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Abstract

One-shot Imitation Learning (OSIL) aims to imbue AI agents with the ability to
learn a new task from a single demonstration. To supervise the learning, OSIL
typically requires a prohibitively large number of paired expert demonstrations –
i.e. trajectories corresponding to different variations of the same semantic task. To
overcome this limitation, we introduce the semi-supervised OSIL problem setting,
where the learning agent is presented with a large dataset of trajectories with no
task labels (i.e. an unpaired dataset), along with a small dataset of multiple demon-
strations per semantic task (i.e. a paired dataset). This presents a more realistic
and practical embodiment of few-shot learning and requires the agent to effectively
leverage weak supervision from a large dataset of trajectories. Subsequently, we
develop an algorithm specifically applicable to this semi-supervised OSIL setting.
Our approach first learns an embedding space where different tasks cluster uniquely.
We utilize this embedding space and the clustering it supports to self-generate pair-
ings between trajectories in the large unpaired dataset. Through empirical results
on simulated control tasks, we demonstrate that OSIL models trained on such self-
generated pairings are competitive with OSIL models trained with ground-truth
labels, presenting a major advancement in the label-efficiency of OSIL.

1 Introduction

Humans are capable of learning new tasks and behaviors by imitating others we observe. Fur-
thermore, we are remarkably data efficient, often requiring just a single demonstration. One-shot
imitation learning (OSIL) (Duan et al., 2017) aims to imbue AI agents with similar capabilities. It
takes a meta-learning (Schmidhuber, 1987; Naik & Mammone, 1992; Thrun & Pratt, 1998) approach
and considers several paired demonstrations – i.e. expert trajectories corresponding to different vari-
ations of the semantic task. OSIL learns to reconstruct one trajectory by conditioning on its paired
trajectory, implicitly capturing the task semantics. At test time, the resulting agent can directly
complete a new task by conditioning on a demonstration of the said task. However, this method often
requires prohibitively large amounts of paired trajectories such that the agent experiences enough
task variations in diverse environment instantiations to learn a generalizable policy. Collecting such
a dataset of demonstrations can be prohibitively expensive, requiring significant engineering effort
and/or human data annotation time. In order to improve the data efficiency of OSIL, and expand
its applicability, we introduce and study a semi-supervised paradigm for OSIL.

In recent years, we have seen an increase in our ability to collect unsupervised trajectory data in sev-
eral applications including robotics. This includes access to historical offline datasets (Levine et al.,
2020; Fu et al., 2020; Gulcehre et al., 2020), teleoperation and play data in virtual reality (Rajeswaran
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Figure 1: (Left) Depiction of the supervised (classical) OSIL setting, where the encoder and policy are
trained using several trajectories (d) sharing the same task label (t). (Right) Our semi-supervised
OSIL setting instead requires only a large unlabelled dataset of trajectories, and a small paired
dataset. For our method, a teacher trajectory encoder is first trained using the labeled dataset.
This encoder is then used to construct a pseudo-paired trajectory set by retrieving the k nearest
neighbors of each trajectory. We can then train a student on this pseudo-labeled dataset, as in
supervised OSIL. Optionally, this relabelling and training procedure can be repeated iteratively.

et al., 2018; Lynch et al., 2019; Gupta et al., 2019), and reward-free exploration (Pathak et al., 2017;
Eysenbach et al., 2018; Liu & Abbeel, 2021). Our goal is to leverage these large, abundant, but
unlabelled datasets to create a more scalable pathway for OSIL. A direct and naive application of
OSIL would require humans to manually annotate these datasets with semantic task descriptions,
or manually pair together similar trajectories, which can be expensive and time consuming. We
draw inspiration from semi-supervised learning (van Engelen & Hoos, 2019) in computer vision and
natural language processing (NLP), which has emerged as a dominant paradigm to utilize a small
labeled dataset in conjunction with large quantities of unlabeled data to train high-quality models
(Yang & Yu, 2020; Xie et al., 2020; Chen et al., 2020; Devlin et al., 2018). Analogously, we aim
to bring the power of semi-supervised learning to OSIL by learning from both task-agnostic and
unlabelled trajectories as well as a small dataset of annotated (paired) trajectories.

