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Abstract

Solving crossword puzzles requires diverse001
reasoning capabilities, access to a vast amount002
of knowledge about language and the world,003
and the ability to satisfy the constraints im-004
posed by the structure of the puzzle. In this005
work, we introduce solving crossword puz-006
zles as a new natural language understand-007
ing task. We release a corpus of crossword008
puzzles collected from the New York Times009
daily crossword spanning 25 years and con-010
taining a total of 9152 puzzles, with an av-011
erage of 85 clues per puzzle. These puzzles012
include a diverse set of clues: historic, fac-013
tual, word meaning, synonyms/antonyms, fill-014
in-the-blank, abbreviations, prefixes/suffixes,015
wordplay, and cross-lingual, as well as clues016
that depend on the answers to other clues. We017
separately release the clue-answer pairs from018
these puzzles as an open-domain question an-019
swering dataset containing over half a mil-020
lion unique clue-answer pairs. For the ques-021
tion answering task, our baselines include sev-022
eral sequence-to-sequence and retrieval-based023
generative models. We also introduce a non-024
parametric constraint satisfaction baseline for025
solving the entire crossword puzzle. Fi-026
nally, we propose an evaluation framework027
which consists of several complementary per-028
formance metrics.029

1 Introduction030

Recent breakthroughs in NLP established high stan-031

dards for the performance of machine learning032

methods across a variety of tasks. However, even033

state-of-the-art models demonstrate fragility (Wal-034

lace et al., 2019) and exhibit sensitivity to shallow035

data patterns (McCoy et al., 2019; Zellers et al.,036

2019; Jin et al., 2020; Si et al., 2019; Sugawara037

et al., 2020; Yogatama et al., 2019; Niven and Kao,038

2019). This has led to a growing demand for suc-039

cessively more challenging tasks.040

One of the important tasks in natural language041

understanding is question answering (QA), with042

many recent datasets created to address different 043

different aspects of this task (Yang et al., 2018; 044

Rajpurkar et al., 2016; Kwiatkowski et al., 2019a; 045

Zellers et al., 2019; Dua et al., 2019; Rogers et al., 046

2021). There are two forms of question answering 047

(QA): extractive QA and open-domain QA. In ex- 048

tractive QA, a passage that answers the question 049

is provided as input to the system along with the 050

question. In open-domain QA, only the question 051

is provided as input, and the answer must be gen- 052

erated either through memorized knowledge or via 053

some form of explicit information retrieval over a 054

large text collection which may contain answers. 055

The task of answering clues in a crossword is a 056

form of open-domain question answering. Once a 057

human or an open-domain QA system generates a 058

few possible answer candidates for each clue, one 059

of these candidates may form the correct answer to 060

a word slot in the crossword grid, if the candidate 061

meets the constraints of the crossword grid. 062

Solving a crossword puzzle is therefore a chal- 063

lenging task which requires (1) finding answers to 064

a variety of clues that require extensive language 065

and world knowledge, and (2) the ability to pro- 066

duce answer strings that meet the constraints of the 067

crossword grid, including length of word slots and 068

character overlap with other answers in the puzzle. 069

Our contributions in this work are as follows: 070

• We introduce a new natural language under- 071

standing task of solving crossword puzzles, 072

along with a dataset of New York Times cross- 073

words from Dec. 1, 1993 to Dec. 31, 2018. 074

• We propose an evaluation framework which 075

consists of several complementary perfor- 076

mance metrics. 077

• We release the collection of clue-answer pairs 078

as a new open-domain QA dataset. 079

• We provide baselines for the proposed cross- 080

word task and the new QA task, including 081

several sequence-to-sequence and retrieval- 082

augmented generative Transformer models, 083
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with a constraint satisfaction crossword solver.084

