightweight spatial broadcast decoder D, adapted from [47]. Each concept token is first broadcasted
over a 2D spatial grid of size Sx × Sy and then augmented with learned positional embeddings. This
results in a tensor of shape Sx × Sy ×D, which is processed by a shared CNN (with weights shared
across all concepts) to produce per-concept outputs of shape Sx × Sy × (D + 1).

Each per-concept output is split into two components: (i) a reconstructed patch feature map fn ∈
RSx×Sy×D, and (ii) a spatial confidence map γn ∈ RSx×Sy , where n ∈ {1, . . . N} indexes the
n-th concept. To integrate the reconstructions from all concepts, we perform a softmax over the N
confidence maps γ1, . . . , γN at each spatial location. This yields normalised attention weights mn

for each concept:

mn = softmax

(
γn

κ

)
∈ RSx×Sy , for n = 1, . . . , N, (6)
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Figure 3: Phase 3 Overview. Given a reference image xref , the model generates N attention masks
Mref, each capturing a learned concept (left). These masks are geometrically projected onto two
augmented views v1 and v2, producing M̄v1 and M̄v2 (middle). Patch tokens are then aggregated
per concept using the projected masks, yielding N concept vectors. These are passed through a
projection head and aligned via cross-entropy loss to enforce concept-level consistency across views
(right). Masks are overlaid on images for visualisation only.

where the softmax is computed independently at each spatial location across the N concepts, and κ is
a temperature parameter controlling the sharpness of the distribution.

The final reconstructed feature map is obtained by computing a weighted sum of the per-concept
reconstructions: F̂ =

∑N
n=1 m

n � fn ∈ RSx×Sy×D, where � denotes element-wise multiplication
broadcasted over the feature dimension D. Finally, the reconstruction loss is defined as:

Lrec =
∥∥∥F̂s,v − Ft,v

∥∥∥2 (7)

This objective encourages the concept tokens to distribute their representational capacity over different
spatial regions, ensuring a non-redundant and semantically rich decomposition of the scene.

The overall loss for Phase 2 combines both objectives: LPhase2 = α3Lcpt + α4Lrec, with weights
α3, α4 > 0. These terms are optimised jointly with Phase 1.

3.3 Phase 3: View-Invariant Alignment of Discovered Concepts

Once humans form abstract representations of concepts in a scene, they are able to recognise these
same entities under different lighting conditions, perspectives, or spatial configurations. This capacity,
often referred to as view-invariant recognition, allows us to perceive an object as the same despite
visual variations that arise naturally in everyday environments [48, 49].

Following the discovery of visual concepts in Phase 2, we aim to equip our model with a similar
ability by maintaining consistent concept representations across diverse augmented views. While
Phase 2 clusters spatial features into a fixed number of tokens, there is no guarantee that the same
concept appears in every augmented view, nor that it will be positioned or ordered consistently.
Therefore, trying to match across views, especially under strong augmentations, can be unreliable.
To address this, we design a guided alignment mechanism that uses a stable reference image as an
anchor for transferring concept regions to multiple views via geometric transformations.

Given an image x, we generate a lightly augmented reference view with no cropping, xref. The teacher
processes xref to produce mref, which is then thresholded to obtain binary masks Mref ∈ {0, 1}Sref×N ,
where each mask indicates the spatial support of a concept.

Using crop metadata, we project the Mref into the coordinate grids of v1, v2, obtaining M̄v1 , M̄v2 ∈
{0, 1}S×N . We then perform masked feature aggregation to obtain pooled concept features:

z̄ns,vk
=

∑
i,j M̄

i,j,n
vk
· Fi,j

s,vk∑
i,j M̄

i,j,n
vk + ε

, k ∈ {1, 2} (8)
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These per-concept vectors are projected via a shared head P[cpt] and compared across views using
cross-entropy loss:

Lgrp = −
∑
n∈V

[
ā[n]s,v1

log ā[n]s,v2 + ā[n]s,v2
log ā[n]s,v1

]
(9)

where V includes concept indices visible in both views. To ensure stability, we delay applying Lgrp
until concept tokens from Phase 2 have sufficiently converged. Full derivations, including mask
transfer, visibility conditions, and alignment schedules, are provided in the Appendix.