Our algorithmic approach to semi-supervised OSIL is based on self-training (Triguero et al., 2013;
Yarowsky, 1995; Xie et al., 2020), a prominent approach to semi-supervised learning. In self-training,
a teacher network is first trained on a small labeled dataset, and then used to provide pseudo-
labels for a larger unlabeled dataset (Hailat & Chen, 2018). This process is repeated multiple
times to progressively learn higher quality labels for the entire dataset, ultimately training models
with competitive performance despite considerably reduced data annotation effort. To adapt this
self-training approach to semi-supervised OSIL, we start with training a teacher encoder-decoder
architecture in the standard supervised OSIL fashion, as illustrated in Figure 1 (a), with the available
paired dataset. We show that even when the teacher does not reach a high task success, the
embedding space is sufficiently structured to distinctly cluster different semantic tasks, enabling
the generation of pseduo-labelled pairings between nearest neighbors in the embedding space. By
bootstrapping on the pseudo-labels obtained from the trajectory clusters in embedding space, we
can train a student architecture that outperforms the teacher.

Our Contributions in this work are summarized below.

1. We introduce and formalize the semi-supervised OSIL setting.

2. We propose a novel label-efficient student-teacher trajectory relabeling approach for semi-
supervised OSIL that extends the ideas of self-training and distillation from CV and NLP.
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3. In a semantic goal navigation task, we find that our method enables an agent trained with
only 15% of labelled data to match a fully supervised agent. In a sequential goal navigation
task our method approaches fully supervised performance with only 5% of labelled data.

4. We ablate each component of our method, demonstrating their importance to the overall
algorithmic contribution.

After the anonymous review phase, we are committed to providing open source for the environments
and experiments to facilitate reproducibility and future extensions.

2 Related work

One-Shot Imitation Learning (OSIL) The OSIL framework was originally introduced by Duan
et al. (2017) to endow AI agents with the capability to learn from a single demonstration. OSIL relies
on access to “paired” demonstrations – i.e. expert trajectories that correspond to different variations
of the same semantic task. OSIL then learns by conditioning on one trajectory to reconstruct the
paired demonstration, enabling it to implicitly learn the notion of task semantics. Through this
view, OSIL has parallels to meta-learning or learning-to-learn (Ren et al., 2018; Finn et al., 2017a;
Vinyals et al., 2016; Chebotar et al., 2021; Rajeswaran et al., 2019) as studied broadly in (supervised)
machine learning and inverse RL (Das et al., 2020; Yu et al., 2019).

Since the original work of Duan et al. (2017), OSIL has seen several extensions including extensions
to visual observation spaces (Finn et al., 2017b), improving task-level generalization (Mandi et al.,
2021), and architectural innovations like transformers (Dasari & Gupta, 2020). Nevertheless, the
need for a large number of paired demonstrations has limited the broad applicability of OSIL.
Our work aims to improve this label efficiency of OSIL by also effectively utilizing a large number of
unlabelled (i.e. unpaired) demonstrations, which are often substantially easier to obtain, for example
through play data collection (Lynch et al., 2019).

Semi-Supervised Learning The field of semi-supervised learning (Zhu, 2005) studies methods
to simultaneously learn from large unlabelled datasets and small labelled datasets. Computer vision,
NLP, and speech recognition have been exploring ways to utilize large unlabelled datasets scraped
from the internet without expensive and time-intensive human annotations. This has resulted in
a wide array of approaches to semi-supervised learning (Zhu, 2005; van Engelen & Hoos, 2019).
One dominant paradigm involves pre-training visual representations using unlabelled datasets fol-
lowed by downstream supervised learning. The representations can be pre-trained with contrastive
learning (Hjelm et al., 2019; Chen et al., 2020), generative modeling (Goodfellow et al., 2014),
autoencoders (Vincent et al., 2008; He et al., 2021; Wu et al., 2023) and more. However, such rep-
resentations lack knowledge of downstream task, and thus might be harder to train, require human
priors like appropriate choice of augmentations, or demand very large quantities of unlabelled data.