2 Related Work085

Our work is in line with open-domain QA bench-086

marks. Examples of such tasks include datasets087

where each question can be answered using in-088

formation contained in a relevant Wikipedia arti-089

cle (Yang et al., 2015; Kwiatkowski et al., 2019a;090

Yang et al., 2018). Several QA tasks have been091

designed to require multi-hop reasoning over struc-092

tured knowledge bases (Berant et al., 2013; Bordes093

et al., 2015). The main limitation of such datasets is094

that their question types are mostly factual. Cross-095

word clues differ from these efforts in that they096

combine a variety of different reasoning types.097

Another line of research that is relevant to our098

work explores the problem of solving Sudoku puz-099

zles since it is also a constraint satisfaction problem.100

Most sudoku puzzles can be efficiently solved by al-101

gorithms that take advantage of the fixed input size102

and do not rely on machine learning methods (Si-103

monis, 2005). The machine learning attempts for104

solving Sudoku puzzles have been inspired by con-105

volutional (Mehta, 2021) and recurrent relational106

networks (Palm et al., 2017). Unlike Sudoku, how-107

ever, crossword puzzles have arbitrary shape and108

internal structure and rely on answers to natural109

language questions that require reasoning over dif-110

ferent kinds of world knowledge.111

Solving crossword puzzles automatically has112

previously been studied by Ginsberg (2011);113

Littman et al. (2002); Keim et al. (1999) as con-114

straint satisfaction problems(CSP). The Dr. Fill115

system proposed by Ginsberg (2011) treats each116

crossword puzzle as a singly-weighted CSP. How-117

ever, Dr. Fill relied on a large set of historical118

clue-answer pairs (up to 5M) collected over multi-119

ple years from the past puzzles, using direct lookup,120

and a variety of heuristics. Similarly Littman et al.121

(2002) also use a variety of information retrieval122

modules to generate candidate answers. They find123

very poor crossword solving performance of their124

proposed weighted probabilistic CSP on ablations125

where they limit their answer candidate genera-126

tor to not depend in any way on past clue-answer127

databases. Our goal in this work is to motivate128

solver systems to generate answers organically just129

like a human might, either from memory, using130

their world knowledge and language understand-131

ing, or by searching encyclopedic sources such132

Wikipedia or a dictionary.133

3 Task and Dataset 134

For the purposes of our task, crosswords are defined 135

as word puzzles with a given rectangular grid of 136

white- and black-shaded squares. The goal is to 137

fill the white squares with letters, forming words 138

or phrases by solving textual clues which lead to 139

the answers. The answer words and phrases are 140

placed in the grid from left to right ("Across") and 141

from top to bottom ("Down"). The shaded squares 142

are used to separate the words or phrases. Usually, 143

the white spaces and punctuation are removed from 144

the answer phrases. A sample crossword puzzle 145

is given in Figure 1. Note that the answers can 146

include named entities and abbreviations, and at 147

times require the exact grammatical form, such as 148

the correct verb tense or the plural noun. 149

We divide the task of solving a crossword puzzle 150

into two subtasks. The first subtask can be viewed 151

as a question answering task, where a system is 152

trained to generate a set of candidate answers for a 153

given clue without taking into account any interde- 154

pendencies between answers. The second subtask 155

involves solving the entire crossword puzzle, i.e., 156

filling out the crossword grid with a subset of can- 157

didate answers generated in the previous step. 158

The two tasks could be solved separately or in 159

an end-to-end fashion. In the current work, we 160

propose a separate solver for each task. We provide 161

details on the challenges of implementing an end- 162

to-end solver in the discussion section. 163

3.1 NYT Crossword Collection 164

Our dataset is sourced from the New York Times, 165

which has been featuring a daily crossword puzzle 166

since 1942. We worked with daily puzzles in the 167

date range from December 1, 1993 through Decem- 168

ber 31, 2018 inclusive. All the crossword puzzles 169

in our corpus are also available through the New 170

York Times games website.1. We release two sepa- 171

rate specifications of the dataset corresponding to 172

the subtasks described above: the NYT Crossword 173

Puzzle dataset and the NYT Clue-Answer dataset. 174

There are a few details that are specific to the 175

NYT daily crossword. First, the clue and the an- 176

swer must agree in tense, part of speech, and even 177

language, so that the clue and answer could easily 178

be substituted for each other in a sentence. Second, 179

abbreviated clues indicate abbreviated answers. 180

Further, clues that end in a question mark indicate 181

a play on words in the clue or the answer. There are 182

1https://www.nytimes.com/crosswords
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Figure 1: Crossword puzzle example. Highlighted clues with the corresponding answers match the clue types as
described in Section 3.2 and are color coded in the same way like Figure 2. Source: NY Times daily crossword
appeared on the July 7, 2009.

