
Under review as a conference paper at ICLR 2023

ROBUST MANIFOLD ESTIMATION APPROACH FOR
EVALUATING FIDELITY AND DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a robust and reliable evaluation metric for generative models by
introducing topological and statistical treatments for a rigorous support manifold
estimation. Existing metrics, such as Inception Score (IS), Fréchet Inception
Distance (FID), and the variants of Precision and Recall (P&R), heavily
rely on support manifolds that are estimated from sample features. However, the
reliability of their estimation has not been seriously discussed (and overlooked)
even though the quality of the evaluation entirely depends on it. In this paper, we
propose Topological Precision and Recall (TopP&R, pronounced “topper”), which
provides a systematic approach to estimating support manifolds, retaining only
topologically and statistically important features with a certain level of confidence.
This not only makes TopP&R strong for noisy features, but also provides statistical
consistency. Our theoretical and experimental results show that TopP&R is robust
to outliers and non-independent and identically distributed (Non-IID) perturbations,
while accurately capturing the true trend of change in samples. To the best of our
knowledge, this is the first evaluation metric focused on the robust estimation of
the support manifold and provides its statistical consistency under noise.

1 INTRODUCTION

In keeping with the remarkable improvements of deep generative models (Karras et al., 2019; 2020;
2021; Brock et al., 2018; Ho et al., 2020; Kingma & Welling, 2013; Sauer et al., 2022; 2021; Kang &
Park, 2020), evaluation metrics that can well measure the performance of generative models have
also been continuously developed (Salimans et al., 2016; Heusel et al., 2017; Sajjadi et al., 2018;
Kynkäänniemi et al., 2019; Naeem et al., 2020). For instance, Inception Score (IS) (Salimans et al.,
2016) measures the Kullback-Leibler divergence between the real and fake sample distributions.
Fréchet Inception Score (FID)(Heusel et al., 2017) calculates the distance between the real and fake
support manifolds using the estimated mean and variance under the multi-Gaussian assumption.
The original Precision and Recall (Sajjadi et al., 2018) and its variants (Kynkäänniemi et al., 2019;
Naeem et al., 2020) measure the fidelity and diversity by investigating whether the generated image
belongs to the real image distribution and the generative model can reproduce all the real images in
the distribution, respectively.

Considering the eminent progress of deep generative models based on these existing metrics, some
may question why we need another evaluation study. In this paper, we argue that we need more
reliable evaluation metrics now precisely, because deep generative models have reached sufficient
maturity. To provide a more accurate and comprehensive ideas and to illuminate a new direction of
improvements in the generative field, we need a more robust and reliable evaluation metric. In fact, it
has been recently reported that even the most widely used evaluation metric, FID, sometimes doesn’t
match with the expected perceptual quality, fidelity, and diversity, which means the metrics are not
always working properly (Kynkäänniemi et al., 2022). In addition to this, in practice, not only do
generated samples but also real data in the wild often contain lots of artifacts (Pleiss et al., 2020; Li
et al., 2022), and these have been shown to seriously perturb the existing evaluation metrics, giving a
false sense of improvements (Naeem et al., 2020; Kynkäänniemi et al., 2022).

An ideal evaluation metric must capture the real signal of the data, while being robust to noise. Note
that there is an inherent tension in developing metrics that meets these goals. On one hand, the metric
should be sensitive enough so that it can capture real signals lurking in data. On the other hand, it
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Figure 1: Illustration of the proposed evaluation pipeline. The proposed metric TopP&R is defined
in the following three steps: (a) Confidence band estimation with bootstrapping in section 2, (b)
Robust support estimation, and (c) Evaluation via TopP&R in section 3.

must ignore noises that hide the signal. However, sensitive metrics are inevitably susceptible to noise
to some extent. To address this, one needs a systematic way to answer the following two questions: 1)
what is signal and what is noise? and 2) how do we draw a line between them?

One solution can be to use the idea of statistical inference and topological data analysis (TDA).
Topological data analysis (TDA) (Carlsson, 2009) is a recent and emerging field of data science that
relies on topological tools to infer relevant features for possibly complex data. A key object in TDA
is persistent homology, which observes how long each topological feature would survive over varying
resolutions and provides a measure to quantify its significance; i.e., if some features persist longer
than others over varying resolutions, we consider them as topological signal and vice versa as noise.

In this paper, we propose to combine these ideas to form a more robust and compact feature manifold
and overcome various issues from the conventional metrics. Our main contributions are as follows: we
introduce (1) an approach to directly estimate a support manifold via Kernel Density Estimator (KDE)
derived under topological conditions; (2) a new metric that is robust to outliers while reliably detecting
the change of distributions on various scenarios; and (3) a theoretical guarantee of consistency with
robustness under very weak assumptions that is suitable for high dimensional data; (4) combining
a noise framework and a statistical inference in TDA—consistencies under noise framework have
studied in much literature, but not quite in geometrical or topological setting.

2 BACKGROUND

To lay the foundation for our theoretical analysis, we introduce the main idea of persistent homology
and its confidence estimation techniques that bring the benefit of using topological and statistical
tools for addressing uncertainty in samples. In later sections, we use these tools to analyze the effects
of outliers in evaluating generative models and provide more rigorous way of scoring the samples
based on the confidence level we set. For space reasons, we only provide a brief overview of the
concepts that are relevant to this work and refer the reader to Appendix A or (Edelsbrunner & Harer,
2010; Chazal & Michel, 2021; Wasserman, 2018; Hatcher, 2002) for further details.

2.1 NOTATION

For any x and r > 0, we use the notation Bd(x, r) = {y : d(y, x) < r} be the open ball in distance
d of radius r. We also write B(x, r) when d is understood from context. For a distribution P on
Rd, we let supp(P ) := {x ∈ Rd : P (B(x, r)) > 0 for all r > 0} be the support of P . Throughout
the paper, we refer to supp(P) as support manifold of P , or simply support, or manifold, but we
don’t necessarily require the (geometrical) manifold structure on supp(P). For a kernel function
K : Rd → R, a dataset X = {X1, . . . , Xn} ⊂ Rd and bandwidth h > 0, we let the kernel density
estimator (KDE) as p̂h(x) := 1

nhd

∑n
i=1K

(
x−Xi

h

)
, and we let the average KDE as ph := E [p̂h].
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We denote by P ,Q the probability distributions in Rd of real data and generated samples, respectively.
And we use X = {X1, . . . , Xn} ⊂ Rd and Y = {Y1, . . . , Ym} ⊂ Rd for real data and generated
samples possibly with noise, respectively.

2.2 CONFIDENCE BAND ESTIMATION

Statistical inference has recently been developed for topological data analysis (Chazal et al., 2013;
2015; Fasy et al., 2014). Topological data analysis consists of features reflecting topological
characteristics of data, and it is of question to distinguish features that are indeed from geometrical
structures and features that are insignificant or due to noise. To statistically separate topologically
significant features from topological noise, we use a confidence band. Given the significance
level α, let confidence band cX be the bootstrap bandwidth of ∥p̂h − p̂∗h∥∞. Then it satisfies
lim infn→∞ P (∥p̂h − ph∥∞ < cX ) ≥ 1 − α, as in Proposition 4 in Appendix C. This confidence
band can be used to determine simultaneously significant topological features while filtering out
noise features. The algorithm for computing cX is described below.

