
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE REWARD-ADAPTIVE GENERATIVE
FLOW NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) are an emerging class of algorithms for
learning policies that sample objects according to an unnormalized reward dis-
tribution. While theoretically appealing, in practice, GFlowNets often suffer
from training instabilities and mode collapse in environments with sparse rewards.
These limit their applicability in a wide range of problems in which high-reward
samples are valuable but sparse. In this paper, we identify and analyze three key
challenges in training GFlowNets within sparse-reward environments and propose
simple and targeted methods to mitigate each of them. Through extensive evalu-
ation across various benchmark environments spanning both discrete and contin-
uous problems, we demonstrate that our methods significantly improve training
stability and policy quality, enabling GFlowNets to more reliably discover and
exploit high-reward modes in challenging settings.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021) present a framework to construct
objects from a target space X by learning a generative policy. This policy samples transitions se-
quentially to reach end states x ∈ X that are distributed proportionally to a predefined, unnormalized
target distribution termed reward R(x). GFlowNets have demonstrated utility in areas such as bio-
logical sequence discovery (Bengio et al., 2021; Jain et al., 2022), drug design (Shen et al., 2024),
adversarial prompt generation for large language models (Lee et al., 2025), combinatorial optimiza-
tion (Zhang et al., 2023b; Kim et al., 2025a), and diffusion (Lahlou et al., 2023a; Zhang et al., 2024;
Sendera et al., 2024). Notwithstanding this wide applicability, recent work found that in sparse-
reward environments with infrequent non-zero reward signals (i.e., where only a tiny fraction of
trajectories lead to end states associated with significantly positive rewards, as formally defined in
Section 3), GFlowNets tend to exhibit an undersampling or complete omission of rare, high-reward
modes due to the challenges in systematically exploring such sparse rewards.

In general, to improve the training of GFlowNets, several approaches have been proposed that can
be broadly grouped into three categories: (G1) to enhance exploration for improved discovery of
rewarding regions (Bengio et al., 2021; Rector-Brooks et al., 2023; Pan et al., 2023b; Ikram et al.,
2025; He et al., 2025; Sendera et al., 2024), (G2) to improve convergence and credit assignment
for robust and accurate learning (Malkin et al., 2022; Shen et al., 2023; Vemgal et al., 2023; Madan
et al., 2023; Jang et al., 2024), and (G3) to balance exploration and exploitation to navigate the
search space effectively (Pan et al., 2024; Lau et al., 2023; Chen & Mauch, 2024; Kim et al., 2024;
2025b; Lau et al., 2024; Madan et al., 2025). While a subset of methods within these categories,
i.e., Pan et al. (2023b); Shen et al. (2023); Madan et al. (2023); Chen & Mauch (2024); Madan et al.
(2025), have demonstrated some success in mitigating the undersampling issue in sparse-reward
settings, fundamental limitations persist.

In particular, approaches in G1 can facilitate the discovery of high-reward trajectories during train-
ing; however, their effectiveness diminishes when the model struggles to fit the observed trajectories,
causing the search to become overly local (Rector-Brooks et al., 2023). Similarly, when exploration
is insufficient, G2 approaches tend to converge prematurely and fail to fully capture the reward
structure (Jang et al., 2024). Lastly, approaches in G3 facilitate mode discovery and training sta-
bility; however, they incur substantial computational overhead by specializing the exploration and
exploitation tasks to sub-modules, such as pretraining followed by fine-tuning (Pan et al., 2024) or

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

teacher-student architectures (Kim et al., 2025b). Here, the effectiveness of each sub-module also
remains constrained by the inherent limitations of exploration and convergence effectiveness.

These limitations motivate us to answer the following fundamental question: What are the core
challenges of training GFlowNets in sparse-reward environments? In this paper, we first un-
cover the principal factors that prevent effective training of GFlowNets and then develop methods to
address exploration and model fitting in such environments.

In summary, our contributions are as follows:

• We identify and analyze three core issues in training GFlowNet under sparse-reward en-
vironments: (1) the degeneracy of trajectory balance in underexplored regions; (2) the
omission of high-reward states due to insufficient exploration; and (3) sampling-induced
instability, which results in high gradient variance and unstable updates.

• To mitigate these issues, we propose three methods: (1) an outlier-based filtering
mechanism that rectifies misleading loss signals; (2) a decaying-temperature reward-
augmentation scheme that enables a smooth transition from initial exploration to later ex-
ploitation; and (3) a mixed-priority replay strategy that balances trajectory sampling by
jointly considering reward magnitude and training loss.

• We validate the effectiveness of these methods through comprehensive experiments on both
discrete (Hypergrid, a molecule generation task named sEH) and continuous (Gaussian
Mixture, Pusher) sparse-reward environments, benchmarking against a suite of baselines.

2 PRELIMINARIES

GFlowNets (Bengio et al., 2021) are defined by a finite directed acyclic graph G = (S,A) where
the set of nodes forms the state space S and the set of directed edges forms the action space A.
There exists a single state that has no incoming edges, and it is designated as the initial state s0 ∈ S.
States with no outgoing edges are called terminal (or end) states and their set is denoted byX . States
reachable through outgoing edges from a state are called its children, while the sources of incoming
edges to a state are called its parents. A trajectory is defined as a sequence of states τ = (s0 → · · · →
sn = x) where the end state x ∈ X and each action (or transition) si → si+1 ∈ A. The reward of
a trajectory R(τ) is assigned based on its end state R(x) and R(x) > 0,∀x ∈ X . Each trajectory
τ is associated with a nonnegative function called the flow F : τ → R≥0. The flow of a state s is
defined as F (s) = Σs∈τF (τ) and the flow of an edge s → s′ as F (s → s′) = Σs→s′∈τF (τ). The
objective of GFlowNets is to learn an edge flow such that the flow of each end state x ∈ X satisfies
F (x) ∝ R(x) for all terminal states x ∈ X .

The edge flow can be modeled by the forward policy PF (s
′|s) = F (s→s′)

F (s) , which defines the tran-
sition probability distribution over the children of s. Similarly, the backward policy PB(s|s′) =
F (s→s′)
F (s′) specifies the probability distribution over the parents of s′. The forward (backward) prob-

ability of a trajectory τ is simply the product of forward (backward) probabilities of each edge,
i.e., PF (τ) =

∏n−1
i=0 PF (si+1|si) and PB(τ) =

∏n−1
i=0 PB(si|si+1).

Trajectory Balance (TB). TB is computed on complete trajectories. TB has been demonstrated to
accelerate training convergence to allow learning policies that generate longer trajectories (Malkin
et al., 2022). The GFlowNet training process involves neural network approximation of the forward
policy PFθ

, backward policy PBθ
, and the partition function Zθ, where θ represents the learnable

parameters. For a given trajectory, the TB objective LTB is given by

LTB(τ) =
(
log

Zθ · PFθ
(τ)

R(sn) · PBθ
(τ)

)2

(1)

It is known that if LTB(τ) = 0 ∀τ , the flow Fθ associated with PFθ
satisfies the GFlowNet ob-

jective (Malkin et al., 2022). Other training criteria are based on similar justifications, as detailed
in Bengio et al. (2023), with an extension to the continuous setting provided in Lahlou et al. (2023a).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 THE PROBLEM OF SPARSE REWARDS

Definition 1 (Sparse-Reward Environment). We call an environment sparse-reward if the fraction
of high-reward trajectories among all possible trajectories is vanishingly small. Formally, let T be
the set of all possible trajectories, and define the set of high-reward trajectories as H = {τ ∈ T |
R(τ) > ϵ} where ϵ > 0 is chosen such that

∑
x∈X ϵ ≪

∑
x∈X R(x). This ensures that end states

with rewards below ϵ contribute negligibly to the overall learning objective and can be effectively
treated as “zero”. An environment with sparse rewards shall satisfy |H|

|T | ≈ 0. A similar definition
applies for a continuous environment by replacing cardinalities with the Lebesgue measure.

3.1 IMPLICATIONS OF SPARSE REWARDS

The above definition implies that, during the early stage of training in sparse-reward environments,
the majority of sampled trajectories yield near zero rewards (i.e., R(τ) ≤ ϵ). The constant stream of
low rewards can cause the TB loss to drive the partition function estimate logZθ to a large negative
value. Such pessimistic estimates encourage premature convergence with the model overfitting low
reward trajectories. More critically, the appearance of an unseen high-reward trajectory under these
conditions can trigger exploding gradients, causing severe instability in training.

Another implication is the lack of intermediate reward signals bridging low- and high-reward trajec-
tories, caused by the large magnitude gap between the “zero” reward ϵ and meaningful high rewards.
Without intermediate reward signals, the model becomes highly sensitive to the composition of each
training batch. For instance, a batch dominated by high-reward trajectories and one dominated by
low-reward trajectories would drive updates to logZθ in drastically different directions, causing the
estimated reward landscape to shift abruptly and ultimately hindering stable convergence.

3.2 CHALLENGES OF TRAINING GFLOWNETS IN SPARSE-REWARD ENVIRONMENTS

By formally analyzing the aforementioned implications, we identify three key challenges of
GFlowNets training in sparse-reward environments. The first challenge is unique to GFlowNets,
distinguishing them from other related approaches such as reinforcement learning (RL). The sec-
ond and third challenges are shared with RL and other generative models. Throughout this section,
we assume that the neural network policies PFθ

and PBθ
have full-support over the set of reward-

yielding trajectories, and our analysis is performed at an intermediate stage of training.

(C1) Degeneracy of Trajectory Balance in Underexplored Regions. During training, there may
exist underexplored sample spaces with observed trajectories sharing little or no substructure with
other trajectories. In such cases, the TB condition may be satisfied without aligning with the
GFlowNet objective, leading to misleading loss signals.

