
TOWARDS PLASTIC AND STABLE EXEMPLAR-FREE
INCREMENTAL LEARNING: A DUAL-LEARNER
FRAMEWORK WITH CUMULATIVE PARAMETER AV-
ERAGING

Anonymous authors
Paper under double-blind review

ABSTRACT

The dilemma between plasticity and stability presents a significant challenge in
Incremental Learning (IL), especially in the exemplar-free scenario where access-
ing old-task samples is strictly prohibited during the learning of a new task. A
straightforward solution to this issue is learning and storing an independent model
for each task, known as Single Task Learning (STL). Despite the linear growth
in model storage with the number of tasks in STL, we empirically discover that
averaging these model parameters can potentially preserve knowledge across all
tasks. Inspired by this observation, we propose a Dual-Learner framework with
Cumulative Parameter Averaging (DLCPA). DLCPA employs a dual-learner de-
sign: a plastic learner focused on acquiring new-task knowledge and a stable
learner responsible for accumulating all learned knowledge. The knowledge from
the plastic learner is transferred to the stable learner via cumulative parameter av-
eraging. Additionally, several task-specific classifiers work in cooperation with
the stable learner to yield the final prediction. Specifically, when learning a new
task, these modules are updated in a cyclic manner: i) the plastic learner is initially
optimized using a self-supervised loss besides the supervised loss to enhance the
feature extraction robustness; ii) the stable learner is then updated with respect
to the plastic learner in a cumulative parameter averaging manner to maintain its
task-wise generalization; iii) the task-specific classifier is accordingly optimized
to align with the stable learner. Experimental results on CIFAR-100 and Tiny-
ImageNet show that DLCPA outperforms several state-of-the-art exemplar-free
baselines in both Task-IL and Class-IL settings1.

1 INTRODUCTION

Incremental learning (IL) refers to the ability to continuously learn new knowledge from a series
of tasks, which is crucial for many open-world applications such as autonomous robots. It has thus
garnered significant attention in recent years (Mai et al., 2022; Delange et al., 2021). Typically,
a model is expected to sequentially learn from a series of tasks, with samples from a completed
task becoming inaccessible for future learning (Van de Ven & Tolias, 2019). In such a context, an
effective IL learner is expected to exhibit both high plasticity for new task learning and stability
to retain old-task knowledge. However, few established IL methods can achieve a perfect balance
between them, known as the plasticity-stability dilemma (Mermillod et al., 2013).

Existing IL methods fall into three categories: memory-based, regularization-based, and parameter-
isolation-based. Memory-based methods (Buzzega et al., 2020; Arani et al., 2022) maintain an
additional memory for storing old-task exemplars and use this stored information to recall old-task
knowledge when learning a new task. While they exhibit high plasticity for new knowledge learn-
ing, old-task knowledge may be overwritten, especially when stored exemplars cannot support the
old-task data distribution. Regularization-based methods (Kirkpatrick et al., 2017; Zhu et al., 2021)
penalize changes in essential neurons or activation through regularization terms, typically setting a

1The source code is available in supplementary materials.
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hyper-parameter to balance plasticity and stability. However, balancing this weight in real scenarios
is challenging due to the randomness and disorder of deep neural network training. Parameter-
isolation-based methods (Hung et al., 2019; Sun et al., 2023b) allocate network parameters (or pa-
rameter basis) to specific tasks, preventing them from being updated in subsequent task learning.
While they often maintain stability, plasticity gradually decreases as network capacity is consumed.

 
 

 Task 1 
Extractor

...
Task 2 

Extractor

Task T 
Extractor

x

f1

f2

fT

Task 1 
Classifier

Task 2 
Classifier

Task T
Classifier

 Mean 
Extractorx fmean

Task 1 
Classifier

Task 2 
Classifier

Task T
Classifier

(a) Single Task Learning (b) Single Task Learning 
w/ Mean Extractor 

... ... ...

Figure 1: Diagram of Single Task Learning (STL)
and its variation. (a) STL represents an upper-bound
IL model that trains a specific network for each task.
(b) STL-me is an STL variation that averages all STL
feature extractors in the parameter space.

Instead of following the established tech-
niques, this paper turns to investigate sin-
gle task learning (STL), an upper-bound
IL with both high plasticity and stability.
As depicted in Figure 1 (a), STL trains
a specific model for each new task, leav-
ing trained models unchanged. However,
memory utilization increases linearly with
the number of learning tasks, limiting the
practicability of STL. To overcome this
limitation, one intuitive solution is to con-
solidate the knowledge from all STL mod-
els into a single unified learner. In the con-
text of exemplar-free IL, it usually necessi-
tates an intricate design to apply advanced
distilling techniques during the learning
process (Zhu et al., 2021). Instead, we ex-
plore a simple strategy, which involves averaging all STL feature extractors in the parameter space,
as shown in Figure 1 (b). This strategy showcases considerable potential in retaining knowledge
across all tasks. Furthermore, with suitable finetuning of classifiers, it can approximate the upper-
bound performance achieved by STL.

In light of the aforementioned observations, we propose a Dual-Learner framework with Cumulative
Parameter Averaging (DLCPA) for exemplar-free IL. DLCPA is characterized by a dual-learner
design: a plastic learner for acquiring new task knowledge, and a stable learner for accumulating
all previously learned knowledge. Additionally, several task-specific classifiers cooperate with the
stable learner to achieve the final prediction. During each task training, these three modules are
updated alternately. The plastic learner initially adapts to new task data using a self-supervised loss
in conjunction with a supervised loss to enhance feature extraction robustness. Subsequently, the
stable learner is updated in relation to the plastic learner using a cumulative average approach to
integrate new task feature-extraction knowledge. Finally, the task-specific classifier is optimized to
align with the features extracted by the stable learner. These three steps form a cohesive loop that is
executed until convergence.

The contributions of this work are summarized as follows:

• Our empirical findings suggest that averaging the STL models in the parameter space can
potentially consolidate knowledge across all tasks. In conjunction with finetuned task-
specific classifiers, the averaged model can approximate the performance of STL, an upper
bound of exemplar-free IL.