Algorithm 1 Confidence Band Estimator

1: # KDE: kernel density estimator
2: # R.S.: random sample with replacement
3: # k: number of repeats
4: # θ̂: set of difference
5: Given X = {X1, X2, . . . , Xn}
6: p̂h = KDE(X )
7: for iteration = 1, 2, . . . , k do
8: # compute θ̂ with bootstrap samples
9: X ∗= R.S. n times from X

10: # p̂∗h replaces population density
11: p̂∗h = KDE(X ∗)

12: Append θ̂ with
√
n||p̂h − p̂∗h||∞

13: end for
14: # grid search for the confidence band

15: for q ∈ [min(θ̂),max(θ̂)] do
16: count = 0
17: for element ∈ θ̂ do
18: # count significant difference
19: if element > q then
20: count = count + 1
21: end if
22: end for
23: # define the band threshold
24: if count/k ≈ α then
25: qα = q
26: end if
27: end for
28: # define estimated confidence band
29: cα = qα/

√
n

3 ROBUST SUPPORT MANIFOLD ESTIMATION FOR RELIABLE EVALUATION

Current evaluation metrics for generative models typically rely on strong regularity conditions. For
example, they assume samples are well-curated without outliers or adversarial perturbation, real or
generative models have bounded densities, etc. However, practical scenarios are wild: both real and
generated samples can be corrupted with noise from various sources, and the real data can be very
sparsely distributed without density.

In this work, we consider more general and practical situations, wherein both real and generated
samples can have noises that come from sampling procedure, remained uncertainty due to data or
model, etc. For more detailed discussions on the philosophy of our metric, please see Appendix E.

3.1 TOPOLOGICAL PRECISION AND RECALL

In the ideal case where we have full access to the probability distributions P and Q, we define the
precision and the recall of distributions as

precisionP (Q) := Q (supp(P )) , recallQ(P ) := P (supp(Q)) .

These correspond to the max precision and the max recall in Sajjadi et al. (2018). We tweak the
precision as precisionP (Y) = Q (supp(P ) ∩ supp(Q)) /Q (supp(Q)), and define the precision of
data points as

precisionP (Y) :=

∑m
j=1 1 (Yj ∈ supp(P ) ∩ supp(Q))∑m

j=1 1 (Yj ∈ supp(Q))
,
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which is just replacing the distribution Q by the empirical distribution 1
m

∑m
j=1 δYj

of Y in the
precision. We similarly define the recall of data points as

recallQ(X ) :=

∑n
i=1 1 (Xi ∈ supp(Q) ∩ supp(P ))∑n

i=1 1 (Xi ∈ supp(P ))
,

However, in practice, supp(P ) and supp(Q) are not known a priori and need to be estimated, and
since we allow noise, these estimates should be robust to noise. For this, we use the kernel density
estimator (KDE) and the bootstrap bandwidth to robustly estimate the support. Given hn > 0 and a
significance level α ∈ (0, 1), we use the KDE p̂hn(x) :=

1
nhd

n

∑n
i=1K

(
x−Xi

hn

)
of X , and we use the

bootstrap bandwidth cX of
∥∥p̂hn

− p̂∗hn

∥∥
∞ from Section 2. Then we estimate the support of P by the

superlevel set at cX as ˆsupp(P ) = p̂−1
hn

[cX ,∞). Similarly, we let q̂hm
(x) := 1

mhd
m

∑m
j=1K

(
x−Yj

hm

)
be the KDE of Y and let cY be the bootstrap bandwidth of

∥∥q̂hm
− q̂∗hm

∥∥
∞, and then we use

ˆsupp(Q) = q̂−1
hm

[cY ,∞). Using the superlevel set at cX allows to filter out noise whose KDE values
are likely to be small.

For the robust estimates of the precision, we apply the support estimates to the precision of data
points, and define the topological precision (TopP) as

TopPX (Y) :=

∑m
j=1 1 (Yj ∈ ˆsupp(P ) ∩ ˆsupp(Q))∑m

j=1 1 (Yj ∈ ˆsupp(Q))
=

∑m
j=1 1 (p̂hn

(Yj) > cX , q̂hm
(Yj) > cY)∑m

j=1 1 (q̂hm(Yj) > cY)
.

And we similarly define the topological recall (TopR) as

TopRY(X ) :=

∑n
i=1 1 (q̂hm(Xi) > cY , p̂hn(Xi) > cX )∑n

i=1 1 (p̂hn
(Xi) > cX )

.

The kernel bandwidths hn and hm are hyperparameters that users need to choose. We also provide
our guideline to select the optimal bandwidths hn and hm in practice. (See Appendix F.3)

3.2 BANDWIDTH ESTIMATION USING BOOTSTRAPPING

Using the bootstrap bandwidth cX as threshold is the key part of our estimators TopP&R for robustly
estimating supp(P ). As we have seen in Section 2, the bootstrap bandwidth cX acts as a threshold for
filtering out the topological noise in topological data analysis. Analogously, using cX as a threshold
allows to robustly estimating supp(P ). When Xi is an outlier, its KDE value p̂h(Xi) is likely to be
small, and the KDE values at the connected component generated by Xi is likely to be small as well.
So those components from outliers are likely to be removed in the estimated support p̂−1

h [cX ,∞).
Higher dimensional homological noises are also removed. Hence, the estimated support denoises
topological noise and robustly estimates supp(P ). See Appendix B for more detailed explanation.

Now that we are only left with topological features of high confidence, this allows us to draw analogies
to confidence intervals in statistical analysis, where the uncertainty of the samples is treated by setting
the level of confidence. In the next section, we show that TopP&R not only gives a more reliable
evaluation score for generated samples but also has a good theoretical properties.

4 CONSISTENCY WITH ROBUSTNESS OF TOPP&R

The key properties of TopP&R is consistency with robustness. The consistency ensures that, the
precision and the recall we compute from the data approaches the precision and the recall from the
distribution as we have more samples. The consistency allows to investigate the precision and the
recall of the full distributions only with access to finite sampled data. TopP&R achieves consistency
with robustness, that is, the consistency holds with the data possibly corrupted by noise. This is due
to the robust estimation of the support with the kernel density estimator with confidence bands. This
section is devoted to the theoretical analysis of consistency of TopP&R with robustness.

We demonstrate the statistical model for the data and the noise. Let P , Q, X , Y be as in Notation in
Section 2, and let X 0,Y0 be real data and generated data without noise. X ,Y,X 0,Y0 are understood
as multisets, i.e., elements can be repeated. We first assume that the uncorrupted data are IID.
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Assumption 1. The data X 0 = {X0
1 , . . . , X

0
n} and Y0 = {Y 0

1 , . . . , Y
0
m} are IID from P and Q,

respectively.

In practice, the data is often corrupted with noise. We consider the adversarial noise, where some
fraction of data are replaced with arbitrary point cloud data.
Assumption 2. Let {ρk}k∈N be a sequence of nonnegative real numbers. Then the observed data X
and Y satisfies

∣∣X\X 0
∣∣ = nρn and

∣∣Y\Y0
∣∣ = mρm.

In the adversarial model, we control the level of noise by the fraction ρ, but do not assume other
conditions such as IID or boundedness, to make our noise model very general and challenging.

For distributions and kernel functions, we assume weak condition, detailed in Assumption A1 and A2
in Appendix C. Under the data and the noise models, TopP&R achieves consistency with robustness.
That is, the estimated precision and recall is asymptotically correct with high probability even if up to
a portion of 1/

√
n or 1/

√
m are replaced by adversarial noise. This is due to the robust estimation of

the support with the kernel density estimator with the confidence band of the persistent homology.
Proposition 1. Suppose Assumption 1,2,A1,A2 hold. Suppose hn → 0, nhn → ∞, nh−d

n ρ2n → 0,
and similar relations hold for hm, ρm. Then
|TopPX (Y)− precisionP (Y)| → 0,

∣∣TopRY(X )− recallQ(X )
∣∣→ 0, in probability.

Theorem 2. Under the same condition as in Proposition 1,
|TopPX (Y)− precisionP (Q)| → 0,

∣∣TopRY(X )− recallQ(P )
∣∣→ 0, in probability.

Our theoretical results in Proposition 1 and Theorem 2 are novel and important in several perspetives.
These results are among the first theoretical guarantees for evaluation metrics for generative models
as far as we are aware of. Also, as in Remark 3, assumptions are very weak and suitable for high
dimensional data. Also, robustness to adversarial noise is provably guaranteed.