The overall loss in Phase 3 combines all preceding objectives: LCG-SSL = α1Lcls + α2Lpatch +
α3Lcpt + α4Lrec + α5Lgrp. For simplicity, we set αi = 1 for i = 1, . . . , 5.

Model ADE-20K Pascal-VOC Cityscapes
k-NN Linear k-NN Linear k-NN Linear

ViT-Small
SiT 14.9 20.6 35.8 45.4 – –
MC-SSL 18.2 22.2 54.5 61.4 – –
Dino 15.5 18.5 36.3 41.6 – –
iBot 19.3 23.6 48.1 56.4 – –
CG-SSL 25.8 28.9 60.8 66.7 34.2 39.1
CAPI (LVD-142M) 20.6 25.8 50.5 59.4 31.3 36.5

ViT-Base
MAE 17.3 23.1 46.8 55.6 – –
Data2Vec 2.0 16.8 21.2 47.4 48.9 – –
MC-SSL 23.3 27.2 60.8 65.1 – –
iBot 22.9 27.3 57.1 65.4 – –
CG-SSL 28.3 31.5 62.7 69.0 35.2 40.0
CAPI (LVD-142M) 28.3 33.6 61.8 70.3 36.9 41.9

ViT-Large
MAE 21.5 27.4 53.7 61.5 32.8 38.5
Data2Vec 2.0 24.2 27.6 57.5 58.1 32.8 38.2
iBot 26.0 30.7 60.2 68.8 35.7 39.8
CAPI 29.2 34.4 60.7 69.7 35.6 41.7
CG-SSL 30.5 35.6 64.0 70.6 36.3 45.5
DINOv2 (LVD-142M) 34.0 39.0 63.0 72.8 42.0 46.8
CAPI (LVD-142M) 32.1 37.2 63.8 72.7 38.9 44.3

Table 1: Comparison with state-of-the-art methods on semantic segmentation using frozen features.
We report k-NN and linear probe performance. CG-SSL consistently outperforms prior approaches,
highlighting the quality of its learned representations.

4 Experiments

We evaluate the effectiveness of CG-SSL framework through a series of experiments. We begin
by outlining our experimental setup, including datasets, architectures, and implementation details.
Next, we report quantitative and qualitative results on tasks involving whole-image understanding
and dense prediction. Finally, we conduct ablation studies to validate key components of our method.

4.1 Experimental Setup

Pretraining Dataset: Our main models are pretrained on ImageNet-1K without labels. For abla-
tion studies, we pretrain on a combination of dense datasets, namely PASCAL VOC [50], Visual
Genome [51], and MS-COCO [52], which together provide approximately 170K diverse images.

Implementation Details: We use ViT backbone with patch size 16×16, following standard ViT-S/16,
ViT-B/16, and ViT-L/16. We use N = 4 concept tokens and the clustering module C consists of
L = 4 transformer decoder blocks. The output of C, along with the encoder’s [CLS] and [patch]
tokens, are passed through a shared projection head comprising two linear layers with 2048 units
and GELU activations, followed by a 256-dimensional bottleneck. The output is L2-normalised and
projected into an 8192-dimensional embedding space. All models are trained using the AdamW
optimiser with a cosine learning rate schedule and an effective batch size of 256 distributed across 8
GPUs. We train ViT-S for 800 epochs, ViT-B for 500 epochs, and ViT-L for 300 epochs. Further
training and ablation details are included in the Appendix.
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ViT-S/16 ViT-B/16
KNN Linear KNN Linear

iBot 75.2 77.9 77.1 79.5
CG-SSL 74.7 77.7 76.8 79.0
CAPI(LVD-142M) – 71.5 – 79.6

(a) Multi-class Linear Classification

ViT-S/16 ViT-B/16
Pascal VGenome COCO Pascal VGenome COCO

iBot 89.4 30.3 57.4 90.1 30.4 58.2
CG-SSL 90.3 31.3 58.3 91.1 31.7 58.8

(b) Multi-label Linear Classification

Table 2: Image classification results employing ViT-S/16 and ViT-B/16 backbones.