.

also a lot of short words that appear in crosswords183

much more often than in real life. These 3- and184

4-letter words, referred to as crosswordese, can be185

very helpful in solving the puzzles. Finally, every186

Sunday through Thursday NYT crossword puzzle187

has a theme, something that unites the puzzle’s188

longest answers. Theme answers are always found189

in symmetrical places in the grid.190

Crossword Puzzle Dataset. The dataset consists191

of 9152 puzzles, split into the training, validation,192

and test subsets in the 80/10/10 ratio which give us193

7293/922/941 puzzles in each set. We removed the194

total of 16/17 special puzzles from the validation195

and test splits respectively because they contained196

answers with multiple characters placed in the same197

cell (called rebus entries). We also removed 34/44198

puzzles in the validation and test splits respectively199

since these puzzles have improvised rules for filling200

in answers into the grid for instance L shaped word201

slots instead of vertical and horizontal.202

Most NYT crossword grids have a square shape203

of 15×15 cells, with the exception of Sunday-204

released crosswords being 21×21 cells. Other205

shapes combined account for less than 3% of the206

data. The vast majority of both clues and answers207

are short, with over 76% of clues consisting of a208

single word. For traditional sequence-to-sequence209

modeling such conciseness imposes an additional210

challenge, as there is very little context provided211

to the model. In most puzzles, over 80% of the212

grid cells are filled and every character is an inter-213

section of two answers. Such high answer inter-214

dependency suggests a high cost of answer mispre-215

diction, as errors affect a larger number of intersect- 216

ing words. More detailed statistics on the dataset 217

are given in Table 1. 218

Clue-Answer Dataset. We generate an open- 219

domain question answering dataset consisting 220

solely of clue-answer pairs from the respective 221

splits of the Crossword Puzzle dataset described 222

above not removing the special puzzles. Within 223

each of the splits, we only keep unique clue-answer 224

pairs and remove all duplicates. However, certain 225

clues may still be shared between the puzzles con- 226

tained in different splits. We therefore remove from 227

the training data the clue-answer pairs which are 228

found in the test or validation data. This ensures 229

that the model can not trivially recall the answers 230

to the overlapping clues while predicting for the 231

test and validation splits. 232

This produces the total of 578,275 clue- 233

answer pairs, with 433k/72k/72k examples in the 234

train/validation/test splits, respectively. Since cer- 235

tain answers consist of phrases and multiple words 236

that are merged into a single string (such as "VERY- 237

FAST"), we further postprocess the answers by 238

splitting the strings into individual words using a 239

dictionary. Out of all the possible word splits of a 240

given string we pick the one that has the smallest 241

number of words. If there are multiple solutions, 242

we select the split with the highest average word 243

frequency. 244

3.2 Clue types 245

To provide more insight into the diversity of the 246

clue types and the complexity of the task, we cate- 247
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gorize all the clues into multiple classes, which we248