5 EXPERIMENTS

A good evaluation metric must correctly capture the changes of the underlying data distribution. To
examine the performance of evaluation metrics, we carefully select a set of experiments for sanity
checks. With toy and real image data, we check 1) how well the metric captures the true trend of
underlying data distributions and 2) how well the metric resist perturbations applied to samples. The
shaded area of the figures denotes the ±1 standard deviation for ten trials.

5.1 SANITY CHECKS WITH TOY DATA

Following Naeem et al. (2020), we first examine how well the metric reflects the trend of Y moving
away from X and whether it is suitable for finding mode-drop phenomena. In addition to these, we
newly design several experiments that can highlight TopP&R’s favorable theoretical properties of
consistency with robustness in various scenarios.

5.1.1 SHIFTING THE GENERATED FEATURE MANIFOLD

For this experiment, we generate samples for X ∼ N (0, I) and Y ∼ N (µ1, I) in R64 where 1 is a
vector of ones and I is an identity matrix. We then examine how each metric responds to shifting
Y with µ ∈ [−1, 1] while there are outliers at 3 ∈ R64 for both X and Y (Figure 2). Here, we
find that both improved P&R and D&C behave pathologically when there are outliers. Since these
methods are based on the k-nearest neighbor algorithm and ignore the fact that there can be outliers
in both real and fake data, they inevitably overestimate the underlying support when there are outliers.
For example, when X lies between Y and the outlier at y = 3, Recall returns a high-diversity
score, even though the true supports of X and Y are actually far apart. In addition, P&R does not
reach 1 in high dimensions even when X = Y . Naeem et al. (2020) circumvented these problems
by proposing D&C that always use X (the real data distribution) as a reference point, which in most
cases is assumed to have fewer outliers than Y (the fake data distribution). However, there is no
guarantee that this will be the case in practice. When there is an outlier in X , D&C also returns an
incorrect high-fidelity score at µ > 0.5. On the other hand, TopP&R shows a stable trend unaffected
by outliers, demonstrating the robustness of our method.
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5.1.2 SEQUENTIALLY AND SIMULTANEOUSLY DROPPING MODES

For this experiment, we consider the mixture of Gaussians with seven modes in R64. We simulate
mode-drop phenomena by gradually dropping all but one mode from the fake distribution Y that is
initially identical to X (Figure 3). As in the illustration of mode-drop experiment, when the number
of samples in a particular mode decreases, we kept the number of samples in X constant so that the
same amount of decreased samples are supplemented to the first mode which leads fidelity to be
fixed to 1. From the result, we observe that the values of Precision fail to saturate, i.e., mainly
smaller than 1, and the Density fluctuates to a value greater than 1 indicating their instability and
unboundedness. In terms of diversity, Recall does not respond to the simultaneous mode drop, nor
does the improved metric Coverage show a fast decay as the reference line. Compared to these
methods, TopP performs well, being held at the upperbound of 1 in sequential mode dropping, and
TopR also decreases closest to the reference line in simultaneous mode drops.

5.1.3 TOLERANCE TO NON-IID PERTURBATIONS

Robustness to perturbations is another important aspect we should consider when designing a metric.
Here, we test whether TopP&R behaves stably under two variants of noise cases; 1) scatter noise:
replacing Xi and Yj with uniformly distributed noise and 2) swap noise: swapping the position
between Xi and Yj . These two cases all correspond to the adversarial noise model of Assumption
2. We set X ∼ N (µ = 0, I) ∈ R64 and Y ∼ N (µ = 1, I) ∈ R64 where µ = 1, and thus an ideal
evaluation metric must return zero for both fidelity and diversity. In both cases, we find that P&R and
D&C are more sensitive while TopP&R remains relatively stable until the noise ratio reaches 15% of
the total data, which is a clear example of the weakness of existing metrics to perturbation (Figure 4).
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ψ denoting the increased diversity. The images are generated via StyleGAN2 with FFHQ dataset.

5.2 SANITY CHECK WITH REAL DATA

Now that we have verified the metrics on toy data using Gaussians, we test them on real data. Just
like in the toy experiments, we concentrate on how the metrics behave in extreme situations, such as
outliers, mode-drop phenomena, perceptual distortions, and etc. We also test the image embedder
for evaluation, including pretrained VGG16 (Simonyan & Zisserman, 2014), InceptionV3 (Szegedy
et al., 2016), and SwAV (Morozov et al., 2020). Here, linear random projection to 32 dimension is
additionally used for TopP&R. For more experimental details, please refer to the Appendix F.1.

5.2.1 RESOLVING FIDELITY AND DIVERSITY

To test whether TopP&R responds appropriately to the change in the underlying distributions in real
scenarios, we test the metric on the generated images of StyleGAN2 (Karras et al., 2020) using the
truncation trick (Karras et al., 2019). As shown in Figure 5, every time the distribution is transformed
by ψ, TopP&R responds well and shows consistent behavior across different embedders with bounded
scores in [0, 1], which are important virtues as an evaluation metric. On the other hand, Density
gives unbounded scores (fidelity > 1) and shows inconsistent trend depending on the embedder.
Because Density is not capped in value, it is difficult to interpret the score and know exactly which
value denotes the best performance (e.g., in our case, the best performance is when TopP&R = 1).
Since TopP&R pays more attention to the consistent behavior of a model by examining what the
model primarily generates, rather than relying on the entire sample, which contains results by chance,
the fact that TopP is kept at 1.0 means that StyleGAN2 produces high-quality images most of the
time. Thus, this behavior (“TopP remains constant") does not mean that TopP is inferior to regular
precision for checking the trade-off between fidelity and diversity, but rather reveals its property
focusing on different perspectives than the others.

5.2.2 SEQUENTIALLY AND SIMULTANEOUSLY DROPPING MODES IN CIFAR-10

We conduct an additional simultaneous mode drop experiment to verify TopP&R’s actual
sensitiveness on the real data set (CIFAR-10). The performance of each metric (Figure A2) is
measured with the identical data while simultaneously dropping the modes of nine classes of CIFAR-
10. Since the number of the images dropped in each step is identical, the trend of ground truth
diversity should linearly decrease. Here, P&R metric captures the simultaneous mode dropping better
than D&C because this time random drop of the modes has reduced the area of the estimated fake
manifold. On the other hand, TopP&R best captures the true trend of decreasing diversity on average,
consistent with the toy result in Figure 3. In addition, we perform the experiments on a dataset with
long-tailed distribution and find that TopP&R captures the trend well even when there are minority
sets (Appendix G.2). This again shows the reliability of TopP&R.

5.2.3 ROBUSTNESS TO PERTURBATIONS BY OUTLYING FEATURES

To demonstrate the robustness of our metric against the adversarial noise model of Assumption 2,
we test both scatter-noise and swap noise scenarios with real data. In the experiment, following
Kynkäänniemi et al. (2019), we first classify inliers and outliers that are generated by StyleGAN
(Karras et al., 2019). For scatter noise we add the outliers to the inliers and for swap noise we swap
the real FFHQ images with generated images. Under these specific noise conditions, Precision
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(a) Non-IID Scatter noise
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Figure 6: Comparison of evaluation metrics on Non-IID perturbations using FFHQ dataset. We
replaced certain ratio of X and Y (a) with outliers and (b) by exchanging features.
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Figure 7: Verification of whether TopP&R can make an accurate quantitative assessment of noisy
image features. Gaussian Noise, gaussian blur, and black rectangle noise are added on the FFHQ
imageset and embedded with T4096.

shows similar or even better robustness than Density (Figure 6). On the other hand, Coverage is
more robust than Recall. In both cases, TopP&R shows the best performance, resistant to noise.

5.2.4 SENSITIVENESS TO THE NOISE INTENSITY

One of the advantages of FID (Heusel et al., 2017) is that it is good at estimating the degrees of
distortion applied to the images. Similarly, we check whether the F1-score based on TopP&R provides
a reasonable evaluation according to different noise levels. As illustrated in Figure 7, X and Y are
sets of reference FFHQ features and noisy FFHQ features, respectively. The experimental results
show that TopP&R actually reflects well the different degrees of distortion added to the images.

