
Nonuniform Negative Sampling and Log Odds
Correction with Rare Events Data

HaiYing Wang
Department of Statistics

University of Connecticut
haiying.wang@uconn.edu

Aonan Zhang
ByteDance Inc.

aonan.zhang@bytedance.com

Chong Wang
ByteDance Inc.

chong.wang@bytedance.com

Abstract

We investigate the issue of parameter estimation with nonuniform negative sam-
pling for imbalanced data. We first prove that, with imbalanced data, the available
information about unknown parameters is only tied to the relatively small number
of positive instances, which justifies the usage of negative sampling. However,
if the negative instances are subsampled to the same level of the positive cases,
there is information loss. To maintain more information, we derive the asymptotic
distribution of a general inverse probability weighted (IPW) estimator and obtain
the optimal sampling probability that minimizes its variance. To further improve
the estimation efficiency over the IPW method, we propose a likelihood-based
estimator by correcting log odds for the sampled data and prove that the improved
estimator has the smallest asymptotic variance among a large class of estimators. It
is also more robust to pilot misspecification. We validate our approach on simu-
lated data as well as a real click-through rate dataset with more than 0.3 trillion
instances, collected over a period of a month. Both theoretical and empirical results
demonstrate the effectiveness of our method.

1 Introduction

Imbalanced data are ubiquitous in scientific fields and applications with binary response outputs,
where the number of instances in the positive class is much smaller than that in the negative class. For
example, in online search or recommendation systems where billions of impressions appear each day,
non-click impressions usually dominate. Using these non-click impressions as negative instances is
prevalent and proved to be useful especially in modern machine learning systems [21, 12, 4, 9, 14].
A common approach to address imbalanced data is to balance it by subsampling the negative class
[6, 19] and/or up-sampling the positive class [2, 10, 20, 5], and a great deal of attentions have been
drawn to this problem, see [15, 17, 3, 7, 23, 27, 1, 25, 8, 18, 30], and the references therein.

In this paper, we focus on subsampling the negative class, i.e., negative sampling, while keeping
all rare positive instances. This is beneficial for modern online learning systems, where negative
sampling significantly reduces data volume in distributed storage while saving training time for
multiple downstream models. Rare events data and negative sampling are studied in [30], but it
focused on linear logistic regression and only considered uniform sampling. We approach this
problem under general binary response models from the perspective of optimal subsampling, which
aims to minimize the asymptotic variance of the IPW estimator [32, 28, 31, 33]. This topic was not
well investigated neither for imbalanced data nor for negative sampling. In addition, existing optimal
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probability formulation minimizes the conditional asymptotic variance and the variations due to the
data randomness are ignored. We fill these gaps by deriving the asymptotic distributions for both full
data and subsample estimators under general binary response models, and we find the unconditional
optimal probability for negative sampling. In addition, since IPW may inflate the variance [13, 22],
we develop a more efficient likelihood-based estimator through nonuniform log odds correction to
avoid IPW. Our main contributions are summarized as follows.

• Under a general binary response model with rare events data, we find that the difference
between the full data estimator and the true parameter converges to a normal distribution at
a rate that is tied to the number of rare positive instances only. This indicates the possibility
to throw away the majority of negative instances without information loss, i.e, it justifies the
usage of negative sampling.

• We show that there is no asymptotic information loss with aggressive negative sampling if
the negative instances kept dominates the positive instances. However there is information
loss expressed as a variance inflation if the negative instances are brought down to the same
level of the positive instances. For this case, we obtain optimal subsampling probabilities by
minimizing the unconditional asymptotic variance of a general IPW estimator.

• We develop a likelihood estimator through nonuniform log odds correction for sampled data,
and prove that it has the smallest asymptotic variance among a large class of estimators.

• We apply the proposed method to a real online streaming click-through rate (CTR) dataset
with more than 0.3 trillion instances and demonstrate its effectiveness.