describe below.249

Factual. Clues that encode encyclopedic knowl-250

edge and typically can be answered using resources251

such as Wikipedia (e.g. South Carolina State tree:252

PALMETTO). This type of clue is the closest to the253

questions found in open-domain QA datasets. Note254

that the facts required to solve some of the clues im-255

plicitly depend on the date when a given crossword256

was released. For instance, the clue "President of257

Brazil" has a time-dependent answer.258

Historical. Clues that require the knowledge of259

historical facts and temporal relations between260

events. (e.g. Automobile pioneer: BENZ).261

Word meaning. Clues that exploit general vo-262

cabulary knowledge and can typically be resolved263

using a dictionary. (e.g. Opposing sides: FOES).264

Synonyms/Antonyms. Clues that focus on para-265

phrasing and synonymy relations (e.g. Prognosti-266

cators: SEERS). In most cases, such clues can be267

solved with a thesaurus.268

Fill in the blank. Clues formulated as a cloze269

task (e.g. Magna Cum __ : LAUDE). Fill-in-the-270

blank clues are expected to be easy to solve for the271

models trained with the masked language modeling272

objective (Devlin et al., 2019).273

Abbreviations. Clues answered with acronyms274

(e.g. (Abbr.) Old Communist state: USSR). Abbre-275

viation clues are marked with "Abbr." label.276

Prefix/Suffix. Clues that suggest the answer is a277

suffix or prefix. (e.g. Suffix with mountain : EER)278

Wordplay. Clues that rely on wordplay, ana-279

grams, or puns / pronunciation similarities (e.g.280

Consider an imaginary animal: BEAR IN MIND).281

In a lot of cases, wordplay clues involve jokes and282

exploit different possible meanings and contexts283

for the same word.284

Cross-lingual. Clues that either explicitly use285

words from other languages, or imply a specific286

language-dependent form of the answer. (e.g. Sun-287

rise dirección: ESTE).288

Clues dependent on other clues. Clues the an-289

swer to which can be provided only after a different290

clue has been solved (e.g. Last words of 45 Across).291

Although rare, this category of clues suggests that292

the entire puzzle has to be solved in certain order.293

To understand the distribution of these classes, 294

we randomly selected 1000 examples from the test 295

split of the data and manually annotated them. Fig- 296

ure 2 illustrates the class distribution of the an- 297

notated examples, showing that the Factual class 298

covers a little over a third of all examples. The 299

synonyms/antonyms, word meaning and wordplay 300

classes taken together comprise 50% of the data. 301

The remaining 20% are taken by fill-in-the-blank 302

and historical clues, as well as the low-frequency 303

classes (comprising less than or around 1%), which 304

include abbreviation, dependent, prefix/suffix and 305

cross-lingual clues. We illustrate each one of these 306

classes in the Figure 1. 307

Train Validation Test

Clue-Answer dataset

# clues 4,33,033 72,303 72,939
avg/median clue
length (words)

4.0/3 4.2/4 4.2/4

avg/median ans.
length (chars)

5.5/5 5.7/5 5.6/5

avg/median ans.
length (words)

1.3/1 1.3/1 1.3/1

Crossword Puzzle dataset

# puzzles 7,293 872 879
avg/median # of
clues

83.5/76 83.6/76 82.9/76

avg cols×rows 15.9×15.9 15.9×15.9 15.8×15.8
% of cells filled 82.20% 80.20% 81.20%

Table 1: The full statistics on the two versions of the
released datasets.

3.3 Evaluation metrics 308

In this section, we describe the performance met- 309

rics we introduce for the two subtasks. 310

Clue-Answer Task. For the clue-answer task, 311

we use the following metrics: 312

• Exact Match (EM). Model output matches 313

the ground-truth answer exactly. 314

• Contains (In). Model output contains the 315

ground-truth answer as a contiguous substring 316

Since the ground-truth answers do not contain dia- 317

critics, accents, punctuation and whitespace char- 318

acters, we also consider normalized versions of the 319

above metrics, in which these are stripped from the 320

model output prior to computing the metric. We 321

will refer to them as EMnorm and Innorm, 322

We report these metrics for top-k predictions, 323

where k varies from 1 to 20. 324
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Figure 2: Class distribution of the 1000 manually annotated test examples.