An alternative and popular approach to semi-supervised learning is self-training (Triguero et al.,
2013; Yarowsky, 1995; Xie et al., 2020), where a supervised “teacher” model is first trained on a
small labelled dataset and used to generate pseudo-labels for the unsupervised dataset. Subsequently,
a student model is trained on both the supervised dataset and the pseudo-labelled dataset. We
refer readers to survey works (van Engelen & Hoos, 2019) on semi-supervised learning for more
discussion. Our algorithmic approach to semi-supervised OSIL is closer to self-training, and thus
has the advantage of being more task-directed in nature. We also perform contrastive representation
learning as an auxiliary task and find that it plays an important role, but is insufficient by itself.

Semi-Supervised Learning in RL and IL Improving label efficiency for policy learning,
through approaches similar to semi-supervised learning, has been studied in other contexts like
reward and goal labels. Prior works tackle the challenge of learning from data without reward/goal
labels by either explicitly learning a reward function through inverse RL (Abbeel & Ng, 2004; Ziebart
et al., 2008; Finn et al., 2016), adversarial imitation learning (Ho & Ermon, 2016; Fu et al., 2018a;
Rafailov et al., 2021), learning a reward/goal classifier (Fu et al., 2018b; Eysenbach et al., 2021),
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or by simply assuming a pseudo baseline reward (Yu et al., 2022). In contrast to such prior work,
we focus on improving the label efficiency of OSIL, where the need for a large number of paired
demonstrations has limited real-world applicability. To our knowledge, our work is the first to study
semi-supervised learning approaches to improve label efficiency for OSIL.

3 Problem Formulation

Following Duan et al. (2017), in supervised OSIL we denote a set of of tasks as T, each individual
task t ∈ T, and a distribution of demonstrations of task t as D(t). The supervised OSIL objective
is to train a policy which, conditioned on a demonstration d ∼ D(t), can accomplish a task t. This
amounts to learning a goal conditioned policy πθ(at|st, d), parameterized by θ, that takes an expert
demonstration and the current state of the environment as input and emits the proper actions at each
time-step t (we differentiate time t and task t, which is in bold). During training, we have access to
a large dataset of demonstrations dtrain ∼ D(ttrain

i ), for a set of training tasks ttrain
i ∈ Ttrain ⊂ T,

where ti is the ith task. We formulate the dataset D as follows

D = {(ti, {di
1, di

2, ...}) ∀ti ∈ Ttrain}, (1)

We further assume the existence of a binary valued function Rt(d) which indicates whether a given
demonstration or policy rollout d successfully accomplishes the task t, which we use for evaluating
our method. At test time, the policy is provided with one new test demonstration dtest ∼ D(t) that
can be either be a new demonstration of a seen task (i.e. t ∈ Ttrain) or a new demonstration of an
unseen task (i.e. t ∈ T \ Ttrain).

Semi-supervised OSIL builds on the supervised OSIL setting, which we formulate as follows. We
similarly assume access to a small labeled dataset of demonstrations Dlabeled where each demonstra-
tion has its associated task label. We additionally assume access to a large dataset of demonstrations
Dunlabeled which does not have the associated task label ti. These datasets are defined below:

Dlabeled = {(ti, {di
1, di

2, ...}) ∀ti} (2)
Dunlabeled = {d1, d2, ...} (3)

An effective semi-supervised method should be able to leverage both annotated and un-annotated
datasets effectively to maximize the performance of the OSIL agent at test time.

4 Method

At its core, OSIL can be simply construed as two modules that are jointly optimized together: (1)
an encoder network fϕ(d) which embeds demonstrated trajectories into a latent space z, and (2) a
policy decoder πθ(at|st, z) that is conditioned on the demonstration embedding and current state
of the environment to output actions. The prior state of the art work on OSIL (Duan et al., 2017;
Dasari & Gupta, 2020; Mandi et al., 2021) learn both the demonstration encoder module and the
policy decoder jointly by minimizing the predicted action errors on the imitated trajectory, possibly
with other auxiliary losses. This method works well when paired trajectories are abundant. In the
more realistic semi-supervised OSIL setting, the question becomes “How can we group sufficently
abundant demonstration pairs from the unlabeled data to train an OSIL agent?” To address this,
we propose an iterative student teacher method.