5.2.5 RANKING BETWEEN GENERATIVE MODELS

One of the major caveats with two-score metrics is that they make it difficult to rank between different
models; e.g., which model is better? High fidelity with low diversity or low fidelity with high diversity?
In the case of traditional precision and Recall, this problem could be solved by using F1-score, which
is the harmonic mean of fidelity and diversity. However, unlike the traditional ones, the F1-score
based on P&R or D&C does not provide a reliable or stable score due to their inherent instability
and unboundedness. Thanks to its stability and robustness to various perturbations, we find that
the TopP&R-based F1 score offers consistent ranking with FID under various embedding networks
(Table 1)1. To quantitatively compare between the similarity of rankings across varying embedders
by different metrics, we have computed Hamming Distance (HD) (Appendix F.4) where lower HD
indicates more similarity. TopP&R, P&R, and D&C have HDs of 1.33, 2.66, and 3.0, respectively.
From this, TopP&R provides the most consistent ranking across varying embedders (consistent to
Section 5.2.1).

6 RELATED WORKS

Persistent homology and deep learning. Topology shows various potentials in the field of deep
learning by introducing a new perspective on the support estimation, a new distance function robust to
the noisy information, and a technique for GAN evaluation. Chen et al. (2017) introduces a method for

1All GAN models used in the experiment follow the settings in StudioGAN PyTorch-StudioGAN is an
open-source library under the MIT license (MIT), which are under the NVIDIA source code license.

8



Under review as a conference paper at ICLR 2023

Model StyleGAN2 ReACGAN BigGAN PDGAN ACGAN WGAN-GP

In
ce

pt
io

nV
3 FID (↓) 3.78 (1) 3.87 (2) 4.16 (3) 31.54 (4) 33.39 (5) 107.68 (6)

TopP&R (↑) 0.9769 (1) 0.8457 (2) 0.7751 (3) 0.7339 (4) 0.6951 (5) 0.0163 (6)

D&C (↑) 0.9626 (2) 0.9409 (3) 1.1562 (1) 0.4383 (4) 0.3883 (5) 0.1913 (6)

P&R (↑) 0.6232 (1) 0.3320 (2) 0.3278 (3) 0.1801 (4) 0.0986 (5) 0.0604 (6)

V
G

G
16 TopP&R (↑) 0.9754 (1) 0.5727 (3) 0.7556 (2) 0.4021 (4) 0.3463 (5) 0.0011 (6)

D&C (↑) 0.9831 (3) 1.0484 (1) 0.9701 (4) 0.9872 (2) 0.8971 (5) 0.6372 (6)

P&R (↑) 0.6861 (1) 0.1915 (3) 0.3526 (2) 0.0379 (4) 0.0195 (5) 0.0001 (6)

Sw
AV

TopP&R (↑) 0.9093 (1) 0.3568 (3) 0.5578 (2) 0.1592 (4) 0.1065 (5) 0.0003 (6)

D&C (↑) 1.0732 (1) 0.9492 (3) 1.0419 (2) 0.6328 (4) 0.4565 (5) 0.0721 (6)

P&R (↑) 0.5623 (1) 0.0901 (3) 0.1459 (2) 0.0025 (4) 0.0000 (6) 0.0002 (5)

Table 1: Generative models ranked by FID and F1-scores based on TopP&R, D&C, and P&R,
respectively. The X and Y are embedded with InceptionV3, VGG16, and SwAV. The number
inside the parenthesis denotes the rank based on each metric.

approximating the support of a distribution using general density estimator and the Hausdorff distance
and a new visualization method for support. Chazal et al. (2011) proposes distance-to-measure, a
robust Wasserstein distance function for perturbation, as an alternative to the characteristic that
existing distance functions are not robust to outliers. For the evaluation, one of the recent metric
called MTop-Divergence (Barannikov et al., 2021) uses the summation (or in another word statistics)
of the life-length of homology to score which manifold is containing more important topological
signals. While MTop-Divergence directly use persistent homology to score the deep-learning models,
we employ topology to estimate a robust and stable manifold.

Evaluation metrics. Various evaluation metrics for generative models have been recently
proposed (Salimans et al., 2016; Heusel et al., 2017; Sajjadi et al., 2018; Kynkäänniemi et al.,
2019; Naeem et al., 2020; Borji, 2022). One of the earliest methods is Inception Score (IS) (Szegedy
et al., 2016), which measures the divergence of generated samples on the InceptionV3 embedding
space. However, IS fails to capture the simultaneous mode drop and only considers the population
distribution. Fréchet Inception Distance (FID) (Heusel et al., 2017) measures the difference in the
means and variances of the real and fake features. Since FID assumes the multi-Gaussian distribution
of the features, if the true feature distribution is not normally distributed, the estimation becomes
highly unreliable. Unlike IS and FID, which give a single score, some metrics separate the score into
two components, the fidelity and diversity Sajjadi et al. (2018); Kynkäänniemi et al. (2019); Naeem
et al. (2020). While Topological Precision and Recall (TopP&R) falls into this category, unlike the
others, it does not assume strong regularity conditions.

7 CONCLUSIONS

Recently, many works have been proposed to score the fidelity and diversity of generative models.
However, none of them has focused on an accurate estimation of supports even though this is one of
the key components in the evaluation pipeline. In this paper, we proposed topological precision and
recall (TopP&R) that provides a systematical fix for robustly estimating the manifold by employing
topological and statistical ideas. Our theoretical and experimental results showed that TopP&R serves
as a robust and reliable evaluation metric under various embeddings and noisy conditions, including
mode collapse, outliers, and Non-IID perturbations.
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APPENDIX

A MORE BACKGROUND ON TOPOLOGICAL DATA ANALYSIS

Topological data analysis (TDA) (Carlsson, 2009) is a recent and emerging field of data science that
relies on topological tools to infer relevant features for possibly complex data. A key object in TDA
is persistent homology, which quantifies salient topological features of data by observing them in
multi-resolutions.

Filtration. A filtration is a collection of subspaces approximating the data points at different
resolutions, formally F = {Fδ ⊂ Rd}δ∈R such that δ1 ≤ δ2 implies that Fδ1 ⊂ Fδ2 . Typically, a
filtration is defined through a function f related to data. Given a function f : Rd → R, we consider
its sublevel filtration {f−1(−∞, δ]}δ∈R or a superlevel filtration {f−1[δ,∞)}δ∈R.

Persistent homology. Persistent homology is a multiscale approach to represent the topological
features, and is represented in the persistence diagram. For a filtration F and for each nonnegative
k, we track when k-dimensional homological features (e.g., 0-dimension: connected component,
1-dimension: loop, 2-dimension: cavity,. . .) appear and disappear in the filtration. As increasing or
decreasing δ in the filtration {Fδ}, if a homological feature appears at Fb and disappears at Fd, then
we say that it is born at b and dies at d. By considering these pairs {(b, d)} as points in the plane
(R ∪ {±∞})2, we obtain a persistence diagram. From this, a homological feature with a longer life
length, d− b, can be treated as a significant feature in the data set, and a homological feature with a
shorter life length as a topological noise, which lies near the diagonal line {(δ, δ) : δ ∈ R}.

As discussed above, a homological feature with a long life-length is an important information in
topology while the homology with short life-length can be treated as a non-significant information or
noise. The confidence band estimator provides the confidence set from the features that only includes
topologically and statistically significant (statistically considered as elements in the population set)
under a certain level of confidence. One way of constructing the confidence set uses the superlevel
filtration of kernel density estimator and the bootstrap confidence band. Let X = {X1, X2, ..., Xn} as
given points cloud, then the probability for the distribution of points can be estimated via KDE defined
as following: p̂h(x) := 1

nhd

∑n
i=1K(x−Xi

h ) where h is the bandwidth and d as a dimension of the
space. We derive estimated likelihood of X with KDE and likehood of p̃ with using bootstrapped
samples X ∗. Now, given the significance level α and h > 0, let confidence band qX be bootstrap
bandwidth of a Gaussian Empirical Process (van der Vaart, 2000; Kosorok, 2008),

√
n||p̂h − p̂∗h||∞.

