
Reinforcement Learning with Action Sequence
for Data-Efficient Robot Learning

Younggyo Seo
UC Berkeley

younggyo.seo@berkeley.edu

Pieter Abbeel
UC Berkeley

pabbeel@cs.berkeley.edu

Abstract: Training reinforcement learning (RL) agents on robotic tasks often
requires a large number of training samples. This is because training data often
consists of noisy trajectories, whether from exploration or human-collected demon-
strations, making it difficult to learn value functions that understand the effect of
taking each action. On the other hand, recent behavior-cloning (BC) approaches
have shown that predicting a sequence of actions enables policies to effectively
approximate noisy, multi-modal distributions of expert demonstrations. Can we
use a similar idea for improving RL on robotic tasks? In this paper, we introduce
an RL algorithm that learns a critic network that outputs Q-values over a sequence
of actions. By explicitly training the value functions to learn the consequence of
executing a series of current and future actions, our algorithm allows for learning
useful value functions from noisy trajectories. We study our algorithm across
various setups with sparse and dense rewards, and with or without demonstra-
tions, spanning mobile bi-manual manipulation, whole-body control, and tabletop
manipulation tasks from BiGym, HumanoidBench, and RLBench. We find that,
by learning the critic network with action sequences, our algorithm outperforms
various RL and BC baselines, in particular on challenging humanoid control tasks.

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

BiGym (25 Tasks)

0 2e6 4e6 6e6 8e6 1e7
Environment Steps

0

250

500

750

1000

Ep
is

od
e 

R
et

ur
n

HumanoidBench (8 Tasks)

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

RLBench (20 Tasks)

RL: CQN-AS (Ours) CQN DrQ-v2+ SAC BC: ACT

Figure 1: Summary of results. Coarse-to-fine Q-Network with Action Sequence (CQN-AS) is a
value-based RL algorithm that learns a critic network with action sequence. We study CQN-AS on
53 robotic tasks from BiGym [1], HumanoidBench [2], and RLBench [3], where prior model-free RL
algorithms struggle to achieve competitive performance. We show that CQN-AS outperforms various
RL and BC baselines such as CQN [4], DrQ-v2+ [5], SAC [6], and ACT [7].

1 Introduction

Reinforcement learning (RL) holds the promise of continually improving policies through online
trial-and-error experiences [8], making it an ideal choice for developing robots that can adapt to
various environments. However, despite this promise, training RL agents on robotic tasks typically
requires a prohibitively large number of training samples [9, 10], which becomes problematic as
deploying robots often incurs a huge cost. Therefore many of the recent successful approaches on
robot learning have been based on behavior-cloning (BC) [11], which can learn strong policies from
offline expert demonstrations [7, 12, 13, 14, 15, 16].

CoRL 2024 Workshop on Whole-Body Control and Bimanual Manipulation (CoRL 2024 WCBM).



C
N

N
C

N
N

Proprio States

MLP

Actions from
Previous Level

MLP MLP

Inputs & Encoding

Level Index
[0, 1, …, 0]

C
oncat &

 Linear

GRU

Coarse-to-fine Critic with Action Sequence

Q-Values over 
Action Sequence

Coarse-to-fine Critic with
Action Sequence

Inputs Actions from 
Previous Level

Repeat
L Times

Action Sequence from Level L

Action Inference

Figure 2: Coarse-to-fine Q-network with action sequence. (Left) Our key idea is to train a critic
network to output Q-values over a sequence of actions. We design our architecture to first obtain
features for each sequence step and aggregate features from multiple sequence steps with a recurrent
network. We then project these outputs into Q-values at level l. (Right) For action inference, we
repeat the procedure of computing Q-values for level l ∈ {1, ..., L}. We then find the action sequence
with the highest Q-values from the last level L, and use it for controlling robots at each time step.

One cause for the poor data-efficiency of RL algorithms on robotic tasks is that training data consists
of noisy trajectories. When collecting data for training RL agents, we typically inject some noise
into actions for exploration [17, 18] that may induce trajectories with jerky motions. Moreover, we
often initialize training with human-collected demonstrations that can consist of noisy multi-modal
trajectories [1]. Such noisy data distributions make it difficult to learn value functions that should
understand the consequence of taking each action. We indeed find that prior RL algorithms perform
much worse than the BC baseline on mobile bi-manual manipulation tasks with human-collected
demonstrations when compared to a tabletop manipulation setup with synthetic demonstrations
collected via motion-planning (see Figure 1).

On the other hand, recent BC approaches have shown that predicting a sequence of actions enables
policies to effectively approximate the noisy, multi-modal distribution of expert demonstrations
[7, 14]. Inspired by this, in this paper, we investigate how to use a similar idea for improving the
data-efficiency of RL algorithms on robotic tasks. In particular, we present a novel RL algorithm
that learns a critic network that outputs Q-values over a sequence of actions (see Figure 2). By
training the critic network to explicitly learn the consequence of taking a series of current and future
actions, our algorithm enables the RL agents to effectively learn useful value functions from noisy
trajectories. We build this algorithm upon a recent value-based RL algorithm that learns RL agents to
zoom-into continuous action space in a coarse-to-fine manner [4], thus we refer to our algorithm as
Coarse-to-fine Q-Network with Action Sequence (CQN-AS).

To evaluate the generality and capabilities of CQN-AS, we study CQN-AS on various setups with
sparse and dense rewards, and with or without demonstrations. In BiGym benchmark [1], which
provides human-collected demonstrations for mobile bi-manual manipulation tasks, CQN-AS outper-
forms various model-free RL and BC baselines [4, 5, 7]. Moreover, in HumanoidBench [2], which
consists of densely-rewarded humanoid control tasks, we show that CQN-AS can also be effective
without demonstrations, outperforming prior model-free RL baselines [4, 6]. Finally, in RLBench [3],
which provides synthetic demonstrations generated via motion-planning, CQN-AS achieves similar
performance as model-free RL and BC baselines on most tasks, but significantly better performance
on several long-horizon manipulation tasks.