Definition 2 (Underexplored Region). Let X be the set of all end states and let Xs ⊂ X . Let T train

be the set of all trajectories observed during training and the subset that ends within Xs be T train
s . Let

T unseen = T \T train, the subset that ends within Xs is named T unseen
s . We say Xs is an underexplored

region if ∀τ (1) = (· · · → s
(1)
n) ∈ T train

s , ∃τ (2) = (· · · → s
(2)
n) ∈ T unseen

s such that s(1)n = s
(2)
n .

This definition characterizes a situation that may arise during the training of GFlowNets, namely
when not all trajectories leading to a given terminal state have been observed yet. Further, the
definition naturally extends to the continuous setting by replacing discrete states with intervals; in
such cases, analysis remains feasible under the assumption that the transition policies are Lipschitz
continuous. With the existence of an underexplored region, the following theorem holds.

Theorem 1 (Degeneracy of Trajectory Balance in Underexplored Regions). Given an underex-
plored regionXs ⊂ X , a parameter set θ⋆ can minimize the TB lossLTB over the training trajectories
T train while failing to satisfy F ⋆(x) ∝ R(x) for x ∈ Xs. This violation of the objective occurs if the
learned parameters underestimate the backward policy PB⋆

θ
and the partition function Z⋆

θ for trajec-
tories associated with Xs, a condition permitted by the absence of training signal in that region.

An illustration of Theorem 1 is shown in Figure 1, and the proof can be found in Appendix A.
This issue is exacerbated in sparse-reward environments, where large portions of the state space re-
main underexplored and high-reward trajectories are initially rare. Consequently, the model tends to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

End state

Transition
probabilities from
𝑃𝐹𝜃

 or 𝑃𝐵𝜃

? Reward

Seen trajectory

Unseen trajectory

𝑠1

1 - 𝜖
𝜖

1 + 𝜖 1

𝜖

(1 + 𝜖)(1 + 𝐶)

1

1 + 𝜖

𝜖2

𝐶(1 + 𝐶)(1 + 𝜖)

𝑍𝜃 =
𝜖

(1 + 𝐶)(1 − 𝜖)

C

1

C

1𝑠2

?
𝑠1

𝑠2

𝑥1

𝑥2 𝑥2

𝑥1

; 𝐶 > 1

𝑠0 𝑠0

𝐶

1 + 𝐶

1

1 + 𝐶

Figure 1: An illustration of a GFlowNet training failure in underexplored regions, which presents
two distinct problems. First, the model can achieve a zero TB loss with a degenerate solution
by assigning an arbitrarily small flow with 0 < ϵ < C to the high-reward state (x1). This is
made possible when the partition function Zθ and backward policy probabilities PBθ

are severely
underestimated. Second, this incorrect status leads to training instability. When the dashed high-
reward trajectory is eventually sampled, the TB loss for this trajectory explodes. For ϵ≪ 1, this loss

is approximately
(
log ϵ2

(1+C)2

)2

, which triggers a gradient explosion leading to instability.

underestimate the partition function Zθ, causing the learned policy to converge prematurely to sub-
optimal flows and become trapped in local minima that do not capture the true reward distribution.

(C2) Missed High-reward States. In sparse-reward environments, trajectories leading to high-
reward states represent only a tiny fraction of all possible trajectories. Without a proper exploration
strategy and adequate exploration time, one would fail to encounter certain high-reward states during
training, causing them to be entirely omitted from the learned GFlowNet policy.

This challenge is simple in concept but hard to fully resolve, especially in large state spaces such
as those in the generation of long molecules, a primary application for GFlowNets (Koziarski et al.,
2024). In practice, the focus is therefore on whether the training algorithm can effectively discover
diverse, high-reward trajectories and their adjacent regions.

(C3) Sampling-Induced Training Instability. The logarithm operator in the trajectory balance
loss function results in numerical instability when processing near-zero values. This results in high
gradient variances and even excessively steep gradients, causing unstable parameter updates and
suboptimal training outcomes.

This instability is particularly pronounced in two common scenarios driven by the sampling process.
First, for the vast majority of trajectories in a sparse-reward setting, the associated reward is near-
zero. The model learns to assign these paths near-zero flow values. The logarithm in the loss function
is highly sensitive to these near-zero inputs, which causes high loss values and gradient instability.
Second, high loss can also arise from high-reward trajectories that are rarely visited by the forward
policy, often corresponding to the discovery of previously unexplored high-reward regions.

4 METHODS

We devise three targeted and simple methods to mitigate the challenges described in Section 3.2.

4.1 BATCH FILTERING (BF)

Theorem 1 suggests that the TB loss can be ineffective for trajectories leading to underexplored
regions (e.g., the blue trajectories in Figure 1). To detect such cases, we introduce the statistic:

ζ(τ) = logR(τ)− logPFθ
(τ)− logPBθ

(τ). (2)

Intuitively, high-reward trajectories that the model considers improbable (i.e., assigns low forward
and backward probabilities) will yield large values of ζ(τ). For each training batch b, we identify
such trajectories as outliers by calculating the mean µζ(b) and standard deviation σζ(b) of their ζ
values, we then augment the TB loss as:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LTB-BF(τ) = LTB(τ)− Iζ(τ)>µζ(b)+cupperσζ(b)

(
logPFθ

(τ) + logPBθ
(τ)

)
(3)

The consistency of our modified objective with the original GFlowNet goal is guaranteed under the
conditions stated in the following theorem.

Theorem 2 (Existence of a stationary point with batch filtering). Suppose the backward policy
is uniform and satisfies the condition

logPBuniform(τ) ≥ µPBuniform
(b)− cupperσPBuniform

(b), (4)

for every τ ∈ b and batch b ⊆ T , then there exists a solution such that LTB-BF(τ) = 0 ∀ τ ∈ T .
Moreover, LTB-BF(τ) = 0 for all τ ∈ T yields a policy that samples proportionally to the reward.

The full proof of Theorem 2 can be found in Appendix B. A key observation is that under the
TB condition, ζ(τ) = logZθ − 2 logPBθ

(τ). The outlier condition on ζ(τ) is triggered when
the backward probability logPBθ

(τ) is too small. In such cases, the augmented term acts as a
corrective mechanism to increase these probabilities. This mechanism can be viewed as a form of
soft regularization applied to the backward probability of each trajectory during GFlowNet training.

Based on Theorem 2, cupper should be chosen depending on the problem, or it can be annealed
(i.e., gradually increased) during training. In our experiments, we tune a constant cupper for each
environment, and the implementation details of BF is provided in Appendix C.1.

4.2 SIGMOID TEMPERATURE DECAY (TD)

To mitigate challenge C2, we introduce a temperature-based reward augmentation mechanism that
assigns helper rewards to newly visited states, thereby encouraging the model to explore diverse
end states. The temperature parameter gradually decays toward zero so that the augmented reward
smoothly converges to the original reward function R. This smooth transition is essential: if the
reward were to change too abruptly, either in the beginning or near the end of training, it could lead
to unstable gradient updates that hinder exploration or degrade performance.

Our design is inspired by techniques in reinforcement learning (Burda et al., 2019a) and simulated
annealing (Kirkpatrick et al., 1983), and is theoretically supported by the decaying reward analysis
of Pan et al. (2023b). However, unlike previous approaches that multiply the reward or its logarithm
by a temperature term (Kim et al., 2024; Zhang et al., 2023a; Hu et al., 2025), we employ an additive
temperature formulation. This formulation offers greater flexibility in shaping the search behavior
and naturally accommodates the integration of surrogate models to approximate the true reward
distribution. In addition, we adopt a sigmoid-shaped decay schedule: the enhanced reward remains
stable during the first half of training and then decays almost linearly in log scale. This carefully
controlled decay ensures that exploration is encouraged early on, while the training gradually shifts
toward exploitation in later stages without destabilizing the trajectory balance loss. Details of the
implementation are provided in Appendix C.2.

4.3 MIXED PRIORITY (MP) REPLAY BUFFER

To address challenge C3, we introduce a mixed-priority replay mechanism that integrates both re-
ward and loss information. The central idea is that not all trajectories are equally useful for policy
learning: trajectories that are highly rewarding but poorly fitted provide particularly informative
training signals. By prioritizing such cases, the model is guided to focus on correcting errors in
critical regions of the distribution, leading to more stable and effective learning.

Our approach builds on the principle of loss-prioritized replay in reinforcement learning (Schaul
et al., 2016) and extends previous work in GFlowNets. In particular, Shen et al. (2023) proposed
prioritizing high-reward trajectories to improve sample efficiency and reduce oversampling of low-
reward ones. While this improves training performance, it disregards loss values and can destabilize
learning when high-reward trajectories are not yet well modeled. Our method addresses this gap by
explicitly combining reward and loss in the prioritization scheme.

Formally, the sampling priority for a trajectory τ is defined as

R(τ)L̂(τ) + 1

|Ttrain|
∑

τ∈Ttrain

R(τ)L̂(τ) (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where L̂(τ) denotes the estimated relative loss of τ . This formulation encourages sampling of
high-loss trajectories while maintaining balanced reward-weighted batches. The mechanism thus
continually emphasizes the trajectories most valuable for correcting the model. Implementation
details are given in Appendix C.3.

5 RELATED WORK

Advances in GFlowNets Training. Prior work has addressed each of challenges C1, C2, and C3,
yet often in isolation. Our contribution lies in presenting a unified perspective that shows how
these challenges collectively impede GFlowNets training in sparse-reward environments, and to
help readers contextualize existing enhancements to GFlowNets by clarifying the challenges they
address and those that remain unresolved.