4.2 Results

Dense Image Understanding. A core motivation behind CG-SSL is to produce semantically
rich and spatially localised representations via patch-level features. To evaluate the quality of
these representations, we conduct experiments on dense prediction tasks, specifically semantic
segmentation. We follow the k-NN and linear probe evaluation protocols from [53] and report mIoU
on three standard benchmarks: ADE20K [54], PASCAL VOC [55], and Cityscapes [56], refer to
Table 1.

Notably, CG-SSL achieves high k-NN performance across all datasets, often matching or even
exceeding the performance of strong baselines under linear probing. This is particularly impressive,
as k-NN relies purely on raw feature similarity without any additional training, making it a direct
measure of the intrinsic quality of the learned representations. For example, on Pascal VOC, CG-SSL
outperforms prior SOTA methods pre-trained on 100× more data, i.e. CAPI, by a wide margin
of over 10 mIoU in the k-NN setting for the ViT-S backbone. This substantial boost under a
non-parametric evaluation setup demonstrates that CG-SSL learns highly discriminative and well-
structured representations suitable for spatial reasoning and region-based understanding.

Image Classification. We evaluate CG-SSL using a standard linear probing setup on multi-class and
multi-label classification tasks. As shown in Table 2, while CG-SSL shows slightly lower performance
than iBOT on ImageNet (the pretraining dataset), it consistently outperforms iBOT on other datasets
such as Pascal, COCO, and Visual Genome. This is expected as our method balances both global
representation and dense localisation, which may slightly reduce image-level discrimination on seen
data but yields stronger generalisation to unseen domains.

Qualitative Comparison of Dense Feature Representations via PCA. We adopt the qualitative
feature analysis proposed in CAPI [53], applying PCA to the dense output features. As shown in
Figure 4, we visualise the first three principal components as an RGB composite and compare CG-
SSL against SOTA vision models employing ViT-L backbone, except for I-JEPA, which uses ViT-H.
Among all methods, CG-SSL produces some of the most discriminative and spatially coherent feature
maps. The visualisations reveal a clear emergence of object boundaries with minimal noise in uniform
regions. Compared to CAPI and DINOv2, CG-SSL features appear less noisy. Moreover, in contrast
to masked image modeling (MIM) methods, CG-SSL focuses more effectively on semantically
meaningful regions of the image. More visualisations are in Appendix.

Image MAE I-Jepa D2V2 DI-
NOv2+r

CAPI CG-SSL

Figure 4: Comparison of feature visualisations produced by CG-SSL ViT-L/16 and SOTA methods
on 560-pixel resolution images. We apply PCA to the dense feature maps. The first column displays
a composite RGB image formed from the first three principal components.

As further qualitative assesment, we visualise the attention maps produced by our model on randomly
selected images outside the ImageNet-1K dataset (Figure 5). Each map highlights a distinct concept,
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showing the model’s ability to localise semantically meaningful regions, even under occlusion. For
instance, in the second image, the model accurately identifies the visible part of the cow despite being
partially obscured by a person.

Figure 5: Attention maps for learned concepts using ViT-L/16 pretrained on ImageNet-1K.

(a) Correspondence between two augmented views of same image.

(a) Correspondence between two different images from same class.

Figure 6: Top 12 patch correspondences extracted by CG-SSL with ViT-L/16.

Sparse Correspondence. We tackle a sparse correspondence task in which patches from two images
belonging to the same semantic class are expected to be matched. To assess performance, we visualise
the top 12 correspondences with the highest self-attention scores, obtained from a ViT-L/16 model
pre-trained on ImageNet-1K using our CG-SSL framework. The image pairs are sampled from the
ImageNet validation set.

Figure 6 presents representative examples of such correspondences. In Figure 6a, CG-SSL exhibits
near-perfect correspondence matching between two augmented views of the same image, accurately
aligning nearly all patch pairs.

Moreover, as depicted in Figure 6b, CG-SSL effectively establishes meaningful correspondences
across two different images of the same class, despite substantial differences in texture, color, pose,
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and background context. These results underscore the robustness and generalisation capabilities of
the learned representations, demonstrating their suitability for fine-grained, patch-level retrieval tasks.

