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Abstract

Distributed learning methods have gained substan-
tial momentum in recent years, with communica-
tion overhead often emerging as a critical bottle-
neck. Gradient compression techniques allevi-
ate communication costs but involve an inherent
trade-off between the empirical efficiency of bi-
ased compressors and the theoretical guarantees
of unbiased compressors. In this work, we intro-
duce a novel Multilevel Monte Carlo (MLMC)
compression scheme that leverages biased com-
pressors to construct statistically unbiased esti-
mates. This approach effectively bridges the gap
between biased and unbiased methods, combining
the strengths of both. To showcase the versatility
of our method, we apply it to popular compressors,
like Top-k and bit-wise compressors, resulting in
enhanced variants. Furthermore, we derive an
adaptive version of our approach to further im-
prove its performance. We validate our method
empirically on distributed deep learning tasks.

1. Introduction
Distributed learning has emerged as a critical paradigm for
scaling machine learning to massive datasets across multiple
computing nodes. In this setting, a central server coordi-
nates multiple worker nodes, each computing local gradients
on their respective data shards and communicating updates
back to the server. This parallelization accelerates training,
but introduces a fundamental bottleneck: communication
overhead (Konečný et al., 2018; Wang et al., 2021). To miti-
gate this, gradient compression techniques are commonly
employed to reduce the volume of transmitted data (Alistarh
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et al., 2017; Lin et al., 2018). However, these methods intro-
duce a trade-off between unbiased and biased compressors
(Beznosikov et al., 2020).

Unbiased compression techniques, such as random sparsi-
fication (e.g., Rand-k) and statistical quantization methods
(e.g., QSGD (Alistarh et al., 2017)), ensure that the ex-
pected value of the compressed gradient remains equal to
the original gradient. They are well understood theoretically
because they align with the standard theoretical guarantees
of data-parallel SGD (Jain et al., 2017; Dekel et al., 2012).
However, their empirical performance is often suboptimal
since they select elements at random rather than prioritiz-
ing the most informative components of the gradient. This
leads to inefficient gradient updates, which negatively affect
performance.

In contrast, biased compressors, such as Top-k sparsifica-
tion, retain the most informative components of the gradient
while discarding less significant elements, leading to supe-
rior empirical performance (Seide et al., 2014; Richtárik
et al., 2021). However, they introduce a degradation in theo-
retical guarantees, as their biased nature prevents them from
directly aligning with the classical analysis of data-parallel
SGD. This necessitates additional correction mechanisms,
such as error feedback (e.g., EF21 (Richtárik et al., 2021)),
to ensure convergence.

Beyond gradient compression, distributed learning encom-
passes a wide range of techniques aimed at improving scala-
bility and efficiency. Methods such as asynchronous training
(Recht et al., 2011; Dean et al., 2012; Tyurin et al., 2024),
in which worker nodes update the central model without
waiting for all nodes to synchronize, help mitigate commu-
nication delays. Federated learning (Konecný et al., 2016;
Kairouz et al., 2021), which enables training while pre-
serving data privacy, has also gained significant traction.
Furthermore, decentralized training (Koloskova et al., 2019)
removes the need for a server to maintain the model and in-
stead propagates knowledge through ”gossip” mechanisms.
Additionally, techniques like local updates (Stich, 2019; Da-
han & Levy, 2024; Mishchenko et al., 2022; Condat et al.,
2023), where workers perform multiple gradient steps be-
fore communicating with the server, reduce communication
frequency and enhance efficiency. Each of these methods
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aims to strike a balance between computation, communica-
tion, and convergence guarantees.

To bridge the gap between unbiased and biased compression
techniques, we introduce a novel compression scheme based
on Multilevel Monte Carlo (MLMC) methods (Giles, 2013).
MLMC techniques construct an estimator by combining
multiple levels of approximation, each with a different qual-
ity (variance) and cost. The heart of the MLMC method
is that it transduces bias into variance. We leverage this
core property to construct unbiased estimates from biased
compressed gradients, transducing their bias into controlled
variance, and thereby ensuring both empirical efficiency and
good parallelization ability.

We apply our MLMC-based framework to popular compres-
sors, demonstrating how it enhances their performance by
reducing compression bias while keeping the communica-
tion costs minimal. Furthermore, we introduce an adaptive
version of our approach, dynamically optimizing compres-
sion levels to further improve efficiency. We validate our
method through various deep learning experiments, show-
casing its convergence speed and communication efficiency.

By leveraging MLMC to mitigate compression bias, our
work provides a principled solution that reconciles the
strengths of biased and unbiased compression techniques.
This contribution paves the way for more efficient dis-
tributed learning frameworks that maintain both strong the-
oretical guarantees and superior empirical performance.

1.1. Related Work

Gradient compression techniques are essential for reducing
communication costs in distributed optimization. These
methods fall into unbiased and biased approaches, each
offering different trade-offs in terms of convergence guaran-
tees and empirical performance. Some works also explore
bidirectional compression, where both worker-to-server and
server-to-worker communication is compressed (Horváth
et al., 2022; Gorbunov et al., 2020). While bidirectional
compression is relevant in some distributed learning set-
tings, our focus remains on gradient compression, where
the primary challenge is reducing worker-to-server commu-
nication while ensuring convergence.

Unbiased Compression Methods. Unbiased compres-
sion methods ensure that the expectation of the compressed
gradient equals the true gradient. QSGD (Alistarh et al.,
2017) and natural compression (Horváth et al., 2022) are
prominent examples, providing strong theoretical guaran-
tees but suffering from slow empirical convergence due
to the random selection of gradient components. DIANA
(Mishchenko et al., 2023; Horváth et al., 2019) overcomes
this by compressing gradient differences. MARINA (Gor-
bunov et al., 2021) incorporates variance reduction to miti-

gate this issue by using unbiased compressions of gradient
differences. DASHA (Tyurin & Richtárik, 2023) improves
efficiency using structured and compressed updates only.
EF-BV (Condat et al., 2022) offers a unifying framework
for biased and unbiased compressors, which recovers both
DIANA and EF21 (Richtárik et al., 2021) as special cases,
but does not aim to generate unbiased estimators from bi-
ased ones, in contrast to our work. Horváth & Richtárik
(2021) developed a related approach, which constructs an
unbiased compressor from two biased ones using an error
feedback mechanism, achieving better convergence at the
cost of roughly doubling the communication cost.

Biased Compression Methods and Error Feedback. Bi-
ased compressors, such as Top-K sparsification (Stich et al.,
2018) and SignSGD (Bernstein et al., 2018; Karimireddy
et al., 2019), retain the most informative gradient compo-
nents, leading to superior empirical performance. However,
these methods introduce biases that require correction to
ensure convergence. Error feedback (EF) (Seide et al., 2014)
was introduced as a correction mechanism, which was later
refined by EF21 (Richtárik et al., 2021) to eliminate re-
strictive assumptions and improve theoretical guarantees.
EF21-SGDM (Fatkhullin et al., 2023) further stabilizes up-
dates using momentum, reducing sample complexity and
improving convergence speed. Adaptive gradient sparsifica-
tion (Han et al., 2020) dynamically adjusts sparsity levels,
balancing communication efficiency and performance. The
introduction of bias typically adds additional terms to the
convergence bounds (Fatkhullin et al., 2023) which can
hinder performance in massive parallelization settings.

In summary, unbiased methods are well understood, easy to
analyze, and enjoy simple bounds, but are often impracti-
cal due to inefficiency, while biased methods, coupled with
EF techniques, offer superior empirical results. Our work
builds on these insights by further refining biased compres-
sion strategies and offering a plug-and-play mechanism to
construct unbiased estimates from biased ones. We further
show that our technique works seamlessly for any compres-
sor and enhances convergence efficiency, bridging the gap
between biased and unbiased compression methods.

2. Background
2.1. Problem Statement

We consider the distributed machine learning setting with a
master server and M machines i = 1, ...,M . We assume a
heterogeneous setting in which each machine i ∈ [M ] has
access to i.i.d samples from some data distribution Di. We
aim to minimize the following problem:

arg min
x∈Rd

f(x) = arg min
x∈Rd

1

M

M∑
i=1

fi(x) (1)
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where fi : Rd → R measures the expected loss of the
model on the local data of machine i. Namely, fi(x) =
Ezi∼Di [fi(x, zi)], where fi(x, zi) is the loss of model x
w.r.t sample zi ∼ Di. In each step t ∈ [T ], the master
server broadcasts the current model xt ∈ Rd to the M
machines, and each machine i ∈ [M ] computes a stochastic
gradient vt,i ≜ ∇fi(xt, zt,i), where zt,i ∼ Di, computes a
compression (an estimate) gt,i of vt,i, and sends gt,i back
to the server. The server aggregates {gt,i}Mi=1 and uses the
result to update the model. Note that when gt,i = vt,i,
we have the known Data-parallel SGD scheme, which is
formalized in Alg. 1 and Theorem 2.3 (Dekel et al., 2012;
Ghadimi & Lan, 2013). Note that a central property of
Theorem 2.3 is that the gradients are conditionally unbiased,
i.e., E[vt,i|xt] = ∇fi(xt),∀t, i. This assumption is not
always satisfied when compression is introduced, as we
elaborate in the following subsections.

We make the following assumptions throughout the paper:

Assumption 2.1. The loss functions fi are L-smooth:
fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩ + L

2 ∥y − x∥2 ,∀x, y ∈
Rd,∀i ∈ [M ].

Assumption 2.2. The uncompressed stochastic gradients
∇fi(x, z) have bounded variance: ∀i ∈ [M ],∀x ∈ Rd,
E[∥∇fi(x, z)−∇fi(x)∥2 |x] ≤ σ2.