For C1, minimizing the trajectory balance loss ensures correct flow when applied to all valid trajec-
tories (Malkin et al., 2022). However, incomplete trajectory coverage can degrade training, as noted
by Jang et al. (2024), who proposed updating the backward policy via maximum likelihood. While
effective in mitigating degeneracy, this approach can constrain exploration. By contrast, we formal-
ize the notion of underexplored regions and introduce a batch filtering scheme that soft-regularizes
backward updates to preserve diversity.

For C2, exploration strategies have been widely studied. Early work introduced ϵ-exploration (Ben-
gio et al., 2021; Malkin et al., 2022), followed by intrinsic rewards (Pan et al., 2023b), uncertainty-
driven sampling (Rector-Brooks et al., 2023), domain priors (Ikram et al., 2025), and retrospective
augmentation (He et al., 2025). Reward shaping via temperature decay or dynamic scaling has also
been explored (Kim et al., 2024; Chen & Mauch, 2024), and hybrid RL–GFlowNet approaches (Lau
et al., 2024) bias sampling toward high-reward states. We adopt a complementary approach by
adding a sigmoid-decayed auxiliary reward, which is lightweight, broadly applicable, and indepen-
dent of policy parameterization.

For C3, ordering of sampled trajectories critically affects convergence. Empirical studies highlight
issues such as oversampling of low-reward data in replay buffers (Shen et al., 2023) and instability
from partition function misestimation (Zhang et al., 2023a). Remedies include reward-prioritized
replay (Shen et al., 2023) and adaptive sampling via a teacher policy (Kim et al., 2025b). Related
work also explores the balance between exploration and exploitation (Pan et al., 2024; Kim et al.,
2024; Madan et al., 2025). Building on these insights, we analyze gradient instability and extend
prioritized replay with a reward–loss–mixed scheme.

Sparse Rewards in RL and Generative Models. Sparse reward scenarios in reinforcement learn-
ing involve infrequent, delayed rewards that impede policy learning due to poor credit assignment
and exploration inefficiency, with the latter closely related to C2. Key strategies include: (1) hi-
erarchical decomposition for temporal abstraction (Kulkarni et al., 2016); (2) reward shaping and
demonstration-guided learning (Ng et al., 1999; Devidze et al., 2022); (3) experience relabeling
via hindsight techniques (Andrychowicz et al., 2017); and (4) intrinsic motivation mechanisms to
incentivize exploration (Burda et al., 2019b).

Sparse rewards correspond to low-density regions in generative models. This leads to challenges
such as mode collapse (Metz et al., 2017) (similar to C1) and training instability (Salimans et al.,
2016) (similar to C3). Song & Ermon (2019) added annealed noise perturbations during training
to retain high-dimensional information. Since GFlowNets do not depend on gradients of the target
distribution at terminal states, we propose an annealed reward augmentation scheme to encourage
sampling from low-reward regions in the early stages of training. While related work has explored
decaying exploration in adapting GFlowNet objectives to diffusion tasks (Sendera et al., 2024), our
method differs by applying annealing directly to the reward signal.

6 EXPERIMENTS

6.1 ENVIRONMENTS

We evaluate on four types of environments to verify the effectiveness of our algorithms. Hypergrid
and molecule generation (sEH) have discrete state and action spaces, and Gaussian mixture and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison. Using the trained policy, 100, 000 samples were generated for
discrete environments and 10, 000 samples were generated for continuous environments.

Hypergrid
D = 2, H = 64

Hypergrid
D = 4, H = 64 sEH Gaussian

Mixture
Multi-objective

Pusher
modes (↑) Total L1 (↓) # modes (↑) Total L1 (↓) # modes (↑) # modes (↑) KL Div. (↓)

Success % (↑)
TB 123.2 ± 30.3 0.33 ± 0.40 17487.0 ± 5988.1 0.62 ± 0.46 25201.4 ± 687.7 5.50 ± 0.48 4.0 ± 6.8
TB-RP 114.4 ± 23.2 0.50 ± 0.34 7129.4 ± 4303.2 1.38 ± 0.31 24676.8 ± 618.8 5.55 ± 0.49 2.3 ± 4.6
SubTB 136.4 ± 8.9 0.17 ± 0.10 13809.8 ± 5555.8 0.83 ± 0.44 24608.8 ± 1631.7 4.59 ± 0.52 0.1 ± 0.1
GAFN 102.2 ± 34.8 0.73 ± 0.33 679.6 ± 28.0 1.98 ± 0.00 7180.8 ± 6251.9 4.04 ± 0.24 8.2 ± 9.9
PBP-GFN 84.2 ± 30.3 0.84 ± 0.41 3375.8 ± 914.0 1.68 ± 0.08 25969.8 ± 690.2 5.87 ± 0.30 47.3 ± 6.9
Teacher 144.0 ± 0.0 0.09 ± 0.03 6201.4 ± 1183.8 1.46 ± 0.12 22877.4 ± 1114.3 4.20 ± 0.12 6.4 ± 12.6
Ours 144.0 ± 0.0 0.11 ± 0.06 20531.6 ± 20.2 0.38 ± 0.01 27752.4 ± 160.2 3.66 ± 0.00 54.6 ± 4.9

Multi-objective pusher have continuous state and action spaces. All environments are sparse reward,
with detailed specifications and evidence of sparsity provided in Appendix D.

Hypergrid. This is a grid-like environment introduced in Bengio et al. (2021) parameterized by side
length H , dimension D, and three reward coefficients R0, R1, and R2. We use a sparser version of
the reward function by setting R0 = 10−10 and R1 = 0. We use D = 2 and D = 4 with H = 64 for
our experiments. For evaluating performance, we use the empirical L1 error between the sampled
distribution and the reward.

sEH. This task, introduced in Bengio et al. (2021) and later adopted in several GFlowNet vari-
ants (Shen et al., 2023; Madan et al., 2023; Pan et al., 2023a), generates molecules by sequentially
attaching blocks to a molecular graph. Molecules are constructed from 18 blocks (2 stems, 6 per
molecule), with rewards provided by a proxy scoring model. Following the setup in Shen et al.
(2023), the environment includes 34,012,224 end states. To intensify sparsity, we assign a near-zero
reward (10−10) to the bottom 99.9% of candidates and define the remaining 0.1% as modes.

Gaussian Mixture. We introduce a synthetic continuous environment where state transitions follow
a truncated Gaussian distribution with learnable mean and variance. Each episode begins with the
center position (0.5, 0.5) and runs up to 10 steps. In our experiments, we set δ = 0.02 and measure
performance by the KL divergence between the empirical sample distribution and the ground truth.

Multi-objective Pusher. Pusher is a benchmark multi-joint robotic arm environment in Gymna-
sium (Towers et al., 2024). To better evaluate GFlowNet capabilities, we modify the original single-
goal task by introducing three fixed target locations. In each episode, the agent must maneuver the
end effector to push the object to any one of these three stationary goals shown in Figure 5(c). Per-
formance is measured as an adjusted success rate, where each target can contribute at most one-third
to the total score. Thus, if the agent consistently reaches only one target, the maximum achievable
score is capped at 33.33%; any higher value implies it has covered additional targets.

6.2 BASELINES

We compare our solution methods against several baselines. Here, we focus on trajectory bal-
ance (Malkin et al., 2022) (TB) and its improvements since they have been shown to outperform
detailed balance and flow matching. We compare with subtrajectory balance (Madan et al., 2023)
(SubTB) since the authors claim it improves GFlowNet training in sparse environments and with
trajectory balance using a prioritized replay buffer (Shen et al., 2023) (TB-RP) as we propose a
modification to their approach for sparse environments. We compare with generative augmented
flow networks (Pan et al., 2023b) (GAFN), which adds intrinsic rewards to address sparsity. We
also consider pessimistic backward policy GFlowNets (Jang et al., 2024) (PBP-GFN) since it can
reduce the adverse effects of underexplored regions. Finally, we include the adaptive teacher (Kim
et al., 2025b) (Teacher), which employs a teacher policy to concentrate sampling on regions where
the student incurs higher TB losses.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 15 25 35 45
Visited trajectories (×104)

0

25

50

75

100

Vi
sit

ed
 m

od
es

 d
ur

in
g

tra
in

in
g

(%
)

Molecule generation

Ours TB TB-RP GAFN PBP-GFN Teacher SubTB

Goal 1 Goal 2 Goal 3

0

10

20

30

Go
al

s r
ea

ch
ed

 (%
) i

n
 1

0,
00

0
ro

un
ds

Multi-objective Pusher

Goal 1 Goal 2 Goal 3

0

5

10

DT
W

 d
ist

an
ce

 a
m

on
g

 su
cc

ee
d

ac
tio

n
se

q.

Multi-objective Pusher

Figure 2: Sample diversity in sEH and Multi-objective Pusher environments. Left: Discovered
high-reward modes versus the visited trajectories for sEH. The shaded regions show ±1 standard
deviation across five runs. Middle and Right: The success rate and diversity scores (higher is better)
computed from 10,000 trajectories produced by the trained models for multi-objective pusher.

Figure 3: Learned patterns of all methods on the Hypergrid and Gaussian Mixture environments.

6.3 PERFORMANCE COMPARISON

Table 1 reports the performance of each approach–environment pair using inference data from the
trained forward policy. Our methods consistently yield competitive performances across all settings
and show the lowest variance over random seeds, demonstrating strong and stable performance.

For the Hypergrid and Gaussian mixture environments, we further visualize the end state distribution
and confirm that our approach successfully learns the global reward structure as shown in Figure 3.
A visualization of the learned patterns during the training process is provided in Appendix E.1.