• Inspired by the above observation, we propose the DLCPA framework for exemplar-free
IL. DLCPA disentangles the dilemma between plasticity and stability via a dual-learner
scheme. A cumulative parameter averaging strategy is introduced to facilitate a gentle
knowledge transfer between the dual learners. Moreover, meticulously designed updating
rules ensure the overall performance of the framework.

• We evaluate DLCPA on CIFAR-100 and Tiny-ImageNet. The experimental results show
that DLCPA outperforms several state-of-the-art baselines under both exemplar-free Task-
IL and Class-IL settings.

2 RELATED WORK

Incremental learning has been widely studied in recent years (Mai et al., 2022; Zhou et al., 2023),
and many methods have emerged. According to the techniques employed for preventing catastrophic
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forgetting (McCloskey & Cohen, 1989), they can be categorized into three classes: memory-based
methods, regularization-based methods, and parameter-isolation-based methods.

Most memory-based methods rely on exemplar memory (Chaudhry et al., 2021; Cha et al., 2021;
Kang et al., 2022; Bonicelli et al., 2022), replaying old-task exemplars with new data to retain old-
task knowledge. Some memory-based methods (Shin et al., 2017; Yin et al., 2020) use sample
generation techniques for IL in the exemplar-free scenario, replaying models with generated pseudo
old-task samples or features. Regularization-based methods, typically designed for exemplar-free
Task-IL, use knowledge distillation to maintain network activation during learning (Li & Hoiem,
2017; Douillard et al., 2020), or penalize changes in essential neurons during IL (Zenke et al., 2017;
Kirkpatrick et al., 2017; Aljundi et al., 2018). Parameter-isolation-based methods allocate parame-
ters for specific tasks. Some mainstream technology branches include the expansion-based methods
(Hu et al., 2021; Rusu et al., 2016) assigning network branches for each task, the mask-based meth-
ods (Mallya & Lazebnik, 2018; Mallya et al., 2018; Ke et al., 2020) preserving crucial parameters
for each task, and projection-based methods (Saha et al., 2021; Wang et al., 2021) constraining the
gradient descent direction to prevent interference with model performance for old tasks.

This paper introduces DLCPA, a novel exemplar-free incremental learning framework with a dual-
learner architecture. Similar architectures are found in exemplar-based IL methods like CLS-ER
(Arani et al., 2022) and DualNet (Pham et al., 2021), which use a plastic model for new knowledge
and a stable model for long-term knowledge. However, these methods depend on old-task exemplars
to maintain the stable model and prevent forgetting. In contrast, DLCPA employs a cumulative
average update strategy for the stable learner, achieving a desirable balance between plasticity and
stability in an exemplar-free setting.

3 ANALYSIS

The goal of this section is to present our empirical findings that averaging model in the parameter
space of STL could potentially be an effective strategy for preserving knowledge across all tasks.
These findings serve as the motivation for our DLCPA, which will be introduced in Section 4.

3.1 PROBLEM DEFINITION

In IL, a model is tasked with learning knowledge from a sequence of T task datasets: D1, D2, . . . ,
DT . This paper specifically focuses on IL under the exemplar-free setting(Masana et al., 2022), i.e.,
accessing or storing old-task samples is strictly forbidden during learning a new task. In particu-
lar, when training task t, only the corresponding dataset Dt = {(xt

k, y
t
k)}

nt

k=1 is accessible, where
(xt

k, y
t
k) represents an input-output pair and nt denotes the number of samples in Dt. Furthermore,

the categories in different tasks are disjoint, i.e., Yt1 ∩ Yt2 = ∅ for t1 ̸= t2, with Yt representing the
label set of task t.

The objective of IL is to encapsulate all task knowledge within a single model. During testing, we
assess model performance using all T task samples. Task identifiers are provided alongside query
samples in Task-IL, but not in Class-IL. The DLCPA proposed in this paper is applicable to both
Task-IL and Class-IL scenarios.

3.2 BASELINE: SINGLE TASK LEARNING

Single Task Learning (STL) is recognized as an upper-bound baseline for exemplar-free IL(Yoon
et al., 2020; Saha et al., 2021). As depicted in Figure 1 (a), STL trains an independent network for
each task2. Given a query sample x from task t, STL employs the model corresponding to task t to
make a prediction, which can be formulated as:

ŷstl = Γ⊤
t f(x | Θt), (1)

where f(·) represents the feature extractor (the model excluding the last layer of the network) and
Θt denotes its parameters. Additionally, Γt signifies the parameter matrix of the classifier (the final
layer of the model) corresponding to task t, with each column of Γt storing a class prototype.

2This work explores a stationary version of STL that initializes the new-task model Θt with the preceding
Θt−1. Please refer to Algorithm 2 in the Appendix for detailed pseudo codes.
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STL boasts high plasticity by introducing an independent model for each task, thereby facilitating
unrestricted new knowledge learning. Concurrently, the old-task models of STL remain unchanged,
ensuring high stability. However, the memory usage of STL escalates linearly with the number of
learned tasks, restricting its practical application. To address this limitation, a straightforward idea is
to consolidate the knowledge from all STL models into a unified learner, aiming to approximate the
performance of STL. Under the exemplar-free IL setting, it usually necessitates an intricate design
to apply advanced distilling techniques during the learning process (Zhu et al., 2021). Instead,
we investigate a simple strategy that averages all feature extractors in the parameter space, which
showcases significant potential in preserving the knowledge across all tasks, thereby approximating
the performance of STL. We elaborate on our findings in the following subsection.