The rest of paper is organized as follows. Section 2 defines the problem this paper focuses on
and shows the full data results. Section 3 presents the optimal probability for the IPW estimator.
Section 4 proposes the likelihood-based estimator and establishes its asymptotic optimality. Section 5
discusses practical implementation and the theoretical properties of the resulting estimators. Section 6
presents numerical experiments with simulated data, and applies the proposed method to a real online
streaming CTR dataset with more than 0.3 trillion instances. Section 7 concludes the paper and points
out limitations of our investigation. Proofs and additional experiments with misspecifications are in
the supplementary materials.

2 Problem setup and full data results

Let {(xi, yi)}Ni=1 be training data of size N that satisfies the binary response model,

Pr(y = 1 | x) = p(x;θ), (1)

where y ∈ {0, 1} is the binary class label (y = 1 for the positive and y = 0 for the negative), x is the
vector of features, and θ is the unknown d-dimensional parameter.

Let N1 be the number of positive instances (N1 =
∑N
i=1 yi) and N0 be the number of negative

instances (N0 = N −N1). We consider the scenario of massive imbalanced data, i.e., N1 � N0.
For asymptotic investigations when N1 is much smaller than N0, it is more appropriate to assume
that N1 increases in a slower rate compared with N0, i.e., N1/N0 → 0 in probability as N → ∞
[30]. This requires Pr(y = 1) = E{p(x;θ)} → 0 as N → ∞ on the model side. We assume that
the parameter θ contains two components θ = (α,βT)T and the log odds can be written as

g(x;θ) := log
{ p(x;θ)

1− p(x;θ)

}
= α+ f(x;β),

where the true parameter, denoted as θ∗ = (α∗,β∗T)T, satisfies that α∗ → −∞ as N → ∞ and
β∗ is fixed. Here f(x;β) is a smooth function of β, such as a linear function or a nonlinear neural
network model. If it is linear, the model reduces to the logistic regression model. A diverging α∗ and
a fixed β∗ indicate that both the marginal and conditional probabilities for a positive instance are
small. Heuristically, this implies that a change in the feature value does make a rare event become a
large probability event. We can also allow β∗ to change with N , but as long as β∗ has a finite limit,
the situation is essentially the same as a fixed β∗. So here we assume β∗ to be fixed to simplify the
presentation.

Throughout this paper, we use ġ(x;θ) and g̈(x;θ) to denote the gradient and Hessian of g(x;θ) with
respect to (w.r.t.) θ, respectively. Let ‖v‖ be the Frobenius norm and v⊗2 = vvT for a vector or a
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matrix v. We denote π(x, y) as the sampling probability for an instance (x, y). For negative cases,
we sometimes use a shorthand notation π(x) to denote its sampling probability. We use oP (1) to
represent a random quantity that converges to 0 in probability as N →∞.

2.1 It is the number of positive instances that matters

We show that for rare events data, the estimation error rate for θ is related to N1 instead of N . Using
the full data, a commonly used estimator of θ is the maximum likelihood estimator (MLE)

θ̂f := argmax
θ

N∑
i=1

[
yig(xi;θ)− log

{
1 + eg(xi;θ)

}]
.

To investigate the theoretical properties of the estimator θ̂f , we make the following assumptions.

Assumption 1. The first, second, and third derivatives of f(x;β) and ef(x;β)f(x;β) w.r.t. any
components of β are bounded by a square intergrable random variable B(x).

Assumption 2. The matrix E{ġ⊗2(x;θ∗)} is finite and positive definite.

Assumption 1 imposes constraints on the smoothness of f(x;θ) w.r.t. θ and on the tightness of the
distribution of x. Assumption 2 ensures that all components of θ are estimable.

Theorem 1. Let Vf = E{ef(x;β∗)}M−1
f where Mf = E{ef(x;β∗)ġ⊗2(x;θ∗)}. Under Assump-

tions 1 and 2, as N →∞,√
N1(θ̂f − θ∗) −→ N(0, Vf), in distribution.

This result shows that even if all the N instances are used for model training, the resulting estimator
θ̂f converges to the true parameter θ∗ at the rate of N−1/21 , which is much slower than the usual rate
of N−1/2 for regular cases. This indicates that with rare events data, the available information about
unknown parameters is at the scale of N1. Although N →∞ much faster than N1 →∞ (in terms
of N1/N → 0), N does not explicitly show in the asymptotic normality result of Theorem 1. For
the specific case of linear logistic regression with g(x;θ) = α + xTβ, our Theorem 1 reduces to
Theorem 1 of [30].