ADE Pascal
DINO 15.6 35.7
iBot 18.8 47.2
CG-SSL
[Stage 1,2] 21.4 53.4

CG-SSL
[Stage 1,2,3] 24.3 56.1

(a)

ADE Pascal
Frozen

Kmeans 23.1 54.8
Ours
[Frozen] 22.9 54.6

Learnable
SlotAttn 19.8 52.2
Ours 24.3 56.1

(b)

ADE Pascal
2 23.8 55.3
4 24.1 55.9
6 24.3 56.1
8 24.0 55.7
12 23.8 55.5

(c)

ADE Pascal
1 23.9 55.9
2 24.0 56.0
4 24.3 56.1
8 23.8 55.9

(d)

κ ADE Pascal
0.1 23.8 55.9
0.3 24.1 56.0
0.5 24.3 56.1
0.8 23.7 55.1
1 23.3 55.0

(e)

ADE Pascal
Pixels 23.8 55.6
Features 24.3 56.1

(f)

Shared ADE Pascal
3 24.3 56.1
7 23.4 49.8

(g)

Lpatch ADE Pascal
3 24.3 56.1
7 24.1 56.0

(h)

Table 3: Ablation study of the design choices in our framework. We report linear performance on
image segmentation tasks. We highlight the default setting in gray, and bold the best-performing
solution. An in-depth analysis of these results is provided in the Appendix.

4.3 Ablation Studies

We conduct a comprehensive set of ablations to show the impact of key design choices in CG-
SSL, including (a) incremental component build-up across training phases, (b) learnable vs. frozen
clustering modules, (c) varying the number of concept tokens, (d) decoder depth in the clustering
module, (e) reconstruction temperature, (f) choice of reconstruction target, (g) projection head sharing
between [CLS] and concept tokens, and (h) retaining patch-level loss in later phases. Results are
reported in Tables 3a-3h. For detailed analysis and additional ablations, see Appendix.

5 Discussion and Concluding Remarks

We introduced CG-SSL, a structured self-supervised framework that discovers, organises, and
aligns semantic concepts across views without requiring manual supervision or pretrained models.
Through a three-phase curriculum, global representation learning, concept discovery, and view-
invariant alignment, CG-SSL bridges the gap between global discriminative features and spatially
coherent representations. Our experiments shows that CG-SSL achieves strong performance on
both classification and segmentation tasks, outperforming several baselines and even rivaling models
trained on substantially larger datasets. Notably, the use of concept tokens enables interpretability
and spatial localisation that are difficult to achieve with conventional invariance-based methods.

Limitations and Future Work. While CG-SSL provides structured and interpretable represen-
tations, the number of concept tokens is fixed across images, which may be suboptimal for scenes
with varying complexity. Looking forward, we aim to explore adaptive mechanisms for determining
the number of concept tokens per image and to extend CG-SSL to video, enabling temporal concept
tracking. Importantly, this work was developed by a group with modest computational resources. As
was the case with DINOv2, which achieved significant performance gains by scaling and optimising
iBOT, we believe CG-SSL has similar potential to benefit from scaling and extensive hyperparameter
tuning. We hope the community can build upon this foundation and explore its full capacity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper aims to improve self-supervised learning (SSL) by addressing the
limitations of current SSL methods, introducing a concept-guided approach that aligns visual
concepts across views to enhance representation quality.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a limitation section at the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No theoretical assumptions made.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All implementation and training details are provided in Section 4.1. Addition-
ally, code and pretrained models will be made publicly available to facilitate reproducibility
and ease of use.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and pretrained models will be made publicly available to facilitate
reproducibility and ease of use. Additionally, code will be submitted with the supplementary
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use standard benchmarks with pre-defined train/val/test splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the high computational cost of training our full models, we report
results from a single run. While we acknowledge the importance of reporting variance,
our primary findings are based on consistent evaluation protocols and strong performance
margins across benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are mentioned in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the NeurIPS Code of Ethics are respected.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: While our work focuses on improving visual representation learning from
natural imageswith potential benefits for downstream applications such as medical imaging,
environmental monitoring, and accessibility, we also acknowledge possible negative societal
impacts. These include misuse in surveillance or biased decision-making if applied without
fairness considerations. Although a detailed analysis is beyond the scope of this paper, we
briefly discuss these issues in the supplementary material.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our code builds upon publicly available repositories licensed under CC-BY
4.0. All such sources are clearly credited within the codebase wherever they are used, in
accordance with the license terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was only used for enhancing the writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Additional Details For Phase 3: View-Invariant Alignment