Table 1: Accuracy (%) under Task-IL of STL and its variations on MNIST and CIFAR-100.
Methods 5-split MNIST 10-split CIFAR-100
STL 99.73±0.1 86.94±0.3
STL-me 96.74±0.7 59.71±1.0
STL-me w/ classifier finetuning 98.55±0.3 80.65±0.2

3.3 STL APPROXIMATION WITH MEAN EXTRACTOR

To address the storage consumption issue of STL, we explore a simple solution, STL-me, which
averages all feature extractors into a unified one and makes predictions based on this mean feature
extractor, as shown in Figure 1 (b). Specifically, given a query sample x from task t, STL-me makes
a prediction as follows:

ŷstl me = Γ⊤
t f

(
x | 1

T

∑T
i=1 Θi

)
. (2)

To evaluate the performance of STL-me, we conduct experiments on two datasets: MNIST and
CIFAR-100. As depicted in Table 1, the performance of this straightforward approach fails to meet
our expectations. There exists an evident accuracy gap between STL and STL-me, particularly on
CIFAR-100. A possible reason for this performance degradation could be that averaging extractor
parameters disrupts the sample distribution of each category in the feature space, thereby under-
mining the effectiveness of class prototypes in each task-specific classifier. To address this issue,
we finetune each task-specific classifier to adapt to the mean feature extractor using the data of the
corresponding task. The prediction is then made based on the finetuned classifier parameters Γ⋆

t :

ŷstl me ft = Γ⋆
t
⊤f

(
x | 1

T

∑T
i=1 Θi

)
. (3)

The last row Table 1 displays that STL-me with classifier finetuning achieves quite competitive per-
formance3: it only trails STL by 1% and 6%4 in accuracy on MNIST (LeCun & Cortes, 2010) and
CIFAR-100 (Krizhevsky, 2012), respectively. These results underscore the effectiveness of the mean
feature extractor, which shows promise in consolidating knowledge across all tasks. Moreover, the
average operation significantly reduces the storage consumption from O(T ) to O(1). While finetun-
ing task-specific classifiers based on the average feature extractor is an unlikely task in exemplar-free
IL, it still shows significant potential to inspire a promising IL method. Motivated by these observa-
tions, we propose our DLCPA framework, which will be detailed in the next section.

4 METHODS

4.1 OVERVIEW

The proposed DLCPA framework is characterized by three main components: a plastic leaner, a
stable learner, and T task-specific classifiers.

3See Section C in the Appendix for more detailed evidence.
4Current IL methods are still far from STL (Saha et al., 2021), and a 6% accuracy loss on CIFAR-100 in

this situation is acceptable
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Figure 2: Diagram of task t training processes of DLCPA.

• Plastic learner aims to rapidly acquire knowledge from a new task. It is implemented as
a deep neural network with ReLU activation units. Given an input x, it yields a feature
representation f(x | Θ), where Θ denotes the network parameters.

• Stable learner is responsible to accumulate and retain the knowledge learned by the plastic
learner over time. It shares the same architecture as the plastic learner but maintains its own
parameters, denoted as Φ. Hence, the stable learner can also extract a feature f(x | Φ) for
any given input x.

• Classifier is a linear layer to perform classification based on the features extracted by the
plastic learner or the stable learner. Each task is associated with a specific classifier. We
denote the parameter of the classifier for task t as Γt.

As depicted in Figure 2, the training of the DLCPA framework for task t involves a three-stage loop:
plastic learner learning, stable learner updating, and classifier training. In the plastic learner learning
stage, we employ self-supervised techniques to guide the model in learning robust parameters. In the
stable learner updating stage, an updating strategy with cumulative parameter averaging is designed
to transfer the acquired knowledge from the plastic learner to the stable learner. In the classifier
training stage, the task-specific classifier is trained to fit the supervision knowledge based on the
features extracted by the stable learner. These three stages are iteratively performed several times.

During the inference phase, given a query sample x, DLCPA first utilizes the stable learner to extract
its feature, which is then fed into the classifier to yield the prediction. For task-IL, we select the
classifier corresponding to the task label (for instance, t) of a query:

ŷ = Γ⊤
t f(x | Φ), (4)

where ŷ represents the model prediction. For Class-IL, we concatenate the parameters of all task
classifiers into a unified one, denoted as Γ = [Γ1, . . . ,ΓT ], to make a prediction:

ŷ = Γ⊤f(x | Φ). (5)

Next, we elaborate on the three learning stages in the following three subsections.

4.2 PLASTIC LEARNER LEARNING

During the plastic learner learning stage, as shown in Figure 2 (a), both the stable learner and the
classifier are frozen, and only the plastic learner is trained to learn new-task representation. Partic-
ularly, we employ self-supervised learning techniques to guide the plastic learner’s fitting process.
This approach is motivated by two key factors. On the one hand, previous studies (Wu et al., 2021;
Fini et al., 2022) have shown that self-supervised technique can implicitly guide a neural model to
learn task-independent knowledge for incremental learning. It, therefore, can encourage the plastic
learner to learn unbiased parameters that are more suitable for the cumulative parameter averaging
step5; On the other hand, self-supervised learning tends to discover transferable knowledge (Jing

5See Figure 5 in the Appendix for illustration.
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& Tian, 2021), which boosts DLCPA to forward even backward transfer knowledge. In addition, a
supervised loss is utilized to enable the model to learn discriminative representations for new tasks.

Technically, we wrap the plastic learner with a self-supervised module and apply the self-supervised
loss along with a supervised loss to optimize the plastic learner parameter Θt for task t:

min
Θt

E
(x,y)∼Dt

Lssl(f(x | Θt)) + λLsl(Γ
⊤
t f(x | Θt), y), (6)

where Lssl(.) and Lsl(., .) denote a self-supervised loss and the cross-entropy supervised loss, re-
spectively. λ is a hyper-parameter that balances the two losses. The choice of self-supervised learn-
ers is not restricted, and we provide results with BYOL (Grill et al., 2020), SimClr (Chen et al.,
2020), and MoCoV2 (He et al., 2020) in the experiments.

4.3 STABLE LEARNER UPDATING

Upon updating, the plastic learner acquires new-task knowledge, enhancing its ability to extract
informative features for the new task. On the other hand, the stable learner prioritizes generalizable
knowledge across different tasks. To facilitate a gentle transfer of knowledge from the plastic learner
to the stable learner without compromising its stability, we introduce a cumulative average updating
strategy, which is detailed below.

As observed in Section 3.3, the mean feature extractor can potentially encapsulate knowledge across
all tasks. This observation motivates us to construct a stable learner by averaging the parameters of
the plastic learner across all tasks:

Φt =

∑t
i=1 Θi

t
, (7)

where Φt denotes the stable learner parameters after learning task t.