For the sEH and multi-objective pusher tasks, we evaluate the diversity of the results since a key
objective of GFlowNets is to discover a wide range of high-reward trajectories (Jain et al., 2023).
As shown in Figure 2, in sEH, our methods require only 50% of the trajectories compared to the
baselines to discover 80% of high-reward modes, demonstrating superior sample efficiency. For the
multi-objective pusher task, diversity is quantified using the average Dynamic Time Warping (DTW)
distance (Salvador & Chan, 2007) between trajectory pairs that reach the same goal. Our methods
not only achieve the highest success rates but also generate the most diverse trajectories.

The suboptimal performance of Teacher in Table 1 could be due to differences between our im-
plementation and the original work. In Kim et al. (2025b), the teacher model employed a uniform
backward policy coupled with local search. However, to ensure fair comparison across all eval-
uated methods, we implemented a trainable backward policy without local search. Under these
conditions, we observe that Teacher demonstrates competitive performance in environments with
moderately sparse rewards, but performance degrades in highly sparse reward distributions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

20 40 60 80 100
Training progress (%)

10 1

100

101

102

TB
 lo

ss
es

Hypergrid D = 2

20 40 60 80 100
Training progress (%)

10 1

100

101

102
Hypergrid D = 4

20 40 60 80 100
Training progress (%)

10 1

100

101

102
sEH

20 40 60 80 100
Training progress (%)

100

101

102

103
Gaussian mixture

20 40 60 80 100
Training progress (%)

101

102

103
Multi-objective pusher

Top 10% rarest high-reward trajectories High-reward trajectories Low-reward trajectories

Figure 4: Training losses are reported for different trajectory types. Rare high-reward trajectories
are defined as those with reward > 10−3 whose PFθ

(τ) lies in the bottom 10% of replay buffer
samples within each 1% training window.

6.4 ANALYSIS OF RESULTS

In this section, we highlight key insights into the role of our proposed mechanisms, including batch
filter (BF), temperature decay (TD), and mixed-priority replay (MP), based on the numerical re-
sults. Hyperparameter sensitivity analyses for TD and BF and comprehensive ablations of the three
mechanisms are provided in Appendices E.2 and E.3.

BF Promotes Policies for Diverse Trajectory Generation. As discussed in Section 4.1, BF acts as
a soft regularizer on backward probabilities, constraining them away from extremely small values.
This encourages the learned policy to generate more diverse trajectories, though it can also interfere
with convergence. Our experiments reflect both effects. Figure 2 illustrates BF’s influence, and the
ablation results in Table 4 (Appendix) further confirm its role: in Pusher, the strong performance is
largely attributable to BF, and BF variants in sEH consistently discover more modes than their non-
BF counterparts. Nonetheless, in some cases, incorporating BF slightly reduces final performance.

TD is Effective But Requires Careful Calibration. TD plays a critical role in the ablation results
of Table 4, strongly affecting both mean performance and variance across many environments. To
better understand the usability of TD, we perform a sensitivity analysis by varying the initial tem-
perature and decay rate (Appendix E.2). A slower decay rate allows for the initial high temperatures
to be maintained longer in the early stages, thereby extending the exploration period. The results
indicate that (1) the initial temperature should not be set too high, as it can overwhelm the reward
signal, and (2) the optimal decay rate is task-dependent: for discovery tasks such as molecular gen-
eration, slower decay is beneficial, while in other tasks, maintaining high temperatures for too long
can hinder training the policy to match the true reward distribution.

MP is More Likely to Sample Rare High-reward Trajectories. MP prioritizes high-reward tra-
jectories with high training loss. As shown in Figure 4, rare high-reward trajectories are consistently
associated with larger loss values, making them more likely to be sampled under MP. At the same
time, low-reward trajectories often exhibit even higher loss magnitudes, reinforcing the need for
reward-aware prioritization. Figure 4 also highlights that in the multi-objective pusher, policy up-
dates fail to keep pace with the rapid growth of loss. In the multi-objective pusher, policy updates
fail to keep pace with the rapid growth of loss, explaining the poor performance of pure TD in the
ablation results. This limitation is mitigated by BF and MP, which yield additional performance
gains when combined with TD.

7 CONCLUSION AND DISCUSSION

We identify three key challenges in training GFlowNets under sparse rewards and introduce targeted
mechanisms that improve performance, diversity, and stability. Extensive experiments demonstrate
that our sparse-adaptive strategies substantially enhance training across a variety of challenging
sparse-reward environments.

While effective, our mechanisms are primarily diagnostic. A critical direction for future research
is therefore the development of a theoretically grounded framework that formally addresses these
challenges. Such an approach would provide a more principled and robust foundation for training
GFlowNets in sparse-reward environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Proofs of theorems in the main paper can be found in Appendices A and B. Pseudocode of our
methods and their hyperparameters are given in Appendix C. Environment details and chosen hy-
perparameters for each baseline can be found in Appendix D. The source code of our methods and
implementations of baselines are included as supplementary material.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, volume 30, 2017.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems, volume 34, pp. 27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations, 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019b.

Yihang Chen and Lukas Mauch. Order-preserving GFlowNets. In International Conference on
Learning Representations, 2024.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. In Advances in Neural Information Processing
Systems, volume 35, pp. 5829–5842, 2022.

Haoran He, Can Chang, Huazhe Xu, and Ling Pan. Looking backward: Retrospective backward
synthesis for goal-conditioned GFlowNets. In International Conference on Learning Representa-
tions, 2025.

Rui Hu, Yifan Zhang, Zhuoran Li, and Longbo Huang. Beyond squared error: Exploring loss design
for enhanced training of generative flow networks. In International Conference on Learning
Representations, 2025.

Zarif Ikram, Ling Pan, and Dianbo Liu. Evolution guided generative flow networks. In Transactions
on Machine Learning Research, 2025.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P.
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena
Simine, Payel Das, and Yoshua Bengio. Biological sequence design with GFlowNets. In Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 9786–9801, 2022.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023.

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward
policy for GFlowNets. In Neural Information Processing Systems, 2024.

Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo Park,
Emmanuel Bengio, and Yoshua Bengio. Learning to scale logits for temperature-conditional
GFlowNets. In International Conference on Machine Learning, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minsu Kim, Sanghyeok Choi, Hyeonah Kim, Jiwoo Son, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with GFlowNets for combinatorial optimization. In International Conference on
Artificial Intelligence and Statistics, 2025a.

Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks,
Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for amor-
tized samplers. In International Conference on Learning Representations, 2025b.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
Bengio, Chenghao Liu, Mike Tyers, and Robert Batey. Rgfn: Synthesizable molecular generation
using gflownets. Advances in Neural Information Processing Systems, 37:46908–46955, 2024.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29, 2016.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 18269–18300, 2023a.

Salem Lahlou, Joseph D Viviano, Victor Schmidt, and Yoshua Bengio. torchgfn: A Pytorch
GFlowNet library. In arXiv preprint arXiv:2305.14594, 2023b.

Elaine Lau, Nikhil Vemgal, Doina Precup, and Emmanuel Bengio. DGFN: Double generative flow
networks. In NeurIPS Workshop on Generative AI and Biology, 2023.

Elaine Lau, Stephen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable
greediness with action values. In Advances in neural information processing systems, volume 37,
pp. 81645–81676, 2024.

Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi,
Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, et al. Learning diverse attacks on large lan-
guage models for robust red-teaming and safety tuning. In International Conference on Learning
Representations, 2025.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from
partial episodes for improved convergence and stability. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 23467–23483, 2023.

Kanika Madan, Alex Lamb, Emmanuel Bengio, Glen Berseth, and Yoshua Bengio. Towards improv-
ing exploration through sibling augmented GFlowNets. In International Conference on Learning
Representations, 2025.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory bal-
ance: Improved credit assignment in GFlowNets. In Advances in Neural Information Processing
Systems, volume 35, pp. 5955–5967, 2022.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. In International Conference on Learning Representations, 2017.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning, pp.
278–287, 1999.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets
with local credit and incomplete trajectories. In International Conference on Machine Learning,
2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. In International Conference on Learning Representations, 2023b.

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. In International Conference on Learning Representations, 2024.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
GFlowNets. In ICML Workshop on Structured Probabilistic Inference & Generative Modeling,
2023.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time and space.
Intelligent data analysis, 11(5):561–580, 2007.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Advances in Neural Information Processing Systems, 37:81016–81045, 2024.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving GFlowNet training. In Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 30956–30975, 2023.

Tony Shen, Seonghwan Seo, Grayson Lee, Mohit Pandey, Jason R Smith, Artem Cherkasov,
Woo Youn Kim, and Martin Ester. Tacogfn: Target-conditioned gflownet for structure-based
drug design. In Transactions on Machine Learning Research, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Mark Towers, Ariel Kwiatkowski, Jordan K. Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A
standard interface for reinforcement learning environments. In arXiv preprint arXiv:2407.17032,
2024.

Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using a
replay buffer on mode discovery in GFlowNets. In ICML Workshop on Structured Probabilistic
Inference & Generative Modeling, 2023.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
GFlowNets. In International Conference on Learning Representations, 2023a.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlowNets. In Advances in Neural
Information Processing Systems, volume 36, pp. 11952–11969, 2023b.

Dinghuai Zhang, Ricky TQ Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio. Diffusion
generative flow samplers: Improving learning signals through partial trajectory optimization. In
International Conference on Learning Representations, 2024.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 1

To simplify notation in the appendix, for a trajectory or a subtrajectory τ = (sj → · · · → sk), we
denote PFθ

(τ) =
∏k−1

i=j PFθ
(si+1|si), PBθ

(τ) =
∏k−1

i=j PBθ
(si|si+1).