Then it satisfies P (
√
n||p̂h − ph||∞ < qX ) ≥ 1− α, as in Proposition 4 in Section C. Then the ball

of persistent homology centered at P̂h and radius cX = qX /
√
n in the bottleneck distance dB is a

valid confidence set as lim infn→∞ P
(
P ∈ BdB

(P̂h, cX )
)
≥ 1− α. This confidence set has further

interpretation that in the persistence diagram, homological features that are above twice the radius
2cX from the diagonal are simultaneously statistically significant.

B DENOISING TOPOLOGICAL FEATURES FROM OUTLIERS

Using the bootstrap bandwidth cX as threshold is the key part of our estimators TopP&R for robustly
estimating supp(P ). When the level set p̂−1

h [cX ,∞) is used, the homology of p̂−1
h [cX ,∞) consists

of homological features whose (birth) ≥ cX and (death) ≤ cX , which are the homological features
in skyblue area in Figure A1. In this example, we conisder three types of homological noise, though
there can be many more corresponding to different homological dimensions.

• There can be a 0-dimensional homological noise of (birth) < cX and (death) < cX , which
is the red point in the persistence diagram of Figure A1. This noise corresponds to the orange
connected component on the left. As in the figure, this type of homological noise usually
corresponds to outliers.

• There can be a 0-dimensional homological noise of (birth) > cX and (death) > cX , which
is the green point in the persistence diagram of Figure A1. This noise corresponds to the
connected component surrounded by green line on the left. As in the figure, this type of
homological noise lies within the estimated support, not like the other two.
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Figure A1: To robustly estimate the support, we use the bootstrap bandwidth cα to filter out topological
noise (orange) and keep topological signal (skyblue). Then TopP&R is computed on this support.

• There can be a 1-dimensional homological noise of (birth) < cX and (death) < cX , which
is the purple point in the persistence diagram of Figure A1. This noise corresponds to the
purple loop on the left.

These homological noises satisfy either their (birth) < cX and (death) < cX or their (birth) > cX
and (death) > cX simultaneously with high probability, so those homological noises are removed
in the estimated support p̂−1

h [cX ,∞), which is the blue area in the left and the skyblue area in the
right in Figure A1.

We would like to further emphasize that homological noises are not restricted to 0-dimension
lying outside the estimated support (red point in the persistence diagram of Figure A1). 0-
dimensional homological noise inside the estimated support (green point in the persistence diagram
of Figure A1), 1-dimensional homological noise can also arise, and the bootstrap bandwidth cX
allows to simultaneously filter them.

C ASSUMPTIONS ON DISTRIBUTIONS AND KERNELS

For distributions, we assume that the order of probability volume decay P (B(x, r)) is at least rd.

Assumption A1. For all x ∈ supp(P ) and y ∈ supp(Q),

lim inf
r→0

P (B(x, r))
rd

> 0, lim inf
r→0

Q (B(y, r))
rd

> 0.

Remark 3. Assumption A1 is analogous to Assumption 2 of Kim et al. (2019), but is weaker since the
condition is pointwise on each x ∈ Rd. And this condition is much weaker than assuming a density
on Rd: for example, a distribution supported on a low-dimensional manifold satisfies Assumption A1.
This provides a framework suitable for high dimensional data, since many times high dimensional
data lies on a low dimensional structure hence its density on Rd cannot exist. See Kim et al. (2019)
for more detailed discussion.

For kernel functions, we assume the following regularity conditions:

Assumption A2. Let K : Rd → R be a nonnegative function with ∥K∥1 = 1, ∥K∥∞ , ∥K∥2 <∞,
and satisfy the following:
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(1) K(0) > 0.

(2) K has a compact support.

(3) K is Lipschitz continuous and of second order.

Assumption A2, allows to build a valid bootstrap confidence band for kernel density estimator (KDE).
See Theorem 12 of (Fasy et al., 2014) or Theorem 3.4 of (Neumann, 1998)
Proposition 4 (Theorem 3.4 of (Neumann, 1998)). Let X = {X1, . . . , Xn} be IID from a distribution
P . For h > 0, let p̂h, p̂∗h be kernel density estimator for X and its bootstrap X ∗, respectrively, and
for α ∈ (0, 1), let cX be the α bootstrap quantile from

√
nhd ∥p̂h − p̂∗h∥∞. For hn → 0,

P
(√

nhdn ∥p̂hn
− phn

∥∞ > cX

)
= α+

(
log n

nhdn

) 4+d
4+2d

.

Assumption A1, A2 ensures that, when the bandwidth hn → 0, average KDEs are bounded away
from 0.
Lemma 5. Let P be a distribution satisfying Assumption A1. Suppose K is a nonnegative function
satisfying K(0) > 0 and continuous at 0. Suppose {hn}n∈N with hn ≥ 0 and hn → 0 is given. Then
for all x ∈ supp(P ),

lim inf
n

phn
(x) > 0.

Proof. Since K(0) > 0 and K is continuous at 0, there is r0 > 0 such that for all y ∈ B(0, r0),
K(y) ≥ 1

2K(0) > 0. And hence

ph(x) =

∫
1

hd
K

(
x− y

h

)
dP (y) ≥

∫
K(0)

2hd
1

(
x− y

h
∈ B(0, r0)

)
dP (y)

≥ K(0)

2hd
P (B(x, r0h)) .

Hence as hn → 0,
lim inf

n
phn

(x) > 0.

D DETAILS AND PROOFS FOR SECTION 4

Let p̃h be the KDE on X 0. For a finite set X , we use the notation cX ,α for α-bootstrap quantile
satisfying P

(∥∥p̂X ,hn
− p̂X b,hn

∥∥
∞ > cX ,α|X

)
= 1− α, where X b is the bootstrap sample from X .

For a distribution P , we use the notation cP,α for α-quantile satisfying P (∥p̂hn
− phn

∥∞ > cP,α) =
1−α, where p̂hn

is kernel density estimator of IID samples from P . Hence when X is not IID samples
from P , the relation of Proposition 4 may not hold.
Lemma 6. (1) Under Assumption 1, 2 and A2,

∥p̂h − p̃h∥∞ ≤
ρn ∥K∥∞

hd
.

(2) Under Assumption 1, 2 and A2,

cX 0,α+δ −O

(
ρn +

√
ρn log(1/δ)

nh2d

)
≤ cX ,α ≤ cX 0,α−δ +O

(
ρn +

√
ρn log(1/δ)

nh2d

)
.

(3) Suppose Assumption 1, 2,A2 hold, and suppose nh−d
n ρ2n → 0. Then with probability

1− α− 2δ,
∥p̂h − ph∥∞ < cX ,α ≤ cP,α−δ.
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Proof. (1)

First, note that

p̂h − p̃h =
1

nhd

n∑
i=1

(
K

(
x−Xi

h

)
−K

(
x−X0

i

h

))
.

Then under Assumption A2,

∥p̂h − p̃h∥∞ ≤ 1

nhd

n∑
i=1

∥∥∥∥K (x−Xi

h

)
−K

(
x−X0

i

h

)∥∥∥∥
∞

≤ 1

nhd

n∑
i=1

∥K∥∞ I
(
Xi ̸= X0

i

)
.

Then from Assumption 2,
∑n

i=1 I
(
Xi ̸= X0

i

)
≤ nρn, and hence

∥p̂h − p̃h∥∞ ≤
∥K∥∞ ρn

hd
.

(2)

Let Xb, X 0
b be bootstrapped samples of X , X 0 with the same sampling with replacement process.

Let p̂bh, p̃
b
h be KDE of Xb and X 0

b , respectively. And, note that∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ ∥p̂h − p̃h∥∞ +
∥∥p̂bh − p̃bh

∥∥
∞ .

Let Lb be the number of elements where Xb and X 0
b differ, i.e., Lb =

∣∣Xb\X 0
b

∣∣ = ∣∣X 0
b \Xb

∣∣, then
Lb ∼ Binomial(n, ρn), and ∥∥p̂bh − p̃bh

∥∥
∞ ≤

∥K∥∞ Lb

nhd
.

