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Abstract

This paper demonstrates how to discover the whole causal graph from the second
derivative of the log-likelihood in observational non-linear additive Gaussian noise
models. Leveraging scalable machine learning approaches to approximate the
score function ∇ log p(X), we extend the work of Rolland et al. [1] that only
recovers the topological order from the score and requires an expensive pruning
step to discover the edges. Our analysis leads to DAS, a practical algorithm that
reduces the complexity of the pruning by a factor proportional to the graph size.
In practice, DAS achieves competitive accuracy with current state-of-the-art while
being over an order of magnitude faster. Overall, our approach enables principled
and scalable causal discovery, significantly lowering the compute bar.

1 Introduction

Causal discovery from observational data is a central problem affecting virtually all scientific domains,
such as biology, genetics, economics, and machine learning [2, 3, 4, 5]. Given a causal model, under
suitable assumptions one can predict the effect of interventions on the system’s variables having
access only to observational data. In traditional causality research, algorithms to discover causal
relationships from observations can be divided in three classes [6, 7]. Constraint based approaches
like PC [8], FCI and SGS [9] test conditional independence between the variables, which is notoriously
difficult [10]. Score-based methods like GES [11] define a suitable score function, and search for the
graph that best fits the data. Usually these classes of approaches do not output a unique graph but an
equivalence class. Finally, a restricted model class assumption, e.g. non-linear relations and additive
Gaussian noise, allows to identify the Directed Acyclic Graph (DAG) underlying the observations
[5, 12, 13, 14, 15]. The main challenge is that enforcing the DAG constraint has a cubic per-iteration
cost in the number of variables, making the optimization the computational bottleneck.

A step towards better scalability is Rolland et al. [1] that recently proposed the SCORE algorithm:
first they efficiently estimate the score function ∇ log p(X), then they recover the topological order
from the Jacobian of the score, and finally prune the fully connected DAG by the method proposed in
CAM [12]. The pruning step is the bottleneck of SCORE, scaling cubic in the number of nodes. In
this work, we show that the Jacobian of the score allows to recover both the skeleton and the direction
of the edges in the causal DAG. Theoretically, this implies that we can get rid of the costly pruning
step in SCORE [1] as all information about the causal structure is already contained in the Jacobian
of the score. While our analysis yields a practical algorithm, we found it beneficial to first identify
few candidate edges and still retain a final cheap pruning step. This is now much more efficient as
most of the edges have already been detected and it is only needed to correct mistakes from the finite
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samples approximation of the score, reducing the complexity by a factor proportional to the number
of nodes in the graph.
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Figure 1: Execution time of different methods
versus d number of nodes for dense graphs
(ER4 dataset).

Our contributions can be summarized as follows:
• We demonstrate how to theoretically recover

the full causal DAG from the score of the data
distribution. This extends prior work showing
that the topological order can be recovered
from the score [1].

• We introduce DAS (acronym for Discovery
At Scale), an algorithm for efficient and scal-
able causal discovery. While our approach is
marginally less accurate than the state of the
art ([1], [12], [13]), it improves the runtime
by at least an order of magnitude in the graph
size, as shown in Figure 1. We demonstrate
the speedup improvement on synthetic graphs
with up to a thousand nodes.

2 Background knowledge

We introduce the background needed for our analysis starting from the formalism of structural causal
models.

Structural Causal Models One way to formalize causal relationships between variables is with an
additive Structural Causal Model (SCM). Consider a set X = {Xi}di=1 of observable vertices of a
DAG. We assume that the structure of the graph can be expressed in the functional relationship

Xi = fi(pai(X)) + ϵi, ϵi ∼ N (0, σi), ∀i = 1, . . . , d . (1)

with pai(X) set of parent nodes of Xi in the directed network. We will assume Xi ∈ R, additive and
independently drawn Gaussian noise elements ϵi, as well as fi to be twice continuously differentiable
and non-linear in every component. Additionally we assume that fi restricted to any interval is still
non-linear.

Recursive application of (1) allows to derive the joint probability distribution p(X1, X2, . . . , Xd). As
this probability is over vertices of a directed acyclic graph, the following factorization holds [4, 16]:

p(X) =

d∏
i=1

p(Xi|pai(X)) . (2)

Usually the form of the fi in the model (1) is not known and neither is the probability in (2), while
we can only access a set of observations from the joint distribution. Given these observations the task
is to identify the causal structure of the graph underlying the SCM. This problem is known as causal
discovery. As mentioned before one solution is to use data to estimate a topological ordering of the
variables in X, and then to choose edges of the DAG between those admitted by such sorting. In our
approach we select edges that satisfy constraints derived from the score function.