Theorem 1 (Degeneracy of Trajectory Balance in Underexplored Regions). Given an underex-
plored regionXs ⊂ X , a parameter set θ⋆ can minimize the TB lossLTB over the training trajectories
T train while failing to satisfy F ⋆(x) ∝ R(x) for x ∈ Xs. This violation of the objective occurs if the
learned parameters underestimate the backward policy PB⋆

θ
and the partition function Z⋆

θ for trajec-
tories associated with Xs, a condition permitted by the absence of training signal in that region.

Lemma 1 (Degeneracy of Trajectory Balance in a Special Underexplored Region). Consider an
underexplored region X last

s with the property that, for every state sn ∈ X last
s and every trajectory in

T train
s , there exists another trajectory ending in X last

s whose final transition is not included in T train.
Under this condition, a parameter set θ⋆ can minimize the TB loss LTB over the training trajectories
T train while failing to satisfy F ⋆(x) ∝ R(x) for x ∈ Xs. This violation of the objective occurs if the
learned parameters underestimate the backward policy PB⋆

θ
and the partition function Z⋆

θ .

Lemma 2 (Composite State Representation). Any two consecutive state transitions in a trajectory
can be equivalently represented as a single composite state. Formally, for any transitions (s →
s
′ → s

′′
), define a composite state s̃ = (s, s

′
). Then, the two-step transition can be represented

as s̃ → s
′′

. Under this representation, the trajectory balance conditions remain invariant, enabling
analysis of GFlowNet training at various granularities.

Theorem 1 is a direct consequence of Lemmas 1 and 2. Lemma 1 establishes that in underexplored
regions where the final transitions into certain states are missing from the training data, the trajectory
balance (TB) loss signal can be inefficient for updating the policy to match the target distribution.
Lemma 2 provides a straightforward observation that any two consecutive transitions can be treated
as a composite state, allowing the result of Lemma 1 to generalize to multi-step underexplored
regions. Since Lemma 2 is immediate, the proof of Theorem 1 reduces to proving Lemma 1.

Proof. Let X last
s be an underexplored region defined in Lemma 1, the subset of the training trajec-

tories T train that ends within X last
s be T train

s . We begin the proof by constructing a forward transition
function PF⋆

θ
, backward transition function PB⋆

θ
, and partition function Zθ⋆ starting from a state

such that the TB objective is satisfied for all τ ∈ T train \ T train
s . The existence of such a θ⋆ is

guaranteed under the assumption that the GFlowNet problem is solvable (i.e., nontrivial).

Then we show that for any trajectory τ = (s0 → s1 → · · · → sn−1 → sn) ∈ T train
s , arbitrary

flow within a non-empty range can be assigned to these trajectories to meet the trajectory balance
objective. Furthermore, when Zθ⋆ can fall below a certain threshold, it is possible to assign near-zero
flow to high-reward trajectories while allocating the remaining flow to low-reward trajectories.

Since sn ∈ X last
s , there exists another trajectory τ ′ = (s0 → s′1 → · · · → s′n−1 → sn) ∈ T unseen

s

such that the transition s′n−1 → sn ̸∈ T train
s .

The trajectory balance condition for a trajectory τ is given by

Zθ⋆

n−1∏
i=0

PFθ⋆
(si+1|si) = R(sn)

n−1∏
i=0

PBθ⋆
(si|si+1) (6)

Rearranging, we get

n−1∏
i=0

PFθ⋆
(si+1|si)

=

c2(τ)︷ ︸︸ ︷
PBθ⋆

(sn−1|sn)R(sn)

n−2∏
i=0

PBθ⋆
(si|si+1)

Zθ∗

(7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Let Sn−1 be the set of all states that are the parents of sn. Since PBθ⋆
is a probability measure,

PBθ⋆
(sn−1|sn) satisfies

PBθ⋆
(sn−1|sn)

= 1−
∑

s̃n−1∈Sn−1\{sn−1,s′n−1}

PBθ⋆
(s̃n−1|sn)

︸ ︷︷ ︸
c1(τ)

− PBθ⋆
(s′n−1|sn)

(8)

Given that the transition s′n−1 → sn is unseen in the training data, it does not participate in calculat-
ing the trajectory balance loss. Therefore, PBθ⋆

(s′n−1|sn) can be an arbitrary value between 0 and
1−

∑
s̃n−1∈Sn−1\{sn−1,s′n−1}

PBθ⋆
(s̃n−1|sn).

Let c1(τ) = 1−
∑

s̃n−1∈Sn−1\{sn−1,s′n−1}
PBθ⋆

(s̃n−1|sn), we have PBθ⋆
(sn−1|sn) can be chosen

arbitrarily from (0, c1(τ)). Here, we observe that the backward transition probability PBθ⋆
(sn−1 |

sn) can be severely underestimated, which in turn drives the forward flow PFθ⋆
(τ) toward zero,

regardless of the reward value R(sn).

Let c2(τ) = c1(τ)R(sn)Π
n−2
i=0 PBθ⋆

(si|si+1). Then, we have that the righthand side of Equation 7
can be an arbitrary number in (0, c2(τ)

Zθ∗
). When Zθ∗ ≤ c2(τ), the transition probability PFθ⋆

(sn |
sn−1) can be arbitrarily chosen from (0, 1) while still satisfying the trajectory balance loss. This
demonstrates that F ∗ can significantly deviate from the GFlowNet objective over some x ∈ X last

s .
Moreover, when Zθ∗ = infτ∈T train

s
c2(τ), F ⋆ can satisfy the TB condition over T train while arbitrarily

poorly meeting the GFlowNet objective of proportionality over X last
s .

B PROOF OF THEOREM 2

Theorem 2. Suppose the backward policy is uniform and satisfies the condition

logPBuniform(τ) ≥ µPBuniform
(b)− cupperσPBuniform

(b), (9)

for every τ ∈ b and batch b ⊆ T , then there exists a solution such that LTB-BF(τ) = 0 for all
τ ∈ T . Moreover, LTB-BF(τ) = 0 for all τ ∈ T yields a policy that samples proportionally to the
reward.

Proof. The objective LTB-BF(τ) is defined as:

LTB-BF(τ) = LTB(τ)− Iζ(τ)>µζ(b)+cupperσζ(b)

(
logPFθ

(τ)− logPBθ
(τ)

)
Since LTB(τ) is a squared term and thus non-negative, a global minimum of zero is possible. A state
of LTB-BF(τ) = 0 for all τ requires that two conditions are met simultaneously:

1. LTB(τ) = 0 for all τ ∈ T .

2. The augmentation term is inactive for all trajectories, i.e., the indicator function
Iζ(τ)>µ(b)+cupperσ(b) is zero for all τ in any batch b.

Our proof strategy is to demonstrate the existence of at least one policy that satisfies both conditions,
thereby showing that the zero-loss state is achievable.

From the foundational theory of GFlowNets (Bengio et al., 2023), for any choice of backward policy
PB , there exists a corresponding forward policy PF and partition function Zθ that satisfy the TB
condition, making LTB(τ) = 0. As per the theorem’s premise, let us choose the backward policy
to be uniform, PB(τ) = PBuniform(τ). For this choice, a valid GFlowNet solution exists, satisfying
Condition 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, we must verify that this solution also satisfies Condition 2. When the TB condition is met
(LTB(τ) = 0), the statistic ζ(τ) simplifies to:

ζ(τ) = logZθ − 2 logPBθ
(τ) (10)

For our chosen solution with a uniform backward policy, this becomes:

ζ(τ) = logZθ − 2 logPBuniform(τ) (11)

The triggering condition of the augmentation term can be rewritten as

logZθ − 2 logPBuniform(τ) > logZθ − 2µPBuniform
(b) + 2cupperσPBuniform

(b) (12)

Further simplify and get

logPBuniform(τ) < µPBuniform
(b)− cupperσPBuniform

(b)

which is what we assumed to be always false.

C METHOD DETAILS

C.1 DETAILS OF BATCH FILTERING

Based on Theorem 1, we use batch-level statistics of the signal ζ(τ) = logR(τ) − logPFθ
(τ) −

logPBθ
(τ) to identify potentially overfit trajectories. We compute the batch-level mean and standard

deviation of ζ and check if each trajectory τ is an outlier with ζ(τ) > µ+ cupperσ. The pseudocode
is given in Algorithm 1.

Algorithm 1 Batch filtering
Require: Upper threshold cupper.

Sample one batch of trajectory b = {τ1, τ2, · · · , τn} from the replay buffer.
Collect the reward R(τk), compute the forward transition logPFθ

(τk), backward transition
logPBθ

(τk) for each trajectory τk, k = 1, · · · , n.
For each trajectory τ ∈ Tbatch, calculate the signal ζ(τ) = logR(τ)− logPFθ

(τ)− logPBθ
(τ).

Calculate the mean and standard deviation of ζ to obtain µ(b), σ(b) respectively.
for all τ ∈ b do

if ζ(τ) > µ(b) + cupperσ(b) then
Set the loss of τ according to Equation (3).

end if
end for

C.2 DETAILS OF TEMPERATURE DECAY

We augment the reward function R with an additive augmented reward R′ to encourage exploration.
By decaying these added values over time, the learning objective gradually aligns with the original
problem.

A linear reward decay would result in an exponential increase in GFlowNet loss during later train-
ing stages due to the logR term in the loss function. Hence, we devise the sigmoid decay that
encourages exploration during the early stages of training while reserving sufficient training itera-
tions for the model to adapt to the gradually diminishing augmented rewards. Algorithm 2 presents
the pseudocode.