And hence, ∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ ∥K∥∞ (nρn + Lb)

nhd
.

Then by using subgaussian tail bound, with probability 1− δ,

∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ O

(
ρn +

√
ρn log(1/δ)

nh2d

)
.

Hence this implies

cX 0,α+δ −O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
≤ cX ,α ≤ cX 0,α−δ +O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
.

(3)

Since X 0 is IID samples from P , with probability 1− α− 2δ,

∥p̃h − ph∥∞ < cP,α+2δ ≤ cX 0,α+2δ +O

(
1

nhd

)
.

Now, note that cX 0,α = Θ

(√
log(1/α)

nhd

)
, and hence

cX 0,α − cX 0,α+δ = Θ

(√
log(1/α)

nhd
−
√

log(1/(α+ δ))

nhd

)
≥ Ω

(
log((α+ δ)/α)√

nhd

)
.
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Then under Assumption 2, since nh−d
n ρ2n = o(1) and h−d

n ρn = o(1),

∥p̂h − ph∥ ≤ ∥p̃h − ph∥∞ + ∥p̂h − p̃h∥∞

< cX 0,α+2δ +O

(
1

nhd

)
≤ cX 0,α+δ −O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
≤ cX ,α

≤ cX 0,α−δ +O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
≤ cP,α−2δ.

Corollary 7. Suppose Assumption 1, 2, A2 hold.

(1) Suppose nh−d
n ρ2n → 0. Then with probability 1− α− 2δ,

p−1
hn

[2cP,α−2δ,∞) ⊂ p̂−1
hn

[cX ,α,∞) ⊂ supp(Phn).

(2) Suppose mh−d
m ρ2m → 0. Then with probability 1− α− 2δ,

q−1
hm

[2cQ,α−2δ,∞) ⊂ q̂−1
hm

[cY,α,∞) ⊂ supp(Qhm
).

Proof. (1) From Lemma 6, ∥p̂h − ph∥ < cX ,α ≤ cP,α−2δ . This implies

p−1
hn

[2cP,α−2δ,∞) ⊂ p̂−1
hn

[cX ,α,∞) ⊂ supp(Phn).

(2) can be proven similarly to (1).

Claim 8. For a nonnegative measure µ and sets A,B,C,D,

µ(A ∩B)− µ(C ∩D) ≤ µ(A\C) + µ(B\D).

Proof.

µ(A ∩B)− µ(C ∩D) ≤ µ((A ∩B)\(C ∩D)) = µ((A ∩B) ∩ (C∁ ∪D∁))

= µ((A ∩B) ∩ C∁) ∪ (A ∩B) ∩D∁))

≤ µ((A ∩B)\C) + µ(A ∩B)\D)

≤ µ(A\C) + µ(B\D).

From here, letPn andQm be the empirical measures on X and Y , respectively, i.e.,Pn = 1
n

∑n
i=1 δXi

and Qm = 1
m

∑m
j=1 δYj

.

Lemma 9. Suppose Assumption 1, 2 hold.

(1) Let A ⊂ Rd. Then with probability 1− δ,

|Pn − P | (A) = o(1).

(2) Let An ⊂ Rd be a sequence of set satisfying An → ∅, i.e., lim supnAn = ∅. Then

Pn(An) → 0 in probability.
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Proof. Since P (An) ≤ P (
⋃n

i=1Ai) and
⋃n

i=1Ai → ∅ as well, we can assume that An ↓ ∅, i.e.,
An ⊃ An+1 for all n and

⋂∞
n=1An = ∅.

(1)

Let P 0
n be the empirical measure on X 0, i.e., P 0

n = 1
n

∑n
i=1 δXi

. By using subgaussian tail bound,
with probability 1− δ, ∣∣P 0

n − P
∣∣ (A) = O

(√
log(1/δ)

n

)
.

And
∣∣Pn − P 0

n

∣∣ (A) is expanded as

∣∣Pn − P 0
n

∣∣ (A) = 1

n

n∑
i=1

∣∣I(Xi ∈ A)− I(X0
i ∈ A)

∣∣ .
Under Assumption 2 ,

∑n
i=1 I

(
Xi ̸= X0

i

)
≤ nρn, and hence

∣∣Pn − P 0
n

∣∣ (A) = 1

n

n∑
i=1

∣∣I(Xi ∈ A)− I(X0
i ∈ A)

∣∣
≤ 1

n

n∑
i=1

I
(
Xi ̸= X0

i

)
= ρn.

Therefore, with probability 1− δ,

|Pn − P | (A) ≤ O

(
ρn +

√
log(1/δ)

n

)
.

(2) Note that Pn(An) can be bounded as

Pn(An) ≤ P (An) + |Pn(An)− P (An)| .

Fix δ > 0 and ϵ > 0. Since limn P (An) = 0, we can choose N1 such that P (AN1
) < ϵ, and

we can choose N2 such that for all n ≥ N2, P (|Pn − P | (AN1
) < ϵ) ≥ 1 − δ. Then for all

n ≥ max{N1, N2}, with probability 1− δ,

Pn(An) ≤ Pn(AN1
) ≤ P (AN1

) + |Pn − P | (AN1
) < 2ϵ.

Hence Pn(An) → 0 in probability.

Claim 10. Suppose Assumption 1, 2, A1, A2 hold.

(1) ∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

∣∣→ 0 in probability.

(2) ∣∣Qm

(
q̂−1
hm

[cY ,∞)
)
−Qm (supp(Q))

∣∣→ 0 in probability.

(3)
Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
→ Q (supp(P )) in probability.

(4)
Qm

(
q̂−1
hm

[cY ,∞)
)
→ 1 in probability.
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Proof. (1)

From Lemma 7, with high probability,
Qm

(
p−1
hn

[2cP ,∞) ∩ q−1
hm

[2cQ,∞)
)
≤ Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)

≤ Qm (supp(Phn) ∩ supp(Qhm)) .

Then from the first inequality, combining with Claim 8 gives
Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≥ Qm

(
p−1
hn

[2cP ,∞) ∩ q−1
hm

[2cQ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≥ −
(
Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
+Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

))
.

And from the second inequality, combining with Claim 8 gives
Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≤ Qm (supp(Phn) ∩ supp(Qhm))−Qm (supp(P ) ∩ supp(Q))

≤ Qm (supp(Phn
)\supp(P )) +Qm (supp(Qhm

)\supp(Q)) .

And hence ∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

∣∣
≤ max

{
Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
+Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

)
, Qm (supp(Ph)\supp(P )) +Qm (supp(Qhn

)\supp(Q))} .
Now, note that from Lemma 5 implies that for all x ∈ supp(P ), lim infn phn

(x) > 0, so phn
(x) >

2cP for large enough n. And hence
supp(P )\p−1

hn
[2cP ,∞) → ∅.

And similar argument holds for supp(Q)\q−1
hm

[2cQ,∞), so supp(Q)\q−1
hm

[2cQ,∞) → ∅ as well.

Then from Lemma 9,
Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
= oP(1), Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

)
= oP(1).

Also, sinceK has compact support, for any x /∈ supp(P ), x /∈ supp(Phn
) once hn < d(x, supp(P )).

Hence supp(Phn
)\supp(P ) → ∅, and similarly supp(Qhm

)\supp(Q) → ∅ as well. Then again
with Lemma 9,

Qm (supp(Phm)\supp(P )) = oP(1), Qm (supp(Qhm)\supp(Q)) = oP(1).

And hence
Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
→ Qm (supp(P ) ∩ supp(Q)) in probability.

(2)

This can be done similarly to (1).

(3)

Lemma 9 (1) gives that with probability 1− δ,
|Qm (supp(P ) ∩ supp(Q))−Q (supp(P ))| ≤ o(1).

Hence combining with (1) gives the desired result.

(4)

Lemma 9 (1) gives that with probability 1− δ,
|Qm (supp(Q))− 1| ≤ o(1).