2 Background

Problem setup We mainly consider a robotic control problem which we formulate as a partially
observable Markov decision process [8, 19]. At each time step t, an RL agent encounters an
observation ot, executes an action at, receives a reward rt+1, and encounters a new observation ot+1

from the environment. Because the observation ot does not contain full information about the internal
state of the environment, in this work, we use a stack of past observations as inputs to the RL agent

2



by following the common practice in Mnih et al. [20]. For simplicity, we omit the notation for these
stacked observations. When the environment is fully observable, we simply use ot as inputs. Our
goal in this work is to train a policy π that maximizes the expected sum of rewards through RL while
using as few samples as possible, optionally with access to a modest amount of expert demonstrations
collected either by motion-planners or by humans.

Inputs and encoding Given visual observations ov
t = {ov1

t , ...,ovM
t } from M cameras, we encode

each ovi
t using convolutional neural networks (CNN) into hvi

t . We then process them through a series
of linear layers to fuse them into hv

t . If low-dimensional observations olowt are available along with
visual observations, we process them through a series of linear layers to obtain hlow

t . We then use
concatenated features ht = [hv

t ,h
low
t ] as inputs to the critic network. In domains without vision

sensors, we simply use olowt as ht without encoding the low-dimensional observations.

Coarse-to-fine Q-Network Coarse-to-fine Q-Network (CQN; Seo et al. 4) is a value-based RL
algorithm for continuous control that trains RL agents to zoom-into the continuous action space in a
coarse-to-fine manner. In particular, CQN iterates the procedures of (i) discretizing the continuous
action space into multiple bins and (ii) selecting the bin with the highest Q-value to further discretize.
This reformulates the continuous control problem as a multi-level discrete control problem, allowing
for the use of ideas from sample-efficient value-based RL algorithms [20, 21, 22], designed to be
used with discrete actions, for continuous control.

Formally, let alt be an action at level l with a0t being the zero vector1. We then define the coarse-to-fine
critic to consist of multiple Q-networks which compute Q-values for actions at each level alt, given
the features ht and actions from the previous level al−1

t , as follows:

Ql
θ(ht,a

l
t,a

l−1
t ) for l ∈ {1, ..., L} (1)

We optimize each Q-network at level l with the following objective:

Ll =
(
Ql

θ(ht,a
l
t,a

l−1
t )− rt+1 − γmax

a′
Ql

θ̄(ht+1, a
′, πl(ht+1)

)
, (2)

where θ̄ are delayed parameters for a target network [23] and πl is a policy that outputs the action alt
at each level l via the inference steps with our critic, i.e., πl(ht) = alt. Specifically, to output actions
at time step t with the critic, CQN first initializes constants alowt and ahight with −1 and 1. Then the
following steps are repeated for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [alowt , ahight ] into B uniform intervals, and each
of these intervals become an action space for Ql

θ

• Step 2 (Bin selection): Find a bin with the highest Q-value and set alt to the centroid of the bin.

• Step 3 (Zoom-in): Set alowt and a
high
t to the minimum and maximum of the selected bin, which

intuitively can be seen as zooming-into each bin.

We then use the last level’s action aLt as the action at time step t. For more details, including the
inference procedure for computing Q-values, we refer readers to Appendix B.

3 Coarse-to-fine Q-Network with Action Sequence

We present Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a value-based RL algorithm
that learns a critic network that outputs Q-values for a sequence of actions at:t+K = {at, ...,at+K−1}
for a given observation ot. Our main motivation for this design comes from one of the key ideas
in recent behavior-cloning (BC) approaches, i.e., predicting action sequences, which helps resolve
ambiguity when approximating noisy, multi-modal distributions of expert demonstrations [7, 14].
Similarly, by explicitly learning Q-values of both current and future actions from the given state, our
approach aims to mitigate the challenge of learning Q-values with noisy trajectories from exploratory

1For simplicity, we describe CQN and CQN-AS with a single-dimensional action in the main section. See
Appendix B for full description with N -dimensional actions, which is straightforward but requires more indices.

3



behaviors or human-collected demonstrations. This section describes how we design our critic
network with action sequence (see Section 3.1) and how we utilize action sequence outputs to control
robots at each time step (see Section 3.2). The overview of our algorithm is available in Figure 2.

3.1 Coarse-to-fine Critic with Action Sequence

Our key idea is to design a critic network to explicitly learn Q-values for current action and future
actions from the current time step t, i.e., {Q(ot,at), Q(ot,at+1), ..., Q(ot,at+K−1)}, to enable the
critic to understand the consequence of executing a series of actions from the given state.

Formulation and objective Let alt:t+K = {alt, ...,alt+K−1} be an action sequence at level l and
a0t:t+K be a zero vector. We design our coarse-to-fine critic network to consist of multiple Q-networks
that compute Q-values for each action at sequence step k and level l:

Ql,k
θ (ht,a

l
t+k−1,a

l−1
t:t+K) for l ∈ {1, ..., L} and k ∈ {1, ...,K} (3)

We optimize our critic network with the following objective:∑
k

∑
l

(
Ql,k

θ (ht,a
l
t+k−1,a

l−1
t:t+K)− rt+1 − γmax

a′
Ql,k

θ̄
(ht+1, a

′, πl
K(ht+1)

)2

, (4)

where πl
K is an action sequence policy that outputs the action sequence alt:t+K . In practice, we

compute Q-values for all sequence step k ∈ {1, ...,K} in parallel, which is possible because
Q-values for future actions depend only on current features ht but not on Q-values for previous
actions. We find this simple design, with independence across action sequence, works well even on
challenging humanoid control tasks with high-dimensional action spaces [2]. We expect our idea can
be strengthened by exploiting the sequential structure, i.e., Q-values at subsequent steps depend on
previous Q-values [24, 25], but we leave it as future work.

Architecture We implement our critic network to initially extract features for each sequence step k
and aggregate features from multiple steps with a recurrent network (see Figure 2). This architecture
is often helpful in cases where a single-step action is already high-dimensional so that concatenating
them make inputs too high-dimensional. Specifically, let ek denote an one-hot encoding for k.
At each level l, we construct features for each sequence step k as hl

t,k =
[
ht,a

l−1
t+k−1, ek

]
. We

then encode each hl
t,k with a shared MLP network and process them through GRU [26] to obtain

slt,k = fGRU
θ (fMLP

θ (hl
t,1), ..., f

MLP
θ (hl

t,k)). We then use a shared projection layer to map each slt,k into
Q-values at each sequence step k, i.e., Ql,k

θ (ot,a
l
t+k−1,a

l−1
t:t+K) = fproj

θ (slt,k).