However, equation 7 necessitates storing the plastic learner parameters for all tasks, leading to mem-
ory usage that grows linearly with the number of learned tasks. To address this, we propose a cu-
mulative average updating strategy for the stable learner parameters, achieving the same goal as
Eq. equation 7 but with fixed memory usage. Specifically, before learning task t, we store a copy of
the stable learner, whose parameters can be viewed as the average of the plastic learner parameters

for all previous tasks, i.e., Φt−1 =
∑t−1

i=1 Θi

t−1 . Consequently, we can achieve equation 7 as follows:

Φt =
Θt + (t− 1) ∗ Φt−1

t
. (8)

Equation 8 only requires storing the old-task extractor Φt−1, making the updating memory-efficient.

4.4 CLASSIFIER TRAINING

Next, as depicted in Figure 2 (c), DLCPA updates the classifier based on the features extracted
by the stable learner, aiming to align the classifier with the stable learner. We halt the gradient
backpropagation beyond the classifier to prevent the stable learner from forgetting. The loss function
for training the classifier is defined as:

min
Γt

E
(x,y)∼Dt

Lsl(Γ
⊤
t f(x | Φt), y). (9)

Upon completion of classifier training, one iteration for task t finishes. Notably, within each task,
the three-step iteration repeats multiple times until the model converges. We outline the training
process of DLCPA in Algorithm 1 in the Appendix.

4.5 FURTHER DISCUSSION

In each iteration, although the plastic learner and the classifier are updated separately, they actually
interact through the stable learner. On the one hand, the classifier is trained to align with the new-
task feature representations yielded by the stable learner, which has encompassed the knowledge
acquired by the plastic learner through accumulative parameter averaging. On the other hand, the
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training of the plastic learner is guided by the class prototypes within the classifier. These proto-
types encapsulate the task-general information learned by the stable learner, thereby encouraging
the plastic learner to capture more generalizable patterns. DLCPA benefits from this indirect com-
munication, which is empirically substantiated by ablation studies presented in Table 4.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We select the following two widely used datasets: CIFAR-100 (Krizhevsky, 2012) and
Tiny-ImageNet (Stanford, 2015). CIFAR-100 has 100 classes containing 600 images each. The
Tiny-ImageNet dataset contains 200 classes, and 600 images for each class. In our experiments,
they are equally separated into 10, 20, and 25 incremental branches.

Evaluation metrics. Following Buzzega et al. (2020), we take the classification accuracy (ACC %)
after learning all tasks as the primary metric for the performance evaluation. Besides, we also report
backward knowledge transfer (BWT %) (Lopez-Paz & Ranzato, 2017), which formulated as:

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i, (10)

where Ri,j denotes the test classification accuracy of the model on task j after learning task i. Fur-
thermore, to alleviate the influence of randomness in neural network training, we run all experiments
five times with random seeds and report the average performance.

Baselines: We compare our method with various latest and classic incremental learning methods,
including Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017), Dark Experience Replay (DER
and DER++) (Buzzega et al., 2020), Learning without Forgetting (LwF) (Li & Hoiem, 2017), Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), PackNet (Mallya & Lazebnik, 2018),
Orthogonal Weights Modification (OWM) (Zeng et al., 2019), MUC-MAS (Liu et al., 2020), PASS
(Zhu et al., 2021), Adam-NSCL (Wang et al., 2021), Gradient Projection Memory (GPM) (Saha
et al., 2021), Bit-Level Information Preserving (BLIP) (Shi et al., 2021), ADNS (Kong et al., 2022),
VDFD (Li et al., 2023), ILCOC (Sun et al., 2021), Always Be Dreaming (ABD) (Smith et al., 2021),
Filter Atom Swapping (FAS) (Miao et al., 2022), and DCPOC (Sun et al., 2023a).

Implementation details. We employ the ResNet18 (He et al., 2016) as the backbone architecture.
All hyperparameters are searched through a validation set which is constructed by sampling ten
percent samples from the training set. For DLCPA, the learning rate is set to 0.005 and 0.02, and
the batch size is set to 32 and 512 for CIFAR-100 and Tiny-ImageNet, respectively. The network
parameters are optimized by SGD for 100 epochs per task. The balance weight λ is set to 10 for
both datasets. More details can be found in our supplementary code. Besides, we provide the
performance of DLCPA with several self-supervised learners, including BYOL (Grill et al., 2020),
SimClr (Chen et al., 2020), and MoCoV2 (He et al., 2020). Notably, we refresh the negative feature
queue of MoCoV2 at the beginning of each task to satisfy the exemplar-free setting.

5.2 PERFORMANCE COMPARISON

We first follow Li et al. (2023) to compare DLCPA with several baselines under the Task-IL setting.
Table 2 reports the classification accuracy and BWT on 10-split CIFAR-100, 20-split CIFAR-100,
and 25-split Tiny-ImageNet. On CIFAR-100, DLCPA equipped with BYOL achieves the second-
best performance in the 10-split setting, trailing VDFD only by 0.15%. Additionally, DLCPA
performs the best in the 20-split CIFAR-100, with the BYOL version surpassing the second-best
VDFD by 0.84%. In the case of 25-split Tiny-ImageNet, DLCPA outperforms all existing meth-
ods, exceeding the second-best GPM by 9.27%. Moreover, DLCPA shows positive BWT in 25-split
Tiny-ImageNet because the introduced self-supervised techniques encourage DLCPA to learn task-
independent knowledge, which benefits DLCPA’s old-task performance.

We next follow Buzzega et al. (2020) to evaluate the Class-IL performance of DLCPA, and report
the experimental results on 10-split CIFAR-100 and 10-split Tiny-ImageNet in Table 3. Our findings
show that the Class-IL performance of DLCPA is highly competitive. Compared with the second-
best performance, DLCPA is 2.44% higher on CIFAR-100 and 0.73% higher on Tiny-ImageNet.
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Table 2: Task incremental learning results on 10-split CIFAR-100, 20-split CIFAR-100, and 25-
split Tiny-ImageNet. (*) indicates the upper-bound model that trains a specific model for each task.
(-) means that the result was unavailable, due to the intractable training time by our implementation
(GEM). Bold and underlined denote the best and the second-best performance.