Algorithm 1 Data-parallel SGD
Input: initialization x1, step-size η.
for t = 1 to T do

The server broadcasts xt to machines i = 1, ..,M
for i = 1 to M in parallel do

Sample zt,i from local dataset Di

Compute vt,i = ∇fi(xt, zt,i)
Send vt,i to server

end for
Server aggregates: vt = 1

M

∑M
i=1 vt,i

Server updates: xt+1 = xt − ηvt
end for

Theorem 2.3. Under Assumption 2.1, Alg. 1 guarantees the
following error in the convex case, for any η ≤ 1/2L:

E [f(x̄T )− f(x∗)] ≤ D2

2Tη
+

η

T

T∑
t=1

EV 2
t ,

and the following error in the nonconvex case, for η ≤ 1/L:

1

T

T∑
t=1

E ∥∇f(xt)∥2 ≤ 2∆1

Tη
+

ηL

T

T∑
t=1

EV 2
t ,

where x̄T = 1
T

∑T
t=1 xt, x∗ = argminx f(x), D =

∥x1 − x∗∥, V 2
t = 1

M2

∑M
i=1 E[∥vt,i −∇fi(xt)∥2 |xt], and

∆1 = f(x1)− f(x∗).

Note that the error bounds in Theorem 2.3 depend on the
variance of the gradients. Furthermore, under assumption

2.2 and by optimizing over η, the error bound (both for the
convex and the nonconvex cases) can be written as:

O
(
1

T
+

σ√
MT

)
(2)

Up to factors that are independent of T,M and σ. As we
elaborate next, incorporating compression into parallel SGD
in Alg. 1 alters these bounds, either by increasing the vari-
ance term in the case of unbiased compression, or by ren-
dering them obsolete in the case of biased compression.

2.2. Training with Compressed Gradients

While the naive parallelization scheme in Alg. 1 is straight-
forward, it neglects the communication cost between the
machines and the server. With today’s computational power,
communication serves as the main bottleneck in the learn-
ing process. Consequently, many methods resort to using
compressed versions of the gradients to reduce the com-
munication cost (see Sec. 1.1). Such compressors can be
broadly classified into two main categories:

(1) Unbiased compressors, which for ω ≥ 0 and ∀x ∈
Rd satisfy:

E[C(x)] = x ; E[∥C(x)− x∥2] ≤ ω ∥x∥2 , (3)

(2) Biased compressors, which for 0 < α ≤ 1 and ∀x ∈
Rd satisfy:

E[C(x)] ̸= x ; E[∥C(x)− x∥2] ≤ (1−α) ∥x∥2 (4)

where the above expectations are w.r.t. the randomization
potentially introduced by C. The use of unbiased compres-
sors is usually straightforward as they are easy to incorpo-
rate into the parallelization scheme in Alg. 1 where only
the second term will be affected with an increased vari-
ance. However, biased compressors generally yield better
practical results, since they tend to retain more energy of
the compressed entity compared to unbiased counterparts.
Unfortunately, their naive incorporation in Alg. 1 may fail
to converge (Beznosikov et al., 2020), since now the com-
pressed gradients are not unbiased estimates of the true
gradients, and more sophisticated optimization schemes are
required (Seide et al., 2014; Richtárik et al., 2021). We now
survey a few popular compressors that are used for training
with compressed gradients.

Top-k is a popular compressor which retains the largest k
elements in absolute value of a given vector and zeros the
rest. Naturally, Top-k is a biased compressor that satisfies
Eq. (4) with α = k/d and k between 1 and d. It is generally
empirically superior to its prevalent unbiased counterpart,
Rand-k, which retains k randomly selected elements of a
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vector. Moreover, we consider a generalization of Top-k,
which we term s-segmented Top-k, or s-Top-k, which sorts a
given vector of length d, divides it into segments of length s
(except perhaps the last segment), and retains the k segments
with the largest norm. Accordingly, α = sk/d and k ranges
from 1 to ⌈d/s⌉. Note that regular Top-k can be recovered
from its generalized variant when s = 1.

Bit-wise compressors are methods that utilize binary rep-
resentation to compress numerical data. In our setting, we
perform bit-wise compression of the binary representation
of each element in the gradient vector in an element-wise
manner. There are two common approaches for bit-wise
compression:

(1) Fixed-point compressors. Fixed-point methods en-
code numbers with fixed integer and fractional bits.
Compression is done by discarding the least significant
bits and keeping the F most significant bits, introduc-
ing distortion that is bounded by 2−F for each element.

(2) Floating-point compressors. Floating-point methods
encode numbers using a mantissa, the fractional part,
and an exponent, the scale factor. Floating-point com-
pressors retain the exponent and the F most significant
bits of the mantissa, forming a biased compressor that
satisfies Eq. (4) with α = 1− 2−F .

As mentioned, the introduction of compression changes
the error bounds of gradient-based methods. Unbiased
compression only changes the variance. That is because
E[C(vt,i)] = E[E[C(vt,i)]|xt] = E[vt,i|xt] = ∇fi(xt),
namely the compressed gradients are still unbiased esti-
mates of the true gradient. Additionally, note that:

E[∥C(vt,i)−∇fi(xt)∥2 |xt]

= E[∥C(vt,i)− vt,i + vt,i −∇fi(xt)∥2 |xt]

= E[∥C(vt,i)− vt,i∥2 |xt]︸ ︷︷ ︸
σ2
comp

+E[∥vt,i −∇fi(xt)∥2 |xt]︸ ︷︷ ︸
σ2

,

and simply plugging this updated variance term into the
known bounds of Theorem 2.3 yields the corresponding
error bounds. The use of biased compressors, although
empirically superior to their prevalent unbiased counterparts,
requires a different treatment to account for the bias they
introduce, which often hinders parallelization and affects
the error bounds (Fatkhullin et al., 2023).

In our work, we suggest a novel approach to construct unbi-
ased versions of popular compressors such that we retain the
most important information (as biased compressors) with-
out hindering parallelization (as unbiased compressors). We
aim to construct new enhanced estimators that achieve the
best of both worlds using a novel compression scheme based
on Multilevel Monte Carlo on which we elaborate next.

2.3. Multilevel Monte Carlo methods

Monte Carlo methods construct a variance-reduced estima-
tor for the expectation of some random variable X using an
ensemble of independent stochastic samples. In its simplest
form, given unbiased i.i.d. samples {X(j)}Nj=1 of X , such
that E[X(j)] = E[X],∀j ∈ [N ], a Monte Carlo estimate of
E[X] is given by 1

N

∑N
j=1 X

(j). This estimator enjoys a
reduced variance by a factor of 1/N compared to that of the
individual samples. This method implicitly assumes that the
cost and quality (variance) of each sample are identical.

Multilevel Monte Carlo (MLMC) methods (Giles, 2013)
generalize this to a setting where we can access samples of
increasing quality but at an increasing cost. MLMC methods
also obviate the need for unbiased samples, unlike regular
Monte Carlo. Namely, given samples X l,(j) with variance
V l and cost Kl, for j ∈ [N ] and l ∈ [L], where typically V l

decreases while Kl increases with l, the MLMC estimator
of E[X] is given by:

X̃ ≜ X0 +
1

pl
(X l −X l−1), where l ∼ pl, (5)

where {pl}Ll=1 is a non-zero probability distribution over
the levels l ∈ [L] and X l and X l−1 are some estimators
of E[X] based on samples of levels l and l − 1, respec-
tively. One of the most intriguing properties of the MLMC
estimator is that it is a naturally unbiased estimator of the
highest-level expectation, namely E[X̃] = E[XL]. Fur-
thermore, MLMC methods effectively transduce bias into
variance. This important property will play a central role
in our method, where XL will be an unbiased estimate of
E[X], implying that X̃ is an unbiased estimate of E[X].

3. Multilevel Monte Carlo Parallel SGD
Motivated by the trade-off between biased compressors,
which have superior performance but suffer worse theoret-
ical guarantees, and unbiased compressors, which exhibit
the opposite, we set to explore a method to bridge this gap.
Namely, we pose the following question:

Can we simultaneously utilize the superior performance of
biased compressors and enjoy the better theoretical

guarantees of unbiased compressors?

To address this, we propose a novel method that exploits
the properties of MLMC estimators and allows us to use
biased compressors without adversely affecting the theo-
retical convergence guarantees. Our idea is to generate
MLMC estimators of the biased gradient compressions and
use those to update the model. This way, although the com-
pressed gradients can be biased, their MLMC estimators
are always unbiased, but are typically accompanied by a
slightly increased variance.
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Each compressor (e.g., Top-k, s-Top-k, bit-wise compres-
sors, etc.) typically has a parameter that tunes the extent
of compression. For example, a smaller k in Top-k or s-
Top-k translates to a more aggressive compression. We
define the ”estimate levels” l ∈ [L] of the MLMC estimate
in correlation with these parameters, such that lower levels
correspond to more aggressive compression, while higher
levels correspond to a softer compression. For efficiency,
we incorporate this into a new class of compressors, which
we term Multilevel Compressors, and define it as follows.

Definition 3.1. Cl : Rn → R is a multilevel compressor,
where l ∈ [L] corresponds to the compression level and
the highest level L corresponds to no compression, i.e.,
∀v ∈ Rd : CL(v) = v.

For example, in the case of Top-k and s-Top-k, the levels l
correspond to the parameter k. Thus, lower levels lead to a
worse estimate of the original gradient but a lower commu-
nication cost, while higher levels yield a better estimate but
a higher communication cost, and the highest level L corre-
sponds to no compression at all (e.g., Top-k with k = d, or
s-Top-k with k = ⌈d/s⌉).

Concretely, given a multilevel compressor Cl, where l ∈
[L], non-zero level probabilities {pl}Ll=1, and an uncom-
pressed stochastic gradient vt,i, the MLMC gradient esti-
mate of vt,i is given by:

g̃t,i = g0t,i +
1

pl
(glt,i − gl−1

t,i ), where l ∼ pl (6)

where glt,i = Cl(vt,i), g
l−1
t,i = Cl−1(vt,i), and we define

g0t,i = 0 (e.g., Top-k with k = 0). This MLMC compression
scheme yields an unbiased estimate of the true gradient in
step t, ∇fi(xt), as we formalize in Lemma 3.2.