2.2 Negative sampling

Since the available information ties to the number of positive instances instead of the full data size,
one can keep all the positive instances and significantly subsmaple the negative instances to reduce
the computational cost. For better estimation efficiency, we consider nonuniform sampling. Let
ϕ(x) > 0 be an integrable function and ρ be the sampling rate on the negative class. Without loss
of generality, assume E{ϕ(x)} = 1 so that π(xi) := ρϕ(xi) is the sampling probability for the i-th
data point if yi = 1. We present the nonuniform negative sampling procedure in Algorithm 1.

Algorithm 1 Negative sampling
For i = 1, ..., N : if yi = 1, include {xi, yi, π(xi, yi) = 1} in the sample;

if yi = 0, calculate ϕ(xi) and generate ui ∼ U(0, 1);
if ui ≤ ρϕ(xi), include {xi, yi, π(xi, yi) = ρϕ(xi)} in the sample.

3 Weighted estimation and its optimal negative sampling probability

Let δi = 1 if the i-th data point is selected and δi = 0 otherwise. Given a subsample taken according
to π(xi, yi) = yi + (1− yi)ρϕ(xi), i = 1, ..., N , the IPW estimator of θ is

θ̂w = argmax
θ

N∑
i=1

δiπ
−1(xi, yi)

[
yig(xi;θ)− log

{
1 + eg(xi;θ)

}]
. (2)

We need an assumption on the subsampling rate to investigate the subsample estimators.
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Assumption 3. The subsampling rate ρ satisfies that cN := eα
∗
/ρ → c for a constant c such that

0 ≤ c <∞.

Note that cN cannot be zero but its limit c can be exactly zero. It can be shown that cNE{ef(x;β∗)} =
N1(N0ρ)

−1{1 + oP (1)}, so cE{ef(x;β∗)} is the asymptotic positive/negative ratio for the sample.
The theorem below shows the asymptotic distribution of θ̂w.
Theorem 2. Under Assumptions 1-3, if E[{ϕ(x) + ϕ−1(x)}B2(x)] <∞ then as N →∞,√

N1(θ̂w − θ∗) −→ N(0, Vw), in distribution,

where Vw = Vf + Vsub and Vsub = cE{ef(x;β∗)}M−1
f E{ϕ−1(x)e2f(x;β∗)ġ⊗2(x;θ∗)}M−1

f .

The subsampled estimator θ̂w have the same convergence rate as the full data estimator. However,
the asymptotic variance Vw may be inflated by the term Vsub from subsampling the negative cases.
Here Vsub is zero if c = 0. If we keep much more negative instances than the positive instances in
the subsample (c = 0), then there is no asymptotic information loss due to subsampling (Vw = Vf ).
In this scenario, the number of negative instances can still be aggressively reduced (ρ→ 0) so that the
computational efficiency is significantly improved, and the sampling function ϕ(x) does not play an
significant role. If we have to reduce the negative instances to the same level of the positive instances
(0 < c < ∞), then the variance inflation Vsub is not negligible. In this scenario, a well designed
sampling function ϕ(x) it is more relevant and critical.

Theorem 2 shows that the distribution of the estimation error err :=
√
N1(θ̂w − θ∗) is approximated

by a normal distribution N(0,Vw). Thus for any ε > 0 the probability of excess error Pr(err > ε)

is approximated by Pr{‖N(0,Vw)‖ > ε} = Pr
(∑d

j=1 λjz
2
j > ε

)
, where λj’s are eigenvalues of

Vw and zj’s are independent standard normal random variables. Therefore, a smaller trace of Vw

means a smaller probability of excess error of the same level since tr(Vw) =
∑d
j=1 λj .