3.2 Action Execution and Training Details

While the idea of using action sequence is simple, there are two important yet small details for
effectively training RL agents with action sequence: (i) how we execute actions at each time step to
control robots and (ii) how we store training data and sample batches for training.

Executing action with temporal ensemble With the policy that outputs an action sequence at:t+K ,
one important question is how to execute actions at time step i ∈ {t, ..., t+K − 1}. For this, we use
the idea of Zhao et al. [7] that utilizes temporal ensemble, which computes at:t+K every time step,
saves it to a buffer, and executes a weighted average

∑
i wiat−i/

∑
wi where wi = exp(−m ∗ i)

denotes a weight that assigns higher value to more recent actions. We find this scheme outperforms
the alternative of computing at:t+K every K steps and executing each action for subsequent K steps
on most tasks we considered, except on several tasks that need reactive control.

Storing training data from environment interaction When storing samples from online envi-
ronment interaction, we store a transition (ot, ât, rt+1,ot+1) where ât denotes an action executed at
time step t. For instance, if we use temporal ensemble for action execution, ât is a weighted average
of action outputs obtained from previous K time steps.

4



Figure 3: Examples of robotic tasks. We study CQN-AS on 53 robotic tasks spanning mobile
bi-manual manipulation, whole-body control, and tabletop manipulation tasks from BiGym [1],
HumanoidBench [2], and RLBench [3].

Sampling training data from a replay buffer When sampling training data from the replay buffer,
we sample a transition with action sequence, i.e., (ot, ât:t+K , rt+1,ot+1). If we sample time step t
near the end of episode so that we do not have enough data to construct a full action sequence, we fill
the action sequence with null actions. In particular, in position control where we specify the position
of joints or end effectors, we repeat the action from the last step so that the agent learns not to change
the position. On the other hand, in torque control where we specify the force to apply to joints, we
set the action after the last step to zero so that agent learns to not to apply force.

4 Experiment

We study CQN-AS on 53 robotic tasks spanning mobile bi-manual manipulation, whole-body
control, and tabletop manipulation tasks from BiGym [1], HumanoidBench [2], and RLBench [3]
environments (see Figure 3 for examples of robotic tasks). These tasks with sparse and dense
rewards, with or without vision sensors, and with or without demonstrations, allow for evaluating the
capabilities and limitations of our algorithm. In particular, our experiments are designed to investigate
the following questions:

• Can CQN-AS match the performance of a recent BC algorithm [7] and surpass it through
online learning? How does CQN-AS compare to prior model-free RL algorithms [4, 6, 5]?

• What is the contribution of each component in CQN-AS?

• Under which conditions is CQN-AS effective? When does CQN-AS fail?

Baselines for fine-grained control tasks with demonstrations For tasks that need high-precision
control, e.g., manipulation tasks from BiGym and RLBench, we consider model-free RL baselines
that aim to learn deterministic policies, as we find that stochastic policies struggle to solve such
fine-grained control tasks. Specifically, we consider (i) Coarse-to-fine Q-Network (CQN) [4], a
value-based RL algorithm that learns to zoom-into continuous action space in a coarse-to-fine manner,
and (ii) DrQ-v2+, an optimized demo-driven variant of a model-free actor-critic algorithm DrQ-v2
[5] that uses a deterministic policy algorithm and data augmentation. We further consider (iii) Action
Chunking Transformer (ACT) [7], a BC algorithm that trains a transformer [27] policy to predict
action sequence and utilizes temporal ensemble for executing actions., as our highly-optimized BC
baseline.

Baselines for whole-body control tasks with dense reward For locomotion tasks with dense
reward, we consider (i) Soft Actor-Critic (SAC; Haarnoja et al. 6), a model-free actor-critic RL
algorithm that maximizes action entropy, and (ii) Coarse-to-fine Q-Network (CQN; Seo et al. 4).
Moreover, although it is not the goal of this paper to compare against model-based RL algorithms,
we also consider two model-based baselines: (iii) DreamerV3 [28], a model-based RL algorithm
that learns a latent dynamics model and a policy using imagined trajectories and (iv) TD-MPC2
[29], a model-based RL algorithm that learns a latent dynamics model and utilizes local trajectory
optimization in imagined latent trajectories.

5



0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Move Plate

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Move Two Plates

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Saucepan To Hob

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Sandwich Flip

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Sandwich Remove

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Dishwasher Load Plates

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Dishwasher Load Cups

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Dishwasher Unload Cutlery

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Take Cups

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Put Cups

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Flip Cup

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Flip Cutlery

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Dishwasher Close Trays

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Cupboards Close All

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Reach Target Single

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Reach Target Multi Modal

0 2e4 4e4 6e4 8e4 1e5
0

25

50

75

100
Reach Target Dual

0 1e4 2e4 3e4 4e4 5e4
0

25

50

75

100
Dishwasher Close

0 1e4 2e4 3e4 4e4 5e4
0

25

50

75

100
Wall Cupboard Open

0 1e4 2e4 3e4 4e4 5e4
0

25

50

75

100
Drawers Open All

0 0.5e4 1e4 1.5e4 2e4 2.5e4
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Wall Cupboard Close

0 0.5e4 1e4 1.5e4 2e4 2.5e4
Environment Steps

0

25

50

75

100
Dishwasher Open Trays

0 0.5e4 1e4 1.5e4 2e4 2.5e4
Environment Steps

0

25

50

75

100
Drawers Close All

0 0.5e4 1e4 1.5e4 2e4 2.5e4
Environment Steps

0

25

50

75

100
Drawer Top Open

0 0.5e4 1e4 1.5e4 2e4 2.5e4
Environment Steps

0

25

50

75

100
Drawer Top Close

RL: CQN-AS (Ours) CQN DrQ-v2+ BC: ACT

Figure 4: BiGym results on 25 sparsely-rewarded mobile bi-manual manipulation tasks [1]. All
experiments are initialized with 17 to 60 human-collected demonstrations, and RL methods are
trained with an auxiliary BC objective. On many of the challenging long-horizon tasks, CQN-AS
quickly learns to match the performance of ACT [7] and surpass it through online learning, while
other RL baselines fail to effectively accelerate training with noisy human-collected demonstrations.
We report the success rate over 25 episodes. The solid line and shaded regions represent the mean
and confidence intervals, respectively, across 4 runs.