In the experiments, we use a constant function R′(τ) = 1.

C.3 DETAILS OF MIXED PRIORITY REPLAY BUFFER

We use R(τ)L̂(τ) as the weight to sample from the replay buffer, where L̂ represents the relative
loss of the trajectory τ , normalized to a value in [0.1, 10.0].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Sigmoid Temperature Decay
Require: Total steps T , initial temperature α0, decay rate β0, augmented reward function R′.

for t = 1 to T do
Sample one batch of trajectories {τ1, τ2, · · · , τn} from the replay buffer.
Perform GFlowNet updates by treating the reward of τk as R(τk) + αR′(τk).
Update the temperature: α = α0

1+1010−β0(1−t/T) .
end for

To ensure that low-reward trajectories are not omitted, we offset the weights by adding the mean
weight, balancing the sampling probability between low-reward and high-reward trajectories when
the replay buffer contains mostly low reward data. Additionally, to prevent the sampler from dispro-
portionately selecting low-reward trajectories due to small losses for high-reward trajectories, we
introduce a recovery step. This step restores the loss of high-reward trajectories to 1 if they have not
been visited for an extended period. The pseudocode is shown in Algorithm 3.

Algorithm 3 Prioritized experience replay buffer with mixed weighting.
procedure WEIGHTEDSAMPLING(Batch size n)

Sample n records by the weights (R(τ)L̂(τ) + 1
|Ttrain|

∑
τ ′∈Ttrain

R(τ ′)L̂(τ ′))
Return the index of samples {iτ1 , iτ2 , · · · , iτn}, the sampled trajectories {τ1, τ2, · · · , τn}.

end procedure
procedure UPDATEWEIGHT(Indexes {iτ1 , iτ2 , · · · , iτb}, Losses {lτ1 , lτ2 , · · · , lτb})

for all τ ∈ Ttrain do
if R(τ) > 90 percentile of the observed R in Ttrain then

Update L̂(τ)← 0.95L̂(τ) + 0.05
end if

end for
for all iτ ∈ {iτ1 , iτ2 , · · · , iτn} do

Update L̂(τ)← 9.9lτ
max({lτj }j=1,··· ,n)−min({lτj }j=1,··· ,n)

+ 0.1

end for
end procedure

D EXPERIMENTAL DETAILS

D.1 WHY ARE THESE ENVIRONMENTS SPARSE?

We introduce two methods to evaluate the condition described in Section 3. The first is empir-
ical. A typical untrained policy, which is uniform in discrete settings or Gaussian or uniformly
distributed over a bounded range in continuous spaces, is used to sample trajectories. If the pro-
portion of nonzero-reward trajectories is close to zero, the environment is considered sparse. The
second method applies to problems defined by a size parameter n, such as the number of bits or
spatial dimensions. In these cases, the reward is considered sparse if the fraction of high-reward
outcomes vanishes as n becomes sufficiently large.

To measure the sparsity of rewards in our environments, we apply the first approach mentioned
above. Specifically, we use a uniform random sampler to generate 105 trajectories for a discrete
action space. For the Gaussian mixture and pusher, we sample trajectories from a truncated normal
distribution with a mean of 0 and standard deviations of 0.05 and 0.5, respectively. We then calculate
the percentage of high-reward trajectories, with the results presented in Table 2. All experiments use
a random seed of 42.

D.2 IMPLEMENTATION

We strictly follow Lahlou et al. (2023b) to implement the GFlowNet training algorithm with TB and
SubTB losses, with modifications to add our approaches and adapt to the standard APIs provided by
Gymnasium (Towers et al., 2024). To ensure correctness, we test its performance in the hypergrid

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hypergrid sEH Gaussian
Mixture Pusher

D = 2 D = 4

0.140 0.022 0.099 0.827 0.242

Table 2: Sparsity of environments: percentage of high-reward trajectories (R(τ) > 1e − 3) in
100, 000 attempts with untrained policies.

example 8×8×8×8 using the same hyperparameters specified in Lahlou et al. (2023b). Our results
confirm that the implementation achieves performance consistent with the original.

For GAFN, we follow the source code provided by Pan et al. (2023b). For PBP-GFN, we build on
the implementation described in Jang et al. (2024). Since the original code only supports discrete
environments, we extend it to continuous settings by maximizing the log-likelihood of the backward
transition probabilities of the observed trajectories. For Teacher-Student training (Teacher), we
follow the code provided in Kim et al. (2025b).

D.3 OFF-POLICY TRAINING

As our approach follows an off-policy training paradigm, we set the replay buffer size to 100,000,
the training frequency to 16, and perform 10 gradient updates per training step using the Adam
optimizer. For each experiment, we initially collect 96 trajectories using an untrained policy, as we
find this improves early training stability. All experiments are repeated five times with random seeds
470, 3825, 4444, 8888, 9528. These training configurations are applied across all our experiments.

To ensure a fair comparison under off-policy training, we apply reward-prioritized training (RP)
to all baselines except vanilla TB, following the insights from Vemgal et al. (2023), which show
that RP improves mode discoverability and accelerates training. This choice mitigates the risk of
performance degradation due to a biased replay buffer and ensures that observed differences are due
to the baselines’ core algorithms rather than incompetent sampling strategies.

For PBP-GFN, we follow the off-policy training hyperparameters, maximizing the probability of the
probabilities of backward transition in sampled batches of observed trajectories 8 times before each
training step.

Teacher–Student training was originally proposed for the on-policy learning paradigm. However,
we note it can also be applied off-policy. As suggested in Vemgal et al. (2023), on-policy learning
is generally more challenging; to ensure fairness in our comparison, we combine it with reward-
prioritized replay (RP). Following the ablation results in Kim et al. (2025b), we use α = 0. As local
search is not always available, the behavioral policy is limited to the teacher and the student, with
equal probability assigned to each when sampling new trajectories.

D.4 COMPUTATIONAL RESOURCES

All experiments were conducted on an internal compute cluster managed by SLURM, with jobs
scheduled using reproducible SLURM job scripts. Each compute node was equipped with a single
NVIDIA A10 GPU (24GB VRAM), and each job requested 64GB of RAM and 16 CPU cores.

Training times varied by environment: approximately 2 hours for the Gaussian mixture environment
and up to 4 hours for the 4D Hypergrid. SubTB incurred significantly higher computational costs
on Hypergrid tasks, with some instances requiring over 24 hours to complete.

D.5 HYPERGRID

Reward Function. The reward function of hypergrid in (Bengio et al., 2021) is defined using three
coefficients R0, R1, and R2. Given height H , dimension D, and an end state x with coordinates
(x1, x2, · · · , xD), the reward function is expressed as:

R(x) = R0 +R1

D∏
d=1

I
[
| xd

H − 1
| ∈ (0.25, 0.5)

]
+R2

D∏
d=1

I
[
| xd

H − 1
− 0.5| ∈ (0.3, 0.4)

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Environment Method Learning
Rate

Batch
Size

Activation
Function

Network
Structure

Epsilon
Random

Hypergrid
D = 2, H = 64

TB

5e− 3 16
LeakyReLU [256, 256] Off

TB-RP
GAFN

PBP-GFN
SubTB
Teacher

Hypergrid
D = 4, H = 64

TB

1e− 4 16 LeakyReLU [256, 256]

Off
TB-RP Off
GAFN On

PBP-GFN Off
SubTB Off
Teacher Off

sEH

TB 1e− 3

16 LeakyReLU [256, 256] On

TB-RP 1e− 3
GAFN 1e− 4

PBP-GFN 1e− 3
SubTB 1e− 3
Teacher 1e− 3

Gaussian
Mixture

TB 1e− 3 16

LeakyReLU [256, 256]

Off
TB-RP 1e− 3 16 Off
GAFN 1e− 4 32 On

PBP-GFN 5e− 3 16 On
SubTB 1e− 3 16 Off
Teacher 1e− 3 32 On

Multi-objective
Pusher

TB 1e− 5 32

LeakyReLU

[128, 128]

Off
TB-RP 1e− 5 32 [128, 128]
GAFN 1e− 5 32 [256, 256]

PBP-GFN 1e− 4 16 [128, 128]
SubTB 1e− 5 32 [128, 128]
Teacher 1e− 5 32 [256, 256]

Table 3: Hyperparameters chosen for each environment and method.

For our experiments, we set R0 = 10−10, R1 = 0 and R2 = 2 to make the reward function sparser
than previously studied. The reward fnction with these configurations is shown in Figure 5(a). Under
these settings, in the 64× 64 environment, only 4% of the end states yield rewards greater than the
base reward (10−10). In the more challenging 64 × 64 × 64 × 64 variant, only 0.16% of the end
states have high rewards.

States and Action. We follow Bengio et al. (2021) and use the one-hot encoding for each dimension
of the coordinates, resulting in an input state of dimension D ×H . The actions also follow Bengio
et al. (2021), consisting of one exit action and operations of incrementing the selected coordinate by
1 at each step.

Hyperparameters. We follow Malkin et al. (2022) and adopt a multilayer perceptron (MLP) ar-
chitecture with two hidden layers of 256 units each. The learning rate for Zθ is set to be 100 times
that of the forward and backward policies. We perform a grid search to tune the hyperparameters,
selecting the learning rate from {0.0001, 0.0005, 0.001, 0.005}, the activation function from ReLU
and LeakyReLU, and choosing whether to apply ϵ-random exploration (starting at 0.1 and decaying
linearly during training). The selected hyperparameters are summarized in Table 3.