Once the model learns to decompose an image into coherent concepts (Phase 2), the next step is to
ensure that these concepts are consistently recognised across different augmented views. Human
vision naturally achieves this through view-invariant recognition, maintaining stable representations
of entities under transformations such as cropping, flipping, or color variation [48, 49].

However, directly matching concept tokens across views is unreliable due to their permutation-
invariant and view-specific nature. To address this, we design a guided alignment mechanism that
uses a stable reference image as an anchor for transferring concept regions to multiple views via
geometric transformations.

For each input image x ∈ RH×W , we generate:

• A reference view xref ∈ Rĥ×ŵ via light augmentations (no cropping), fed unmasked to the
teacher.

• Two strongly augmented views v1, v2 ∼ T (x) ∈ Rh×w, each associated with crop parame-
ters:

φ(k) =
(
x
(k)
0 , y

(k)
0 , w(k)

crop, h
(k)
crop,flip

(k)
)
, k ∈ {1, 2} (10)

The teacher processes xref to produce concept attention masks Mref ∈ {0, 1}Sref×N , where Sref =
Sref,x × Sref,y is the number of patches in the reference view and N is the number of concept tokens.

Mask Transfer via Geometry. Let (i, j) denote a patch coordinate in the reference grid. We define
its normalized center as:

u =
i+ 0.5

Sref,x
, v =

j + 0.5

Sref,y
(11)

This patch is visible in view vk if:

x
∗(k)
0 ≤ u < x

∗(k)
0 + w∗(k)

crop , y
∗(k)
0 ≤ v < y

∗(k)
0 + h∗(k)

crop (12)

where the crop parameters are normalized by the original image size H ×W . For visible patches, we
compute the projected patch index (i′, j′) in view vk:

i′ =

⌊
Svk,x ·

u− x
∗(k)
0

w
∗(k)
crop

⌋
, j′ =

⌊
Svk,y ·

v − y
∗(k)
0

h
∗(k)
crop

⌋
(13)

If horizontal flipping is applied (flip(k) = 1), then i′ ← Svk,x − 1− i′. The transferred binary mask
M̄n

vk
∈ {0, 1}Svk for concept n is defined as:

M̄n,i′,j′

vk
=

{
Mn,i,j

ref , if Eq. 12 holds,
0, otherwise

(14)

Masked Feature Aggregation. Let Fs,vk ∈ RSvk
×D denote the student’s patch features for view vk.

We compute aggregated concept features by masked average pooling over patches:

zns,vk =

∑
i′,j′ M̄

n,i′,j′

vk
· f i′,j′s,vk∑

i′,j′ M̄
n,i′,j′
vk + ε

(15)

Only concepts that are visible in both v1 and v2 (i.e., with non-zero denominator in both) are aligned.
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Concept-Level Alignment Loss. Each aggregated concept feature zns,vk
is passed through a shared

projection head P [cpt], and softmax-normalized:

a[n]s,vk
= softmax

(
P [cpt](zns,vk

)

τs

)
(16)

The group-level consistency loss is defined as cross-entropy across matching concepts:

Lgrp = −
∑
n∈V

[
a[n]s,v2

· log a[n]s,v1 + a[n]s,v1
· log a[n]s,v2

]
(17)

where V is the set of concept indices visible in both views. This loss enforces consistent representa-
tions for matched concepts under geometric variation.

Training Schedule. To ensure stable alignment, we delay the application of Lgrp until the model has
learned coherent concept masks from Phase 2.

Ltotal = α1L[cls] + α2L[patch] + α3Lcpt + α4Lrec + α5Lgrp (18)

B Experimental Setup

Implementation Details. We use ViT backbone with patch size 16× 16, following standard ViT-
S/16, ViT-B/16, and ViT-L/16 configurations with embedding dimensions of 384, 768, and 1024,
respectively. Each encoder outputs a sequence of patch tokens and a global [CLS] token.