Implementation details For training with expert demonstrations, we follow the setup of Seo et al.
[4]. Specifically, we keep a separate replay buffer that stores demonstrations and sample half of
training data from demonstrations. We also relabel successful online episodes as demonstrations and
store them in the demonstration replay buffer. For CQN-AS, we use an auxiliary BC loss from Seo
et al. [4] based on large margin loss [30]. For actor-critic baselines, we use an auxiliary BC loss that
minimizes L2 loss between the policy outputs and expert actions.

4.1 BiGym Experiments

We study CQN-AS on mobile bi-manual manipulation tasks from BiGym [1]. BiGym’s human-
collected demonstrations are often noisy and multi-modal, posing challenges to RL algorithms which
should effectively leverage demonstrations for solving sparsely-rewarded tasks.

Setup Because we find that not all demonstrations from BiGym benchmark can be successfully
replayed2, we replay all the demonstrations and only use the successful ones as demonstrations.
We do not discard ones that fail to be replayed, but we use them as training data with zero reward
because they can still be useful as failure experiences. To avoid training with too few demonstrations,
we exclude the tasks where the ratio of successful demonstrations is below 50%. This leaves us

2We use demonstrations available at the date of Oct 1st with the commit 018f8b2.

6



0 2e6 4e6 6e6 8e6 1e7
0

200

400

600

800

1000

Ep
is

od
e 

R
et

ur
n

Stand

0 2e6 4e6 6e6 8e6 1e7
0

200

400

600

800

1000 Walk

0 2e6 4e6 6e6 8e6 1e7
0

200

400

600

800 Run

0 2e6 4e6 6e6 8e6 1e7
0

2000

4000

6000

8000

Reach

0 2e6 4e6 6e6 8e6 1e7
Environment Steps

0

50

100

150

Ep
is

od
e 

R
et

ur
n

Hurdle

0 2e6 4e6 6e6 8e6 1e7
Environment Steps

0

200

400

600

800

1000 Crawl

0 2e6 4e6 6e6 8e6 1e7
Environment Steps

0

100

200

300

400 Maze

0 2e6 4e6 6e6 8e6 1e7
Environment Steps

0

200

400

600

800

1000 Sit Simple

Model-free RL: CQN-AS (Ours) CQN SAC Model-based RL: TD-MPC2 DreamerV3

Figure 5: HumanoidBench results on 8 densely-rewarded humanoid control tasks [2]. All the
experiments start from scratch and RL methods do not have an auxiliary BC objective. CQN-AS
significantly outperforms other model-free RL baselines on most tasks. CQN-AS often achieves
competitive performance to model-based RL baselines, which is intriguing but not the main goal of
this paper. For CQN-AS and CQN, we report the results aggregated over 4 runs. For other baselines,
we report the results aggregated over 3 runs available from public website. The solid line and shaded
regions represent the mean and confidence intervals.

with 25 tasks, each with 17 to 60 demonstrations. For visual observations, we use RGB observa-
tions with 84×84 resolution from head, left wrist, and right wrist cameras. We also use
low-dimensional proprioceptive states from proprioception, proprioception grippers, and
proprioception floating base sensors. We use (i) absolute joint position control action mode
and (ii) floating base that replaces locomotion with classic controllers. We use the same set of
hyperparameters for all the tasks, in particular, we use action sequence of length 16.

Comparison to baselines Figure 4 shows the experimental results on BiGym benchmark. We find
that CQN-AS quickly matches the performance of ACT and outperforms it through online learning
on 20/25 tasks, while other RL algorithms fail to do so especially on challenging long-horizon tasks
such as Move Plate and Saucepan To Hob. A notable result here is that CQN-AS enables solving
these challenging BiGym tasks while other RL baselines, i.e., CQN and DrQ-v2+, completely fail
as they achieve 0% success rate. This result highlights the capability of CQN-AS to accelerate RL
training from noisy, multi-modal demonstrations collected by humans.

Limitation We find that CQN-AS struggles to achieve meaningful success rate on some of the
long-horizon tasks that require interaction with delicate objects such as cup or cutlery, leaving room
for future work to incorporate advanced vision encoders [31, 32] or critic architectures [25, 33, 34].

4.2 HumanoidBench Experiments

To show that CQN-AS can be generally applicable to tasks without demonstrations, we study CQN-AS
on densely-rewarded humanoid control tasks from HumanoidBench [2].

Setup For HumanoidBench, we follow a standard setup that trains RL agents from scratch, which
is also used in original benchmark [2]. Specifically, we use low-dimensional states consisting of
proprioception and privileged task information as inputs. For tasks, we simply select the first 8
locomotion tasks in the benchmark. Following the original benchmark that trains RL agents for
environment steps that roughly requires 48 hours of training, we report the results of CQN-AS and
CQN for 7 million steps. For baselines, we use the results available from the public repository, which
are evaluated on tasks with dexterous hands, and we also evaluate our algorithm on tasks with hands.
We use the same set of hyperparameters for all the tasks, in particular, we use action sequence of
length 4. More details on HumanoidBench experiments are available in Appendix A.