Topological ordering definition Let G = (X, E) be a DAG. An ordering of the nodes
Xπ = Xπ1 , . . . , Xπd

is a topological ordering relative to G if, whenever we have Xπi → Xπj ∈ E ,
then i < j [17].

3 Deducing causal structure from the score

For the causal discovery problem under analysis we consider an observable X ∈ Rd whose entries
Xi are vertices of a graph generated according to the model in (1). In the next section, we show how
the score function is in principle sufficient to solve this task. In particular we discuss the key concepts
introduced in [1], and we slightly revisit their Lemma 1 to give a more precise statement that holds
almost surely and avoids some (trivial) corner cases.
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3.1 Deriving constraints

Authors of [1] show how to efficiently estimate the score function s(X) = ∇ log p(X) and its
Jacobian exploiting the Stein identity. Then they propose a method to identify leaf nodes in a causal
graph generated according to (1) by inspection of the diagonal elements of the Jacobian of the
score. In the following part we show how additional constraints on the off-diagonal elements of
the Jacobian matrix itself can be defined to identify directed edges in the graph.

Starting from Equation (2) we can derive s(X) in closed form from log p(X) as follows:

log p(X) =

d∑
i=1

log p(Xi|pai(X)) =

= −1

2

d∑
i=1

(
Xi − fi(pai(X))

σ2
i

)2

− 1

2

d∑
i=1

log(2πσi)
2 .

(3)

The j-th entry of∇ log p(X) therefore is

sj(X) = −
Xj − fj(paj(X))

σ2
j

+
∑

i∈childj (X)

∂fi
∂xj

(pai(X))
Xi − fi(pai(X))

σ2
i

. (4)

We observe that for a leaf node l, Xl ∈ X, the partial derivative of (4) over Xj with j ̸= l is:

∂sl(X)

∂Xj
=


1
σ2
l

∂fl
∂Xj

(pal(X)) ̸= 0 if Xj ∈ pal(X)

0 else
. (5)

It is worth to notice that 1
σ2
l

∂fl
∂Xj

(pal(X)) might still be vanishing for some values of pal(X) even
if Xj ∈ pal(X), for instance if the function has a maximum or a minimum: given the assumption
on fl non-linear even when considered on a restricted interval, these events happen with probability
zero, such that 1

σ2
l

∂fl
∂Xj

(pal(X)) ̸= 0 holds almost surely. We prove that the condition in Equation
(5) allows to derive a criterion to identify parents of a given leaf node.
Lemma 1 (Adapted from [1]). Let p be the probability density function of a random variable
X ∈ Rd defined via non-linear additive Gaussian noise model (1). Let also s(X) = ∇ log p(X)
be the associated score function. Without loss of generality, assume a topological ordering Xπ =
(X1, . . . , Xd). Then given a leaf l:

E

[∣∣∣∣∂sl(X)

∂Xj

∣∣∣∣] ̸= 0⇐⇒ Xj ∈ pal(X), ∀j ∈ {1, . . . , l − 1} .

The proof is provided in the Appendix A.2.

Novelties of Lemma 1 We now provide a discussion of the key differences of our Lemma 1 with
Lemma 1 in [1]. Their formulation requires Var

[
1
σ2
l

∂fl
∂Xj

(pal(X))
]
̸= 0 ⇔ Xj ∈ pal, where Xl

is a leaf node. We illustrate the problem with this considering a simple two variables case with graph
X1 −→ X2: if parent node X1 has zero variance, their selection condition would brake, predicting
a graph with X1 and X2 independent. While this case would be ruled out by the assumption of
variance larger than zero for every node, in practice this can be a problem. Given a finite sample
X ∈ Rn×d and its topological ordering Xπ , if parents of a leaf Xl show small variance in the sample,
we might still mistake the oscillation observed in 1

σ2
l

∂fl
∂Xj

(pal(X)) for statistical error due to finite
set estimates, discarding an existing edge. In practice, we rely on the sample mean of the absolute
value of the Jacobian entries 1