Lemma 3.2. For any multilevel compressor Cl, l ∈ [L] and
any non-zero probabilities {pl}Ll=1, the MLMC estimator
g̃t,i ≜ g0t,i+

1
pl (g

l
t,i−gl−1

t,i ), where l ∼ pl, is a conditionally
unbiased estimate of the true gradient, ∇fi(xt). Namely:
E[g̃t,i|xt] = ∇fi(xt),∀t ∈ [T ],∀i ∈ [M ].

We defer the proof to App. A. Intuitively, our MLMC block
can be thought of as a black box that takes the stochastic
gradient, a compressor (e.g., s-Top-k), and a probability
distribution over the compression levels (e.g., the values of
k) and outputs an unbiased estimate of the true gradient.
The probability distribution is optimized to minimize the
variance of the MLMC estimator. In some cases, we show
that the probability distribution can be chosen in an adaptive
manner, per sample, to optimize the variance for each sam-
ple independently. Furthermore, since our method replaces
the stochastic gradients with their MLMC estimates, which
are also unbiased (see Lemma 3.2), the error bounds in The-
orem 2.3, for the convex and the nonconvex case, remain
largely the same and only the variance term is affected.

We formalize our method in Alg. 2, where each machine
i ∈ [M ]: (1) computes the gradient vt,i based on one
stochastic sample zt,i, (2) samples a compression level
l ∈ [L] according to a predefined probability distribution
{pl}Ll=1, (3) constructs the MLMC gradient g̃t,i according
to Eq. (6), and (4) sends it back to the server. The server
aggregates the MLMC gradients and updates the model.
Note that while the general template of Alg. 2 requires two
compressions in each iteration for the levels l and l − 1, in
certain cases computing the residual glt,i−gl−1

t,i can be done
efficiently without explicitly calculating each term, and it
can be transmitted cheaply as well. For example, for Top-k,
glt,i−gl−1

t,i includes only the l’th largest element (in absolute
value), and for s-Top-k, the residual includes the segment
of length s with the l’th largest norm.

Algorithm 2 MLMC-Compressed Parallel SGD
Input: initialization x1, step-size η, multilevel compres-
sor Cl, and level probabilities {pl}Ll=1

for t = 1 to T do
The server broadcasts xt to machines i = 1, ..,M
for i = 1 to M in parallel do

Sample zt,i from local dataset Di

Compute vt,i = ∇fi(xt, zt,i)
Sample l ∼ pl

Compress glt,i = Cl(vt,i), g
l−1
t,i = Cl−1(vt,i)

Construct g̃t,i = g0t,i +
1
pl (g

l
t,i − gl−1

t,i )
Send g̃t,i to server

end for
Server aggregates: g̃t = 1

M

∑M
i=1 g̃t,i

Server updates: xt+1 = xt − ηg̃t
end for

Note that the optimization scheme in Alg. 2 is very similar
to that of Alg. 1 (regular data-parallel SGD). That is thanks
to the unbiasedness of the MLMC estimates (Lemma 3.2).

In the next subsections, we analyze our algorithm and derive
the optimal level probabilities that minimize the MLMC
estimate variance for popular baseline compressors, and
for special cases of gradient distributions that arise in deep
learning models.

3.1. MLMC-Compression Using Bit-Wise Compressors

A popular compression method used in distributed learning
is bit-wise compression, especially fixed-point and floating-
point compression (Seide et al., 2014; Dryden et al., 2016;
Chmiel et al., 2021). We now discuss the fixed-point-based
MLMC compression scheme. The analysis of floating-point
MLMC compression is similar but does not enjoy the same
compression rate since the exponent must always be trans-
mitted. We defer the full analysis to App. B.
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Since fixed-point compressors operate in an element-wise
manner, we consider some entry et,i of a gradient vector vt,i.
Assuming |et,i| ≤ 1 (note that we can divide the entries of
vt,i by the largest entry and transmit it as well), et,i can be
written as a 64-bit fixed-point binary number, as follows:

et,i = (−1)b0
63∑
j=1

bj2
−j , (7)

where bj ∈ {0, 1} is the j-th bit in the binary representation.
For each entry et,i, the multilevel fixed-point compressor
Cl truncates the sum to l elements, with l ranging between
1 and 63. The resulting distortion introduced by the com-
pression is bounded by 2−l for each entry.

We incorporate the fixed-point compressor into the MLMC
compression scheme. Each entry of the residual glt,i − gl−1

t,i

in this case consists of two bits, one information bit and one
sign bit. Therefore, the transmission cost of the MLMC gra-
dient, g̃t,i, is the cost of transmitting two bits for each entry
in the residual vector, 64 additional bits for the maximum
entry, and ⌈log2(63)⌉ for l, i.e., 2d+ 64 + ⌈log2(63)⌉ bits
in total in each iteration for each machine. Note that when
d ≫ 1 (which is often the case in deep learning), this com-
pression scheme transmits approximately 2d bits in each
iteration, compared to 64d bits for the uncompressed vec-
tors. This is a ×32 improvement in communication costs.
Furthermore, the variance-minimizing level probabilities
are formalized in Lemma 3.3 (proof in App. C).
Lemma 3.3. The optimal probability distribution that min-
imizes the variance of the fixed-point MLMC estimator is
given by:

pl =
2−l

1− 2−63
. (8)

3.2. MLMC-Compression Using Top-k

Given any vector v ∈ Rd, Top-k retains its largest k ele-
ments (in absolute value) and zeros the rest. Namely, Top-k
is a biased compressor with α = k/d, whose distortion
satisfies the following bound for any vector v ∈ Rd (note
that Top-k is deterministic):

∥C(v)− v∥2 ≤ (1− α) ∥v∥2 (9)

Similarly to the analysis with bit-wise compressors, we wish
to find the optimal probability distribution pl over the com-
pression levels l ∈ [L]. However, note that the bound in
Eq. (9) is a worst-case bound, and the equality is satisfied
only when v is uniform. Fortunately, in practice and espe-
cially in Deep Learning, we often encounter non-uniform
gradients (Glorot & Bengio, 2010). This key observation
serves as motivation for developing more adaptive methods
to close this gap.

We exploit this often-overlooked property and use a tighter
adaptive bound for each sample to further enhance our

method. For a given vector vt,i ∈ Rd, the distortion in-
troduced by Top-k and some compression level l ∈ [L] can
be written as follows:∥∥Cl(vt,i)− vt,i

∥∥2 = (1− αl
t,i) ∥vt,i∥

2 (10)

where 0 < αl
t,i ≤ 1 is chosen appropriately such that the

equality is satisfied. Eq. (10) describes the tightest possible
bound (an equality) on the distortion introduced by the com-
pressor, and this bound is different (adaptive) for different
vectors vt,i.

Additionally, note that when using Top-k with our method in
Alg. 2, the residual glt,i−gl−1

t,i consists only of one term that
corresponds to the l’th largest element (in absolute value) of
the uncompressed stochastic gradient vt,i. Thus, the com-
munication cost in this case will be the cost of transmitting
one entry. Similarly, for s-Top-k, glt,i − gl−1

t,i consists of
the l’th largest segment (in norm) of vt,i (containing s en-
tries, at most), thus the communication cost will be that of
transmitting s numbers.

Given this insight, in Lemma 3.4, we exploit this adaptive
bound and use it to derive an adaptive probability distribu-
tion over the compression levels that minimizes the variance
of the MLMC gradient in each iteration.

Lemma 3.4. Given any multilevel compressor Cl, the op-
timal probability distribution that minimizes the variance
of MLMC estimator in iteration t ∈ [T ] and for machine
i ∈ [M ] is given by:

plt,i =
∆l

t,i∑L
l′=1 ∆

l′
t,i

(11)

where ∆l
t,i =

∥∥glt,i − gl−1
t,i

∥∥, and note that for a multilevel
compressor based on s-Top-k, plt,i in Lemma 3.4 further

reduces to plt,i =

√
αl

t,i−αl−1
t,i∑L

l′=1

√
αl′

t,i−αl′−1
t,i

(proof in App. D).

We incorporate this adaptive probability distribution over the
compression levels with our MLMC compression method
into a new adaptive optimization scheme formalized in
Alg. 3. This optimization scheme is similar to that of
Alg. 2, although here, the level probability distribution is
chosen in an adaptive manner for each sample in each step
(see Lemma 3.4). Since the MLMC gradients are unbi-
ased estimates of the true gradients, namely E[g̃t,i|xt] =
∇fi(xt),∀t ∈ [T ],∀i ∈ [M ], only the variance term in
Theorem 2.3 will be affected.

Interestingly, our method recovers importance sampling
(IS) techniques (e.g., (Beznosikov et al., 2020)) in certain
cases. For example, in the case of Top-k, our method is
equivalent to sampling and communicating the l-th entry of
vt,i (scaled by 1/plt,i) with probability plt,i. However, our
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Algorithm 3 Adaptive MLMC-Compressed Parallel SGD
Input: initialization x1, step-size η, multilevel compres-
sors {Cl}Ll=1

for t = 1 to T do
The server broadcasts xt to machines i = 1, ..,M
for i = 1 to M in parallel do

Sample zt,i from local dataset Di

Compute vt,i = ∇fi(xt, zt,i)

Compute plt,i =
∆l

t,i∑L
l′=1

∆l′
t,i

for l ∈ [L]

Sample l ∼ plt,i
Compress glt,i = Cl(vt,i), g

l−1
t,i = Cl−1(vt,i)

Construct g̃t,i = g0t,i +
1
pl (g

l
t,i − gl−1

t,i )
Send g̃t,i to server

end for
Server aggregates: g̃t = 1

M

∑M
i=1 g̃t,i

Server updates: xt+1 = xt − ηg̃t
end for

method strictly generalizes IS techniques, as it is compati-
ble with complex structured compressors that do not admit
such a coordinate-wise decomposition, and where IS is not
naturally defined. This equivalence seems to arise only for
sparsification-based methods such as Top-k. More involved
compression methods exist for which there are no IS-like
interpretations, e.g., structured quantization-based methods
such as Round-to-Nearest (RTN) (Gupta et al., 2023) and
ECUQ (Dorfman et al., 2023).