Methods Buffer 10-split CIFAR-100 20-split CIFAR-100 25-split Tiny-ImageNet
ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

STL* - 86.94 0.00 87.79 0.00 80.30 0.00
GEM 500 61.59 -26.40 71.25 -9.22 - -
DER 500 73.26 -13.69 77.37 -5.16 57.12 -28.49
DER++ 500 74.86 -12.56 77.82 -3.57 55.09 -28.98
LWF - 70.70 -6.27 74.38 -9.11 56.57 -11.19
EWC - 71.28 -2.97 70.90 -3.03 52.33 -6.17
PackNet - 77.18 0.00 67.50 0.00 52.93 0.00
OWM - 68.89 -1.88 68.47 -3.37 49.98 -3.64
MUC-MAS - 63.73 -3.88 67.22 -5.72 41.18 -4.04
PASS - 71.23 -5.21 74.43 -4.03 56.78 -5.33
Adam-NSCL - 73.77 -1.60 75.95 -3.66 58.28 -6.05
GPM - 70.93 -3.52 77.55 -1.20 69.48 -5.29
BLIP - 61.09 -0.70 68.17 -4.21 47.63 -5.79
ADNS - 77.21 -2.32 77.33 -3.25 59.77 -4.58
VDFD - 83.30 -1.27 85.84 -1.53 65.99 -2.35
DLCPA + BYOL - 83.15 -0.04 86.68 0.27 76.90 0.56
DLCPA + SimClr - 82.03 -0.99 85.95 -0.08 77.71 3.94
DLCPA + MoCoV2 - 81.15 -0.34 85.56 0.31 78.75 3.91

Table 3: Class incremental learning results (ACC %) on 10-split CIFAR-100 and 10-split Tiny-
ImageNet. (*) indicates the upper-bound model that is jointly trained with all tasks. (†) imply the
results are quoted from VDFD, in which the standard deviations are not provided.

Methods Buffer 10-split CIFAR-100 10-split Tiny-ImageNet
Joint* - 70.31 58.07
GEM 500 11.76±0.7 -
DER 500 34.24±1.4 17.75±1.1
DER++ 500 36.52±2.0 19.38±1.4
OWM - 27.63±0.5 15.30±0.3
ILCOC - 22.19±1.6 15.78±0.4
PASS - 31.80±0.7 28.48±0.6
ABD - 33.30±0.3 15.80±0.4
FAS - 25.79±0.7 24.29±0.3
DCPOC - 25.80±0.4 19.75±0.1
VDFD† - 38.38 26.21
DLCPA + BYOL (ours) - 40.67±1.1 23.19±0.6
DLCPA + SimClr (ours) - 40.82±0.4 26.68±0.3
DLCPA + MoCoV2 (ours) - 40.11±0.8 29.21±0.3

The competitive Class-IL performance of DLCPA is attributed to the task-wise balanced feature
extractor, which is the average of each task’s optimal extractor and does not suffer the notorious bias
problem in Class-IL (Wu et al., 2019). We empirically prove that DLCPA is task-wise balanced via
the confusion matrix in Section E.2 of the Appendix.

Table 4: Ablation experiment results (ACC %) of DLCPA on CIFAR-100 and Tiny-ImageNet.

Methods 10-split CIFAR-100 10-split Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

(a) Plastic learner learning w/o SSL 27.93±1.5 80.90±1.0 18.62±0.4 57.46±0.4
(b) Plastic learner learning w/ additional classifier 35.53±0.6 78.35±0.5 25.90±0.4 62.64±0.4
(c) Stable learner updating w/ EMA 30.00±1.8 74.87±0.6 24.25±0.3 61.81±0.2
(d) Stable learner updating w/ directly copying 22.98±1.3 72.56±1.3 20.92±0.3 58.59±0.5
(e) Classifier training w/ plastic-learner feature 13.67±1.3 64.73±2.3 22.23±0.2 60.34±0.2
DLCPA + MoCoV2 (ours) 40.11±0.8 81.15±0.5 29.21±0.3 65.90±0.4
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5.3 ABLATION STUDY

Effectiveness of plastic learner learning stage. We first construct two variations of DLCPA: (a)
removes the self-supervised learner (SSL) on the basis of DLCPA; (b) trains the plastic learner based
on a randomly initialized temporary classifier. As illustrated in the first row of table 4, the perfor-
mance degradation of (a) compared with DLCPA proves the necessity of a self-supervised technique
for DLCPA. Besides, the second row of Table 4 shows (b) performs lower performance than DL-
CPA on all settings. The reason for this phenomenon is that the classifier of DLCPA implicitly learns
the feature pattern of the stable learner. Therefore the classifier is able to guide the plastic feature
learner to extract such features, thus transferring knowledge from the former tasks to the latter and
alleviating forgetting. However, (b) lacks this ability and suffers performance degradation.

Effectiveness of stable learner updating stage. We next construct two variations by substituting
different stable-learner parameters updating strategies, including (c) exponential moving average
(EMA, the update factor is set to the conventional 0.999 (He et al., 2020)) with plastic-learner
parameters and (d) directly copying the parameters of the plastic learner. As shown in Table 4,
DLCPA outperforms both (c) and (d), indicating that the proposed cumulative average update is
more suitable for incremental learning.

Effectiveness of classifier training stage. The last variation (e) is constructed by training the clas-
sifier with the features extracted by the plastic learner. And the fifth row of Table 4 shows a poor
performance of (e), because of the mismatching between the classifier and the stable learner.

5.4 SENSITIVE ANALYSIS OF λ

(a) CIFAR-100 (b) Tiny-ImageNet

Figure 3: Incremental learning results (ACC
%) of DLCPA with MoCoV2 under various λ
(weighting the supervised loss, see Eq. 6) on
CIFAR-100 (a) and Tiny-ImageNet (b).