Crossword Puzzle Task. To evaluate the perfor-325

mance of the crossword puzzle solver, we propose326

to compute the following two metrics:327

• Character Accuracy (Accchar). Percentage328

of characters in the predicted crossword solu-329

tion that match the ground-truth solution.330

• Word Accuracy (Accword). Percentage of331

words in the predicted crossword solution that332

match the ground-truth solution.333

Since the question answering system might not334

be able to predict the right answers for some of the335

clues, it may only be possible to produce a partial336

solution to a puzzle. We propose two additional337

metrics to track what percentage the puzzle needs338

to be redacted to obtain a partial solution:339

• Word Removal (Remword). % of words that340

need to be removed from the puzzle to pro-341

duce a partial solution.342

• Character Removal (Remword). % of char-343

acters that need to be removed from the puzzle344

grid to produce a partial solution.345

4 Baselines346

Our baseline approach is a two-step solution that347

treats each subtask separately. We first develop348

a set of baseline systems that solve the question349

answering problem, ignoring the grid-imposed an-350

swer interdependencies. We use seq-to-seq and351

retrieval-augmented Transformer baselines for this352

subtask. We feed generated answer candidates to353

a crossword solver in order to complete the puzzle354

and evaluate the produced puzzle solutions.355

4.1 Clue-Answer Task Baselines 356

Sequence-to-sequence baselines. We fine-tune 357

two sequence-to-sequence models on the clue- 358

answer training data. We select two widely known 359

models, BART (Lewis et al., 2019) and T5 (Raffel 360

et al., 2019), which achieved state-of-the-art results 361

on a set of generative tasks, including specifically 362

abstractive QA involving commonsense and multi- 363

hop reasoning (Fan et al., 2019; Khashabi et al., 364

2018; Zhang et al., 2018). 365

We train both models for 8 epochs with the learn- 366

ing rate of 5× 10−5, and a batch size of 60. 2 367

Retrieval-augmented generation. T5 and 368

BART store world knowledge implicitly in their 369

parameters and are known to hallucinate facts 370

(Maynez et al., 2020). Recently, a new method 371

called retrieval-augmented generation (RAG) 372

(Lewis et al., 2020) has been introduced for open- 373

domain question answering. This method involves 374

a Transformer encoder to encode the question and 375

a decoder to generate the answer (Vaswani et al., 376

2017), but the encoded query is supplemented 377

with relevant excerpts retrieved from an external 378

textual corpus via Maximum Inner Product Search 379

(MIPS); the entire neural network is trained 380

end-to-end. Due to a built-in retrieval mechanism 381

for performing a soft search over a large collection 382

of external documents, such systems are capable of 383

producing stronger results on knowledge-intensive 384

open-domain question answering tasks than the 385

vanilla sequence-to-sequence generative models 386

2We use BART-large with approximately 406M parame-
ters and T5-base model with approximately 220M parameters,
respectively.
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Top-1 Top-10 Top-20
EM EMnorm In Innorm EM EMnorm In Innorm EM EMnorm In Innorm

T5-base 8.4 9.5 8.7 9.9 18.7 20.8 19.8 22.0 22.2 24.6 23.8 26.3
BART-large 13.8 16.1 15.0 17.6 31.0 36.7 32.4 38.0 34.0 40.1 35.3 41.3
RAG wiki 24.2 26.0 24.9 26.7 46.8 49.8 48.6 51.6 50.6 53.9 53.4 56.7
RAG dict 24.0 25.8 24.6 26.5 46.0 48.9 48.0 50.9 50.0 53.2 53.0 56.2

Table 2: Performance of baseline systems on the Clue Answering dataset. EM and In stand for the “Exact-match”
and “Contains” metrics as described in Section 3.3. The computed metrics are shown for top-1, top-10, and top-20
predictions for a given model.

and are more factually accurate (Shuster et al.,387

2021). Motivated by this, we train RAG models388

to extract knowledge from two separate external389

sources of knowledge:390

(a) RAG-wiki uses a full Wikipedia dump from391

December 2018. Following existing work392

Lewis et al. (2020); Karpukhin et al. (2020);393

Lee et al. (2019), each Wikipedia article is394

split into disjoint 100-word chunks, resulting395

in a total of 21M passages.396

(b) RAG-dict uses several English dictionaries397

and thesauri sources, including Wiktionary3,398

Merriam-Webster4, and Google’s English dic-399

tionary by Oxford Languages.5400

For both of these models, we use the retriever em-401

beddings pretrained on the Natural Questions cor-402

pus Kwiatkowski et al. (2019b) in order to prime403

the MIPS retrieval to return meaningful entries404

(Lewis et al., 2020). We train with a batch size405

of 8, label smoothing set to 0.1, dropout probability406

of 0.1, weight decay rate of 0.001, and a learning407

rate of 3× 10−5 for 8 epochs.408

4.2 Crossword Puzzle Task409

A crossword puzzle can be cast as an instance of410

a satisfiability problem, and its solution represents411

a particular character assignment so that all the412

constraints of the puzzle are met. Under such for-413

mulation, three main conditions have to be satisfied:414

(1) the answer candidates for every clue must come415

from a set of words that answer the question, (2)416

they must have the exact length specified by the417

corresponding grid entry, and (3) for every pair of418

words that intersect in the puzzle grid, acceptable419

word assignments must have the same character at420

the intersection offset.421

This class of problems can be modelled through422

Satisfiability Modulo Theories (SMT). SMT is a423

3https://www.wiktionary.org/
4https://dictionaryapi.com/
5Accessed via https://dictionaryapi.dev/.