7



0 1e4 2e4 3e40

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Take Lid Off Saucepan

0 1e4 2e4 3e40

25

50

75

100 Open Drawer

0 1e4 2e4 3e40

25

50

75

100 Stack Wine

0 1e4 2e4 3e40

25

50

75

100 Toilet Seat Up

0 1e4 2e4 3e40

25

50

75

100 Open Microwave

0 1e4 2e4 3e40

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Open Oven

0 1e4 2e4 3e40

25

50

75

100Take Plate Off Colored Dish Rack

0 1e4 2e4 3e40

25

50

75

100 Turn Tap

0 1e4 2e4 3e40

25

50

75

100 Put Money In Safe

0 1e4 2e4 3e40

25

50

75

100 Phone On Base

0 1e4 2e4 3e40

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Put Books On Bookshelf

0 1e4 2e4 3e40

25

50

75

100 Sweep To Dustpan

0 1e4 2e4 3e40

25

50

75

100 Pick Up Cup

0 1e4 2e4 3e40

25

50

75

100 Open Door

0 1e4 2e4 3e40

25

50

75

100 Meat On Grill

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Basketball In Hoop

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100 Lamp On

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100 Press Switch

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100 Put Rubbish In Bin

0 1e4 2e4 3e4
Environment Steps

0

25

50

75

100 Insert Usb In Computer

RL: CQN-AS (Ours) CQN DrQ-v2+ BC: ACT

Figure 6: RLBench results on 20 sparsely-rewarded tabletop manipulation tasks from RLBench [3].
All experiments are initialized with 100 synthetic demonstrations generated via motion-planning and
RL methods are trained with an auxiliary BC objective. As expected, with synthetic demonstrations,
CQN-AS achieves similar performance to CQN on most tasks. However, CQN-AS often significantly
outperforms baselines on several challenging, long-horizon tasks such as Open Oven. We report the
success rate over 25 episodes. The solid line and shaded regions represent the mean and confidence
intervals, respectively, across 4 runs.

Comparison to model-free RL baselines Figure 5 shows the results on on HumanoidBench. We
find that, by learning the critic network with action sequence, CQN-AS outperforms other model-free
RL baselines, i.e., CQN and SAC, on most tasks. In particular, the difference between CQN-AS and
baselines becomes larger as the task gets more difficult, e.g., baselines fail to achieve high episode
return on Walk and Run tasks but CQN-AS achieves strong performance. This result shows that our
idea of using action sequence can be applicable to generic setup without demonstrations.

CQN-AS often achieves competitive performance to model-based RL baselines While outper-
forming model-based RL algorithms is not the goal of this paper, we find that CQN-AS often achieves
competitive performance to model-based RL baselines, i.e., DreamerV3 and TD-MPC2, on tasks
such as Run or Sit Simple. This result shows the potential of our idea to enable RL agents to learn
useful value functions on challenging tasks, without the need to explicitly learn dynamics model. We
also note that incorporating our idea into world model learning could be an interesting direction.

4.3 RLBench Experiments

To investigate whether CQN-AS can also be effective in leveraging clean demonstrations, we study
CQN-AS on RLBench [3] with synthetic demonstrations.

Setup For RLBench experiments, we use the official CQN implementation for collecting demon-
strations and reproducing the baseline results on the same set of tasks. Specifically, we use RGB
observations with 84×84 resolution from front, wrist, left shoulder, and right shoulder

cameras. We also use low-dimensional proprioceptive states consisting of 7-dimensional joint posi-
tions and a binary value for gripper open. We use 100 demonstrations and delta joint position control

8



0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Move Plate

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100
Saucepan To Hob

CQN-AS CQN-AS8 CQN-AS4 CQN-AS2

(a) Effect of action sequence length

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Move Plate

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100
Saucepan To Hob

CQN-AS CQN-AS (No RL)

(b) Effect of RL objective

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100

Su
cc

es
s 

R
at

e 
(%

)

Saucepan To Hob

0 2e4 4e4 6e4 8e4 1e5
Environment Steps

0

25

50

75

100
Reach Target Single

CQN-AS CQN-AS (No Temporal Ensemble)

(c) Effect of temporal ensemble

0 2e5 4e5 6e5 8e5 1e6
Environment Steps

0

250

500

750

1000

Ep
is

od
e 

R
et

ur
n

Walker Run

0 2e5 4e5 6e5 8e5 1e6
Environment Steps

0

250

500

750

1000
Cheetah Run

CQN-AS8 CQN-AS4 CQN-AS2 CQN

(d) Failure mode: Torque control

Figure 7: Ablation studies and analysis on the effect of (a) action sequence, (b) RL objective, and
(c) temporal ensemble. (d) We also provide results on locomotion tasks from DeepMind Control
Suite [35], where CQN-AS fails to improve performance. The solid line and shaded regions represent
the mean and confidence intervals, respectively, across 4 runs.

action mode. We use the same set of hyperparameters for all the tasks, in particular, we use action
sequence of length 4. More details on RLBench experiments are available in Appendix A.

CQN-AS is also effective with clean demonstrations Because RLBench provides synthetic clean
demonstrations, as we expected, Figure 6 shows that CQN-AS achieves similar performance to CQN
on many of the tasks, except 2/25 tasks where it hurts the performance. But we still find that CQN-AS
achieves quite superior performance to CQN on some challenging long-horizon tasks such as Open
Oven or Take Plate Off Colored Dish Rack. These results, along with results from BiGym and
HumanoidBench, show that CQN-AS can be used in various benchmark with different characteristics.

4.4 Ablation Studies, Analysis, Failure Cases

Effect of action sequence length Figure 7a shows the performance of CQN-AS with different
action sequence lengths on two BiGym tasks. We find that training the critic network with longer
action sequences improves and stabilizes performance.

RL objective is crucial for strong performance Figure 7b shows the performance of CQN-AS
without RL objective that trains the model only with BC objective on successful demonstrations. We
find this baseline significantly underperforms CQN-AS, which shows that RL objective is indeed
enabling the agent to learn from online trial-and-error experiences.

Effect of temporal ensemble Figure 7c shows that performance largely degrades without temporal
ensemble on Saucepan To Hop as temporal ensemble induces a smooth motion and thus improves
performance in fine-grained control tasks. But we also find that temporal ensemble can be harmful on
Reach Target Single. We hypothesize this is because temporal ensemble often makes it difficult
to refine behaviors based on recent visual observations. Nonetheless, we use temporal ensemble for
all the tasks as we find it helps on most tasks and we aim to use the same set of hyperparameters.

Failure case: Torque control Figure 7d shows that CQN-AS underperforms CQN on locomotion
tasks with torque control. We hypothesize this is because a sequence of joint positions usually has a
semantic meaning in joint spaces, making it easier to learn with, when compared to learning how to
apply a sequence of torques. Addressing this failure case is an interesting future direction.