For both hypergrid environments, we tuned the hyperparameters of our proposed methods start-
ing from the optimal configuration used for TB-RP. For the temperature decay mechanism (TD),
we evaluated the initial temperature α0 of the set {1.0, 0.1, 0.01, 0.001} and the decay rate β0 of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Hypergrid (b) Gaussian mixture

(0.45, -0.05)(0.25, -0.05)

(0.35, -0.15)

elbow

shoulder
wrist

(0.35, -0.05)

(c) Pusher

Figure 5: (a) and (b) show the reward function of the hypergrid and Gaussian mixture environments,
respectively. (c) shows the multi-objective pusher environment with the three targets.

[10, 40]. We selected α0 = 0.001 and β0 = 10. For batch filtering, we tested the upper threshold
cupper from {1, 2, 3} and selected cupper = 3.

Since LeakyReLU consistently outperforms ReLU across experiments, we adopt LeakyReLU as the
activation function for all subsequent experiments.

D.6 SEH

Reward Function. We use the proxy model from (Shen et al., 2023) to compute rewards, which
estimates the binding energy of a molecule to the soluble epoxide hydrolase (sEH) protein target.
Following (Shen et al., 2023), we set the reward exponent to 6. To introduce sparsity into the
environment, we assign a near-zero reward value of 10−10 to the bottom 99.9% of proxy-evaluated
states.

States and Actions. We follow (Shen et al., 2023) to use 18 blocks with 2 stems, and use 6 blocks per
molecule. These result in state dimension of 18×6 = 108 and the action dimension of 2×18+1 =
37.

Hyperparameters. We adopt a multilayer perceptron (MLP) architecture. The learning rate for
Zθ is set to be 100 times that of the forward and backward policies. We perform a grid search to
tune the hyperparameters, selecting the policy learning rate from {0.0001, 0.0005, 0.001, 0.005}, the
neuron size between [128, 128] and [256, 256], and choosing whether to apply ϵ-random exploration
(starting at 0.1 and decaying linearly during training). The selected hyperparameters are summarized
in Table 3.

We tuned the hyperparameters of our proposed methods starting from the optimal configuration
used for TB-RP. For the temperature decay (TD) mechanism, we evaluated the initial temperature
α0 of the set {1.0, 0.1, 0.01, 0.001} and the decay rate β0 of [10, 40]. We selected α0 = 0.001
and β0 = 40. For batch filtering, we tested the upper threshold cupper from {1, 2, 3} and selected
cupper = 1.

D.7 GAUSSIAN MIXTURE

Reward Density. This problem is continuous, and the reward density function is modeled as a
mixture of four independent Gaussian distributions as shown in Figure 5(b). The mean values are
µ1 = (0.2, 0.2), µ2 = (0.8, 0.2), µ3 = (0.2, 0.8), µ4 = (0.8, 0.8), with each distribution having a
standard deviation of 0.02. Given an end state x ∈ [0, 1]× [0, 1], the reward density R(x) is defined
as

R(x) =
1

4

4∑
i=1

1

0.02
√
2π

exp

(
−∥x− µi∥2

2(0.02)2

)
+ 10−10

States and Actions. We encode the state to represent the temporal information (current step in a
trajectory length of 10 as the maximum trajectory length is 11) and the relative quadrant compared
to the initial state. Specifically, values greater than 0.5 and less than 0.5 are encoded into two distinct
dimensions, resulting in an input state vector of length 40.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We sample actions from a truncated Gaussian distribution, with the mean ranging from (−0.1, 0.1),
the standard deviation from (0.001, 0.1), and the range limited to (−0.2, 0.2). We also add a dimen-
sion to the action to indicate the exit of the episode.

Hyperparameters. We use a multilayer perceptron (MLP) architecture. The learning rate for Zθ is
set to be 100 times that of the forward and backward policies. We perform a grid search to tune the
hyperparameters, selecting the policy learning rate from {0.0001, 0.0005, 0.001, 0.005}, the neuron
size between [128, 128] and [256, 256], the batch size between 16 and 32, and choosing whether
to apply ϵ-random exploration (starting at 0.1 and decaying linearly during training). The selected
hyperparameters are summarized in Table 3.

We tuned the hyperparameters of our proposed methods starting from the optimal configuration used
for TB-RP. For the temperature decay (TD) mechanism, we evaluated the initial temperature α0 of
the set {1.0, 0.1, 0.01, 0.001} and the decay rate β0 of [10, 40], we selected α0 = 1.0 and β0 = 10.
For batch filtering, we tested the upper threshold cupper from {1, 2, 3} and selected cupper = 2.

Approximating KL-Divergence. Given N points sampled from the GFlowNet model, we approx-
imate the KL-divergence between the learned GFlowNet sampler and the target distribution P as
follows:

1. We fit a kernel density estimator (KDE) Q on the N samples.
2. We create a mesh grid over the 1× 1 area with 10000 points, with step size 0.01 on either

dimension.
3. For each grid point x, we compute the value P (x) log P (X)

Q(x)

4. We approximate the KL-divergence as the KL-divergence as the mean of these computed
values over all grid points.

D.8 MULTI-OBJECTIVE PUSHER

This is an environment to exemplify the potential limitation of applying our approach to sparse-
reward environments with huge state spaces.

Reward Density. This environment is based on “Pusher” implemented in Gymnasium Towers et al.
(2024), a sparse-reward environment with 7 degrees of freedom in the reinforcement learning com-
munity Zhang et al. (2021). The original objective is to control a robotic arm to push a cylinder
towards a goal position. We modified the reward function by adding a second goal position to meet
our purpose of GFlowNet to discover novel robotic control strategies that achieve specific condi-
tions. Given the current coordinates x = (x(1), x(2)) of the cylinder centroid, the goal coordinates
µ1 = (0.45,−0.05) and µ2 = (0.25,−0.05), µ3 = (0.35,−0.05), the reward density is defined as

R(x) = max(50000(I(∥x− µ1∥ < 0.05) + I(∥x− µ2∥ < 0.05) + I(∥x− µ3∥ < 0.05), 10−10)

States and Actions. We use the states provided by the original “Pusher” environment, excluding
the goal position, resulting in an 19-dimensional state representation. Additionally, we encode the
time step as a 9-dimensional vector (the maximum trajectory length is 10), producing a final input
state with a length of 28.

Unlike the original environment, we fix the initial state: both the initial position and velocity of the
pusher arm are set to constant values of 0, and the initial position of the cylindrical object is set
to (−0.1,−0.1). We also modify the control frequency by setting the step size to 0.5 seconds and
restricting each episode to at most 10 time steps.

The action space is 4-dimensional, derived from the original control inputs by excluding the last
three dimensions corresponding to wrist rotation, which are fixed to zero.

Hyperparameters. We use a multilayer perceptron (MLP) architecture. The learning
rate for Zθ is set to be 100 times that of the forward and backward policies. We
perform a grid search to tune the hyperparameters, selecting the policy learning rate
from {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005}, the neuron size between [128, 128] and
[256, 256], the batch size between 16 and 32, and choosing whether to apply ϵ-random exploration
(starting at 0.1 and decaying linearly during training). The selected hyperparameters are summarized
in Table 3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We tuned the hyperparameters of our proposed methods starting from the optimal configuration used
for TB-RP. For the temperature decay (TD) mechanism, we evaluated the initial temperature α0 of
the set {1.0, 0.1, 0.01, 0.001} and the decay rate β0 of [10, 40]. We selected α0 = 1.0 and β0 = 10.
For batch filtering, we tested the upper threshold cupper from {0, 0.5, 1, 2}. We found that setting
cupper = 0 yielded the highest successful rate, suggesting all end states are underexplored for this
environment.

Dynamic Time Warping (DTW) Distance. For each trained model, we generate trajectories and
identify those that successfully reach a specific goal. For each pair of successful trajectories corre-
sponding to the same goal, we compute the Dynamic Time Warping (DTW) distance between their
action sequences, as defined in Equation 13:

DTW(ai, aj) = min
π

∑
(t,t′)∈π

∥ati − at
′

j ∥2, (13)

where ai and aj denote the action sequences of two successful trajectories, and π represents a
warping path aligning their time steps. Here, we obtain DTW(ai, aj) using the Python fastdtw
package.

For each goal, we then average the pairwise DTW distances over all successful trajectory pairs.
We use the resulting mean DTW value to quantify the diversity of successful control strategies and
report it in the rightmost panel of Figure 2.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LEARNED PATTERNS DURING TRAINING

Figure 6 illustrates the distributions learned by our approaches during training with random seed
470. The results show effective exploration, demonstrating both effective exploration and reliable
convergence to high-reward states.

Figure 6: Learned patterns of our approaches for Hypergrid and Gaussian mixture environments.