Hence combining with (2) gives the desired result.

Proof of Proposition 1. Now this is a combination of Claim 10 (1) (2).

Proof of Theorem 2. Now this is a combination of Claim 10 (3) (4).
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E PHILOSOPHY OF OUR METRIC & PRACTICAL SCENARIOS

E.1 PHILOSOPHY OF OUR METRIC

All evaluation metrics have different resolutions and properties. Here, we designed our proposed
metric with the philosophy of evaluating the performance more conservatively based on (topologically
and statistically) certain things. More specifically, in a real situation, there may be outliers in the data
or samples we receive, noise may be present, and many other problems may arise due to various
other unexpected causes. In these situations, two approaches can be used in the assessment. One is
to accept ignorance and use all the data together, the other is to systematically select and exclude
as much unreliable information as possible and only use reliable information. We chose the latter
because we thought seeing a conservatively consistent result had its own merits (At least we think
our approach is worth investigating, showing different aspects that have not been explored before).

E.2 PRACTICAL SCENARIOS

From this perspective, we present two examples of realistic situations where outliers exist in the data
and filtering out them can have a significant impact on proper model analysis and evaluation. With
real data, there are many cases where outliers are introduced into the data due to human error (Pleiss
et al., 2020; Li et al., 2022). Taking the simplest MNIST as an example, suppose our task of interest
is to generate 4. Since image number 7 is included in data set number 4 due to incorrect labeling (see
Figure 1 of (Pleiss et al., 2020)), the support of the real data in the feature space can be overestimated
by such outliers, leading to an unfair evaluation of generative models (as in Section 5.1.2 and 5.2.3);
That is, the sample generated with weird noise may be in the overestimated support, and existing
metrics without taking into account the reliability of the support could not penalize this, giving a
good score to a poorly performing generator.

A similar but different example is when noise or distortions in the captured data (unfortunately)
behave adversely on the feature embedding network used by the current evaluation metrics (as in
Section 5.1.2 and 5.2.3); e.g., visually it is the number 7, but it is mismapped near the feature space
where there are usually 4 and becomes an outlier. Then the same problem as above may occur. Note
that in these simple cases, where the definition of outliers is obvious with enough data, one could
easily examine the data and exclude outliers a priori to train a generative model. In the case of more
complicated problems such as the medical field (Li et al., 2022), however, it is often not clear how
outliers are to be defined. Moreover, because data are often scarce, even outliers are very useful and
valuable in practice for training models and extracting features, making it difficult to filter outliers in
advance and decide not to use them.

On the other hand, we also provide an example where it is very important to filter out outliers in
the generator sample and then evaluate them. To evaluate the generator, samples are generated by
sampling from the preset latent space (typically Gaussian). Even after training is complete and the
generators’ outputs are generally fine, there’s a latent area where generators aren’t fully trained.
Note that latent space sampling may contain samples from regions that the generator does not cover
well during training ("unfortunate outlier"). When unfortunate outliers are included, the existing
evaluation metrics may underestimate or overestimate the generator’s performance than its general
performance. (To get around this, it is necessary to try this evaluation several times to statistically
stabilize it, but this requires a lot of computation and becomes impractical, especially when the latent
space dimension is high.)

Especially considering the evaluation scenario in the middle of training, the above situation is likely
to occur due to frequent evaluation, which can interrupt training or lead to wrong conclusions. On
the other hand, we can expect that our metric will be more robust against the above problem since it
pays more attention to the core (samples that form topologically meaningful structures) generation
performance of the model.
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F EXPERIMENTAL DETAILS

F.1 IMPLEMENTATION DETAILS OF EMBEDDING

We summarize the detailed information of our embedding networks implemented for the experiments.
In Figure 2, 3, 4, 5, A2, and 6, P&R and D&C are computed from the features of ImageNet pre-trained
VGG16 (fc2 layer), and TopP&R is computed from features placed in R32 with additional random
linear projection. In the experiment in Figure 5, the SwAV embedder is additionally considered. We
implement ImageNet pre-trained InceptionV3 (fc layer), VGG16 (fc2 layer), and SwAV as embedding
networks with random linear projection to 32 dimensional feature space to compare the ranking
of GANs in Table 1. The random projection is characterized by preserving the information about
distances and homological features defined in the higher dimensional spaces by Johnson Linenstrauss
Lemma (Johnson et al., 1986).

F.2 CHOICE OF CONFIDENCE LEVEL

For the confidence level α, we would like to point out that α is not the usual hyperparameter to be
tuned: It has a statistical interpretation of the probability or the level of confidence to allow error,
noise, etc. The most popular choices are α = 0.1, 0.05, 0.01, leading to 90%, 95%, 99% confidence.
We used α = 0.1 throughout our experiments.

F.3 ESTIMATION OF BANDWIDTH PARAMETER

As we discussed in section 2, since TopP&R estimates the manifold through KDE with kernel
bandwidth parameter h, we need to approximate it. The estimation techniques for h are as follows:
(a) a method of selecting h that maximizes the survival time (S(h)) or the number of significant
homological features (N(h)) based on information obtained about persistent homology using the
filtration method, (b) a method using the median of the k-nearest neighboring distances between
features obtained by the balloon estimator (for more details, please refer to Chazal et al. (2017),
Wagner et al. (2012), and Terrell & Scott (1992)). Note that, the bandwidth h for all the experiments
in this paper are estimated via Balloon Bandwidth Estimator.

For (a), following the notation in Section A, let the ith homological feature of persistent diagram be
(bi, di), then we define its life length as li(h) = di − bi at kernel bandwidth h. With confidence band
cα(h), we select h that maximizes one of the following two quantities:

N(h) = #{i : li(h) > cα(h)}, S(h) =
∑
i

[li(h)− cα(h)]+.

Note that, we denote the confidence band cα as cα(h) considering the kernel bandwidth parameter h
of KDE in Algorithm 1.

For (b), the balloon bandwidth estimator is defined as bellow:

Algorithm 2 Balloon Bandwidth Estimator

1: # h: bandwidth; KND: kth nearest distance; idx: index
2: Given X = {X1, X2, . . . , Xn}
3: for idx = 1, 2, . . . , n do
4: # Compute L2 distance between Xidx and X
5: d(Xidx,X ) = ||Xidx −X||22,
6: i.e. d(Xidx,X ) = {. . . , d(Xidx−1, Xidx), d(Xidx, Xidx), d(Xidx, Xidx+1), . . .}
7: # Define the kth nearest neighbor distance by sorting in ascending order
8: KNDidx = sort(d(Xidx,X ))[k]
9: end for

10: Given kth nearest distance set: KND = {KND1,KND2, . . . ,KNDn}
11: # Define the estimated bandwidth ĥ
12: ĥ = median(KND)
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F.4 MEAN HAMMING DISTANCE

Hamming distance (HD) (Hamming, 1950) counts the number of items with different ranks between
A and B, then measures how much proportion differs in the overall order, i.e. for Ai ∈ A and
Bi ∈ B, HD(A,B) :=

∑n
i=1 1{k : Ai ̸= Bi}/n where n is the number of items in list A or B,

and k is the number of differently ordered elements. The mean HD is calculated as follows
to measure the average distances of three ordered lists: Given three ordered lists A,B, and C,
H̄D = (HD(A,B) +HD(A,C) +HD(B,C))/3

F.5 EXPLICIT VALUES OF BANDWIDTH PARAMETER

Since our metric adaptively reacts to the given samples of P and Q, we have two hs per experiment.
For example, in the translation experiment (Figure 2), there are 13 steps in total, and each time we
estimate h for P and Q, resulting in a total of 26 hs. To show them all at a glance, we have listed all
values in one place. We will also provide the code that can reproduce the results in our experiments
upon acceptance.

µ ← shift shift→
real h 8.79 8.60 8.58 8.67 8.63 8.71 8.66 8.73 8.54 8.63 8.54 8.75 8.78
fake h 8.46 8.86 8.60 8.49 8.44 8.80 8.55 8.63 8.74 8.61 8.58 8.83 8.60

Table A1: Bandwidth parameters h of distribution shift in Section 5.1.1.