9



5 Related Work

Behavior cloning with action sequence Recent behavior cloning approaches have shown that
predicting a sequence of actions enables the policy to effectively imitate noisy expert trajectories and
helps in dealing with idle actions from human pauses during data collection [7, 14]. In particular,
Zhao et al. [7] train a transformer model [27] that predicts action sequence and Chi et al. [14] train
a denoising diffusion model [36] that approximates the action distributions. This idea has been
extended to multi-task setup [37], mobile manipulation [38] and humanoid control [16]. Our work is
inspired by this line of work and proposed to learn RL agents with action sequence.

Reinforcement learning with action sequence In the context of reinforcement learning, Medini
and Shrivastava [39] proposed to pre-compute frequent action sequences from expert demonstrations
and augment the action space with these sequences. However, this idea introduces additional
complexity and is not scalable to setups without demonstrations. One recent work relevant to ours is
Saanum et al. [40] that encourages a sequence of actions from RL agents to be predictable and smooth.
But this differs from our work in that it uses the concept of action sequence only for computing the
penalty term. Recently, Ankile et al. [41] point out that RL with action sequence is challenging and
instead proposes to use RL for learning a single-step policy that corrects action sequence predictions
from BC. In contrast, our work shows that training RL agents with action sequence is feasible and
leads to improved performance compared to prior RL algorithms.

6 Conclusion

We presented Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a value-based RL algo-
rithm that trains a critic network that outputs Q-values over action sequences. Extensive experiments
in benchmarks with various setups show that our idea not only improves the performance of the base
algorithm but also allows for solving complex tasks where prior RL algorithms completely fail.

We believe our work will be strong evidence that shows RL can realize its promise to develop robots
that can continually improve through online trial-and-error experiences, surpassing the performance
of BC approaches. We are excited about future directions, including real-world RL with humanoid
robots, incorporating advanced critic architectures [25, 33, 34], bootstrapping RL agents from
imitation learning [42, 43] or offline RL [44, 45], extending the idea to recent model-based RL
approaches [28, 29], to name but a few.

References
[1] N. Chernyadev, N. Backshall, X. Ma, Y. Lu, Y. Seo, and S. James. Bigym: A demo-driven

mobile bi-manual manipulation benchmark. In Conference on Robot Learning, 2024.

[2] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel. Humanoidbench: Simulated
humanoid benchmark for whole-body locomotion and manipulation. In Robotics: Science and
Systems, 2024.

[3] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[4] Y. Seo, J. Uruç, and S. James. Continuous control with coarse-to-fine reinforcement learning.
In Conference on Robot Learning, 2024.

[5] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Im-
proved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022.

[6] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

10



[7] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. In Robotics: Science and Systems, 2023.

[8] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[9] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic
manipulation. In Conference on robot learning, 2018.

[10] A. Herzog, K. Rao, K. Hausman, Y. Lu, P. Wohlhart, M. Yan, J. Lin, M. G. Arenas, T. Xiao,
D. Kappler, et al. Deep rl at scale: Sorting waste in office buildings with a fleet of mobile
manipulators. arXiv preprint arXiv:2305.03270, 2023.

[11] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, 1988.

[12] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. In
Robotics: Science and Systems, 2023.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. In Conference on Robot Learning, 2023.

[14] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Robotics: Science and Systems, 2023.

[15] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. In Robotics: Science and Systems,
2024.

[16] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn. Humanplus: Humanoid shadowing and
imitation from humans. In Conference on Robot Learning, 2024.

[17] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber. Parameter-
exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations, 2016.

[19] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 1998.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

[21] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 2017.

[22] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 2020.

[23] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 1992.

[24] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. Discrete sequential prediction of continuous actions
for deep rl. arXiv preprint arXiv:1705.05035, 2017.

11



[25] Y. Chebotar, Q. Vuong, K. Hausman, F. Xia, Y. Lu, A. Irpan, A. Kumar, T. Yu, A. Herzog,
K. Pertsch, et al. Q-transformer: Scalable offline reinforcement learning via autoregressive
q-functions. In Conference on Robot Learning, 2023.

[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[28] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[29] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control. In International Conference on Learning Representations, 2024.

[30] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of the
AAAI conference on artificial intelligence, 2018.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[32] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022.

[33] S. Kapturowski, V. Campos, R. Jiang, N. Rakićević, H. van Hasselt, C. Blundell, and A. P.
Badia. Human-level atari 200x faster. In International Conference on Learning Representations,
2023.

[34] J. T. Springenberg, A. Abdolmaleki, J. Zhang, O. Groth, M. Bloesch, T. Lampe, P. Brakel,
S. Bechtle, S. Kapturowski, R. Hafner, et al. Offline actor-critic reinforcement learning scales
to large models. In International Conference on Machine Learning, 2024.

[35] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez,
T. Lillicrap, and N. Heess. dm control: Software and tasks for continuous control. arXiv
preprint arXiv:2006.12983, 2020.

[36] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 2020.

[37] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024.

[38] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In Conference on Robot Learning, 2024.

[39] T. Medini and A. Shrivastava. Mimicking actions is a good strategy for beginners: Fast
reinforcement learning with expert action sequences, 2019. URL https://openreview.net/

forum?id=HJfxbhR9KQ.

[40] T. Saanum, N. Éltető, P. Dayan, M. Binz, and E. Schulz. Reinforcement learning with simple
sequence priors. Advances in Neural Information Processing Systems, 2024.

[41] L. Ankile, A. Simeonov, I. Shenfeld, M. Torne, and P. Agrawal. From imitation to refinement–
residual rl for precise visual assembly. arXiv preprint arXiv:2407.16677, 2024.

12

https://openreview.net/forum?id=HJfxbhR9KQ
https://openreview.net/forum?id=HJfxbhR9KQ


[42] H. Hu, S. Mirchandani, and D. Sadigh. Imitation bootstrapped reinforcement learning. arXiv
preprint arXiv:2311.02198, 2023.

[43] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza. Bootstrapping reinforcement learning
with imitation for vision-based agile flight. In Conference on Robot Learning, 2024.