The following theorem gives the optimal negative sampling function for the IPW estimator.
Theorem 3. For a given sampling rate ρ, the asymptotically optimal ϕ(x) that minimizes tr(Vw) is

ϕos(x) =
min{t(x;θ∗), T}

E[min{t(x;θ∗), T}]
, (3)

where t(x;θ) = p(x;θ)‖M−1
f ġ(x;θ)‖ and T is the maximum number so that

ρ[min{t(x;θ∗), T}] ≤ E[min{t(x;θ∗), T}] with probability one.
Remark 1. If ρ→ 0 then ρt(x;θ∗) ≤ E{t(x;θ∗)} almost surely, so T can be dropped (i.e., T =∞).
If limN→∞ ρ > 0 then c = 0, so the variance inflation due to subsampling is negligible. Thus, the
truncation term T can be ignored in practice with imbalanced data; it only plays an role for not very
imbalanced data when the sampling ratio is not very small.

In ϕos(x), t(x;θ∗) consists of two components, p(x;θ∗) and ‖M−1
f ġ(x;θ∗)‖. The term p(x;θ∗) is

from the binary response model structure, and it gives a higher preference for a data point with larger
p(x;θ∗) in the negative class. The term ‖M−1

f ġ(x;θ∗)‖ corresponds to the A optimality criterion
[24]. For computational benefit in optimal sampling, the A optimality is often replaced by the L
optimality [e.g., 32, 28]. Under the L optimality, ‖M−1

f ġ(x;θ∗)‖ is replaced by ‖ġ(x;θ∗)‖, and this
minimizes the asymptotic mean squared error (MSE) of Mf θ̂w. In case the gradient is difficult to
obtain, one could ignore the gradient term and simply use p(x;θ∗) to replace t(x;θ∗). Although this
does not give an optimal sampling probability, it outperforms the uniform subsampling because it
takes into account the information of the model structure like the local case-control (LCC) sampling.

4 More efficient estimation based on the likelihood with log odds correction

4.1 Nonuniform log odds correction

The optimal function ϕos(x) assigns larger probabilities to more informative instances. However,
the IPW estimator in (2) assigns smaller weights to more informative instances in estimation, so
the resulting estimator can be improved to have higher estimation efficiency. A naive unweighted
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estimator is biased, and the bias correction approach in [8, 29] does not work for the sampling
procedure in Algorithm 1 even when the underlying model is the logistic regression. We adopted the
idea of [11] and seek to define a more efficient estimator through finding the corrected likelihood
of the sampled data based on any negative sampling probability π(x). For data included in the
subsample (where δ = 1), the conditional probability of y = 1 is

pπ(x;θ) := Pr(y = 1 | x, δ = 1) =
1

1 + e−g(x;θ)−l
, (4)

where l = − log{π(x)}. Please see the detailed derivation of (4) in the supplement. To avoid the
IPW, we propose the estimator based on the log odds corrected likelihood in (4), namely,

θ̂lik = argmax
θ

`lik(θ), where `lik(θ) =

N∑
i=1

δi
[
yig(xi;θ)− log

{
1 + eg(xi;θ)+li

}]
. (5)

With θ̂w in (2), π(xi) is in the inverse. If an instance with much smaller π(xi) is selected in the
sample, it dominates the objective function, making the resulting estimator unstable. With θ̂lik, this
problem is ameliorated because π(xi) is in the logarithm in the log-likelihood of (5) and log(v) goes
to infinity much slower than v−1 as v ↓ 0.

4.2 Theoretical analysis of the likelihood-based estimator

The following shows the asymptotic distribution of θ̂lik.

Theorem 4. Under Assumptions 1-3, if E{ef(x;β∗)ϕ−1(x)B(x)} <∞, then as N →∞,√
N1(θ̂lik − θ) −→ N(0,Vlik) in distribution,

where Vlik = E{ef(x;β∗)}Λ−1lik and Λlik = E
[
ef(x;β∗)ġ⊗2(x;θ∗)

1+cϕ−1(x)ef(x;β∗)

]
.

Theorem 3 shows that the proposed estimator θ̂lik is asymptotic normal with variance Vlik. We
compare Vlik with Vw to show that θ̂lik has a higher estimation efficiency than θ̂w.