4.1 Student-Teacher Training

The core of our hypothesis is that discriminating or clustering trajectories that share the same
semantic task is easier (and thus more data efficient) compared to generative modeling of actions to
accomplish a task. To instantiate this in practice, we use a teacher-student self-training paradigm
(Xie et al., 2020) to effectively remove the need for large human-annotation on task labels. In our
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Figure 2: The architecture used in our algorithm. (a) shows the generic structure of a OSIL agent,
which consists of a generic demonstration encoder fϕ and the πθ(at|st, z) task latent conditioned
policy, which comprises of image encoder.. (b) shows one potential instantiation of the demonstration
encoder, which leverages a bi direction transformer to encode the trajectory. This is used for the
pinpad sequential navigation task, which requires reasoning over the entire trajectory.

setting, a "teacher" is the encoder fϕ that embeds trajectories into the latent space. Using a quality
teacher encoder, we can retrieve the k-nearest neighbors of each trajectory in the dataset using
a distance measure (e.g L2 distance) on the embedding space and use that as a labeled pair for
downstream training of a student OSIL policy.

To train the teacher encoder, we proceed with the standard OSIL training procedure on the smaller
labeled dataset, Dlabeled. The encoder and policy are trained end to end with an imitation loss on
the predicted action from the policy, πθ(at|st, z), where z = fϕ(dt). To encourage learning a more
structured latent space, we also employ a contrastive InfoNCE loss (van den Oord et al., 2019),
where a positive pair is taken from the labeled subset of data, and the rest of the goals in the batch
are treated as negative examples. This structured latent space is necessary for teacher relabelling.
In general, we also find that the contrastive loss helps with learning a better OSIL policy with higher
task success rate, which is consistent with the works of James et al. (2018); Mandi et al. (2021).

After training the teacher encoder to convergence, we then generate a set of pseudo labels for
the trajectories in the unlabeled dataset. This is done by embedding all of the demonstrations of
the dataset Dunlabeled with the teacher encoder fϕ. We then find the k nearest neighbors of each
demonstration in the embedding space, where k is a hyperparameter. Let kNNϕ(d, D) denote the k
nearest neighbors of d in the dataset D using the feature embeddings from a demonstration encoder
fϕ. If the nearest neighbors are demonstrations associated with the same semantic task, we can
supervise an effective student OSIL policy with this dataset of pseudo-pairs of trajectories, which
we formulate as:

Dpseudo_labeled = {(di, {kNNϕ(di, Dunlabeled)}) ∀di ∈ Dunlabeled} (4)

Finally, the student policy is trained using both Dpseudo_labeled and Dlabeled. During training we
continue to use the labeled dataset for the imitation and contrastive losses, but additionally sample
batches from the pseudo-labeled dataset, which is trained only with the imitation loss. We can
continue iterating this process by treating the encoder fϕ of the trained student as the teacher for
the subsequent round and improving the accuracy on the KNN retrievals from the unlabeled dataset
until we get diminishing returns from the process.
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Figure 3: Sample goals and corresponding demonstration visualizations for the two tasks.

4.2 Architecture

An overview of the architecture is shown in Figure 2a. We use the same architecture for teacher
and student with same number of parameters. In general, the demonstration encoder fϕ is flexible
and can take any form, but should be expressive enough to learn meaningful representations of the
demonstration trajectories. Following conditional policies (Jang et al., 2022), we utilize an MLP
policy which takes the demonstration embedding z through FiLM conditioning (Perez et al., 2018).
The focus of our work is on the procedure of making OSIL more data efficient. We therefore do
not consider more complex encoder decoder architectures, for which we refer to prior work. In this
work we also focus our experiments on visual imitation, for which we use a CNN encoder to obtain
frame-level visual representations of 64x64 images with a simple 5 layer CNN.