RTN-based methods, for example, quantize each element of
a given vector v by rounding it to the nearest level on a fixed
grid. The spacing of this grid is controlled by a quantization
step-size δl. Namely, the RTN-compression (of level-l) of v
is given by Cl

RTN (v) = δl ·clip(round(v/δl),−c, c), where
δl = 2c

2l−1
and ”round” rounds each element to its nearest

integer. Here, l ∈ N corresponds to the compression level.
No IS interpretation exists in this case since the difference
glt,i − gl−1

t,i does not necessarily reduce to a simple structure
that can facilitate IS.

Moreover, IS requires a specific, nontrivial construction
which differs for each compression method, whereas our
MLMC compression functions as a plug-and-play frame-
work that works for any series of compressors satisfying
Definition 3.1, without requiring any additional tuning or
specific construction.

3.3. Special Case Analysis

Our adaptive MLMC compression scheme seems especially
attractive in scenarios in which the entries of the gradients
are far from uniform. Interestingly, in many cases when
training deep learning models, the gradients appear to have
special structures that we can exploit (Micikevicius et al.,

2018). Specifically, (Glorot & Bengio, 2010; Shi et al.,
2019) show that gradients in neural networks during train-
ing often have Gaussian-like distributions. We demonstrate
the adaptability of our method in this case and show that
it indeed exploits this special structure for more efficient
training. For ease of analysis, let us consider a more relaxed
case in which the entries of the gradients decay exponen-
tially in absolute value (note that ae−x2 ≤ be−x,∀a, x ∈ R,
for an appropriate choice of b, and therefore this is the more
general case). We formalize this in Assumption 3.5.

Assumption 3.5. For any t ∈ [T ] and any i ∈ [M ], the
sorted entries of the gradient vt,i satisfy, for rt,i > 0:

|vt,i(j)| = |vt,i(0)|e−
rt,i
2 j

Note that this assumption implies that most of the energy
of vt,i is concentrated in ≈ 1/rt,i entries. This observation
gives rise to two regimes depending on the relative values
of 1/rt,i and the length of the vector d: (1) d is very small
compared to 1/rt,i, which implies slow decay and the tail
is not negligible. If decay is very slow, i.e., the entries
are approximately uniform, our method, Rand-k, and Top-
k perform similarly; and (2) d is very large compared to
1/rt,i, which implies that a the tail of the gradient vector is
negligible. Here, we expect our method to have a significant
benefit over other unbiased estimators (e.g., Rand-k). This
is the more interesting case and we formalize it in Lemma
3.6 (Please refer to App. E for the full proof).

Lemma 3.6. Under Assumption 3.5 for sufficiently large
r · d, Alg. 3 with the s-Top-k compressor, and the optimal
probabilities in Lemma 3.4, guarantees O

(
1

rt,is

)
variance

of the MLMC estimator.

In contrast, the variance of the compressed gradients when
using Rand-k with k = s is O

(
d
s

)
(Condat et al., 2022).

Thus, when 1/rt,i < d, our MLMC compressor enjoys
smaller variance.

3.4. Convergence Guarantees and Parallelization

We proposed a novel method that bridges the strengths of
biased and unbiased methods by leveraging MLMC tech-
niques to generate unbiased estimates of biased-compressed
gradients. Our method statistically retains the more impor-
tant parts of the gradients (similar to biased compression
methods) while still enjoying good parallelization guaran-
tees (like unbiased methods).

Note that since our MLMC gradient estimates are unbiased,
a similar error bound to Eq. (2) holds, with an additional
term that stems from compression. For simplicity, we focus
on the homogeneous data setting. We formalize this in the
following Theorem (we defer the proof to App. F.1).
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Theorem 3.7. Under Assumptions 2.1-2.2, Alg. 2 and Alg. 3
guarantee the following error bounds in the homogeneous
convex and nonconvex cases, respectively:

E[f(x̄T )− f(x∗)] ∈ O
(
D2L

T
+

ω̂2D2L

MT
+

(ω̂ + 1)σD√
MT

)
1

T

T∑
t=1

E ∥∇f(xt)∥2 ∈ O

(
∆1L

T
+

ω̂2∆1L

MT
+

(ω̂ + 1)σ
√
L√

MT

)

where ω̂ is the compression coefficient of our MLMC es-
timator (see Eq. (3)). Exact calculations of ω̂ for various
compressors are available in App. B, D, E. Note that the
middle term is asymptotically negligible compared to the
right term, and thus these error bounds are asymptotically
identical to those of Parallel-SGD (Theorem 2.3; Eq. (2)),
with a slightly increased variance due to compression.

In contrast, the error bound for biased methods, e.g., EF21-
SGDM (Corollary 3 in (Fatkhullin et al., 2023)), which is
the current state of the art, is given by (nonconvex case):

1

T

T∑
t=1

E ∥∇f(xt)∥2 ∈ O
(
∆1L

αT
+

∆1Lσ
1/2

α1/2T 3/4
+

∆1Lσ√
MT

)
Thus, our method allows parallelization over M = O(T ),
or equivalently M = O(

√
N), machines without a degra-

dation of performance (where N is the size of the dataset),
while EF21-SGDM allows M = O(

√
T ), or equivalently

O(N1/3). Moreover, our method complements methods
like EF21-SGDM and others (which may be beneficial when
M is small), in the regime of massive parallelization, i.e.,
when M is very large. We defer the analysis to App. F.3.

Our method works in the heterogeneous data setting as well,
although a O

(
ω̂ξ√
MT

)
term is added to the error bounds

(in the convex and nonconvex cases), where ξ ≥ 0 quanti-
fies the heterogeneity ∥∇fi(x)−∇f(x)∥2 ≤ ξ2,∀x ∈ Rd.
Please refer to App. F.4 for the full analysis. Moreover, since
our MLMC compression method produces unbiased gradi-
ent estimates, it can be seamlessly incorporated into more so-
phisticated optimization templates such as MARINA (Gor-
bunov et al., 2021) or DASHA (Tyurin & Richtárik, 2023),
which would fully mitigate the heterogeneity term.

4. Experiments
We present several deep learning experiments involving fine-
tuning BERT (Devlin et al., 2018) on GLUE SST-2 (Wang
et al., 2018) and CIFAR-10 (Krizhevsky, 2009) image classi-
fication using ResNet18 (He et al., 2016). We evaluated the
performance of our MLMC-based compressors in compari-
son to biased and unbiased compressors. Our experiments
were implemented using PyTorch and executed on NVIDIA
GeForce RTX 4090 GPUs.

4.1. Experiments with Sparsification Compressors

In the first set of experiments, we tested our MLMC-
compression technique, with Top-k as a baseline compres-
sor, and optimized the learning rate for each one individually.
We compared the performance of our Adaptive MLMC-
Top-k compressor (Alg. 3), the biased compressors Top-k
and EF21-SGDM (Fatkhullin et al., 2023), and the unbiased
compressor Rand-k, and Uncompressed SGD as a baseline.
We evaluated two criteria: communication efficiency and
iteration efficiency, which compare the test accuracy of the
algorithms as a function of the communication complexity
(the number of communicated bits) and as a function of the
epochs (the number of iterations).

We present the communication efficiency experimental re-
sults in Figure 1, for M = 4 machines (top quartet) and
M = 32 machines (bottom quartet). Each subplot displays
the test accuracy of the compared algorithms, against the
number of communicated bits, for various sparsification lev-
els, specifically for k ∈ {0.01n, 0.05n, 0.1n, 0.5n}, where
n ≈ 1.1 × 108 is the number of model parameters. We
used a batch size of 16 in all experiments and averaged
over 5 seeds. Moreover, we display these results against the
number of epochs (iterations) in Figure 2.

Figures 1-2 show that our MLMC-compression method out-
performs the other methods, both in terms of communica-
tion and iteration efficiency. Notably, our method achieves a
higher test accuracy for the same number of transmitted bits
and enjoys a faster convergence rate compared to other meth-
ods across different sparsification levels. Also, our method
converges faster for M = 32 compared to M = 4, which is
consistent with our bounds in Theorem 3.7. Moreover, Fig-
ure 2 shows that our method outperforms other compression
methods in iteration efficiency, in terms of convergence rate
and accuracy, and enjoys the same performance as uncom-
pressed SGD, despite using significantly less information.
Additional experiments on CIFAR-10 image classification
using ResNet18 are available in App. G.1.

4.2. Experiments with Bit-Wise Quantization

We evaluated our nonadaptive MLMC-compression method
(Alg. 2) with bit-wise quantization compressors on image
classification tasks using the ResNet18 architecture and
the CIFAR-10 dataset. We compare the communication
efficiency of our method to biased 2-bit quantization, un-
biased 2-bit QSGD (Alistarh et al., 2017), for the same
compression level, and uncompressed SGD as a baseline.
We present the results in Figure 3. These results show that
also in the case of bit-wise compressors, our method enjoys
a significant advantage over the others in terms of commu-
nication efficiency, convergence rate, and final test accuracy.
Additional experiments evaluating RTN compressors on
BERT GLUE SST2 finetuning are available in App. G.2.
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Figure 1. Finetuning BERT on GLUE SST2 communication effi-
ciency comparison of the Adaptive MLMC-Top-k (Alg. 3), Top-k,
EF21-SGDM, Rand-k, and uncompressed SGD for sparsification
levels k ∈ {0.01n, 0.05n, 0.1n, 0.5n}, M = 4, 32 machines,
and a batch size of 16 samples, averaged over 5 different seeds.