Theorem 5. If Vw and Vlik are finite and positive definite, then Vlik ≤ Vw, i.e., Vw −Vlik is
non-negative definite. The equality holds when c = 0 and in this case Vlik = Vw = Vf .

Since the estimator θ̂lik in Eg. (5) is based on the conditional log-likelihood of the sampled data, it
actually has the highest estimation efficiency among a class of asymptotically unbiased estimators.

Theorem 6. Let X = (x1, ...,xN )T be the feature matrix and Dδ denote the sampled data. Let θ̂U
be a subsample estimator with the following asymptotic representation:

θ̂U = U(θ∗;Dδ) +N
−1/2
1 oP (1), (6)

where the variance V{U(θ∗;Dδ)} exists, and U(θ∗;Dδ) satisfies that E{U(θ∗;Dδ) | X} = θ∗

and E{U̇(θ∗;Dδ) | X} = 0 with U̇(θ∗;Dδ) = ∂U(θ∗;Dδ)/∂θ∗T. If N1V{U(θ∗;Dδ)} → VU

in probability, then VU ≥ Vlik.

Remark 2. Theorem 6 tells us that θ̂lik is statistically the most efficient among a class of estimators,
which includes both θ̂w and θ̂lik as special cases. The condition E{U(θ∗;Dδ) | X} = θ∗ ensures that
the estimator is asymptotically unbiased. The condition E{U̇(θ∗;Dδ) | X} = 0 can be intuitively
interpreted as the requirement that the derivative of the oP (1) term in (6) is also negligible. Clearly,
this is satisfied by all unbiased estimators for which the oP (1) term in (6) is 0.

5 Practical considerations

In this section, we first show how we design a more practical estimator based on the previous results
and then present the theoretical analysis behind these improvements.
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5.1 Making estimators more practical

Like the LCC sampling [8] and the A-optimal sampling [29], the ϕos(x) in (3) depends on θ, and thus
a pilot value of θ, say θ̃, is required in practice. Here, θ̃ can be constructed from a pilot sample, say
(x̃i, ỹi), i = 1, ..., ñ, taken by uniform sampling from both classes with equal expected sample sizes.
With θ̃ obtained, calculate t̃i = p(x̃i; θ̃)‖M̃−1

f ġ(x̃i; θ̃)‖ for i = 1, ..., ñ, where M̃f is the Hessian
matrix of the pilot sample objective function. In case that the Hessian matrix and gradients are hard
to record, the gradient term can be dropped, i.e., use t̃i = p(x̃; θ̃). As mentioned in Remark 1, T can
be ignored for very imbalanced data. The expectation in the denominator of (3) can be approximated
by mimicking the method of moment estimator, namely by

ω̃ = 2N1(ñN)−1
∑
ỹi=1 t̃i + 2N0(ñN)−1

∑
ỹi=0 t̃i. (7)

In practice, it is common to set a lower threshold, say %, on sampling probabilities, to ensure that all
instances have positive probabilities to be selected. This is more critical for the IPW estimator while
the likelihood estimator is not very sensitive to very small sampling probabilities.

Denote the pilot value as ϑ̃ = (θ̃, ω̃). The following probabilities can be practically implemented

πos
% (x; ϑ̃) = min[max{ρϕ̃os(x), %}, 1], where ϕ̃os(x) = ω̃−1t(x; θ̃), (8)

and we use this in our experiments in Section 6. The ω̃ in (7) is essentially a normalizing term so
that the expected subsample size is ρ. For some practical systems such as online models, ω̃ is often
treated as a tuning parameter. We will illustrated this in our real data example in Section 6.2.

5.2 Theoretical analysis of practical estimators

Denote θ̂ϑ̃w and θ̂ϑ̃lik the IPW estimator and the likelihood estimator, respectively, with practically
estimated optimal probability in (8). We have the following results.