For many OSIL tasks, the final frame is enough to specify the desired intent, which we find true for
this environment. A commonly used strategy is to form a summary of the demonstration trajectory
by taking a few key frames (Duan et al., 2017; James et al., 2018). For these tasks (e.g. goal
reaching) we simply use the final frame image embedding as the representation of the task. Figure
2b on the other hand, illustrates a more general solution to embed the entire demonstrated trajectory.
In this model, we treat the embedding of each frame as a separate token and use a bi-directional
transformer to learn the task encoding. The transformer model has the capacity to learn which
frames are important to fully describe the task. Refer to Appendix A.1 for more hyperparameter
details.

5 Experiments

Through our experiments, we aim to study the effectiveness of the semi-supervised OSIL setting, as
well as the performance of our algorithm. Concretely, we study the following questions.

• How to train the demonstration encoder to effectively cluster trajectories?
• How to use the learned clusters to effectively improve agent performance?

5.1 Environment setup

Semantic Goal Navigation. We construct a custom pointmass-based reaching task using the
MuJoCo simulator (Todorov et al., 2012) with the DMControl suite (Tunyasuvunakool et al., 2020).
This task is inspired from the simulated reaching task first introduced in (Finn et al., 2017b). The
task is to navigate the pointmass to a goal of a given color and shape when also presented with a
distractor goal of a different color and shape. Concretely, there are 2 shapes and 5 possible colors
the shapes can take on, totalling 10 variations for each object, and 100 possible semantic scenes.
See Figure 3 for a visual illustration. Note that within each scene configuration, the locations of
the objects can be randomized. We collect 800 trajectories for each target goal object, resulting in
a total training dataset size of 8000 trajectories.

Sequential Goal Navigation. We use a modified version of the discrete pinpad world environ-
ment from Hafner et al. (2022). This task requires the agent to navigate and press two buttons out of
six in a specified order. The agent is only considered successful if it is able to correctly reach all the
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goals in the correct sequence. There are 6 possible goal pads for the agent to reach, totaling 30 tasks.
The agent’s action is one of five possible actions: up, down, left, right, or no-op. The observation
space is the raw pixels in the environment. See Figure 3 for a visual illustration. We randomize both
the color assignments of the pads and the agent starting location for each task variation. The agent
must pay attention to the entire trajectory to correctly determine the desired task. As such, we
parametrize the demonstration encoder for this environment as a small bi-directional transformer
that takes in a sequence of states and a class token to predict a latent z encoding of the trajectory.

Dataset Collection. We employ a scripted policy to collect demonstrations for each task vari-
ation. Specifically, we reset the initial state of the environment and agent randomly, then run the
scripted expert policy. During training we limit the number of demonstrations per each task that
the agent gets to see for supervision in order to create a semi-supervised scenario. However, we
use the entire collected dataset as a large pool of unlabeled expert trajectories during training. We
evaluate our method on two environments described above.

5.2 Metrics

Task Success. Our goal is to maximize task success rate using limited task labeled demonstrations.
For both environments, we report the success rate of the agent as the performance after 100 trials
in the environment, averaged over 3 seeds. We evaluate the agent on both new instantiations of the
training tasks and an unseen test task, which we report as "Train" and "Test" respectively. We use
different numbers of the total labeled trajectories to show how the number of labeled trajectories
effects final task performance. 5%

Trajectory Retrieval (TR) Score For each trajectory in dtest ∈ D, we retrieve the K nearest
neighbors by measuring the L2 distance in the embedding space of the teacher. Let dret

i be the ith

retrieved trajectory and t be the task label of dtest. For each trajectory, the retrieval accuracy is
defined as the percentage of time that Rt(dret

i ) = 1. We take an average of this measure across all
samples in the training set.

TRscore(D) = 1
|D|

∑
d∈D

1
k

k∑
j=1

Rt(dret
j ) (5)

5.3 Results

For each experiment, we train the OSIL policy using the learned goal embedding and behavior
cloning loss on the labeled subset of data. We report the task success rate and trajectory retrieval
scores for all experiments.