σ2
l

∂fl
∂Xj

(pal(X)) for the implementation of Lemma 1: this estimator is
potentially subject to the same issues, but shows better robustness properties than the sample variance
(due to the absolute value) and is a lower moment thus yielding lower error (estimating variance
requires estimating the mean first, such that any statistical error in the mean estimator affects the
variance estimator), making it a preferable choice.
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In practice we can exploit Equation (5) to reconstruct the entire graph only if a sorting Xπ is provided.
To see why, consider the last entry Xl of Xπ: by definition of topological ordering Xl is a leaf. Then
we can apply Lemma 1 doing partial derivatives of sl(X) over all nodes in Xπ \ {Xl} and identify
as parents those that satisfy the required constraint. At this point, we remove Xl from the ordering
Xπ and repeat the procedure on the pruned graph with vertices X \Xl. By iterating these steps over
each node in the ordering from last to source we can identify the exact graph.
Next we derive a causal discovery algorithm based on this approach, and show how it retains
performance with respect to other state of the art methods, while scaling better in the number of nodes.

3.2 DAS: an algorithm for causal Discovery At Scale

We want to use the constraint of Lemma 1 on the score function to derive an algorithm for causal
discovery which is faster and exhibits better scaling properties in the number of nodes than any other
technique to our knowledge. In practice, we rely on SCORE for estimating both Xπ and the Jacobian
matrix J(s(X)) from a set of n observations, generated according to the model assumptions in
Equation (1). Given a topological ordering, we filter edges for each node by inspecting the averages
of the absolute values of the off-diagonal elements of the estimator Ĵ(s(X)) according to the criterion
of Lemma 1. Finally, we obtain the output graph by running CAM pruning method on the resulting
adjacency matrix, reducing the number of false positives. Note that since we use an approximation
of J(s(X)) its entries are never precisely equal to zero. According to Lemma 1, we consider the
absolute value of the l-th row of the n Jacobian matrices, and look for entries with non-zero mean:
this can be achieved by statistical hypothesis testing, where the idea is to test for the mean of a
sample to be different from zero. In practice, for each off-diagonal entries Jl,j of row l we test
H0 : E[|Jl,j |] = 0 and the alternative H1 : E[|Jl,j |] > 0, with Xj potential parent of Xl. If we
reject the null with p-value = 0.01, then Xj is added to the parents of Xl.

Experiments Figure 2 summarizes experimental results of DAS in comparison with other state of
the art algorithms for causal discovery on non-linear Gaussian additive noise models: in particular we
select CAM [12], SCORE [1] and GranDAG [13] as benchmarks. The causal graphs are synthetically
generated using the Erdös-Renyi model [18]. We run experiments fixing the number of nodes d as
well as the sparsity of the graph by setting the expected amount of edges to be equal to d (ER1) or 4d
(ER4). Figure 2 illustrates how performance is retained with respect to the competitors, while Figure
1 shows how this results are achieved with significantly lower computational time. A comprehensive
presentation of all the experimental results is provided in the Appendix A.5.
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Figure 2: SHD (Structural Hamming Distance) versus d number of nodes for different methods on
dense (left) and sparse (right) graphs. For higher values of d some methods are missing as they were
too much time expensive to run. Number of samples is n = 1000.

Algorithmic complexity Considering an input matrix n × d with n the number of samples and
d the number of nodes, the overall complexity of DAS is O(dn3 + d2). Indeed estimating the
topological sorting with SCORE involves inverting d times a n×n matrix, with a complexityO(dn3).
Additionally the edge search step of DAS requires iterating over the d elements of the ordering, each
time inspecting a list of size ≤ d (see Algorithm 1) yielding a O(d2) contribution. On the other hand
the bottleneck of SCORE, arguably the most scalable state-of-the-art algorithm for causal discovery,
is the first step in the pruning approach, namely Preliminary Neighbours Search (PNS): this procedure
acts as an edge selection preliminary to CAM pruning, amounting to complexity O(nd3). Therefore
our use of the score for preliminary edges selection in place of PNS dramatically improves the
execution time allowing to scale causal discovery in high dimensions by a factor of O(d).
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A Appendix

A.1 DAS pseudo-code

The pseudo-code of Algorithm 1 provides an overview of the implementation details of DAS.

Algorithm 1 DAS

Input: data matrix X ∈ Rn×d

Xπ ← SCORE(X) (such that Xπ[d] source node)

A← d× d zeros adjacency matrix

remaining nodes = 1, . . . , d

δ = 0.01 (hyperparameter)

for Xl in Xπ do
Ĵ ← Average

[∣∣∣ ∂sl
∂Xj

(X)
∣∣∣]

Xj∈X\{Xl}
(estimate from SCORE)

threshold = δ·max(Ĵ)

for j in remaining nodes do
if Ĵ [j] > threshold then

A[j, l] = 1

end if
end for
Remove l-th column from X

Remove l from remaining nodes

end for
Graph G ← CAM-pruning(A)

A.2 Proof of Lemma 1

In this section we provide a proof of the statement of Lemma 1.