E.2 SENSITIVITY ANALYSIS

Figure 7 presents the sensitivity analysis of our method with respect to key hyperparameters. Across
all tested environments, our approach performs robustly over a broad range of hyperparameter val-
ues, supporting their practical utility since extensive tuning is not required.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Hypergrid
(L1 Error ↓) sEH Gaussian

Mixture
Multi-objective

Pusher
D = 2 D = 4 (# modes ↑) (KL Div. ↓) (Success Rate ↑)

BF + MP + TD 0.037 ± 0.002 0.283 ± 0.004 30730.6 ± 172.6 3.191 ± 0.001 0.541 ± 0.032
BF + RP + TD 0.046 ± 0.005 0.312 ± 0.018 29030.8 ± 28.0 3.190 ± 0.001 0.321 ± 0.093
BF + MP 0.792 ± 0.371 1.461 ± 0.259 29449.2 ± 106.8 5.586 ± 0.605 0.305 ± 0.103
BF + RP 0.863 ± 0.202 1.534 ± 0.067 28038.4 ± 135.6 5.312 ± 1.083 0.212 ± 0.024
MP + TD 0.038 ± 0.002 0.284 ± 0.008 29910.0 ± 140.7 3.211 ± 0.018 0.094 ± 0.186
RP + TD 0.040 ± 0.004 0.303 ± 0.009 28685.8 ± 204.3 3.213 ± 0.031 0.000 ± 0.000
BF + TD 0.046 ± 0.004 0.923 ± 0.143 29070.8 ± 279.2 3.188 ± 0.001 0.035 ± 0.007
MP 0.841 ± 0.335 1.205 ± 0.327 29154.4 ± 349.5 6.715 ± 0.851 0.197 ± 0.215
RP 0.620 ± 0.327 1.483 ± 0.175 27461.0 ± 723.6 6.198 ± 0.997 0.028 ± 0.056
BF 0.724 ± 0.292 1.154 ± 0.410 28236.8 ± 330.9 4.172 ± 1.172 0.134 ± 0.120
TD 0.041 ± 0.003 0.988 ± 0.132 28593.4 ± 70.4 3.211 ± 0.018 0.031 ± 0.017
Vanilla 0.520 ± 0.432 0.786 ± 0.443 27139.2 ± 707.8 5.498 ± 1.039 0.029 ± 0.036

Table 4: Ablation study results. Each cell reports the mean and standard deviation across 5 seeds.

Several insights emerge from this analysis. First, increasing the level of exploration (higher values
of temperature) generally improves training stability, as indicated by the standard deviations. This
effect is especially noticeable with higher temperature decay rates, where the temperature drops
more rapidly in the later stages of training. Such schedules encourage more aggressive exploration,
leading to more stable outcomes.

Second, while setting the initial temperature too low can cause insufficient exploration, we observe
that overly large initial temperatures can also lead to incorrect flow within, as evident in the Hy-
pergrid environments. To avoid this, the initial temperature should be set two to three orders of
magnitude smaller than the high-reward values, but can be much closer to the scale of the total
rewards. For instance, we observe that an initial temperature of 0.01 performs well in the 4D Hyper-
grid, while a higher value, like 1.0, is suitable for the Gaussian mixture environment. We note that
adding these minimal rewards significantly alters the original problem.

Finally, batch filtering proves critical in the multi-objective Pusher environment. Performance im-
proves when more trajectories are identified as overfitted and treated by our interventions. This
highlights the importance of incorporating batch filtering in sparse-reward problems with large state
spaces, where most sampled trajectories tend to fall into underexplored regions.

E.3 ABLATION STUDY

To assess the contribution of each component to overall performance, we conduct an ablation study
across all environments. Table 4 shows the results.

The combination of batch filtering (BF), mixed-priority replay buffer (MP), and temperature decay
(TD) consistently yields the best results, highlighting the complementary benefits of these compo-
nents.

We observe that in certain environments, partial combinations of our proposed components can al-
ready yield competitive results. For instance, applying TD alone performs well in the 2D Hypergrid
and Gaussian mixture environments, while combining MP and TD effectively addresses the more
complex 4D Hypergrid. This aligns with our understanding that sparse-reward challenges involve
different aspects, and their difficulties vary across the tested environments.

For environments such as molecule generation and multi-objective pusher, which involve signif-
icantly larger and more complex state spaces, the full combination of BF, MP, and TD leads to
the best performance. We note that these environments are particularly relevant to real-world ap-
plications, where the search space is vast and achieving both high sample efficiency and diverse
high-reward trajectory discovery is of paramount interest.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(10,
 0.001)

(10,
 0.01)

(10,
 0.1)

(10,
 1.0)

(40,
 0.001)

(40,
 0.01)

(40,
 0.1)

(40,
 1.0)

(Decay rate, Initial temperature)

1.0

2.0

3.0

Ba
tc

h
fil

te
r t

hr
es

ho
ld

s 1.000
(0.000)

0.732
(0.345)

0.166
(0.005)

0.167
(0.003)

1.000
(0.000)

0.264
(0.027)

0.651
(0.001)

1.143
(0.001)

0.049
(0.010)

0.049
(0.002)

0.046
(0.005)

0.058
(0.003)

0.050
(0.001)

0.165
(0.006)

0.703
(0.002)

1.170
(0.001)

0.077
(0.073)

0.037
(0.002)

0.054
(0.010)

0.052
(0.001)

0.045
(0.002)

0.173
(0.012)

0.710
(0.004)

1.173
(0.001)

Hypergrid 64 × 64 (Empirical L1 loss)

(10,
 0.001)

(10,
 0.01)

(10,
 0.1)

(10,
 1.0)

(40,
 0.001)

(40,
 0.01)

(40,
 0.1)

(40,
 1.0)

(Decay rate, Initial temperature)

1.0

2.0

3.0

Ba
tc

h
fil

te
r t

hr
es

ho
ld

s 1.717
(0.051)

0.432
(0.036)

0.372
(0.007)

0.483
(0.031)

0.817
(0.029)

1.269
(0.017)

1.537
(0.014)

1.685
(0.012)

1.178
(0.410)

0.316
(0.031)

0.309
(0.009)

0.386
(0.025)

0.546
(0.009)

1.189
(0.022)

1.495
(0.018)

1.653
(0.018)

1.158
(0.221)

0.283
(0.004)

0.301
(0.012)

0.349
(0.027)

0.505
(0.004)

1.132
(0.012)

1.474
(0.029)

1.631
(0.022)

Hypergrid 64 × 64 × 64 × 64 (Empirical L1 loss)

(10,
 0.001)

(10,
 0.01)

(10,
 0.1)

(10,
 1.0)

(40,
 0.001)

(40,
 0.01)

(40,
 0.1)

(40,
 1.0)

(Decay rate, Initial temperature)

1.0

2.0

3.0

Ba
tc

h
fil

te
r t

hr
es

ho
ld

s 0.835
(0.001)

0.836
(0.001)

0.836
(0.001)

0.832
(0.001)

0.843
(0.001)

0.792
(0.002)

0.684
(0.006)

0.594
(0.005)

0.830
(0.002)

0.833
(0.001)

0.833
(0.001)

0.831
(0.001)

0.840
(0.001)

0.788
(0.001)

0.690
(0.004)

0.610
(0.008)

0.831
(0.004)

0.833
(0.004)

0.832
(0.001)

0.830
(0.002)

0.836
(0.000)

0.785
(0.002)

0.693
(0.003)

0.617
(0.007)

Molecule generation (Peason correlation)

(10,
 0.001)

(10,
 0.01)

(10,
 0.1)

(10,
 1.0)

(40,
 0.001)

(40,
 0.01)

(40,
 0.1)

(40,
 1.0)

(Decay rate, Initial temperature)

1.0

2.0

3.0

Ba
tc

h
fil

te
r t

hr
es

ho
ld

s 5.065
(0.514)

3.826
(0.561)

3.196
(0.002)

3.196
(0.001)

3.739
(0.657)

3.198
(0.002)

3.194
(0.003)

3.191
(0.001)

4.347
(0.965)

3.194
(0.002)

3.192
(0.002)

3.191
(0.001)

3.596
(0.629)

3.192
(0.003)

3.202
(0.008)

3.222
(0.011)

3.988
(0.934)

3.265
(0.084)

3.213
(0.025)

3.197
(0.003)

3.284
(0.049)

3.238
(0.042)

3.299
(0.073)

3.264
(0.041)

Gaussian mixture (Approx. KL divergence)

(10,
 0.001)

(10,
 0.01)

(10,
 0.1)

(10,
 1.0)

(40,
 0.001)

(40,
 0.01)

(40,
 0.1)

(40,
 1.0)

(Decay rate, Initial temperature)

0.0

0.5

1.0

2.0

Ba
tc

h
fil

te
r t

hr
es

ho
ld

s

0.546
(0.102)

0.450
(0.110)

0.500
(0.104)

0.541
(0.032)

0.410
(0.097)

0.385
(0.103)

0.393
(0.059)

0.383
(0.046)

0.329
(0.141)

0.286
(0.139)

0.378
(0.113)

0.345
(0.092)

0.327
(0.086)

0.360
(0.092)

0.369
(0.034)

0.323
(0.058)

0.288
(0.154)

0.240
(0.144)

0.259
(0.162)

0.231
(0.054)

0.233
(0.156)

0.243
(0.073)

0.224
(0.055)

0.215
(0.063)

0.091
(0.090)

0.173
(0.160)

0.043
(0.035)

0.081
(0.101)

0.133
(0.207)

0.037
(0.044)

0.010
(0.015)

0.084
(0.086)

Multi-objective pusher (Success rate)

Figure 7: Sensitivity results. The cell value (top) shows the average performance metric for the
environment, and in brackets shows the standard deviation of the performance metric across five
seeds.

23

	Introduction
	Preliminaries
	The Problem of Sparse Rewards
	Implications of Sparse Rewards
	Challenges of Training GFlowNets in Sparse-reward Environments

	Methods
	Batch Filtering (BF)
	Sigmoid Temperature Decay (TD)
	Mixed Priority (MP) Replay Buffer

	Related Work
	Experiments
	Environments
	Baselines
	Performance Comparison
	Analysis of Results

	Conclusion and Discussion
	Proof of Theorem 1
	Proof of Theorem 2
	Method Details
	Details of Batch Filtering
	Details of Temperature Decay
	Details of Mixed Priority Replay Buffer

	Experimental Details
	Why are these Environments Sparse?
	Implementation
	Off-policy Training
	Computational Resources
	Hypergrid
	sEH
	Gaussian Mixture
	Multi-objective Pusher

	Additional Experimental Results
	Learned Patterns During Training
	Sensitivity Analysis
	Ablation Study