Semantic Goal Navigation First we consider the Semantic Goal Navigation pointmass task.
We consider 5 main settings:

1. An agent trained with only the imitation loss on the demonstrated actions.
2. An agent trained with an additional contrastive loss on the goal embeddings in addition to

to the imitation loss.
3. The same as (2.) but with an added self-supervised loss on the entire dataset (including

unlabeled data).
4. A student model trained by using the demonstration encoder (2.) as a teacher model.
5. A student model trained by using the demonstration encoder of (3.) as a teacher model.

The model trained with the method specified in (3.) acts as an alternative semi-supervised baseline
in the special case of using the final frame as the demonstration representation. In this setting,
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(b) Test success rates.

Figure 4: Task success rates for the Semantic Goal Navigation Task.

Table 1: Trajectory Retrieval: Final Frame Semantic Goal Navigation

Retrieval % with k=

% Labeled Data Method 1 10 50 100 200

100%
Imitation 11.3 11. 10.7 10.6 10.5
+Contrastive 90.9 91 91.2 90.9 90.7
+Contrastive+Aug 93.5 92.5 91.7 91.3 90.8

30%
Imitation 11.8 11.8 11.5 11.4 11.3
+Contrastive 88.8 88.5 88.1 87.90 87.8
+Contrastive+Aug 93.7 92.9 91.9 91.4 90.8
+Contrastive+Relabel 91.1 90.6 90.3 89.9 89.6
+Contrastive+Aug+Relabel 93.7 92.5 91.2 90.7 90.3

15%
Imitation 11.6 11.2 11.0 10.9 10.8
+Contrastive 63.6 62.8 61.6 61. 60.
+Contrastive+Aug 91.6 90.6 90. 89.9 89.7
+Contrastive+Relabel 74.3 73.2 71.9 71.2 70.4
+Contrastive+Aug+Relabel 91.8 90.7 90.1 89.9 89.6

we use the supervised labels as in the supervised OSIL case, but further leverage the unlabeled
trajectories through adding an additional self supervised loss contrastive loss on augmentations of
the goal image (van den Oord et al., 2019). The augmentations we use are restricted to random flip
and random crop.

Figure 4 show the task performance across each experiment. As expected, train and validation
performance drops when the amount of labeled data decreases. Without relabelling, we see some
task performance gains from applying both the contrastive loss and self unsupervised losses. After
training a student model using the pseudo-labels from the representations learned by the teacher
encoder, we see a leap in performance, matching an agent that has access to 100% ground truth
labels, even when only using 15% of the labels.

Table 1 shows the trajectory retrieval scores across different values of k. Despite having much less
labeled data and decreased task performance, the retrieval scores consistently remain high. This
suggests that we are able to learn a meaningful representation for the task, allowing us to cluster
the trajectories. We find that the contrastive loss is necessary for learning representations that have
high retrieval. Interestingly, we find that relabeling gives much greater gains for task success while
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Figure 5: TSNE visualizations of the learned embeddings where the only 15% of the dataset is
labeled. (a) shows the embedding trained with imitation loss only. (b) adds the contrastive loss on
the labeled subset of data (c) additionally adds a self supervised loss with images augmentations.

Table 2: Task Success Results: PinPad

Task Success %

% Labeled Method Train Val

100% +Contrastive 92.3 ± 2.9 41.7 ± 15.1

10% +Contrastive 70.7 ± 4.5 18.3 ± 3.3
+Contrastive+Relabel 84 ± 4.6 36.3 ± 10.6

5% +Contrastive 49 ± 1.4 7.7 ± 1.6
+Contrastive+Relabel 82.3 ± 10 34.3 ± 22.6

augmentation gives more benefit for retrieval, which supports the hypothesis that relabeling gives
datapoints for the OSIL training and the contrastive loss (which typically relies on augmented views
of data points) helps representation learning, but in a way thats not directly optimizing for the task
objective. We show 2D visualizations of the learned embedding in Figure 5. We additionally explore
the effect of the the number of possible pairs k in Appendix A.2.