Steps 0 1 2 3 4 5 6

real h 10.5 10.6 10.5 10.7 10.5 10.8 10.6
fake h 11.0 10.2 10.0 9.82 9.57 9.29 8.78

Table A2: Bandwidth parameters h of sequential mode drop in Section 5.1.2.

Steps 0 1 2 3 4 5 6 7 8 9 10

real h 10.5 10.6 10.6 10.8 10.3 10.6 10.7 10.6 10.4 10.4 10.6
fake h 10.6 10.5 10.7 10.3 10.4 10.0 9.88 9.31 9.19 9.07 8.79

Table A3: Bandwidth parameters h of simultaneous mode drop in Section 5.1.2.

Steps 0 1 2 3 4 5 6 7 8 9

Scatter real h 8.76 8.71 8.78 8.59 8.85 8.71 8.61 8.97 9.00 8.95
fake h 8.61 8.76 8.63 8.93 8.46 8.72 8.67 8.68 9.07 8.88

Swap real h 8.65 8.44 8.76 8.62 8.55 8.75 8.96 8.59 8.53 8.74
fake h 8.52 8.55 8.68 8.97 8.87 8.94 8.84 9.05 8.94 8.90

Table A4: Bandwidth parameters h of non-IID noise perturbation in Section 5.1.3.

Ψ Ψ ↓ Ψ ↑
real h 6.26 6.41 6.31 6.23 6.06 6.24 6.20 6.61 6.39 6.28 6.26
fake h 1.04 1.67 2.36 2.90 3.41 3.93 4.31 4.90 5.51 5.60 6.46

Table A5: Bandwidth parameters h of FFHQ truncation trick in Section 5.2.1.
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Steps 0 1 2 3 4 5 6 7 8 9

real h 7.09 6.95 6.96 6.92 7.02 6.81 6.86 6.88 6.78 6.67
fake h 6.87 6.75 6.88 6.64 6.40 6.64 6.41 6.44 6.62 6.04

Table A6: Bandwidth parameters h of CIFAR10 sequential mode drop in Section 5.2.2.

Steps 0 1 2 3 4 5 6 7 8 9 10

real h 6.78 6.95 7.05 6.62 6.85 6.51 6.94 6.91 6.80 7.00 6.78
fake h 6.75 6.69 7.14 6.68 6.75 6.84 6.61 6.68 6.50 6.32 6.17

Table A7: Bandwidth parameters h of CIFAR10 simultaneous mode drop in Section 5.2.2.

Steps 0 1 2 3 4 5 6 7 8 9

Scatter real h 7.24 7.03 7.01 7.45 7.38 7.66 7.46 7.36 7.79 7.66
fake h 5.41 5.77 5.67 5.49 5.71 5.65 5.82 6.08 5.81 6.02

Swap real h 7.25 7.20 6.99 6.67 7.07 6.96 7.03 6.94 6.83 6.86
fake h 6.87 6.63 6.60 6.91 6.74 6.77 6.92 6.83 6.83 6.82

Table A8: Bandwidth parameters h of FFHQ non-IID noise perturbation in Section 5.2.3.

Noise intensity 0 1 2 3

Gaussian noise real h 6.52 6.27 6.41 6.49
fake h 6.32 6.15 4.06 2.64

Gaussian blur real h 6.08 6.26 6.26 6.47
fake h 6.12 5.13 4.60 3.40

Black rectangle real h 6.06 6.28 6.49 6.44
fake h 6.36 6.66 6.31 5.93

Table A9: Bandwidth parameters h of FFHQ noise addition in Section 5.2.4.

StyleGAN2 ReACGAN BigGAN PDGAN ACGAN WGAN-GP

InceptionV3 real h 2.605 2.629 2.581 2.587 2.615 2.606
fake h 2.226 2.494 2.226 2.639 2.573 2.063

VGG16 real h 7.732 8.021 8.175 7.792 7.845 8.036
fake h 7.880 6.839 7.178 6.174 6.839 3.615

SwAV real h 0.774 0.765 0.785 0.780 0.780 0.822
fake h 0.740 0.667 0.6746 0.619 0.627 0.502

Table A10: Bandwidth parameters h of GAN ranking in Section 5.2.5.

G ADDITIONAL EXPERIMENTS

G.1 TRUCATION TRICK

ψ is a parameter for the truncation trick and is first introduced in Brock et al. (2018) and Karras et al.
(2019). We followed the approach in Brock et al. (2018) and Karras et al. (2019). GANs generate
images using the noise input z, which follows the standard normal distribution N (0, I) or uniform
distribution U(−1, 1). Suppose GAN inadvertently samples noise outside of distribution, then it is
less likely to sample the image from the high density area of the image distribution p(z) defined in
the latent space of GAN, which leads to generate an image with artifacts. The truncation trick takes
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this into account and uses the following truncated distribution. Let f be the mapping from the input to
the latent space. Let w = f(z), and w̄ = E[f(z)], where z is either from N (0, I) or U(−1, 1). Then
we use w′ = w̄ + ψ(w − w̄) as a truncated latent vector. If the value of ψ increases, then the degree
of truncation decreases which makes images have greater diversity but possibly lower fidelity.

G.2 SURVIVABILITY OF MINORITY SETS IN THE LONG-TAILED DISTRIBUTION

Before mode drop After mode drop

Proportion of survival (before / after filtering) 100%→ 59% 100%→ 57%

TopP&R (Fidelity / Diversity) 0.99 / 0.96 0.99 / 0.87 (9 p.p ↓)
P&R (Fidelity / Diversity) 0.73 / 0.73 0.74 / 0.70 (3 p.p ↓)
D&C (Fidelity / Diversity) 0.99 / 0.96 1.02 / 0.94 (2 p.p ↓)

Table A11: Proportion of surviving minority samples in the long-tailed distribution after the noise
exclusion with confidence band cX . The p.p. indicates the percentage points.

An important point to check in our proposed metric is the possibility that a small part of the total
data (i.e., minority sets), but containing important information, can be ignored by the confidence
band. We emphasize that since our metric takes topological features into account, even minority
sets are not filtered conditioned that they have topologically significant structures. We assume that
signals or data that are minority sets have topological structures, but outliers exist far apart and lack
a topological structure in general.

To test this, we experimented with CIFAR10, which has 5,000 samples per class. We simulate a
dataset with the majority set of six classes (2,000 samples per class, 12,000 total) and the minority
set of four classes (500 samples per class, 2,000 total), and an ideal generator that exactly mimics
the full data distribution. As shown in the Table A11, the samples in the minority set remained after
the filtering process, meaning that the samples were sufficient to form a significant structure. Both
D&C and TopP&R successfully evaluate the distribution for the ideal generator. To check whether
our metric reacts to the change in the distribution even with this harsh setting, we also carried out
the mode decay experiment. We dropped the samples of the minority set from 500 to 100 per class,
which can be interpreted as an 11.3% decrease in diversity relative to the full distribution (Given
(1) ratio of the number of samples between majority and minority sets = 12, 000 : 2, 000 = 6 : 1
and (2) 80% decrease in samples per minority class, the true decay in the diversity is calculated as

1
(1+6) × 0.8 = 11.3% with respect to the enitre samples). Here, recall and coverage react somewhat
less sensitively with their reduced diversities as 3 p.p. and 2 p.p., respectively, while TopR reacted
most similarly (9 p.p.) to the ideal value. In summary, TopP&R shows much more sensitiveness to
the changes in data distribution like mode decay. Thus, once the minority set has survived the filtering
process, our metric is likely to be much more responsive than existing methods.

G.3 SEQUENTIAL AND SIMULTANEOUS MODE DROPPING WITH CIFAR-10

Concentration on the first mode
(a) Sequential mode dropping
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(b) Simultaneous mode dropping
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Figure A2: Comparison of evaluation metrics under sequential and simultaneous mode dropping
scenario with CIFAR-10.
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