This section analyzes the sensitivity of the bal-
ance parameter λ (weighting the supervised
loss) in equation 6. We select six different
values of λ and rerun the experiments on 10-
split CIFAR-100 and 10-split Tiny-ImageNet,
including 0, 0.1, 1, 10, 100, and 1000. Fig-
ure 3illustrates the results, indicating how the
accuracy of DLCPA changes as λ increases. In-
terestingly, we observed a similar trend on both
datasets. When λ = 0, DLCPA performs worse
under both Task-IL and Class-IL settings, as
the supervised loss does not contribute to the
plastic learner training, and DLCPA has poor
discriminability for each task. As λ increases,
the accuracy grows and reaches the peak when
λ = 10. In conclusion, the performance DL-
CPA is sensitive to a small value of λ, but re-
mains stable for larger weights like 10 for both
CIFAR-100 and Tiny-ImageNet.

6 CONCLUSION

Through the exploratory experiments on STL, we discover that the knowledge of distinct extractors
can be integrated by parameter averaging. This insight leads to the proposal of A Dual-Learner
framework with Cumulative Parameter Averaging (DLCPA) for exemplar-free IL. DLCPA employs
a dual-learner design, with a plastic learner for new-task representations and a stable learner for
accumulating all knowledge learned by the plastic learner. Additionally, task-specific classifiers are
alternately updated to align with the stable learner. Experiments on CIFAR-100 and Tiny-ImageNet
demonstrate that DLCPA achieves state-of-the-art performance on both exemplar-free IL.

Nevertheless, DLCPA has certain limitations, such as the reliance on clear task boundaries for new
knowledge organization and the assumption of task equivalence. Future work will delve into knowl-
edge organization techniques and broaden the application scenarios of DLCPA.
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A PSEUDO CODE OF DLCPA TRAINING

As depicted in Figure 2, the training of the DLCPA framework for task t involves a three-stage loop:
plastic learner learning, stable learner updating, and classifier training. Within each task, the three-
step iteration repeats multiple times until the model converges. We outline the training process of
DLCPA in Algorithm 1.

Algorithm 1: Pseudo code of DLCPA Training
Input: Datasets {D1, . . . , DT }
Output: Stable learner Φ; Classifiers {Γ1, . . . ,ΓT }

1 Initialize Θ, Φ, {Γ1, . . . ,ΓT };
2 for t = 1, . . . , T do
3 for (X ,Y) ∼ Dt do
4 Θ← Plastic Learner Learning(X ,Y,Θ,Γt) // Refer to equation 6
5 Φ̂←− Stable Learner Updating(Θ,Φ) // Refer to equation 8
6 Γt ←− Classifier Training(X ,Y, Φ̂,Γt) // Refer to equation 9

7 Φ←− Φ̂;

B SINGLE TASK LEARNING

Single Task Learning (STL) achieves an upper-bound performance in Task-IL (Yoon et al., 2020).
It trains a distinct network for each task and makes inferences based on the task identifications of
queries. This study explores a more stable version of STL that initializes the new-task model Θt

with the previous model Θt−1, as detailed in Algorithm 2.

C EFFECTIVENESS ANALYSIS OF STL-ME

This section analyzes the effectiveness of STL-me, which is built by averaging the feature extractors
of STL in the parameter space.
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Algorithm 2: Pseudo code of Single Task Learning
Input: Datasets {D1, . . . , DT }
Output: Feature extractors Θ arr = {Θ1, . . . ,ΘT };
Classifiers Γ arr = {Γ1, . . . ,ΓT }

1 Initialize Θ, Θ arr = { }, Γ arr = { };
2 for t = 1, . . . , T do
3 Initialize Γt

4 for (X ,Y) in Dt do
5 Θ← Lsl(Γ

⊤
t f(X ; Θ),Y)

6 Θt = Θ
7 Θ arr = Θ arr ∪ {Θt}
8 Γ arr = Γ arr ∪ {Γt}

Figure 4: Effectiveness evaluation of various feature extractors on 10-split CIFAR100. The heatmap
presents the linear probe accuracy (%) on the dataset of each task by using various feature extractors.
These include individual task feature extractors, STL (i.e., choosing the best extractor for every
single task), and STL-me (using the mean extractor).

C.1 DISCRIMINABILITY OF MEAN EXTRACTOR

We first empirically evaluate the discriminability of the features extracted by STL-me through linear
probing on 10-split CIFAR100. Figure 4 presents the results for each task-specific extractor in STL,
STL, and STL-me. It is evident that each task-specific extractor can only extract discriminative
features for its corresponding task data, failing for other tasks. In contrast, STL-me is capable
of extracting informative features and nearly matches the STL performance for almost all tasks.
This suggests that the parameter averaging operation effectively consolidates knowledge across all
extractors.

C.2 PERFORMANCE REDUCTION BOUND OF STL-ME

Next, we provide an upper bound for the performance reduction of STL-me compared to STL. Prior
to the analysis, we introduce two assumptions.

Consider a well-trained STL model with T task feature extractors {Θ1, . . . ,ΘT } and classifiers
{Γ1, . . . ,ΓT }. The loss function Lsl(Γ

⊤
t f(xt; Θt), yt) is Lipschitz continuous (Bonicelli et al.,

2022) with respect to Θt. That is, for any task t, there exists a positive real number k such that

(Lsl(Γ
⊤
t f(xt; Θt +∆Θ), yt)− Lsl(Γ

⊤
t f(xt; Θt), yt))

2

≤ k||∆Θ||2.
(11)
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Task 2 loss landscapeTask 1 loss landscape Task 2 loss landscapeTask 1 loss landscape

Single Task Learning Single Task Learning with MoCoV2

Figure 5: Cross-entropy validation loss surface for task 1 and task 2 on CIFAR-100. STL is updated
with supervised loss (left) in comparison to with both supervised and self-supervised loss (right).

For all T tasks, the number of iterations is bounded by an integer S.

Assuming that Assumptions C.2 and C.2 hold, let η be the learning rate. Then, the loss of task t
after parameter averaging is upper bounded by

(Lsl(Γ
⊤
t f(xt;

1

T

T∑
i=1

Θi), yt)− Lsl(Γ
⊤
t f(xt; Θt), yt))

2

≤ k(
TSη

2
)2.