For the clustering module C, we use N = 4 concept tokens and C consists of L = 4 transformer
decoder blocks. The output of C, along with the encoder’s [CLS] token and [patch] tokens, is
passed through a shared projection head comprising two linear layers with 2048 units and GELU
activations, followed by a 256-dimensional bottleneck. The output is L2-normalised and projected
into an 8192-dimensional embedding space.

The broadcast decoder D, adapted from [47], reconstructs teacher patch features from the concept
tokens. Each token is broadcasted to the patch grid size, augmented with learned positional encodings,
and processed with a shared MLP to produce patch-wise reconstructions fn and unnormalised
attention weights γn; the final reconstruction is computed using softmax-normalised weights with
temperature κ = 0.5. The decoder output dimension D matches the backbone’s embedding size.

For the reference image in Phase 3, we use a higher-resolution input of 448 × 448, resulting in
a denser set of patch tokens, enhancing the quality of concept representations. Since there is no
backpropagation from the teacher model, the increased resolution introduces minimal computational
overhead.

All models are trained using the AdamW optimiser with a cosine learning rate schedule. We largely
follow the iBOT pre-training hyperparameters, with the exception of increasing the masking ratio
from 30% to 40%. We trained the models with effective batch size of 256 distributed across 8 GPUs
on ViT-S for 800 epochs, ViT-B for 600 epochs, and ViT-L for 400 epochs.

For ViT-S/16, Phase 1 is applied for the first 50% of the training epochs, followed by Stages 1+2
for the next 10%, and the full pipeline (Stages 1+2+3) for the final 40%. These phase proportions
are based on empirical intuition and have not been exhaustively tuned. For ViT-B/16 and ViT-L/16,
we initialise from iBOT-pretrained weights to avoid redundant computation and reduce energy
consumption. To ensure a fair comparison, we also continue training the original iBOT models under
our schedule. However, we observe that their performance degrades with further training when using
the original iBOT objectives.

Time and Memory Requirements. CG-SSL takes approximately 24 minutes per epoch to pre-train
a ViT-B/16 model using 8 GPUs with an effective batch size of 256. Compared to iBOT, our method
takes about 6.5 minutes longer per epoch and uses roughly 4.6 GB more GPU memory under the
same training setup. While CG-SSL is approximately one epoch per hour slower, the added compute
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is a reasonable trade-off for the improved spatial consistency, interpretability, and robustness of the
learned representations.

C Visualisations

Qualitative Comparison of Dense Feature Representations via PCA. We adopt the qualitative
feature analysis methodology proposed in CAPI [53], applying PCA to the dense output features,
E[patch]
t (x), extracted across all images. As shown in Figure 7, the second column visualises the first

three principal components as an RGB composite, while the subsequent six columns show each of
the first six components individually.

Each component highlights distinct semantic regions, revealing that CG-SSL encodes meaningful
visual concepts. Notably, the components differentiate object parts from the background, indicating
the model’s ability to disentangle structured elements of the scene. This visualisation underscores the
spatially localised and interpretable nature of CG-SSL’s learned representations.

Pattern Layout of CLS vs Concept Tokens. For this experiment, we used the MSCOCO dataset,
known for its visually rich and dense scenes. We extracted CLS token features and concept token
features using a ViT-S/16 model pre-trained on ImageNet-1K. The clustering results, based on
MSCOCO images, are shown in Figure 8 and Figure 9, respectively. By examining the top clusters,
we observed several notable patterns.

CLS token features tend to capture the global context or overall “scene gist” of an image. This is
evident in Figure 8, where images are grouped based on their broader visual setting. For instance,
airplanes in the sky are clustered together, while those on the ground form a separate group. These
clusters reflect how CLS tokens prioritise high-level scene understanding.

In contrast, concept token features focus more on localised and object-specific information. For
visualisation clarity, we overlay the attention maps of each concept token on the images, highlighted
in red. As shown in Figure 9, unlike CLS tokens, background elements are less influential in these
features, leading to tighter focus on object-centric regions. For example, airplanes are clustered
irrespective of whether they are flying or on the ground, and elephants are grouped across varying
backgrounds. Even when only partial object visibility is present, concept tokens effectively capture
the object identity.