Theorem 7. Assume that the pilot estimator ϑ̃ is independent of the data, ϕ̃os(x) → ϕplt(x) in
probability, and ρ−1%→ cl > 0. Under Assumptions 1-3, as N →∞, the θ̂ϑ̃w satisfies that,√

N1(θ̂
ϑ̃
w − θ)→ N(0,Vplt

w ) in distribution,

where Vplt
w has the same expression of Vw except that ϕ(x) is replaced by max{ϕplt(x), cl}. If

Pr{ϕplt(x) ≥ cl} = 1 and the pilot estimator is consistent, then Vplt
w achieves the optimal variance.

Theorem 8. Assume that the pilot estimator ϑ̃ is independent of the data, ϕ̃os(x) → ϕplt(x) in
probability, and % = o(ρ). Under Assumptions 1-3, as N →∞, θ̂ϑ̃lik satisfies that,√

N1(θ̂
ϑ̃
lik − θ)→ N

(
0,Vplt

lik

)
in distribution,

where Vplt
lik has the same expression of Vlik except that ϕ(x) is replaced by ϕplt(x). If the pilot

estimator is consistent, then Vplt
lik achieves the variance with the optimal probability.

Remark 3. Theorems 7 and 8 do not require ϑ̃ to be consistent, i.e., the pilot estimator can be
misspecified. However ϑ̃ has to be consistent in order to achieve the asymptotic variances with the
optimal probability. Compared with the likelihood estimator θ̂ϑ̃lik, the IPW estimator θ̂ϑ̃w requires a
stronger condition on % to have asymptotic normality, because πos

% (x; ϑ̃) is in the denominator of the
objective function for θ̂ϑ̃w so the turbulence of ϑ̃ is amplified. The requirement cl > 0 means that %
cannot be too small in practice. The likelihood estimator does not have this constraint.

6 Numerical experiments

We present simulated results and report the performance on a CTR dataset with more than 0.3 trillion
instances. More experiments with model and pilot misspecifications are available in the supplement.
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6.1 Experiments on simulated data

We implemented the following negative sampling methods for logistic regression. 1) uniW: uniform
sampling with the IPW estimator. 2) uniLik: uniform sampling with the likelihood estimator. 3)
optW: optimal sampling with the IPW estimator. 4) optLik: optimal sampling with the likelihood
estimator. We also implement the full data MLE (Full) and the LCC for comparisons.

In each repetition of the simulation, we generate full data of size N = 5 × 105 from the logistic
regression with g(x;θ) = α+ xTβ. We set the true β∗ to be a 6× 1 vector of ones and set different
values for α for different feature distributions so that the positive/negative ratio is close to 1:400. We
consider the following feature distributions: (a) Normal distribution which is symmetric with light
tails; the true intercept is α = −7.65. (b) Log-normal distribution which is asymmetric and positively
skewed; the true intercept is α = −0.5. (c) t3 distribution which is symmetric with heavier tails; the
true intercept is α = −7.

We set the sampling rate as ρ = 0.002, 0.004, 0.006, 0.01, and 0.02 for all sampling methods. In each
repetition, uniform samples of average size 100 are selected from each class to calculate the pilot
estimates, so the uncertainty due to the pilot estimates are taken into account. We also consider pilot
misspecification by adding a uniform random number from U(0, 1.5) to the pilot so that the pilot is
systematically different from the true parameter. We repeat the simulation for R = 1000 times to
calculate the MSE as R−1

∑R
r=1 ‖θ̂(r) − θ‖2, where θ(r) is the estimate at the r-th repetition.

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3

Figure 1: Log(MSEs) for different estimators (the smaller the better). The top row uses consistent
pilot estimators; the bottom uses misspecified pilot estimators.

Results are presented in Figure 1. The MSEs of all estimators decrease as the sampling rate ρ
increases. The optLik outperforms other sampling methods in general, and its performance is close to
the full data MLE when ρ = 0.02, especially if the pilot is consistent. The advantage of optLik over
optW is more evident for smaller ρ. If the pilot is misspecified, optLik is quite robust but optLik and
LCC significantly deteriorate. Since uniLik and uniW do not require a pilot, they are not affected
by pilot misspecification, but they have much larger MSE than optLik and optW when the pilot is
consistent, especially uniW. Different feature distributions also affect the performances of different
sampling methods.