(12)

Proof. Let Θt,s denote the feature extractor that is further updated s steps after the completion of
learning task t. Specifically, Θt = Θt,0 represents the extractor specific to task t. Then we have

Lsl(Γ
⊤
t f(xt;

1

T

T∑
i=1

Θi), yt)

≤Lsl(Γ
⊤
t f(xt;

1

T
(Θt,−(t−1)S + · · ·+Θt,0 + . . .

+Θt,(T−t)S), yt)

≤Lsl(Γ
⊤
t f(xt;

1

T
(TΘt +

T 2

2
Sηe), yt)

=Lsl(Γ
⊤
t f(xt; Θt +

T

2
Sηe), yt),

(13)

where e is a unit vector in the loss ascent direction.

Therefore, by using the Lipschitz continuity, we derive

(Lsl(Γ
⊤
t f(xt;

1

T

T∑
i=1

Θi), yt)− Lsl(Γ
⊤
t f(xt; Θt), yt))

2

≤ k(
TSη

2
)2.

(14)

Theorem C.2 suggests that the flatness of the loss landscape, denoted as k in Eq. equation 14, is
pivotal to the performance of STL-me. To explore the sharpness, we illustrate the loss landscape
of STL on the first two tasks of CIFAR100 in Figure 5, following the approach of Mirzadeh et al.
(2021). As observed, the loss surfaces of both tasks 1 and 2, over the linear combination of the
task-1 feature extractor and task-2 feature extractor, exhibit smoothness. This observation leads us
to conclude that Assumption C.2 holds with a lower k value in the range between the averaged
extractor and task-specific extractors. Consequently, their average provides a suitable solution for
both tasks. This is plausible as different incremental tasks share similar underlying knowledge, even
if the classes to be recognized are distinct, a common assumption in incremental learning (Ke et al.,
2020).
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Table 5: Hyperparameters for the baseline models and our DLCPA. In this context, ”KD” stands
for ”Knowledge Distillation”
Methods Hyperparameters

GEM (Lopez-Paz & Ranzato, 2017) learning rate: 0.03 (CIFAR-100), 0.05 (Tiny-ImageNet)
batch size: 32 (CIFAR-100), 64 (Tiny-ImageNet)

DER (Buzzega et al., 2020) learning rate: 0.03 batch size: 32 KD weight: 0.1

DER++ (Buzzega et al., 2020) learning rate: 0.03 batch size: 32 KD weight α: 0.1 β: 0.5

OWM (Zeng et al., 2019) learning rate: 0.1 batch size: 64

ILCOC (Sun et al., 2021) learning rate: 2e-3 batch size: 32 α1: 0.7 α2: 0.5

PASS (Zhu et al., 2021)

learning rate: 1e-4 (Tiny-ImageNet), 5e-4 (CIFAR-100)
batch size: 64 (CIFAR-100), 32 (Tiny-ImageNet)
KD weight: 10 (Tiny-ImageNet), 0.2 (CIFAR-100)
prototype weight: 0.05 (CIFAR-100), 0.5 (Tiny-ImageNet)

DCPOC (Sun et al., 2023a)

learning rate: 5e-5
batch size: 8 (CIFAR-100), 32 (Tiny-ImageNet)
λ1: 20 (CIFAR-100), 10 (Tiny-ImageNet)
λ2: 10 (CIFAR-100), 0.01 (Tiny-ImageNet)

FAS (Miao et al., 2022) learning rate: 0.001 (CIFAR-100), 5e-4 (Tiny-ImageNet)
batch size: 32 (CIFAR-100), 16 (Tiny-ImageNet)

DLCPA (ours)
learning rate: 0.005 (CIFAR-100), 0.02 (Tiny-ImageNet)
batch size: 32 (CIFAR-100), 512 (Tiny-ImageNet)
self-supervised loss weight λ: 10

Table 6: Dataset statistics.
Dataset CIFAR-100 Tiny-ImageNet
Input size 3× 32× 32 3× 64× 64
# Classes 100 200
# Training samples per class 450 450
# Validation samples per class 50 50
# Testing samples per class 100 100

On the other hand, reducing k diminishes the upper bound of performance degradation and further
enhances the effectiveness of parameter averaging. This insight motivates us to incorporate self-
supervised techniques during learning. As shown in Figure 5 (right), training with self-supervised
learners flattens the loss landscapes. Therefore, we equip DLCPA with self-supervised learners to
prompt the plastic learner to concentrate more on task-independent knowledge, thereby enhancing
the impact of cumulative average updating.

D EXPERIMENTAL DETAILS

This section provides some details of our experiments, including the experimental environment,
the hyperparameters used for the proposed DLCPA and main baselines under comparison, and the
statistics of datasets.

D.1 EXPERIMENTAL ENVIRONMENT

All experiments reported in our manuscript and appendix are conducted on a workstation running
OS Ubuntu 16.04 with 18 Intel Xeon 2.60GHz CPUs, 256 GB memory, and 6 NVIDIA RTX3090
GPUs. All methods are implemented with Python 3.8.
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DER++ GPM DLCPA (ours)

Figure 6: Diagram of ACC (%) for each task during task incremental learning on Tiny-ImageNet of
DER++ (left), GPM (middle), and DLCPA (right).

GPM DER++ DLCPA (ours)

Figure 7: Confusion matrix of DER++, GPM, and DLCPA on 10-Split CIFAR-100.

D.2 LIST OF HYPERPARAMETERS

Table 5 summarizes the hyperparameters that were tuned for the baseline methods we implemented,
as well as for our proposed DLCPA.

D.3 DATASET STATISTICS

In this work, we utilize two classification datasets, CIFAR-100 (Krizhevsky, 2012) and Tiny-
ImageNet (Stanford, 2015), to evaluate the proposed DLCPA. The statistical details of these two
datasets are provided in Table 6.

E ADDITIONAL COMPARISONS

This section presents additional experimental results. These supplementary experiments encompass
(i) an analysis of plasticity and stability, (ii) a comparison of confusion matrices, (iii) a comparison
of Class-IL with varying numbers of tasks, (iv) a comparison with mask-based incremental learn-
ing methods, (v) a comparison with a larger network backbone, and (vi) an analysis of DLCPA’s
robustness to task order.