A particularly interesting observation is the emergence of fine-grained clusters. In the last row of
Figure 9, we see a distinct cluster composed entirely of hands from different images, activities, and
viewpoints. This suggests that concept tokens are not only able to localise objects but also capture
consistent semantic parts across varied visual contexts.
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Figure 7: Visualisation of the features produced by CG-SSL ViT-L/16 applied to images at 560 pixel
resolution. Images are randomely selected from validation set of ImageNet-1K dataset.
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Figure 8: Visualisation for pattern layout of [CLS] token.
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Figure 9: Visualisation for pattern layout of concept tokens.
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D Detailed Ablation Analysis

We conduct comprehensive ablation studies to systematically analyse the influence of various design
choices on our model’s performance. Given resource constraints, we pretrain our model using a
selected combination of dense datasets, namely PASCAL VOC, MS-COCO, and Visual Genome,
which contains approximately 170K diverse samples. Our training employs the ViT-S/16 architecture
for a total of 500 epochs. Although utilising 10% of ImageNet for ablation studies might seem a
more conventional choice, we deliberately opt for these datasets due to their inherent complexity,
characterised by crowded scenes and multiple objects, rather than the dominant, centrally located
subjects typically found in ImageNet images. This selection enables us to rigorously evaluate our
model’s capability to extract meaningful representations from complex and cluttered visual scenes,
an important aspect often underexplored in current self-supervised learning research. To ensure a fair
comparison, we pretrain our baseline method, iBot, under identical conditions using the same dataset
combination.

Our initial goal was to conduct the entire study exclusively on these challenging datasets. However,
given the community’s emphasis on ImageNet benchmarks, we include ImageNet-based comparisons
to provide a clearer context for our findings. While our approach already outperforms state-of-the-art
methods, we believe that conducting ablation studies directly on ImageNet could further enhance our
results.

All numbers are mean intersection-over-union mIoU on ADE20K / Pascal-VOC using the ViT-S/16
backbone with a frozen linear probe, as in Table 3 of the main paper.

D.1 Curriculum Build-up Across the Three Phases

As shown in Table 4, while DINO and iBOT offer strong global representations, they fall short
on dense prediction tasks, reaching only 15.6/35.7 and 18.8/47.2 mIoU on ADE20K and Pascal,
respectively. Adding Phase 2 improves the structure of learned features by grouping spatial regions
into object-like concepts, which raises performance to 21.4/53.4. Phase 3 further aligns these concepts
across views, enforcing spatial consistency and yielding the final boost to 24.3/56.1. This progression
shows the importance of both discovering region-level structure and ensuring it transfers across
viewpoints.

Model / Phases ADE Pascal
DINO baseline 15.6 35.7
iBOT baseline 18.8 47.2
CG-SSL (Stage 1 + 2) 21.4 53.4
CG-SSL (1 + 2 + 3) 24.3 56.1

Table 4: Effect of progressively adding the three curriculum phases.

D.2 Clustering Strategy for Concept Tokens

We explored several alternatives to the learnable clustering module in Phase 2 as shown in Table 5.
Surprisingly, even a simple k-means clustering on the reference image, followed by geometric
alignment, achieved 23.1/54.8 on ADE20K/Pascal. This highlights the strength of Phase 3. However,
this setup adds nontrivial computational overhead due to the per-image clustering step, making it less
scalable.

When we used our clustering module but froze it after initial training, performance dropped slightly
(22.9/54.6), indicating that allowing the grouping mechanism to remain adaptive is important for
maintaining accuracy.

Slot Attention, despite being learnable, resulted in a marked drop (19.8/52.2). Investigation revealed
that tokens collapsed to the same spatial location across images, even with Sinkhorn normalisation,
leading to low-quality groupings. Nonetheless, this setup still outperformed iBOT (18.8/47.2),
suggesting that cross-view matching in Phase 3 provides consistent benefits, even when the reference
regions are poorly formed.
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Clustering module ADE Pascal
K-means (Frozen) 23.1 54.8
CG-SSL (Frozen clustering Module) 22.9 54.6
Slot-Attention (learnable) 19.8 52.2
CG-SSL (ours) 24.3 56.1

Table 5: Impact of alternative cluster assignment mechanisms.