5. Conclusions
We presented a novel method that bridges the gap between
unbiased and biased compression approaches typically used
to overcome communication overhead in distributed learn-
ing settings. MLMC serves at the heart of our method and
facilitates the transduction of bias into variance, combin-
ing the strengths of both worlds: the superior empirical
performance of biased methods and the strong theoretical
guarantees of unbiased techniques. We validated our algo-
rithms on deep learning tasks showcasing their empirical
efficiency compared to existing methods.
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Figure 2. Finetuning BERT on GLUE SST2 iteration efficiency
comparison of the Adaptive MLMC-Top-k (Alg. 3), Top-k, EF21-
SGDM, Rand-k, and uncompressed SGD for sparsification levels
k ∈ {0.01n, 0.05n, 0.1n, 0.5n}, M = 4, 32 machines, and a
batch size of 16 samples, averaged over 5 different seeds.
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Figure 3. CIFAR-10 image classification using ResNet18, commu-
nication efficiency comparison of our Fixed-Point-based MLMC
compression method (Alg. 2), 2-bit Fixed-Point quantization, 2-bit
QSGD, and uncompressed SGD, for M = 4 machines and a batch
size of 128 and for M = 32 machines and a batch size of 64,
averaged over 5 different seeds.
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J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T.,
Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
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A. Proof of Lemma 3.2
Lemma 3.2 For any multilevel compressor Cl, l ∈ [L], any non-zero level probabilities {pl}Ll=1, the MLMC gradient
estimator g̃t,i ≜ g0t,i +

1
pl (g

l
t,i − gl−1

t,i ) is a conditionally unbiased estimate of the true gradient at step t, ∇fi(xt),∀t ∈
[T ],∀i ∈ [M ]. Namely: E[g̃t,i|xt] = ∇fi(xt).

Proof.

E[g̃t,i|xt] = El∼pl, zt,i∼Di
[g0t,i +

1

pl
(glt,i − gl−1

t,i )|xt] (12)

= Ezt,i∼Di
[El∼pl [g0t,i +

1

pl
(glt,i − gl−1

t,i )|xt, zt,i]] (13)

= Ezt,i∼Di
[

L∑
l=1

pl(g0t,i +
1

pl
(glt,i − gl−1

t,i ))|xt] (14)

(1)
= Ezt,i∼Di

[g0t,i +

L∑
l=1

(glt,i − gl−1
t,i )|xt] (15)

= Ezt,i∼Di [g
L
t,i|xt] (16)

(2)
= Ezt,i∼Di [∇fi(xt, zt,i)|xt] (17)
= ∇fi(xt) (18)

where transition (1) since {pl}Ll=1 is a probability distribution, i.e.,
∑L

l=1 p
l = 1. (2) follows since by the definition of

multilevel compressors in 3.1 where the highest level L corresponds to no compression (e.g., top-k with k = d).

B. Analysis of the Floating-Point based MLMC compressor
Given an element of the gradient v denoted by e, it can be represented as a 64-bit floating-point binary number. The
floating-point number consists of three parts - the Sign denoted by S, the Exponent denoted by E and the Mantissa which is
a binary number with digits {mi}52i=1. The entry e can be written as follows:

e = (−1)S2E−1023

1 +

52∑
j=1

mj2
−j

 (19)

The Floating-Point Compressor Cl(e) truncates the sum to l elements, which implies that the resolution will be up to
2E−10232−l, and the Compressor’s parameter l (which determines the extent of compression) ranges between 1 to 52. Since
the Exponent is E = ⌊log2(e)⌋+ 1023, the Floating-Point biased compressor satisfies Eq. (4) with α = 1− 2−l.

We apply the MLMC scheme with the Floating-Point Compressor and thus only need to transmit the residual glt,i − gl−1
t,i .

The residual has the same Exponent and Sign bits as the original entry, but contains only one information bit of the mantissa
for every element in the vector. This means that the Floating-Point MLMC compressor needs to only transmit 13d+log2(52)
bits instead of 64d bits, where the extra log2(52) bits are needed to transmit the sampled l. Furthermore, note that for d ≫ 1
those additional bits are negligible, implying × 64

13 ≈ ×4.9 improvement in Communication cost.

Similarly to the Fixed-Point case, the MLMC technique requires a probability distribution to sample the l-compression
parameter with the compressor. We would like to use the ideal distribution to minimize the variance introduced by the
compression process. We formalize this in Lemma B.1.

Lemma B.1. The optimal probability distribution that minimizes the variance of the Floating-Point MLMC estimator is
given by:

pl =
2−l

1− 2−52
(20)

13
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Proof. The second moment of the Floating-Point MLMC compressor is given by:

E[∥g̃t,i∥2] = E

[∥∥∥∥g0t,i + 1

pl
(glt,i − gl−1

t,i )

∥∥∥∥2
]

(21)

where ∥·∥ is the l2-norm. Since this compressor operates in an element-wise manner, we consider the r-th element in g̃t,i,
which we denote by ẽ2t,i(r). Since e0t,i(r) = 0 for every r we obtain:

E

[∣∣∣∣ 1pl (elt,i(r)− el−1
t,i (r))

∣∣∣∣2
]

(1)
=

52∑
l=1

pl
∣∣∣∣∣∣ 1pl
2E(r)−1023

1 +

l∑
j=1

mj(r)2
−j

− 2E(r)−1023

(
1 +

l−1∑
i=1

mi(r)2
−i

)∣∣∣∣∣∣
2


(22)

=

52∑
l=1

[
22E(r)−2026

pl
(
ml(r)2

−l
)2]

(23)

(2)
=

52∑
l=1

[
22E(r)−2026

pl
ml(r)2

−2l

]
(24)

where (1) follows by the floating-point representation of the elt,i(r), and (2) follows since every binary digit ml satisfies
m2

l = ml (since ml can either be 0 or 1). Now, similarly to the proof in appendix C, we wish to find the optimal probability
distribution that minimizes the variance (note that the probability distribution should sum to 1). There are no additional
assumptions on the binary number we wish to compress. Namely, for any l, ml can be 1 or 0, and we would like to minimize
the objective regardless of the values of ml. We formalize this using the following optimization problem:

p̂l = argmin
{pl}52

l=1

max
λ≥0

52∑
l=1

[
22E(r)−2026

pl
2−2l

]
+ λ

(
52∑
l=1

pl − 1

)
(25)

By setting the gradients with respect to pl and λ to zero, we obtain the following:

52∑
l=1

p̂l = 1 (26)

p̂l =
2E(r)−1023

√
λ

2−l (27)

These equations show that p̂l is proportional to 2−l. Thus, with proper normalization, by solving for λ and extracting p̂l, we
have:

p̂l =
2−l

1− 2−52
(28)

which concludes our proof.

Note that we can calculate the optimal variance of the MLMC estimator using the optimal probabilities we obtained above.
We first calculate the second moment of some element in the MLMC gradient estimate:

E[∥ẽt,i(r)∥2] = E

[∥∥∥∥ 1

pl
(elt,i(r)− el−1

t,i (r))

∥∥∥∥2
]
=

52∑
l=1

[
22E(r)−2026

pl
ml(r)2

−2l

]
=

52∑
l=1

[
22E(r)−2026(1− 2−52)ml(r)2

−l
]

(29)

= 2E(r)−1023(1− 2−52)

(
(2E(r)−1023)

(
1 +

52∑
l=1

[
ml(r)2

−l
])

− (2E(r)−1023)

)
(30)

= 2E(r)−1023(1− 2−52)(e(r)− (2E(r)−1023)) (31)
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Now, by summing the second moments of all the elements and using the unbiasedness of the MLMC estimator (Lemma 3.2),
we obtain the compression variance component of the MLMC estimator’s variance as follows (Note that the total variance is
given by σ2

comp + σ2):

σ2
comp = E[∥g̃t,i∥2]− (E[∥g̃t,i∥])2 =

d∑
r=1

E[∥ẽt,i(r)∥2]− v2t,i (32)

=

d∑
r=1

[
2E(r)−1023(1− 2−52)(e(r)− (2E(r)−1023))

]
− v2t,i (33)

C. Proof of Lemma 3.3
Lemma 3.3 The optimal probability distribution that minimizes the variance of the Fixed-Point MLMC estimator is given
by:

pl =
2−l

1− 2−63
(34)

Proof. The second moment of the Fixed-Point MLMC compressor is given by:

E[∥g̃t,i∥2] = E

[∥∥∥∥g0t,i + 1

pl
(glt,i − gl−1

t,i )

∥∥∥∥2
]

(35)

where ∥·∥ is the l2-norm. Since fixed-point compressors are element-wise, similarly to the floating-point compressor, we
consider a single entry of g̃t,i, which we denote by ẽ2t,i. Since e0t,i = 0, we have:

E

[∣∣∣∣ 1pl (elt,i − el−1
t,i )

∣∣∣∣2
]

(1)
=

63∑
l=1

pl
∣∣∣∣∣∣ 1pl
 l∑

j=1

bj2
−j −

l−1∑
i=1

bi2
−i

∣∣∣∣∣∣
2
 (36)

=

63∑
l=1

[
1

pl
(
bl2

−l
)2]

(37)

(2)
=

63∑
l=1

[
1

pl
bl2

−2l

]
(38)

where (1) follows using the binary representation of the normalized element. and (2) follows since every binary b2l = bl
(note that bl can only be 0 or 1). We wish to find the optimal probability distribution that minimizes the variance (note
that the probability distribution should sum to 1). There are no additional assumptions on the binary number we wish to
compress. Namely, for any l, bl can be 1 or 0, and we would like to minimize the objective regardless of the values of bl. We
bound bl and formalize this in the following optimization problem:

p̂l = argmin
{pl}63

l=1

max
λ≥0

63∑
l=1

[
1

pl
2−2l

]
+ λ

(
63∑
l=1

pl − 1

)
(39)

by setting the gradients with respect to pl and λ to zero, we obtain the following:
63∑
l=1

p̂l = 1 (40)

p̂l =
1√
λ
2−l (41)

which imply that p̂l must be proportional to 2−l, and with with proper normalization (by solving for λ and extracting pl), we
have:

p̂l =
2−l

1− 2−63
(42)

which concludes the proof.
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Note that we can calculate the variance of the MLMC estimator using the optimal probabilities that we obtained. We start by
calculating the second moment of some entry in the MLMC gradient estimate vector g̃t,i.