To verify Theorem 1 numerically, we let the full data size N increase at a faster rate than the average
number of positive instances Na

1 = E(N1) so that the probability Pr(y = 1) decreases towards zero.
As N increases, we fixed the value of β∗ and set decreasing values to α∗ to mimic our scaling regime.
We considered two covariate distributions: 1) a multivariate normal distribution for which a logistic
regression model is a correct model; and 2) a multivariate log-normal distribution for which a logistic
regression model is misspecified. We simulated for 100 times to calculate the empirical variance
V̂f of the full data MLE, and report the results in Table 1. It is seen that tr(V̂f ) is decreasing
towards zero. According to Theorem 1, tr(V̂f ) should converge in a rate of 1/N1, so Na

1 tr(V̂f )
should be relatively stable as N increases. This is indeed the case as seen in the third and sixth
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columns of Table 1. On the other hand, Ntr(V̂f ) gets large dramatically as N increases. The
aforementioned observations confirm the theoretical result in Theorem 1. Furthermore, Table 1 shows
that the convergence rate in Theorem 1 may also be true for some misspecified models.

Table 1: Empirical variances of the full data MLE for different full data size and average number of
positive instances combinations.

Correct model Mis-sprcified model
(N , Na

1 ) tr(V̂f ) Na
1 tr(V̂f ) Ntr(V̂f ) tr(V̂f ) Na

1 tr(V̂f ) Ntr(V̂f )
(103, 32) 0.169 5.41 169.17 0.969 30.99 968.70
(104, 64) 0.097 6.20 969.29 0.322 20.59 3217.12
(105, 128) 0.045 5.76 4497.24 0.135 17.32 13527.60
(106, 256) 0.018 4.62 18048.40 0.046 11.74 45847.40

6.2 Experiments on real data

We conduct experiments on an internal CTR dataset from our products with more than 0.3 trillion
instances. There are 299 input features, including user and ad profiles together with rich context
features. We concatenate all features as a single high-dimensional vector x, whose length is greater
than 5, 000. We use a 3-layer fully connected deep neural network as a feature extractor that maps x
into a 256-dimensional dense features h(x). The downstream model is a linear logistic regression
model taking h(x) as input to predict the binary output whether the user clicks the ad or not.

The positive/negative ratio is around 1:80. Due to limited storage, we first uniformly drop 80%
negative instances and try various negative sampling algorithms on the rest 60 billion instances. On
this pre-processed dataset, we then split out 1 percent of the data for testing, and do negative sampling
on the rest data. The entire training procedure scans the subsampled data set from begin to end in
one-pass according to the timestamp. The testing is done all the way through training. We calculate
the area under the ROC curve (AUC) for testing instances. The entire model is trained on a distributed
machine learning platform using 1,200 CPU cores and can finish within two days.

We adopt the sampling probability πos
% (x; ϑ̃) as demonstrated in (8) and use the empirical sampling

rate to calibrate the normalizing term ω̃. As mentioned before, we remove the gradient term for
implementation tractability so t(x; θ̃) = p(x; θ̃). As the result will show, this approximate score
produces consistent results with the simulation experiments. We compare four methods: 1) uniW and
2) uniLik are the same as in simulated experiments; and 3) optW and 4) optLik represent nonuniform
sampling probability using πos

% (x; ϑ̃) with the IPW estimator and with the likelihood estimator. We
use “opt" to refer to both optW and optLik when focusing on the sampling.

We study two sets of negative sample rates (w.r.t. the original 0.3 trillion data): (i) [0.01, 0.05]. In this
case, negative instances still outnumber positive instances. (ii) [0.001, 0.008]. In this case, negative
subsampling is too aggressive that positive instances dominates negative instances. We demonstrate
the result in Figure 2. When the sample rate is moderate (Figure 2.(b)), opt is nearly optimal and can
significantly outperform uniform subsampling. There is still a small gap between the IPW estimator
and the likelihood estimator. When the sample rate is extremely small (Figure 2.(a)), opt becomes
sub-optimal and its gap w.r.t. uniform sampling is closer. Still we see a clear difference between the
IPW estimator and the likelihood estimator. This is due to a larger asymptotic variance for uniform
sampling when the sampling rate goes to zero. Note that on this huge data set, a small relative AUC
gain (e.g., 0.0005) usually could bring about significant revenue gain in products.