Proof. For a leaf l the score of Equation (4) becomes sl(X) = −Xl−fl(pal(X))
σ2
l

. We compute the
partial derivative

∂sl(X)

∂Xj
=

1

σ2
l

∂fl
∂Xj

(pal(X)) (6)

and observe that:

(i) E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] ̸= 0 ⇒ Xj ∈ pal(X). By contradiction, consider Xj ̸∈ pal(X): being

fl(pal(X)) constant in Xj , then ∂fl(pal(X))
∂Xj

= 0 for every X ∈ Rd by definition of

derivative. Then, E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] = 0, which contradicts the hypothesis.

(ii) Xj ∈ pal(X)⇒ E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] ̸= 0: we observe from Equation (5) that ∂fl
∂Xj

(pal(X)) ̸= 0

almost surely, such that
∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣ > 0 almost surely. Being the probability of

vanishing
∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣ equals to zero, then the expectation E

[∣∣∣∂sl(X)
∂Xj

∣∣∣] is equivalent

to the integral
∫
X+

∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣dP (X), with X+ ⊆ Rd the subset of values where
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∣∣∣ ∂fl
∂Xj

(pal(X))
∣∣∣ is strictly positive. Since the integral of a strictly positive function is strictly

positive itself, then E
[∣∣∣∂sl(X)

∂Xj

∣∣∣] > 0.

A.3 Lemma 1 and Markov networks

In this section we provide a more detailed analysis about Lemma 1, in particular we want to show
how it relates to prior work on Markov networks.

The findings of Lemma 1 on identification of the causal structure from the score function are not
completely surprising in the light of previous results on Markov networks [19, 20]. Given a collection
of random variables X = (X1, X2, . . . , Xd) with joint density p(X), the information of conditional
independencies between the variables of X can be embedded in a simple undirected Markov network
G = (V, E), where edges (i, j) encode some sort of probabilistic interaction between the pairs of
random variables Xi, Xj . In particular Spantini et al. [19] proved how to construct a Markov graph
reading the conditional independence of pairs of random variables as follow:

Xj |= Xi |XV\{i,j} ⇐⇒ ∂ij log p(X) = 0 , (7)

where ∂ij(·) denotes the ij-th mixed partial derivative and ∂ij log p(X) is an entry of the Jacobian of
the score. By adding edges between each couple of nodes that appears not to satisfy Equation (7), we
obtain an undirected graph encoding all and only the existing conditional independencies between
the variables of X.

Equation (5) of our work discovers the same constraint in a slightly different setting: rather than
evaluating ∂ij log p(X) for each node against every other, we follow an iterative approach where first
we identify a leaf Xl and then we test its mixed derivatives only against nodes coming before in the
topological ordering. By the time we find an edge we know its direction as we know that Xl is a leaf,
which breaks the symmetry in the relation.

The additional pieces of information we have access to - namely that Xl has no children in the
considered graph and that the sorting is given - allows to identify the direction of a detected link, since
a leaf can only be the effect in a causal relation. Moreover Lemma 1 ensures correct identification of
directed v-structures like i→ j ← k that instead in the conditional independence map are moralized
with an additional link (i, k).

A.4 Sachs dataset experiments

Table 1 reports experimental outcomes on Sachs [2], a real-world dataset with 11 variables popular
for causal discovery. We see that with δ = 0.01 our method matches SCORE.

Table 1: Experiments on Sachs dataset
Method SHD SID

DAS (Ours) 12 45
SCORE 12 45
CAM 12 55
GraNDAG 13 47

A.5 Synthetic data experiments

In this section we summarize experimental outcomes of DAS on synthetic data generated with
Erdös-Renyi [18] models and on Scale-free graphs. For both type of data we provide experiments on
sparser (Table 4 and Table 5) and denser (Table 2 and Table 3) graphs.
The metrics used are precision, recall, Structural Hamming Distance (SHD) – which is computed as
the sum of false positive, false negative and wrongly directed edges – and Structural Intervention
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Distance (SID) [21] – accounting for the number of miscalculated interventional distributions that
would result from the inferred graph.