D.3 Number of Concept Tokens N

We evaluated the model’s robustness to different numbers of concept tokens N as shown in Table 6.
Performance remains stable across a range of values, with a peak at N = 6. In the main ImageNet
experiments, we set N = 4 as the dataset is less complex.

N ADE Pascal
2 23.8 55.3
4 24.1 55.9
6 24.3 56.1
8 24.0 55.7
12 23.8 55.5

Table 6: Sensitivity to the number of concept tokens.

D.4 Depth L of the Clustering Module

We evaluate the impact of the number of transformer decoder blocks (L) in the clustering module.
While using L = 4 yields the best performance, overall results are relatively stable across different
number of blocks.

L ADE Pascal
1 23.9 55.9
2 24.0 56.0
4 24.3 56.1
8 23.8 55.9

Table 7: Effect of clustering module depth.

D.5 Sharing the Projection Head

We investigate whether the projection head should be shared between the [CLS] token and the concept
tokens. Empirically, sharing improves performance, suggesting that a unified embedding space may
benefit alignment. However, we believe that this design choice requires deeper analysis. For instance,
could partial sharing. e.g., sharing early layers while keeping the output branches independent, offer
a better trade-off? Should the concept tokens use a lower-dimensional output, given that their role is
to capture only concepts, while the [CLS] token must also encode broader context and inter-region
relations?

D.6 Temperature κ in Softmax Fusion

We found that a moderate temperature (κ = 0.5) yields the best balance between sharpness and
stability.
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Shared ADE Pascal
3 24.3 56.1
7 23.4 49.8

Table 8: Effect of sharing projection head between [CLS] and concept-tokens.

κ ADE Pascal
0.1 23.8 55.9
0.3 24.1 56.0
0.5 24.3 56.1
0.8 23.7 55.1
1.0 23.3 55.0

Table 9: Influence of the temperature parameter in mask fusion.

D.7 Reconstruction Target

We compare reconstructing raw pixels vs. teacher features. As expected, the latter performs better,
which is highlighting the importance of semantically guided reconstruction over low-level signal
recovery.

Target ADE Pascal
Pixels (RGB) 23.8 55.6
Teacher features 24.3 56.1

Table 10: Pixel-space vs. feature-space reconstruction.

D.8 Retaining the Patch-Level Loss L[patch]

We ablate whether retaining Phase 1’s patch-level loss in later stages is beneficial. Removing it
results in a modest drop in accuracy, indicating that fine-grained supervision from patch features
complements concept-level grouping and alignment.

Separately, we believe that a more systematic investigation into the weighting of individual loss
components α1,...,5 would be valuable, as it may uncover better trade-offs across the different training
objectives.

D.9 Backbone Scaling

Finally, we verify the robustness of CG-SSL across different backbones, including ViT-S, ViT-B,
and ViT-L. Performance scales consistently, with ViT-L achieving the strongest results across both
datasets.
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Lpatch ADE Pascal
3 24.3 56.1
7 24.1 56.0

Table 11: Effect of retaining the Patch-Level Loss L[patch].

ADE Pascal
ViT-S/16 24.3 56.1
ViT-B/16 26.1 58.6
ViT-L/16 28.4 59.0

Table 12: Backbone Scaling.

31


	Introduction
	Related Works
	Methodology
	Phase 1: Global Representation Learning
	Phase 2: Discovering Visual Concepts
	Phase 3: View-Invariant Alignment of Discovered Concepts

	Experiments
	Experimental Setup
	Results
	Ablation Studies

	Discussion and Concluding Remarks
	Acknowledgment
	Additional Details For Phase 3: View-Invariant Alignment
	Experimental Setup
	Visualisations
	Detailed Ablation Analysis
	Curriculum Build-up Across the Three Phases
	Clustering Strategy for Concept Tokens
	Number of Concept Tokens N
	Depth L of the Clustering Module
	Sharing the Projection Head
	Temperature  in Softmax Fusion
	Reconstruction Target
	Retaining the Patch-Level Loss L[patch]
	Backbone Scaling