E[∥ẽt,i∥2] = E

[∥∥∥∥ 1

pl
(elt,i − el−1

t,i )

∥∥∥∥2
]
=

63∑
l=1

[
1

pl
bl2

−2l

]
= (1− 2−63)

63∑
l=1

[
bl2

−l
]
= (1− 2−63)|et,i| ≈ |et,i| (43)

and by the unbiasedness of the MLMC estimate (Lemma 3.2), its compression variance is given by (note that the total
variance is equal to σ2

comp + σ2):

σ2
comp = E[∥g̃t,i∥2]− (E[∥g̃t,i∥])2 = (1− 2−63)∥vt,i∥1 − ∥vt,i∥2 (44)

D. Proof of Lemma 3.4
Lemma 3.4 Given any multilevel compressor Cl, the optimal probability distribution that minimizes the variance of MLMC
estimator in iteration t ∈ [T ] and for machine i ∈ [M ] is given by:

plt,i =
∆l

t,i∑L
l′=1 ∆

l′
t,i

(45)

where ∆l
t,i is the ℓ2 norm of the residual vector at step t, i.e., ∆l

t,i =
∥∥glt,i − gl−1

t,i

∥∥.

Proof. The second moment of the MLMC-based compressor is given by:

E[∥g̃t,i∥2] = E

∥∥∥∥∥g0t,i + 1

plt,i
(glt,i − gl−1

t,i )

∥∥∥∥∥
2
 (46)

Using our definition that g0t,i = 0 and the definition of ∆l
t,i, we obtain:

E[∥g̃t,i∥2] = E

[
1

(plt,i)
2
(∆l

t,i)
2

]
(47)

amd by writing the expectation w.r.t pl explicitly, we have:

E[∥g̃t,i∥2] =
L∑

l=1

[
1

plt,i
(∆l

t,i)
2

]
(48)

We wish to find the optimal probability distribution that minimizes the variance (note that the probability distribution should
sum to 1). We formalize this into the following optimization problem:

p̂lt,i = argmin
{pl

t,i}L
l=1

max
λ≥0

L∑
l=1

[
1

plt,i
(∆l

t,i)
2

]
+ λ

(
L∑

l=1

plt,i − 1

)
(49)

By setting the gradients with respect to plt,i and λ to zero, we obtain the following:

L∑
l=1

p̂lt,i = 1 (50)

p̂lt,i =
1√
λ
∆l

t,i (51)

where 1√
λ

is the normalization factor of the probability distribution. With proper normalization (by solving for λ and
extracting p̂lt,i) the optimal probability distribution is given by:

p̂lt,i =
∆l

t,i∑L
l′=1 ∆

l′
t,i

, (52)

which concludes the proof.
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We calculate the variance of the MLMC estimate using the optimal probabilities we obtained. We start by writing the second
moment of the MLMC gradient estimate g̃t,i:

E[∥g̃t,i∥2] = E

∥∥∥∥∥g0t,i + 1

plt,i
(glt,i − gl−1

t,i )

∥∥∥∥∥
2
 (53)

=

L∑
l=1

[
1

plt,i
(∆l

t,i)
2

]
=

[
L∑

l=1

∆l
t,i

]
·

[
L∑

l′=1

∆l′

t,i

]
=

[
L∑

l=1

∆l
t,i

]2
(54)

Thus, since the MLMC estimator is unbiased (Lemma 3.2), the compression variance of the MLMC compressor is given by
(note that the total variance is equal to σ2

t,comp + σ2):

σ2
t,comp = E[∥g̃t,i∥2]− (E[∥g̃t,i∥])2 =

[
L∑

l=1

∆l
t,i

]2
− ∥vt,i∥2 (55)

This result is general and does not assume a specific multilevel compressor of the method.

Now, we apply those results to the case of s-Top-k-based MLMC compressor and derive the second moment of the MLMC
estimate. Here, note that we use the adaptive distortion bound in Eq. (10) to write ∆l

t,i in terms of αl
t,i. Recall that ∆l

t,i is
given by:

∆l
t,i =

∥∥glt,i − gl−1
t,i

∥∥ , (56)

and since glt,i contains only a subset of the elements of the original uncompressed stochastic gradient vt,i (recall that s-top-k
retains the k non-overlapping segments of length s with the largest norms of the sorted stochastic gradient vector):∥∥glt,i∥∥2 = αl

t,i ∥vt,i∥
2 (57)

Similarly, we have:
(∆l

t,i)
2 =

∥∥glt,i − gl−1
t,i

∥∥2 =
∥∥glt,i∥∥2 − ∥∥gl−1

t,i

∥∥2 (58)

This is because the norm of the difference is equivalent toy the norm of the l-th segemnt of length s in the sorted stochastic
gradient. Therefore, (∆l

t,i)
2 can be written as follows:

(∆l
t,i)

2 =
∥∥glt,i − gl−1

t,i

∥∥2 =
∥∥glt,i∥∥2 − ∥∥gl−1

t,i

∥∥2 = (αl
t,i − αl−1

t,i ) ∥vt,i∥2 (59)

Plugging into the optimal probabilities and the corresponding compression variance, we have:

p̂lt,i =

√
αl
t,i − αl−1

t,i∑L
l′=1

√
αl′
t,i − αl′−1

t,i

; σ2
t,comp =

( L∑
l=1

√
αl
t,i − αl−1

t,i

)2

− 1

 ∥vt,i∥2 (60)

E. Proof of Lemma 3.6
Lemma 3.6 Under Assumption 3.5 for sufficiently large r · d, Alg. 3 with the s-top-k compressor, and the optimal
probabilities in Lemma 3.4, guarantees O

(
1

rt,is

)
variance of the MLMC estimator.

Proof. The compression variance of the MLMC estimator in the case of s-top-k, σ2
t,comp, is derived in Appendix D and is

given by (see Eq. (55)):

σ2
t,comp =

(
L∑

l=1

∆l
t,i

)2

− ∥vt,i∥2 (61)

Under Assumption 3.5, the absolute value of the j-th element of the uncompressed stochastic gradient vt,i is given by:

|vt,i(j)| = |vt,i(0)|e−
rt,i
2 ·j (62)
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Thus, the norm of the vector can be written as:

∥vt,i∥2 =

d−1∑
j=0

|vt,i(0)|2e−rt,i·j = |vt,i(0)|2
1− e−rt,i·d

1− e−rt,i
(63)

where the second equality follows by the sum of a geometric series. Similarly, (∆l
t,i)

2 is given by:

(∆l
t,i)

2 = |vt,i(0)|2
s·l−1∑

j=s·(l−1)

e−rt,i·j = |vt,i(0)|2
e−rt,i·s(l−1)(1− e−rt,i·s)

1− e−rt,i
(64)

these results give rise to two regimes depending on the value of rt,i compared to d:

(1) r ·d < 1: In this case, the exponential decay is slow, and the ”tail” of the sorted vector entries is not negligible. Namely,
if decay is very slow, the gradient vector entries would be nearly uniform. This is the worst-case scenario in which our
MLMC compressor, rank-k, and top-k all have similar performance since: ∆1

t,i ≈ ∆2
t,i ≈ ... ≈ ∆L

t,i.

(2) r < 1 and r · d > 1: This is the more interesting case in which we expect our method to have an edge over the other.
Accordingly, we derive an approximation for the variance under this regime. by plugging the expression of the ∆l

t,i

and ∥vt,i∥2 into the expression for the variance (Eq. (55)), we have:

σ2
t,comp = |vt,i(0)|2


 L∑

l=1

√
e−rt,i·s(l−1)(1− e−rt,i·s)

1− e−rt,i

2

− 1− e−rt,i·d

1− e−rt,i

 (65)

= |vt,i(0)|2
1− e−rt,i·s

1− e−rt,i

(
L∑

l=1

√
e−rt,i·s(l−1)

)2

− 1− e−rt,i·d

1− e−rt,i

 (66)

= |vt,i(0)|2
1− e−rt,i·s

1− e−rt,i

(
L∑

l=1

e−
rt,i
2 ·s(l−1)

)2

− 1− e−rt,i·d

1− e−rt,i

 (67)

= |vt,i(0)|2
1− e−rt,i·s

1− e−rt,i

(
1− e−

rt,i
2 sL

1− e−
rt,i
2 s

)2

− 1− e−rt,i·d

1− e−rt,i

 (68)

= |vt,i(0)|2
1− e−rt,i·s

1− e−rt,i

(
1− e−

rt,i
2 d

1− e−
rt,i
2 s

)2

− 1− e−rt,i·d

1− e−rt,i

 (69)

(1)
= ∥vt,i∥2

1− e−rt,i·s

1− e−rt,i·d

(
1− e−

rt,i
2 d

1− e−
rt,i
2 s

)2

− 1

 (70)

where in (1) we used the expression for the norm of the gradient. To approximate the variance, we use the fact that
r · d > 1 to approximate the exponents in the expression:

σ2
t,comp = ∥vt,i∥2

1− e−rt,i·s

1− e−rt,i·d

(
1− e−

rt,i
2 d

1− e−
rt,i
2 s

)2

− 1

 (71)

≈ ∥vt,i∥2

 1− e−rt,i·s(
1− e−

rt,i
2 s
)2 − 1

 (72)

Recall that s is a hyperparameter that we can choose as we see fit, and specifically, we consider s such that s · rt,i ≤ 1.
This implies that the number of the elements we transmit is less or equal to 1

rt,i
. Thus, we obtain the following

18



A Multilevel Monte Carlo Approach for Mitigating Compression Bias in Distributed Learning

approximation to the variance:

σ2
t,comp ≈ ∥vt,i∥2

 1− e−rt,i·s(
1− e−

rt,i
2 s
)2 − 1

 (73)

≈ ∥vt,i∥2
(

rt,i · s( rt,i
2 s
)2 − 1

)
(74)

= ∥vt,i∥2
(

4

rt,is
− 1

)
(75)

= O
(

1

rt,is

)
(76)

which concludes the proof.
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F. Convergence and Parallelization
F.1. Proof of Theorem 3.7

Proof. We assume the homogeneous data setting in which Di ≡ D and thus fi(x) = f(x),∀i. We analyze the convex and
nonconvex cases separately.