E.1 PLASTICITY AND STABILITY ANALYSIS

We plot the performance of each task during the incremental learning of DER++, GPM, and DLCPA
to examine their plasticity and stability. As depicted in Figure 6, for DER++, peak performance for
each task is achieved after training completion, and the maximum performance for each task is the
highest among the three methods. This observation attests to DER++’s high plasticity. However, its
stability is lacking, as each task’s performance declines immediately after learning subsequent tasks.
GPM, on the other hand, maintains a more stable performance for each task, suggesting that its gra-
dient constraint mechanism ensures high stability. However, GPM’s gradient projection technique
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may limit its ability to learn new knowledge, resulting in insufficient plasticity. DLCPA exhibits
both high plasticity and stability. Furthermore, the performance of most tasks (except for task 1
and task 2) under DLCPA gradually improves during subsequent task learning due to its alternating
update design and self-supervised techniques, which enhance its ability to transfer knowledge to old
tasks.

E.2 CONFUSION MATRIX COMPARISION

Classification bias is a well-known challenge in Class-IL (Wu et al., 2019). We compute the con-
fusion matrices of DER++, GPM, and DLCPA to assess the balance of their classifications. As
illustrated in Figure 7, GPM’s classification leans towards the classes of the last task. This is ex-
pected, as GPM is a Task-IL method and lacks a specific design to counteract classification bias. For
DER++, the phenomenon of classification bias is significantly reduced, thanks to the stored old-task
exemplars. Notably, DLCPA, even under an exemplar-free setting, achieves a task-wise balance
similar to that of the exemplar-memory based DER++.

Table 7: Class incremental learning results (ACC %) on CIFAR-100 for various task numbers (5,
10, 20). Results marked with “†” are derived from Smith et al. (2021).

Task Number 5 tasks 10 tasks 20 tasks
DGR† 14.4 8.1 4.1
LwF† 17.0 9.2 4.7
DI† 18.8 10.9 5.7
ABD† 43.9 33.7 20.0
PASS 45.2 30.8 17.4
DCPOC 33.1 27.5 20.5
DLCPA w/ MoCoV2 46.3 40.1 31.0

E.3 CLASS-IL RESULTS WITH VARIOUS NUMBER OF TASKS

We further evaluate the performance of DLCPA across different task sequence lengths under Class-
IL. Following Smith et al. (2021), we conduct experiments on CIFAR-100 with 5, 10, and 20 tasks.
The methods compared include DGR (Shin et al., 2017), LWF (Li & Hoiem, 2017), DI (Yin et al.,
2020), ABD (Smith et al., 2021), PASS (Zhu et al., 2021), and DCPOC (Sun et al., 2023a), with their
performance detailed in Table 7. In the 5 task setting, DLCPA marginally surpasses the second-best
method, PASS. However, when faced with a longer sequence of 20 tasks, DLCPA demonstrates a
more significant performance gap, outperforming the second-best by 10.5%. These results validate
the superiority of DLCPA when learning longer tasks.

Table 8: Comparison (ACC %) with Mask-based methods on a 10-split Tiny-ImageNet. Results
marked with (†) are derived from Wang et al. (2022).

Methods Tiny-ImageNet
Class-IL Task-IL

PackNet† (Mallya & Lazebnik, 2018) - 61.88±1.0
LPS† (Wang et al., 2020) - 63.37±0.8
SparCL† (Wang et al., 2022) 20.75±0.9 52.19±0.4

DLCPA w/ MoCoV2 (Ours) 29.21±0.3 65.90±0.4

E.4 COMPARISON WITH MASK-BASED METHODS

In line with Wang et al. (2022), we conducted experiments on Tiny-ImageNet, with the results pre-
sented in Table 8. The mask-based methods compared include PackNet (Mallya & Lazebnik, 2018),
LPS (Wang et al., 2020), and SparCL (Wang et al., 2022). Notably, SparCL is an exemplar-based
method and maintains an additional exemplar memory with 500 samples. As observed, DLCPA sig-
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nificantly outperforms all comparison methods. Furthermore, DLCPA’s performance is more stable,
exhibiting the lowest variance.

Table 9: Result (ACC %) using ResNet34 as the network backbone on a 10-split CIFAR-100 and a
10-split Tiny-ImageNet.

Methods CIFAR-100
Class-IL Task-IL

DER++ (Buzzega et al., 2020) 16.98 51.34
GPM (Saha et al., 2021) - 66.16
PASS (Zhu et al., 2021) 28.62 75.69
DLCPA (ours) 40.69 82.01

Methods Tiny-ImageNet
Class-IL Task-IL

DER++ (Buzzega et al., 2020) 19.54 50.48
GPM (Saha et al., 2021) - 60.28
PASS (Zhu et al., 2021) 28.48 63.02
DLCPA (ours) 28.96 65.87

E.5 RESULTS WITH LARGER NETWORK BACKBONE

We conducted experiments using ResNet34(He et al., 2016) as the network backbone, with the
results reported in Table 9. As observed, DLCPA achieves superior performance compared to three
state-of-the-art methods (DER++ (Buzzega et al., 2020), GPM (Saha et al., 2021), and PASS (Zhu
et al., 2021)) across all settings, demonstrating DLCPA’s robustness to network scale.

Table 10: Incremental learning result (ACC %) of DLCPA with MoCoV2 on a 10-split CIFAR-100
with five random task orders.

Methods CIFAR-100
Class-IL Task-IL

Task order 1 40.29 82.04
Task order 2 38.76 81.39
Task order 3 39.63 81.66
Task order 4 35.52 81.23
Task order 5 40.23 81.31

Average 38.89±1.77 81.53±0.29

E.6 RESULTS WITH RANDOM TASK ORDERS

This subsection investigates the robustness of DLCPA to task order. To this end, we randomly shuf-
fle the task order on CIFAR-100 and retrain DLCPA incrementally five times. Table 10 presents
the results for each order and the average performance. As observed, except for an obvious perfor-
mance decline in Order 4 of Class-IL, DLCPA exhibits relatively stable performance across different
scenarios, indicating the robustness of DLCPA to the task order.
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