generalization of Boolean Satisfiability problem 424

(SAT) in which some of the binary variables are 425

replaced by first-order logic predicates over a set of 426

non-binary variables. In the case of crosswords, a 427

variable represents one character in the crossword 428

grid which can be assigned a single letter of the En- 429

glish alphabet and 0 through 9 digit values. This is 430

further subject to the constraints mentioned above 431

which can be formulated with the equality operator 432

and Boolean logical operators: AND and OR. For 433

example, a word slot of length 3 where the candi- 434

date answers are "ESC", "DEL" or "CMD" can be 435

formalised as: 436

{v1=E AND v2=S AND v3=C } 437

OR 438

{v1=D AND v2=E AND v3=L } 439

OR 440

{v1=C AND v2=M AND v3=D } 441

To solve the entire crossword puzzle, we use the 442

formulation that treats this as an SMT problem. 443

We use an open source implementation6 of this 444

formulation based on Z3 SMT solver de Moura and 445

Bjørner (2008). The answer length and intersection 446

constraints are imposed on the variable assignment, 447

as specified by the input crossword grid. 448

We take the top-k predictions from our baseline 449

models and for each prediction, select all possible 450

substrings of required length as answer candidates. 451

For simplicity, we exclude from our consideration 452

all the crosswords with a single cell containing 453

more than one English letter in it. 454

Our current baseline constraint satisfaction 455

solver is limited in that it simply returns "not- 456

satisfied" (nosat) for a puzzle where no valid 457

solution exists, that is, when all the hard constraints 458

of the puzzle are not met by the inputs. Since the 459

candidate lists for certain clues might not meet all 460

6https://github.com/pncnmnp/
Crossword-Solver
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the constraints, this results in a nosat solution for461

almost all crossword puzzles, and we are not able462

to extract partial solutions. To bypass this issue463

and produce partial solutions, we pre-filter each464

clue with an oracle that only allows those clues465

into the SMT solver for which the actual answer is466

available as one of the candidates.467

5 Results468

5.1 Clue-Answer Task469

In Table 2 we report the Top-1, Top-10 and Top-20470

match accuracies for the four evaluation metrics471

defined in Section 3.3.472

Our results suggest high difficulty of the clue-473

answer dataset, with the best achieved accuracy474

metric staying under 30% for the top-1 model pre-475

diction. Even top-20 predictions have an almost476

40% chance of not containing the ground-truth an-477

swer anywhere within the generated strings. Gen-478

erative Transformer models such as T5-base and479

BART-large perform poorly on the clue-answer480

task, however, the model accuracy across most met-481

rics almost doubles between T5-base (with 220M482

parameters) to BART-large (with 400M parameter).483

Our strongest baseline, RAG-wiki and RAG-dict,484

achieve 50.6 and 50.0 exact-match accuracies on485

the clue-answer dataset, respectively. The Innorm486

score, which looks at whether any substrings in487

the generated answer match the ground truth – and488

which can be seen an upper bound on the model’s489

ability to solve the puzzle – is slightly higher, at490

56.7 for RAG-wiki and 56.2 for RAG-dict.491

Not surprisingly, these results show that the ad-492

ditional step of retrieving Wikipedia or dictionary493

entries increases the accuracy considerably com-494

pared to the fine-tuned sequence-to-sequence mod-495

els such as BART which store this information in496

its parameters. The normalized metrics which re-497

move diacritics, punctuation and whitespace bring498

the accuracy up by 2-6%, depending on the model.499

We examined the top-20 exact-match predictions500

generated by RAG-wiki and RAG-dict and find501

that both models are in agreement in terms of an-502

swer matches for around 85% of the test set. In503

other words largely both either correctly predict the504

ground truth or both fail to do so.505

5.2 Crossword Puzzle Task506

The baseline performance on the entire crossword507

puzzle dataset shows there is significant room for508

improvement of the existing architectures (see Ta-509

Model Solving Accuracy Puzzle Removed
Accword Accchar Remword Remchar

BART 16.6 28.4 55.6 43.4
RAG wiki 23.8 37.8 40.3 26.3
RAG dict 22.1 35.9 40.8 26.8

Table 3: Performance of baseline systems on the Cross-
word Puzzle dataset. We report the exact-match metric
for top-20 predictions of the baseline models listed.