6.3 Sensitivity analysis

In practice, we find it necessary to use cross-validation to find the optimal % in (8) given a fixed sample
rate. As demonstrated in Figure 3, for each sampling rate we tune % from a very small value (in this
case, 10−6) all the way to its largest value. When % achieves its largest value, ρω̃−1 = 0 and πos

% (x; ϑ̃)

reduces to uniform negative sampling. We observe that πos
% (x; ϑ̃) with a moderate % achieves the

best results for various sampling rates. Note that % is the lower truncation level for negative sampling
probabilities. Thus, a larger % means more “simple" negative instances (ρω̃−1p(xi; θ̃) is smaller than
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(a). Extremely small sampling rates. (b) Moderate sampling rates.

Figure 2: Empirical testing AUC of subsample estimators for different sample sizes (the larger the
better).

%) will have better chances to be selected. This coincides with recent empirical results for negative
subsampling in large search systems [14], where they mix “simple" (smaller p(xi; θ̃)) and “hard"
(larger p(xi; θ̃)) negative instances. We also observe an empirical variance of around 0.0001 for each
setup, demonstrating that the relative improvement is consistent.
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Figure 3: AUC for IPW and likelihood estimators when tuning the truncation lower bound %.

7 Conclusions, discussion, and limitations

In this paper, we have derived asymptotic distributions for full data and subsample estimators
with rare events data. We have also found the optimal sampling probability that minimizes the
unconditional asymptotic variance of the IPW estimator, and proposed the likelihood estimator
through nonuniform log odds correction to further improve the estimation efficiency. The optimal
probability depends on unknown parameters so we have discussed practical implementations and
investigated the convergences of the resultant estimators. Experiments on both simulated and real
big online streaming data confirm our theoretical findings. Heuristically, our nonuniform negative
sampling method gives preference to data points that are harder to observe, so it would give preference
to sub-populations that are difficult to observe. We do not think this would bring any negative societal
impacts. We have also examined our real data application and did not notice discrimination against
any sub-populations.

This paper has the following limitations: 1) We assume that the model is correctly specified. Theoret-
ical properties with model misspecification is not considered, and this important question requires
future studies. 2) Oversampling the rare positive instances is another common practice to deal with
imbalanced data. Its application together with negative sampling is not considered. 3) The assumption
of a fixed β∗ means that both the marginal and conditional probabilities for a positive instance to
occur are small. If the proportion of the positive instances for a given feature in a dataset is large,

9



this assumption may not be appropriate. Further investigation is need to see if our results is still
applicable. In the following, we present three scenarios that the scaling regime may or may not fit in:

Scenario 1 (phone call while driving) Car crashes occur with small probabilities, and making phone
calls while driving significantly increases the probability of a car crash. However, the probability
of car crashes among people making phone calls while driving is still small, so for these types of
features, our scaling regime is appropriate to model the rare events.

Scenario 2 (anti-causal learning) Anti-causal learning [26, 16] assumes that label (y) causes observa-
tions (x). Thus Pr(x|y) represents the causal mechanism and is fixed. One standard example is that
diseases (y) cause symptoms (x). Our scaling regime fits the framework of anti-causal learning. To
see this, using Bayes Theorem we write the log odds as

α+ f(x;β) = log
Pr(y = 1)

Pr(y = 0)
+ log

Pr(x | y = 1)

Pr(x | y = 0)
.

In anti-causal learning, the marginal distribution of y changes while the conditional distribution of x
given y is fixed. Thus only the scale factor α changes, and f(x;β) is fixed.

Scenario 3 (local transmission of the COVID-19) Our scaling regime has some limitations and does
not apply to all types of rare events data. For example, although the COVID-19 infection rate for the
whole population is low, the infection rate for people whose family members are in the same house
with positive test results is high. This means the change of a family member’s test result converts a
small-probability-event to a large-probability-event, and our scaling regime would not be appropriate.
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