Homogeneous Convex case.
Since our MLMC gradients, g̃t,i, in Alg. 2 and Alg. 3 are unbiased estimates of the true gradients, ∇f(xt), for all t ∈ [T ]
and i ∈ [M ] (see Lemma 3.2), the following bound holds for η ≤ 1

2L (see, e.g., Appendix A.1 in Dorfman et al. (2024)):

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

2ηT
+

η

T

T∑
t=1

EV 2
t (77)

where x̄T = 1
T

∑T
t=1, x∗ = argminx f(x), D = ∥x1 − x∗∥, and V 2

t = E[∥g̃t −∇f(xt)∥2 |xt]. Note that in this case V 2
t

is the variance of the MLMC gradients. Let us now consider the variance term, V 2
t . We have:

V 2
t = E[∥g̃t −∇f(xt)∥2 |xt] (78)

(1)
=

1

M2

M∑
i=1

E[∥g̃t,i −∇f(xt)∥2 |xt] (79)

(2)

≤ 2

M2

M∑
i=1

(
E[∥g̃t,i − vt,i∥2 |xt] + E[∥vt,i −∇f(xt)∥2 |xt]

)
(80)

(3)

≤ 2

M2

M∑
i=1

(
E[∥g̃t,i − vt,i∥2 |xt] + σ2

)
(81)

(4)

≤ 2

M2

M∑
i=1

(
ω̂2E[∥vt,i∥2 |xt] + σ2

)
(82)

(5)

≤ 4

M2

M∑
i=1

(
ω̂2E[∥vt,i −∇f(xt)∥2 |xt] + ω̂2 ∥∇f(xt)∥2

)
+

2σ2

M
(83)

(6)

≤ 2(2ω̂2 + 1)σ2

M
+

4

M2

M∑
i=1

ω̂2 ∥∇f(xt)∥2 (84)

(7)

≤ 2(2ω̂2 + 1)σ2

M
+

8ω̂2L

M
(f(xt)− f(x∗)) (85)

where (1) follows since g̃t = 1
M

∑M
i=1 g̃t,i and the data samples are i.i.d, (2) and (5) since ∥a+ b∥2 ≤ 2 ∥a∥2 +

2 ∥b∥2 ,∀a, b ∈ Rd, (3) and (6) by Assumption 2.2, (4) by Eq. (3) since our MLMC compressor is unbiased (see Lemma 3.2),
and (7) by Lemma F.1 since f is L-smooth by Assumption 2.1. Now, plugging this result back into Eq. (77) yields:

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

2ηT
+

η

T

T∑
t=1

EV 2
t (86)

≤ D2

2ηT
+ η

2(2ω̂2 + 1)σ2

M
+ η

8ω̂2L

MT

T∑
t=1

E[f(xt)− f(x∗)] (87)

Choosing η ≤ M
16ω̂2L and rearranging, we have:

1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

ηT
+ η

4(2ω̂2 + 1)σ2

M
. (88)
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Thus, for η ≤ min

{
1
2L ,

M
16ω̂2L ,

D
√
M

2σ
√

(2ω̂2+1)T

}
, we have:

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ 2D2L

T
+

16ω̂2D2L

MT
+

2σ
√
2ω̂2 + 1D√
MT

. (89)

Homogeneous Nonconvex case.
The proof here follows very similarly to the one in the convex case. Here, similarly, we use the following bound, which
holds for η ≤ 1

L (see Appendix A.2 in (Dorfman et al., 2023)):

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
2∆1

Tη
+

ηL

T

T∑
t=1

EV 2
t . (90)

where ∆1 = f(x1)− f(x∗) and V 2
t = E[∥g̃t −∇f(xt)∥2 |xt]. Plugging in the expression for V 2

t in Eq. (84) yields:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
2∆1

Tη
+ η

2(2ω̂2 + 1)σ2L

M
+ η

4ω̂2L

MT

T∑
t=1

E ∥∇f(xt)∥2 (91)

Choosing η ≤ M
8ω̂2L and rearranging, we have:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
4∆1

Tη
+ η

4(2ω̂2 + 1)σ2L

M
. (92)

Thus, for η ≤ min

{
1
L ,

M
8ω̂2L ,

√
M

σ
√

(2ω̂2+1)LT

}
, we have:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
4∆1L

T
+

32ω̂2∆1L

MT
+

4σ
√
(2ω̂2 + 1)L√
MT

. (93)

F.2. Self-bounding Property of Smooth Functions

Lemma F.1. A function f : Rd → R that is L-smooth (see Assumption 2.1) satisfies the following, for any x ∈ Rd:

∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)), (94)

where x∗ ∈ argminx f(x).

Proof. Note that f(x∗) ≤ f(x′), for any x′ ∈ Rd, by definition of x∗. Thus we have, for x′ = x− 1
L∇f(x):

f(x∗) ≤ f

(
x− 1

L
∇f(x)

)
(95)

(1)

≤ f(x)− 1

L
∥∇f(x)∥2 + L

2

1

L2
∥∇f(x)∥2 , (96)

where (1) follows by the smoothness of f . Rearranging yields:

∥∇f(x)∥2 ≤ 2L(f(x)− f(x∗)). (97)
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F.3. Parallelization Guarantees

Our method, formalized in Alg. 2 (nonadaptive) and Alg. 3 (adaptive) produces unbiased gradient estimates. Therefore, the
error bound of our method is very similar to that of Alg. 1 (data-parallel SGD). concretely, Alg. 2-3 guarantee the following
error bounds in the convex and nonconvex cases, and in the homogeneous setting, respectively (Theorem 3.7):

E[f(x̄T )− f(x∗)] ∈ O
(
D2L

T
+

ω̂2D2L

MT
+

(ω̂ + 1)σD√
MT

)
(98)

1

T

T∑
t=1

E ∥∇f(xt)∥2 ∈ O

(
∆1L

T
+

ω̂2∆1L

MT
+

(ω̂ + 1)σ
√
L√

MT

)
(99)

Note that the middle terms are asymptotically negligible, and therefore these bounds are asymptotically similar to the bounds
guaranteed by Alg. 1, i.e.:

O
(
1

T
+

σ√
MT

)
, (100)

albeit with the an increased variance (ω̂2 + 1)σ (that depends on the baseline compression method we use, e.g., top-k or
fixed-point compression) instead of σ. Note that ω̂ depends on the compressor and therefore on the compression coefficient
α. Please refer to Appendices B, D, E, for exact calculations for certain examples. Note that the same asymptotic bound
holds for the heterogeneous case, with the heterogeneity bound ξ added to σ.

In contrast, biased compression methods utilize an error correction mechanism to account for the bias. While these achieve
impressive results, additional terms are added to the error bounds due to the bias of the gradients). Specifically, EF21-SGDM
(Fatkhullin et al., 2023) guarantees the following bound (Corollary 3 in Fatkhullin et al. (2023), nonconvex case):

1

T

T∑
t=1

E ∥∇f(xt)∥2 ∈ O
(
∆1L

αT
+

∆1Lσ
1/2

α1/2T 3/4
+

∆1Lσ√
MT

)
(101)

Let us consider our bounds in Eq. (98)-(99). Note that asymptotically, the third term is dominant. Therefore, M can be
as large as o(T ), or equivalently o(

√
N), where N is the size of the whole dataset, without a degradation in performance.

Moreover, these bounds can be written in terms of the size of the dataset, N , since T = N/M (N points split on M
machines). Thus, asymptotically, performance starts to degrade when (neglecting constants other than T and M (which
depends on T )):

1√
MT

≥ 1

T
⇐⇒ M ≤ T ⇐⇒ M ≤

√
N. (102)

Now, similarly considering the parallelization limit of the bound of EF21-SGDM in Eq. (101), and note that the second term
is always more dominant than the first, asymptotic performance starts to degrade when:

1√
MT

≥ 1

T 3/4
⇐⇒ M ≤

√
T ⇐⇒ M ≤ N1/3, (103)

which implies a parallelization limit of up to o(
√
T ), or equivalently o(N1/3), without a degradation in performance.

This shows that in the regime of massive parallelization, i.e., when M is very large, our method enables better (more)
parallelization without a degradation in performance. Interestingly, when M is small, EF21-SGDM might have a slight
edge, as the dominant terms are σ√

MT
for EF21-SGDM and (ω̂2+1)σ√

MT
for our method, since MLMC methods tranduce

bias into variance, increasing it slightly. However, our experimental results show that our method maintains its edge over
EF21-SGDM even when M is very small.

F.4. Extension to the Heterogeneous Case

Our method can be naturally extended to the heterogeneous case in which each machine samples points from a different
distribution. That is, each machine i ∈ [M ] can sample i.i.d data from some data distribution Di. We assume that the
heterogeneity is bounded, namely there exists ξ ≥ 0 such that, ∀x ∈ Rd:

1

M

M∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ξ2 (104)
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Under this assumption, our method guarantees the bounds formalized in Theorem F.2 in the convex and nonconvex cases.