From Table 2 we can see that on denser graphs (ER4) our method maintains similar performance with
respect to the other three for nodes up to 50, while being considerably faster in particular with respect
to GraNDAG and CAM. As d increases, the accuracy gap with SCORE reduces up to the point that for
200 nodes we observe better SID for our algorithm. At d ≥ 500 it becomes arguably impossible to run
SCORE on a personal computer in a finite amount of time, whereas DAS is the only reasonable option.

Similarly, the performances across the different methods are comparable when running inference on
sparser graphs (ER1), as reported in Table 4. These results are directly observable in Figure 2: each
algorithm shows a similar degrade in performance with the number of nodes increasing, and bars set
to close SHD values. Nevertheless, in Figure 1 it clearly appears that DAS achieves these metrics in a
significantly smaller amount of time, supporting the claim of better efficiency in terms of velocity
and scalability of our approach.

Table 2: Experiments on ER4 data. For CAM and GraNDAG we report results found in [1].
Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 27.0± 2.2 43.6± 5.8 1.00± 0.00 0.33± 0.02 7.7± 0.1
SCORE 26.5± 1.5 42.3± 2.9 0.99± 0.00 0.33± 0.02 7.9± 0.1
CAM 24.4± 3.1 45.2± 10.2 − − 30.1± 3.7
GraNDAG 22.2± 2.6 42.0± 6.2 − − 185± 26

d=20

DAS (Ours) 58.7± 2.5 214± 20 0.99± 0.00 0.27± 0.04 18.5± 0.3
SCORE 57.17± 3.1 229± 23 0.99± 0.01 0.30± 0.04 40.7± 1.8
CAM 54.2± 5.4 202± 29 − − 313± 80
GraNDAG 49.3± 4.5 211± 37 − − 357± 47

d=50

DAS (Ours) 156± 4 1460± 67 0.96± 0.02 0.24± 0.03 61.4± 0.6
SCORE 144± 6 1346± 57 0.97± 0.01 0.30± 0.03 245± 5
CAM 141± 6 1337± 94 − − 1143± 79
GraNDAG 141± 10 1432± 110 − − 1410± 73

d=100

DAS (Ours) 329± 9 6342± 330 0.91± 0.03 0.21± 0.04 133± 1
SCORE 313± 11 5965± 273 0.91± 0.03 0.27± 0.06 779± 13
CAM − − − − −
GraNDAG − − − − −

d=200

DAS (Ours) 690± 15 24221± 746 0.89± 0.06 0.21± 0.05 367± 6
SCORE 626± 14 25707± 891 0.88± 0.04 0.30± 0.05 4142± 35
CAM − − − − −
GraNDAG − − − − −

d=500

DAS (Ours) 1761± 15 − 0.80± 0.04 0.19± 0.03 1608± 7
SCORE2 1642 − 0.82 0.27 25307
CAM − − − − −
GraNDAG − − − − −

d=1000

DAS (Ours) 3951± 9 − 0.76± 0.05 0.08± 0.00 6539± 81
SCORE − − − − −
CAM − − − − −
GraNDAG − − − − −

2 For d = 500 and SCORE method no standard deviation appears because experiments could not be repeated in
a reasonable time. The values in the table refer to a single run.
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Table 3: Experiments on SF4 data. For SCORE, CAM and GraNDAG we report results found in [1].
Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 10.1± 2.39 35.7± 9.1 0.99± 0.01 0.75± 0.06 7.8± 0.1
SCORE 4.6± 1.7 21.5± 9.6 − − −
CAM 9.6± 2.0 40.4± 11.4 − − −
GraNDAG 4.7± 1.8 23.0± 7.3 − − −

d=20

DAS (Ours) 34.3± 5.71 237.1± 25.7 0.98± 0.02 0.59± 0.06 19.1± 0.7
SCORE 17.5± 3.5 179.2± 23.8 − − −
CAM 26.4± 3.9 253.7± 28.8 − − −
GraNDAG 14.7± 4.0 168.0± 39.2 − − −

d=50

DAS (Ours) 115.5± 10.8 703.1± 87.5 0.97± 0.01 0.45± 0.06 65.1± 0.4
SCORE 68.3± 3.6 1724± 109 − − −
CAM 85.3± 4.2 1935± 99 − − −
GraNDAG 63.8± 9.7 1677± 118 − − −