Sequential Goal Navigation Next we examine a task which requires the trajectory encoder
to learn a time-dependent encoding of the trajectory, rather than having the task fully specified
by the final frame. For this we employ the more general trajectory demonstration encoder shown
in Figure 2b. Similarly, we see in Table 2 that our teacher-student relabeling method allows the
agent to improve task performance and almost match the agent trained with a fully labeled dataset,
even in much lower labeled data regimes (5%). This suggests that the teacher encoder is able to
pay attention to the temporal nature of the demonstrations and generate effective pseudo-labels.
Similar to the semantic navigation task, the learned encoder maintains a high trajectory retrieval
score across different choices of k.

6 Conclusions

In this paper, we introduce the problem setting of semi-supervised OSIL, which we believe to be a
more realistic setting for developing OSIL methods that can scale to real world settings. In semi-
supervised OSIL we aim to maximize agent performance in settings where we have access to a large
set of task-agnostic expert demonstrations, but only a small task-labeled dataset. We introduce
a student teacher training method and show that training a teacher network based on the limited
labeled data and bootstrapping on the resulting task encoder can allow us to assign effective pseudo-
labels to the large unlabeled dataset. Using the pseudo-labeled dataset to train a student network
can result in out-performing its teacher, reaching task performance parity with a model trained on
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much more labeled data. We evaluate our methodology on simulated environments with varying
complexity and showed that this can be a promising direction towards semi-supervised OSIL.

Our work aims to provide agents the ability to quickly imitate a demonstration. The work does not
assume any particular type of demonstration. A malicious actor might be able to provide nefarious
demonstrations to AI agents and safeguards must be considered when deploying such imitation
learning systems in the real world. At a more immediate level, we do not anticipate any societal
risks due to this work.
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A Appendix

A.1 Hyperparameters

In both experiments the image observations are first encoded with a 5 layer CNN with ReLU ac-
tiviations. The CNN encoder is shared across embedding the current state and the demonstration
trajectory. The policy network is also the same, which consists of 3 FiLM blocks using GELU nonlin-
earities and using 128 hidden units per layer. For all experiments that use the contrastive objective
across paired trajectories, a weighting of 10 is used on the contrastive loss. For all experiments us-
ing pseudo-labeled trajectories, a weighting of 0.5 is used on the imitation loss with pseudo-labeled
trajectories.

Semantic Goal Navigation For this task we adopt the oracle trajectory encoder, which takes
the final frame of the trajectory (which fully specifies the task) and encodes it with CNN. The
images are 64x64. The policy is trained with a learning rate of 1e-3 with 4000 warm up steps.Frame
stacking of 2 is employed on the observations. For each experiment we train for 200k iterations.

For the self supervised augmentations, we employ random resizing, cropping, horizontal flip, and ver-
tical flip. An additional one layer projection is applied before applying the self supervised contrastive
loss, which we employ with a weight of 0.05.

Sequential Goal Navigation For this task, we make no assumptions on what frames are im-
portant and use a bidirectional transformer that attends over all states in the trajectory. The
transformer has 2 hidden layers and 2 attention heads, and the goal encoding is extracted with an
additional class token. Images are 16x16. We use a learning rate of 3e-4 and train for 60k iterations.

A.2 Effect of more pseudo label pair value k

Here we study how choosing different values of k and different iterations of relabeling effect final
performance. In the pseudo-labeling stage, we fix k controls the number of possible pairs each
unlabeled trajectory can use for training. In addition, we experiment with using the student model
as a teacher model for one additional iteration of training. We use the Semantic Goal reaching task,
with 15% of the full dataset size. The results are summarized in Table 3. Results are mixed overall,
and it seems the exact choice of k does not have a significant impact on results. In addition it seems
that repeating the pseudo labeling process for additional iterations does not have any significant
gains on performance. This could be due to the simplicity of the task, as well as the already high
trajectory retrieval scores across all k. We suspect that for more difficult tasks, these parameters
will have a more significant impact on final performance.

Table 3: Iterative Relabeling on Semantic Goal Navigation

Test Success rate % with k=
Iteration 10 50 100 200
1 82 ± 1.4 88.7 ± 6.9 83.3 ± 17.4 95.4 ± 1.2
2 88 ± 2.1 87.5 ± 4.5 78.5 ± 2.5 86.5 ± 0.5