Theorem F.2. Under Assumptions 2.1-2.2, and the bounded heterogeneity assumption in Eq. (104), Alg. 2 and Alg. 3
guarantee the following error bounds in the heterogeneous convex and nonconvex cases, respectively:

E[f(x̄T )− f(x∗)] ∈ O
(
D2L

T
+

ω̂2D2L

MT
+

ω̂(σ + ξ)D√
MT

+
σD√
MT

)
1

T

T∑
t=1

E ∥∇f(xt)∥2 ∈ O

(
∆1L

T
+

ω̂2∆1L

MT
+

ω̂(σ + ξ)
√
L√

MT
+

σ
√
L√

MT

)

Proof. Heterogeneous Convex Case.
Similarly to the homogeneous case, since the MLMC gradients, g̃t,i used in Alg. 2-3 are unbiased estimators of the true
machine-specific gradients, namely E[g̃t,i|xt] = ∇fi(xt),∀t ∈ [T ],∀i ∈ [M ], we have the following bound in the convex
case, for η ≤ 1

2L ((Dorfman et al., 2024)):

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

2ηT
+

η

T

T∑
t=1

EV 2
t (105)

where x̄T = 1
T

∑T
t=1, x∗ = argminx f(x), D = ∥x1 − x∗∥, and V 2

t = E[∥g̃t −∇f(xt)∥2 |xt]. We now consider the
term V 2

t :

V 2
t = E[∥g̃t −∇f(xt)∥2 |xt] (106)

= E

∥∥∥∥∥ 1

M

M∑
i=1

(g̃t,i −∇fi(xt))

∥∥∥∥∥
2 ∣∣∣∣xt

 (107)

(1)
=

1

M2

M∑
i=1

E[∥g̃t,i −∇fi(xt)∥2 |xt] (108)

(2)

≤ 2

M2

M∑
i=1

(
E[∥g̃t,i − vt,i∥2 |xt] + E[∥vt,i −∇fi(xt)∥2 |xt]

)
(109)

(3)

≤ 2

M2

M∑
i=1

(
E[∥g̃t,i − vt,i∥2 |xt] + σ2

)
(110)

(4)

≤ 2

M2

M∑
i=1

(
ω̂2E[∥vt,i∥2 |xt] + σ2

)
(111)

(5)

≤ 6ω̂2

M2

M∑
i=1

(
E[∥vt,i −∇fi(xt)∥2 |xt] + ∥∇fi(xt)−∇f(xt)∥2 + ∥∇f(xt)∥2

)
+

2σ2

M
(112)

(6)

≤ 2(3ω̂2 + 1)σ2

M
+

6ω̂2ξ2

M
+

6ω̂2

M2

M∑
i=1

∥∇f(xt)∥2 (113)

(7)

≤ 2(3ω̂2 + 1)σ2

M
+

6ω̂2ξ2

M
+

12ω̂2L

M
(f(xt)− f(x∗)) (114)

where (1) follows since g̃t = 1
M

∑M
i=1 g̃t,i and the data samples are i.i.d, (2) since ∥a+ b∥2 ≤ 2 ∥a∥2+2 ∥b∥2 ,∀a, b ∈ Rd,

(3) by Assumption 2.2, (4) by Eq. (3) since our MLMC compressor is unbiased (see Lemma 3.2), (5) since ∥a+ b+ c∥2 ≤
3(∥a∥2 + ∥b∥2 + ∥c∥2),∀a, b, c ∈ Rd, (6) by Assumptions 2.2 and Eq. (104), and (7) by Lemma F.1 since f is L-smooth by
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Assumption 2.1. plugging this result back into Eq. (105) yields:

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

2ηT
+

η

T

T∑
t=1

EV 2
t (115)

≤ D2

2ηT
+ η

2(3ω̂2 + 1)σ2

M
+ η

6ω̂2ξ2

M
+ η

12ω̂2L

MT

T∑
t=1

E[f(xt)− f(x∗)] (116)

Choosing η ≤ M
24ω̂2L and rearranging, we have:

1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ D2

ηT
+ η

4(3ω̂2 + 1)σ2 + 12ω̂2ξ2

M
. (117)

Thus, for η ≤ min

{
1
2L ,

M
16ω̂2L ,

D
√
M√

4(3ω̂2+1)σ2+12ω̂2ξ2T

}
, we have:

E[f(x̄T )− f(x∗)] ≤ 1

T

T∑
t=1

E[f(xt)− f(x∗)] ≤ 2D2L

T
+

16ω̂2D2L

MT
+

√
4(3ω̂2 + 1)σ2 + 12ω̂2ξ2D√

MT
(118)

Therefore:

E[f(x̄T )− f(x∗)] ∈ O
(
D2L

T
+

ω̂2D2L

MT
+

ω̂(σ + ξ)D√
MT

+
σD√
MT

)
. (119)

Note that this bound is consistent with its homogeneous counterpart when ξ = 0.

Heterogeneous Nonconvex Case.
The proof follows very similarly to the one for the convex case. Here, we have for η ≤ 1

L ((Dorfman et al., 2024)):

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
2∆1

Tη
+

ηL

T

T∑
t=1

EV 2
t . (120)

where ∆1 = f(x1)− f(x∗) and V 2
t = E[∥g̃t −∇f(xt)∥2 |xt]. Plugging in the expression for V 2

t in Eq. (113) yields:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
2∆1

Tη
+ η

2(3ω̂2 + 1)σ2L

M
+ η

6ω̂2ξ2L

M
+ η

6ω̂2L

MT

T∑
t=1

E ∥∇f(xt)∥2 (121)

Choosing η ≤ M
12ω̂2L and rearranging, we have:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
4∆1

Tη
+ η

(4(3ω̂2 + 1)σ2 + 12ω̂2ξ2)L

M
. (122)

Thus, for η ≤ min

{
1
L ,

M
12ω̂2L ,

√
M√

((3ω̂2+1)σ2+3ω̂2ξ2)LT

}
, we have:

1

T

T∑
t=1

E[∥∇f(xt)∥2] ≤
4∆1L

T
+

48ω̂2∆1L

MT
+

4
√

((3ω̂2 + 1)σ2 + 3ω̂2ξ2)L√
MT

. (123)

Therefore:
1

T

T∑
t=1

E[∥∇f(xt)∥2] ∈ O

(
∆1L

T
+

ω̂2∆1L

MT
+

ω̂(σ + ξ)
√
L√

MT
+

σ
√
L√

MT

)
(124)

Note that his bound is consistent with its homogeneous counterpart when ξ = 0.
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G. Additional Experiments
G.1. Sparsification Compressors Evaluation on CIFAR-10 Image Classification Using ResNet18

We ran additional experiments comparing the performance of our MLMC-Top-k compression method (Alg. 3), Top-k,
Rand-k, EF21-SGDM, and uncompressed SGD, on CIFAR-10 Image Classification using ResNet18.

Figure 4 shows the test accuracy of the compared algorithms as a function of communication complexity (the number of
transmitted bits), for M = 4 machines and a batch size of 128 (top quartet) and M = 32 machines and a batch size of
64 (bottom quartet), and for various levels of sparsification k ∈ {0.001, 0.005, 0.01, 0.05}n, where n ≈ 1.1× 107 is the
number of model parameters. The results were averaged over 5 different seeds to mitigate randomness. We display these
results as a function of the epoch (the number of iterations) in Figure 5.

Figures 4-5 show that our method demonstrates an advantage over the others in terms of convergence speed and test accuracy.

G.2. RTN Compression Evaluation on BERT Finetuning on GLUE SST-2

We evaluate the performance of our MLMC-compression scheme on quantization-based compressors. Specifically we
consider Round-to-Nearest (RTN) compression. Given a vector v, RTN compresses v by defining a quantization grid and
rounding each element of v to the nearest integer on this grid. The spacing of this grid is controlled by the quantization
step-size, δl, where l defines the quantization level (a larger l corresponds to finer quantization). Specifically, given a vector
v, its RTN-compression (of level l) is given by

Cl
RTN (v) = δl · clip(round(v/δl),−c, c), (125)

where the division, rounding, and clipping are done in an element-wise manner, and ”round” rounds each element to its
nearest integer on the grid defined by δl = 2c

2l−1
.

We evaluated our Adaptive MLMC-compression method (Alg. 3) with the RTN compressor as a baseline (which we term
MLMC-RTN), and compared it to regular RTN compression (without MLMC) with l ∈ {2, 4, 8, 16}, and to uncompressed
SGD, for M = 4 and M = 32 machines. We used a batch size of 16 and averaged over 5 different seeds to mitigate
randomness. We present the results in Figure 6. Note that our method enjoys a significant advantage in communication
efficiency compared to the others in this case as well. Interestingly, the performance of all methods in terms of iteration
efficiency is very similar, with SGD having a slight advantage over the others.
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Figure 4. CIFAR-10 image classification using ResNet18, communication efficiency comparison of our MLMC-Top-k Compressor
(Alg. 3),Top-k, Rand-k, EF21-SGDM, and uncompressed SGD, for M = 4 machines and a batch size of 128 and for M = 32 machines
and a batch size of 64, averaged over 5 different seeds.
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Figure 5. CIFAR-10 image classification using ResNet18, iteration efficiency comparison of our MLMC-Top-k Compressor (Alg. 3),Top-
k, Rand-k, EF21-SGDM, and uncompressed SGD, for M = 4 machines and a batch size of 128 and for M = 32 machines and a batch
size of 64, averaged over 5 different seeds.
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Figure 6. Finetuning BERT on GLUE SST2 communication efficiency (top row) and iteration efficiency (bottom row) comparison of
the Adaptive MLMC-RTN (Alg. 3), RTN with l ∈ {2, 4, 8, 16}, and uncompressed SGD, for M = 4 and M = 32 machines and a batch
size of 16 samples. The results are averaged over 5 different seeds.
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