[44] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[45] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning via
balanced replay and pessimistic q-ensemble. In Conference on Robot Learning, 2021.

[46] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012.

[47] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning,
2016.

[48] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

[49] E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In IEEE/RSJ international conference on intelligent robots and systems, 2013.

[50] S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

[51] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[52] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[53] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[54] T. Seyde, P. Werner, W. Schwarting, I. Gilitschenski, M. Riedmiller, D. Rus, and M. Wulfmeier.
Solving continuous control via q-learning. In International Conference on Learning Represen-
tations, 2023.

13



A Experimental Details

BiGym BiGym3 [1] is built upon MuJoCo [46]. We use Unitree H1 with two parallel grippers. We
find that demonstrations available in the recent version of BiGym are not all successful. Therefore
we adopt the strategy of replaying all the demonstrations and only use the successful ones as
demonstrations. instead of discarding the failed demonstrations, we still store them in a replay buffer
as failure experiences. To avoid training with too few demonstrations, we exclude the tasks where
the ratio of successful demonstrations is below 50%. Table 1 shows the list of 25 sparsely-rewarded
mobile bi-manual manipulation tasks used in our experiments.

Table 1: BiGym tasks with their maximum episode length and number of successful demonstrations.

Task Length Demos Task Length Demos

Move Plate 300 51 Cupboards Close All 620 53
Move Two Plates 550 30 Reach Target Single 100 30
Saucepan To Hob 440 28 Reach Target Multi Modal 100 60
Sandwich Flip 620 34 Reach Target Dual 100 50
Sandwich Remove 540 24 Dishwasher Close 375 44
Dishwasher Load Plates 560 17 Wall Cupboard Open 300 44
Dishwasher Load Cups 750 58 Drawers Open All 480 45
Dishwasher Unload Cutlery 620 29 Wall Cupboard Close 300 60
Take Cups 420 32 Dishwasher Open Trays 380 57
Put Cups 425 43 Drawers Close All 200 59
Flip Cup 550 45 Drawer Top Open 200 40
Flip Cutlery 500 43 Drawer Top Close 120 51
Dishwasher Close Trays 320 62

HumanoidBench HumanoidBench4 [2] is built upon MuJoCo [46]. We use Unitree H1 with
two dexterous hands. We consider the first 8 locomotion tasks in the benchmark: Stand, Walk,
Run, Reach, Hurdle, Crawl, Maze, Sit Simple. We use proprioceptive states and privileged
task information instead of visual observations. Unlike BiGym and RLBench experiments, we
do not utilize dueling network [47] and distributional critic [48] in HumanoidBench for faster
experimentation.

RLBench RLBench5 [3] is built upon CoppeliaSim [49] and PyRep [50]. We use a 7-DoF Franka
Panda robot arm and a parallel gripper. Following Seo et al. [4], we increase the velocity and
acceleration of the arm by 2 times. We use 100 demonstrations generated via motion-planning.
Table 2 shows the list of 20 sparsely-rewarded visual manipulation tasks used in our experiments.

Table 2: RLBench tasks with their maximum episode length used in our experiments.

Task Length Task Length

Take Lid Off Saucepan 100 Put Books On Bookshelf 175
Open Drawer 100 Sweep To Dustpan 100
Stack Wine 150 Pick Up Cup 100
Toilet Seat Up 150 Open Door 125
Open Microwave 125 Meat On Grill 150
Open Oven 225 Basketball In Hoop 125
Take Plate Off
Colored Dish Rack 150 Lamp On 100

Turn Tap 125 Press Switch 100
Put Money In Safe 150 Put Rubbish In Bin 150
Phone on Base 175 Insert Usb In Computer 100

3https://github.com/chernyadev/bigym
4https://github.com/carlosferrazza/humanoid-bench
5https://github.com/stepjam/RLBench

14

https://github.com/chernyadev/bigym
https://github.com/carlosferrazza/humanoid-bench
https://github.com/stepjam/RLBench


Hyperparameters We use the same set of hyperparameters across the tasks in each domain. For
hyperparameters shared across CQN and CQN-AS, we use the same hyperparameters for both
algorithms for a fair comparison. We provide detailed hyperparameters for BiGym and RLBench
experiments in Table 3 and hyperparameters for HumanoidBench experiments in Table 4

Table 3: Hyperparameters for demo-driven vision-based experiments in BiGym and RLBench

Hyperparameter Value

Image resolution 84× 84× 3
Image augmentation RandomShift [5]
Frame stack 4 (BiGym) / 8 (RLBench)

CNN - Architecture Conv (c=[32, 64, 128, 256], s=2, p=1)

MLP - Architecture Linear (c=[512, 512, 64, 512, 512], bias=False) (BiGym)
Linear (c=[64, 512, 512], bias=False) (RLBench)

CNN & MLP - Activation SiLU [51] and LayerNorm [52]
GRU - Architecture GRU (c=[512], bidirectional=False)
Dueling network True

C51 - Atoms 51
C51 - vmin, vmax -2, 2

Action sequence 16 (BiGym) / 4 (RLBench)
Temporal ensemble weight m 0.01
Levels 3
Bins 5

BC loss (LBC) scale 1.0
RL loss (LRL) scale 0.1
Relabeling as demonstrations True
Data-driven action scaling True
Action mode Absolute Joint (BiGym), Delta Joint (RLBench)
Exploration noise ϵ ∼ N (0, 0.01)
Target critic update ratio (τ ) 0.02
N-step return 1
Batch size 128 (BiGym) / 256 (RLBench)
Demo batch size 128 (BiGym) / 256 (RLBench)
Optimizer AdamW [53]
Learning rate 5e-5
Weight decay 0.1

15



Table 4: Hyperparameters for state-based experiments in HumanoidBench

Hyperparameter Value

MLP - Architecture Linear (c=[512, 512], bias=False)
CNN & MLP - Activation SiLU [51] and LayerNorm [52]
GRU - Architecture GRU (c=[512], bidirectional=False)
Dueling network False

Action sequence 4
Temporal ensemble weight m 0.01
Levels 3
Bins 5

RL loss (LRL) scale 1.0
Action mode Absolute Joint
Exploration noise ϵ ∼ N (0, 0.01)
Target critic update ratio (τ ) 1.0
Target critic update interval (τ ) 1000
N-step return 3
Batch size 128
Optimizer AdamW [53]
Learning rate 5e-5
Weight decay 0.1

Computing hardware For all experiments, we use consumer-grade 11GB GPUs such as NVIDIA
GTX 1080Ti, NVIDIA Titan XP, and NVIDIA RTX 2080Ti with 11 or 12GB VRAM. With 2080Ti
GPU, each BiGym experiment with 100K environment steps take 9.5 hours, each RLBench experi-
ment with 30K environment steps take 6.5 hours, and each HumanoidBench experiment with 7M
environment steps take 48 hours. We find that CQN-AS is around 33% slower than running CQN
because larger architecture slows down both training and inference.