ble 3). Our best model, RAG-wiki, correctly fills 510

in the answers for only 26% (on average) of the to- 511

tal number of puzzle clues, despite having a much 512

higher performance on the clue-answer task, i.e. 513

measured independently from the crossword grid 514

(Table 2). This is explained by the fact that the 515

clues with no ground-truth answer present among 516

the candidates have to be removed from the puzzles 517

in order for the solver to converge, which in turn 518

relaxes the interdependency constraints too much, 519

so that a filled answer may be selected from the set 520

of candidates almost at random. Despite that, the 521

baseline solver is able to solve over a quarter of 522

each the puzzle on average. 523

6 Qualitative analysis 524

Evaluation on the annotated subset of the data re- 525

veals that some clue types present significantly 526

higher levels of difficulty than others (see Table 4). 527

In particular, all of our baseline systems struggle 528

with the clues requiring reasoning in the context of 529

historical knowledge. As expected, all of the mod- 530

els demonstrate much stronger performance on the 531

factual and word-meaning clue types, since the rele- 532

vant answer candidates are likely to be found in the 533

Wikipedia data used for pre-training. We observe 534

the biggest differences between BART and RAG 535

performance for the “abbreviation” and the “prefix- 536

suffix” categories. The document retrieval step in 537

RAG allows for more efficient matching of sup- 538

porting documents, leading to generation of more 539

relevant answer candidates. For instance, the clue 540

“Warehouse abbr.” results in “pkg” and “bldg” can- 541

didates among RAG predictions, whereas BART 542

generates abstract and largely irrelevant strings. 543

Our manual inspection of model predictions 544

suggest that both BART and RAG correctly in- 545

fer the grammatical form of the answer from the 546

formulation of the clue. For example, the clue 547

“Stitched” produces the candidate answers “Sewn” 548

and “Made”, and the clue “Word repeated after 549

“Que”” triggers mostly Spanish and French genera- 550
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Model Fact. Hist. Meaning Syn./Ant. Blank Abbr. Pref./Suf. Wordplay X-lingual Dependent

BART 40.4 19.0 43.9 40.3 36.0 42.9 20.0 33.5 40.0 0.0
RAG-wiki 53.9 28.6 55.3 46.6 60.0 60.0 60.0 43.9 60.0 11.8
RAG-dict 54.2 35.7 52.8 48.9 61.3 85.7 60.0 46.3 40.0 11.8