d=100 DAS (Ours) 312.8± 11.0 3212± 145 0.97± 0.01 0.25± 0.02 116± 1

d=200 DAS (Ours) 725.3± 12.5 21314± 891 0.95± 0.02 0.11± 0.01 302± 3

d=500 DAS (Ours) 1970± 7.1 − 0.97± 0.03 0.02± 0.01 1512± 31

d=1000 DAS (Ours) 3891± 19.5 − 0.92± 0.04 0.03± 0.01 5616± 53

4 For d > 50 experiments are executed only for DAS.

Table 4: Experiments on ER1 data. For CAM and GraNDAG we report results found in [1].
Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 1.2± 0.9 4.2± 4.5 0.97± 0.01 0.84± 0.05 7.8± 0.1
SCORE 0.7± 0.5 4.5± 4.3 0.98± 0.01 0.98± 0.01 8.0± 0.2
CAM 1.7± 1.0 6.4± 4.2 − − 30.1± 3.7
GraNDAG 1.5± 1.4 6.5± 7.2 − − 185± 26

d=20

DAS (Ours) 3.2± 1.3 17.1± 9.2 0.98± 0.02 0.85± 0.03 18.7± 0.4
SCORE 2.0± 1.8 8.3± 9.9 0.99± 0.01 0.91± 0.03 36.4± 1.8
CAM 3.5± 1.6 14.3± 9.8 − − 313± 80
GraNDAG 7.6± 4.2 31.6± 22.7 − − 357± 47

d=50

DAS (Ours) 14.5± 2.7 95.4± 38.5 0.96± 0.04 0.77± 0.04 62.1± 0.4
SCORE 9.8± 3.8 69.6± 41.3 0.98± 0.01 0.87± 0.03 251± 7
CAM 8.3± 2.9 53.7± 31.9 − − 1143± 79
GraNDAG 20.2± 6.1 135± 456 − − 1410± 73

d=100

DAS (Ours) 44.6± 7.6 313± 74 0.92± 0.06 0.68± 0.04 134± 1
SCORE 27.5± 6.9 288± 115 0.97± 0.02 0.83± 0.05 776± 12
CAM − − − − −
GraNDAG − − − − −

d=200

DAS (Ours) 101.4± 10.6 833± 227 0.88± 0.07 0.68± 0.06 365± 3
SCORE 59.9± 8.5 495± 161 0.95± 0.03 0.85± 0.07 4237± 22
CAM − − − − −
GraNDAG − − − − −

d=500

DAS (Ours) 291± 13 − 0.78± 0.07 0.65± 0.05 1629± 7
SCORE3 209 − 0.8 0.85 25115
CAM − − − − −
GraNDAG − − − − −

d=1000

DAS (Ours) 994± 15 − 0.59± 0.02 0.09± 0.00 6544± 73
SCORE − − − − −
CAM − − − − −
GraNDAG − − − − −

3 For d = 500 and SCORE method no standard deviation appears because experiments could not be repeated in
a reasonable time. The values in the table refer to a single run.
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Table 5: Experiments on SF1 data. For SCORE, CAM and GraNDAG we report results found in [1].
Method SHD SID Prec. Rec. Time [s]

d=10

DAS (Ours) 0.8± 0.6 4.2± 2.9 0.99± 0.04 0.84± 0.15 7.6± 0.1
SCORE 0.3± 0.6 2.7± 5.8 − − −
CAM 0.4± 0.5 2.8± 3.6 − − −
GraNDAG 1.4± 1.0 12.5± 9.7 − − −

d=20

DAS (Ours) 3.4± 1.7 18.7± 8.9 0.99± 0.02 0.84± 0.11 16.6± 0.4
SCORE 0.9± 0.9 13.8± 12.6 − − −
CAM 0.9± 0.9 12.9± 14.0 − − −
GraNDAG 3.2± 1.9 25.5± 15.6 − − −

d=50

DAS (Ours) 13.0± 5.1 194.1± 41.3 0.96± 0.03 0.74± 0.08 61.5± 0.4
SCORE 4.6± 2.4 132.6± 75.8 − − −
CAM 3.6± 1.9 115.4± 72.6 − − −
GraNDAG 9.2± 3.3 281.8± 129.8 − − −

d=100 DAS (Ours) 24.5± 7.09 217.9± 39.4 0.94± 0.02 0.51± 0.07 114± 2

d=200 DAS (Ours) 94.2± 6.2 612.1± 78.7 0.97± 0.02 0.33± 0.03 314± 3

d=500 DAS (Ours) 271.1± 14.9 − 0.93± 0.09 0.68± 0.01 1515± 9

d=1000 DAS (Ours) 910± 12 − 0.59± 0.02 0.09± 0.00 5842± 61

3 For d > 50 experiments are executed only for DAS.
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