Baseline implementation For CQN [4] and DrQ-v2+ [5], we use the implementation available
from the official CQN implementation6. For ACT [7], we use the implementation from RoboBase
repository7. For SAC [6], DreamerV3 [28], and TD-MPC2 [29], we use results provided in Hu-
manoidBench8 repository [2].

B Full description of CQN and CQN-AS

This section provides the formulation of CQN and CQN-AS with n-dimensional actions.

B.1 Coarse-to-fine Q-Network

Let al,nt be an action at level l and dimension n and alt = {al,1t , ..., al,Nt } be actions at level l with a0t
being zero vector. We then define coarse-to-fine critic to consist of multiple Q-networks:

Ql,n
θ (ht, a

l,n
t ,al−1

t ) for l ∈ {1, ..., L} and n ∈ {1, ..., N} (5)

We optimize the critic network with the following objective:∑
n

∑
l

(
Ql,n

θ (ht, a
l,n
t ,al−1

t )− rt+1 − γmax
a′

Ql,n

θ̄
(ht+1, a

′, πl(ht+1)
)2

, (6)

where θ̄ are delayed parameters for a target network [23] and πl is a policy that outputs the action alt
at each level l via the inference steps with our critic, i.e., πl(ht) = alt.

6https://github.com/younggyoseo/CQN
7https://github.com/robobase-org/robobase
8https://github.com/carlosferrazza/humanoid-bench

16

https://github.com/younggyoseo/CQN
https://github.com/robobase-org/robobase
https://github.com/carlosferrazza/humanoid-bench


Action inference To output actions at time step t with the critic, CQN first initializes constants
an,lowt and an,hight with −1 and 1 for each n. Then the following steps are repeated for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [an,lowt , an,hight ] into B uniform intervals, and
each of these intervals become an action space for Ql,n

θ

• Step 2 (Bin selection): Find the bin with the highest Q-value, set al,nt to the centroid of the
selected bin, and aggregate actions from all dimensions to alt

• Step 3 (Zoom-in): Set an,lowt and an,hight to the minimum and maximum of the selected bin,
which intuitively can be seen as zooming-into each bin.

We then use the last level’s action aLt as the action at time step t.

Computing Q-values To compute Q-values for given actions at, CQN first initializes constants
an,lowt and an,hight with −1 and 1 for each n. We then repeat the following steps for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [an,lowt , a
n,high
t ] into B uniform intervals, and

each of these intervals become an action space for Ql,n
θ

• Step 2 (Bin selection): Find the bin that contains input action at, compute al,nt for the
selected interval, and compute Q-values Ql,n

θ (ht, a
l,n
t ,al−1

t ).

• Step 3 (Zoom-in): Set an,lowt and an,hight to the minimum and maximum of the selected bin,
which intuitively can be seen as zooming-into each bin.

We then use a set of Q-values {Ql,n
θ (ht, a

l,n
t ,al−1

t )}Ll=1 for given actions at.

B.2 Coarse-to-fine Critic with Action Sequence

Let alt:t+K = {alt, ...,alt+K−1} be an action sequence at level l and a0t:t+K be zero vector. Our critic
network consists of multiple Q-networks for each level l, dimension n, and sequence step k:

Ql,n,k
θ (ht, a

l,n
t+k−1,a

l−1
t:t+K) for l ∈ {1, ..., L}, n ∈ {1, ..., N} and k ∈ {1, ...,K} (7)

We optimize the critic network with the following objective:∑
n

∑
l

∑
k

(
Ql,n,k

θ (ht, a
l,n
t ,al−1

t:t+K)− rt+1 − γmax
a′

Ql,n,k

θ̄
(ht+1, a

′, πl
K(ht+1)

)2

, (8)

where πl
K is an action sequence policy that outputs the action sequence alt:t+K . In practice, we

compute Q-values for all sequence step k ∈ {1, ...,K} and all action dimension n ∈ {1, ..., N}
in parallel. This can be seen as extending the idea of Seyde et al. [54], which learns decentralized
Q-networks for action dimensions, into action sequence dimension. As we mentioned in Section 3.1,
we find this simple scheme works well on challenging tasks with high-dimensional action spaces.

Architecture Let ek denote an one-hot encoding for k. For each level l, we construct features
for each sequence step k as hl

t,k =
[
ht,a

l−1
t+k−1, ek

]
. We encode each hl

t,k with a shared MLP
network and process them through GRU [26] to obtain slt,k = fGRU

θ (fMLP
θ (hl

t,1), ..., f
MLP
θ (hl

t,k)).
We use a shared projection layer to map each slt,k into Q-values at each sequence step k, i.e.,
{Ql,k

θ (ot, a
l,n
t+k−1,a

l−1
t:t+K)}Nn=1 = f

proj
θ (slt,k). We note that we compute Q-values for all dimensions

n ∈ {1, ..., N} at the same time with a big linear layer, which follows the design of Seo et al. [4].

17


	Introduction
	Background
	Coarse-to-fine Q-Network with Action Sequence
	Coarse-to-fine Critic with Action Sequence
	Action Execution and Training Details

	Experiment
	BiGym Experiments
	HumanoidBench Experiments
	RLBench Experiments
	Ablation Studies, Analysis, Failure Cases

	Related Work
	Conclusion
	Experimental Details
	Full description of CQN and CQN-AS
	Coarse-to-fine Q-Network
	Coarse-to-fine Critic with Action Sequence