Table 4: Exact match, top-20. should Omit the dependent category

tions (e.g. “Avec” or “Sera”).551

As previously stated RAG-wiki and RAG-dict552

largely agree with each other with respect to the553

ground truth answers. We qualitatively assessed554

instances where either RAG-wiki or RAG-dict pre-555

dict the answer correctly in Appendix A.556

7 Discussion and Future Work557

The presented task is challenging to approach in558

an end-to-end model fashion. There are several559

reasons for this, which we discuss below.560

Character-level outputs. Commonly used561

Transformer decoders do not produce character-562

level outputs and produce BPE and wordpieces563

instead, which creates a problem for a potential564

end-to-end neural crossword solver. One possible565

solution can be the modification of the loss term,566

designed with character-based output logits instead567

of BPE since the crossword grid constraints are568

at a single cell- (i.e. character-) level. There is569

some work done in the character-level output570

transformer encoders such as Ma et al. (2020).571

However, to our best knowledge there is no572

major generative Transformer architecture which573

supports character-level outputs yet, we intend574

to explore this avenue further in future work to575

develop an end-to-end neural crossword solver.576

SMT solver constraints. As mentioned earlier,577

our current baseline solver does not allow partial578

solutions, and we rely on pre-filtering using the or-579

acle from the ground-truth answers. Although this580

strategy is flawed for the obvious use of the oracle,581

the alternatives are currently either computation-582

ally intractable or too lossy. One such strategy is583

to remove k clues at a time, starting with k = 1584

and progressively increasing the number of clues585

removed until the remaining relaxed puzzle can be586

solved – which has the complexity of O(2n), where587

n is the total number of clues in the puzzle.Another588

approach we tried was to relax certain constraints589

of the puzzle grid, maximally satisfying as many590

constraints as possible, which is formally known591

as the maximal satisfaction problem (MAX-SAT).592

This is a NP-hard problem for which it is hard to 593

find approximate solutions (Papadimitriou, 1994). 594

Our initial foray into such approximate solvers 595

(Previti and Marques-Silva, 2013; Liffiton and Ma- 596

lik, 2013) produced severely under-constrained 597

puzzles with garbage character entries. Further 598

work needs to be done to extend this solver to han- 599

dle partial solutions elegantly without the need for 600

an oracle, this could be addressed with probabilis- 601

tic and weighted constraint satisfaction solvers, in 602

line with the work by Littman et al. (2002); Keim 603

et al. (1999) and Ginsberg (2011), but without the 604

dependency on the past crossword clues. 605

8 Conclusion 606

We present a new challenging task of solving cross- 607

word puzzles and present the New York Times 608

Crosswords Dataset, which can be approached at 609

a QA-like level of individual clue-answer pairs, or 610

at the level of an entire puzzle, with imposed an- 611

swer interdependency constraints. This new bench- 612

mark contains a broad range of clue types that re- 613

quire diverse reasoning components. We carry out 614

a set of baseline experiments that indicate the over- 615

all difficulty of this task for the current systems, 616

including retrieval-augmented SOTA models for 617

open-domain question answering. We also discuss 618

the technical challenges in building a crossword 619

solver and obtaining partial solutions as well as in 620

the design of end-to-end systems for this task. We 621

hope that the NYT Crosswords task would define a 622

new high bar for the AI systems. 623

9 Ethical Considerations 624

The New York Times daily crossword puzzles are 625

a copyright of the New York Times. We have ob- 626

tained preliminary approval from the New York 627

Times to release this data under a non-commercial 628

and research use license, and are in the process of 629

finalizing the exact licensing terms and redistribu- 630

tion channels with their legal department. We also 631

got permission from Parth Parikh through personal 632

communication to modify and reuse parts of their 633

crossword solver6. 634
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A Qualitative Analysis of RAG-wiki and857

RAG-dict Predictions858

We additionally examined the top-20 exact-match859

predictions generated by RAG-wiki and RAG-dict.860

With some exceptions, both models predict similar861

results (in terms of answer matches) for around862

85% of the test set. We further analyzed the in-863

stances where the models behaved differently.864

Table 5 shows examples where RAG-dict failed865

to generate the correct predictions but RAG-wiki866

succeeded, and vice-versa. Most of the instances867

where RAG-dict predicted correctly and RAG-wiki868

did not are the ones where the target closely related869

to the meaning of the source. The instances where870

RAG-wiki predicted the exact match but RAG-dict871

couldn’t are the examples where the target is not a872

direct meaning of the source, however some more873

information around the source is good enough to874

predict the target. For Historical category, both the875

models could not predict correctly when the source876

length was more than four words. The models877

didn’t have much variation in the results for rest of878

the other categories.879
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Category RAG-dict predicts correctly,RAG-wiki fails RAG-wiki predicts correctly, RAG-dict fails

Factual Source: “Asian nursemaid”, Target: “amah”.
Source: “Pill alternative, for short”, Target:
“iud”

Source: “Quisling’s city”, Target: “oslo”.
Source: “ Avatar of Vishnu”, Target: ”rama”

Word Meaning Source: “Pause indicator”, Target: “comma”.
Source: “Moves along quickly”, Target:”
scoots”

Source: “Sites for grand entrances”, Target:
“archways”. Source: “Point of no return?”, Tar-
get: “ace”.

Word Play Source: “Kind of contribution”, Target: ”ira”.
Source: “Without ice”, Target:”neat”

Source: “I’m impressed!”, Target: “ooh”.
Source: “Airport no no , Target: “ knife”.

Synonyms
Antonyms

Source: “Stitched”, Target: ”sewn”. Source:
“Promptly”, Target: “on time”.

Source: “guess “ , Target: “ idea”.

Fill in the
Blanks

Source: “__rug “, Target: “ area”. Source:
“canola __ “, Target: “ oil”.

Source: ”__-Israeli relations”, Target : ”arab”.

Table 5: Examples where one of the models: RAG-dict, RAG-wiki predicts correctly and other fails. Examples are
for exact match, top-20
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