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ABSTRACT

The extreme multi-label classification (XMC) task involves learning a classifier
that can predict from a large label set the most relevant subset of labels for a
data instance. While deep neural networks (DNNs) have demonstrated remark-
able success in XMC problems, the task is still challenging because it must deal
with a large number of output labels, which make the DNN training computation-
ally expensive. This paper addresses the issue by exploring the use of random
circular vectors, where each vector component is represented as a complex am-
plitude. In our framework, we can develop an output layer and loss function of
DNNs for XMC by representing the final output layer as a fully connected layer
that directly predicts a low-dimensional circular vector encoding a set of labels for
a data instance. We conducted experiments on synthetic datasets to verify that cir-
cular vectors have better label encoding capacity and retrieval ability than normal
real-valued vectors. Then, we conducted experiments on actual XMC datasets and
found that these appealing properties of circular vectors contribute to significant
improvements in task performance compared with a previous model using random
real-valued vectors, while reducing the size of the output layers by up to 99%.

1 INTRODUCTION

Extreme multi-label classification (XMC) problems arise in various domains, such as product recom-
mendation systems (Jain et al.,[2016)), labeling large encyclopedia (Dekel & Shamir}, [2010; |Partalas
et al., 2015), instance-level image recognition (Deng et al., 2010; Ridnik et al., |2021) and natural
language generation (Mikolov et al.,|2013; [Li et al.| 2022)). The XMC task involves learning a clas-
sifier which can predict from a large label set the most relevant subset of labels for a data instance.
Recent work has focused on deep neural network (DNN) models (Liu et al.,2017; |You et al., 2019;
Chang et al.| [2020; Zhang et al., 2021} |Dahiya et al., |2023} |Jain et al., 2023)) that deliver task per-
formances superior to those of early approaches using linear predictors (Babbar & Scholkopf], 2017;
Prabhu et al., 2018)).

While DNN models have brought great performance improvements, the XMC task still remains a
challenge mainly due to the extremely large output space. Since a large number of output labels
make it difficult to train DNN models efficiently, various methods for improving training efficiency
have been proposed (Khandagale et al., [2020; [Wydmuch et al., 2018 [Jiang et al., [2021}; |Ganesan
et al., 2021). Among the previous studies, Ganesan et al.| (2021) presented a promising method
that employs random real-valued vectors for reducing the output layer size of DNN models. In
this approach, a high-dimensional output space vector is replaced with a low-dimensional random
vector encoding the relevant label information for a data instance. Then, DNN models are trained
to predict the label-encoded vector directly. After the model generates a vector, it can be checked
approximately whether a label is encoded in it or not through a vector comparison using the cosine
similarity between the output vector and a vector that the label is assigned to. The basic idea of the
label encoding and retrieval framework relies on the theory of Holographic Reduced Representa-
tions (Platel |1995), which was developed in the cognitive neuroscience field.

However, random real-valued vectors do not have sufficient ability for representing data instances
that belong to many class concepts. As our experiments in § [3] show, the label retrieval accuracy
decreases markedly as the number of class labels encoded in a vector increases. To alleviate the
issue, this paper presents a novel method that uses circular vectors instead of real-valued vectors.
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Each element of a circular vector takes a complex amplitude as its value; i.e., the vector element is
represented by an angle ranging from —m to 7. Since an angle can be represented by a real value, the
memory cost for the circular vector representation is the same as that for a normal real-valued vector.
In spite of this fact, surprisingly, circular vectors have better label encoding and retrieval capacities
than real-valued vectors. One of the challenges in applying circular vectors to DNN models is how
to adapt the output layer to a circular vector. In § ] we describe our neural network architecture
that uses circular vectors in the output layer. Our experimental results on XMC datasets show that
our method based on circular vectors significantly outperforms a previous model using real-valued
vectors, while reducing the size of the output layers by up to 99%.

2 PREVIOUS STUDY: LEARNING WITH HOLOGRAPHIC REDUCED
REPRESENTATIONS

Several vector symbolic architectures have been developed in the field of cognitive neuroscience, in-
cluding Tensor Product Representations (Smolenskyl, |1990), Binary Spatter Code (Kanerva,|1996),
Binary Sparse Distributed Representations (Rachkovskij, 2001), Multiply-Add-Permute (Gayler,
2004), and Holographic Reduced Representations (HRR) (Plate, [1995). Among them, HRR is a
successful architecture for distributed representations of compositional structures. To model com-
plex structured prediction tasks in a vector space that involve key-value stores, sequences, trees
and graphs, many prior studies have explored how to use HRR in various machine learning frame-
works; Recurrent Neural Networks (Platel [1992)), Tree Kernels (Zanzotto & Dell’ Arciprete, |2012)),
Knowledge Graph Representation Learning (Nickel et al., 2016), Long-short Term Memory Net-
works (Danihelka et al. [2016), Transformer Networks (Alam et al.,|[2023), and among others. In
particular, |Ganesan et al.| (2021) presented a general framework based on the HRR architecture for
efficient multi-label learning of DNN models. To clarify the motivation of our study, we will review
the framework in more detail in the following subsections.

2.1 HOLOGRAPHIC REDUCED REPRESENTATIONS (HRR)

In the HRR architecture, terms in a domain are represented by real-valued vectors. Here, we assume
that each vector is independently sampled from a Gaussian distribution A/(0,1I,; - d~1), where d
is the vector dimension size and I, is the d x d identity matrix. To bind an association of two
terms represented by vectors a and b, respectively, HRR uses circular convolution, denoted by the
mathematical symbol ®:

a®b=F""(F(a)® F(b)) )

where © is element-wise vector multiplication. Note that the circular convolution can be computed
by using a fast Fourier transform (FFT) F and inverse FFT F !, but they require O(dlog d) com-
putation time. Given several associations a ® b, ¢ ® d and e ® f, the vectors can be superposed to
represent their combination: S = (a® b) ® (c ® d) @ (e ® f), where the “superposition” operator
@ is just normal vector addition +. The HRR architecture also provides the inversion operation 7:

. 1
al = 7 ' (——). 2
ey @
The inversion operation can be used to perform “unbinding”. For an example, it allows the recon-
struction of a noisy version of d to be recreated from the memory S and a cue c: S ® ¢/ ~ d.
Finally, the “similarity” operation is defined as the dot-product a®b. Using the similarity operation,
we can check approximately whether a exists in a memory S if STa ~ 1 or not present if STa = 0.

2.2 MULTI-LABEL LEARNING WITH HRR

Ganesan et al.| (2021) introduced a novel method using HRR for reducing the computational com-
plexity of training DNNs for XMC tasks. Let L be the number of class labels in an XMC task. The
basic idea behind the approach of (Ganesan et al., [ 2021) is quite intuitive; for efficient DNN train-
ing, an L-dimensional output (teacher) vector is replaced with a d-dimensional real-valued vector
encoding the relevant label information for a data instance. By assuming d < L, we can dramati-
cally reduce the output layer size of the DNN model.
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In this approach, each class label y is assigned to a d-dimensional vector ¢, € R<. Then, the label
information for a data instance x is represented as a label vector S, € R:

S.= Prec, 3)

PEYVe

where ), denotes the set of class labels that x belongs to and p € R represents the positive class
concept To train a DNN model f(x) that generates S, € R ~ S, |Ganesan et al.| (2021)) define a

loss function: .
loss = Z (1 —sim((Sz ®p'),cp)). 4)
PEYV:

To prevent the model from maximizing the magnitudes of the output vectors, |Ganesan et al.| (2021)
used the cosine similarity as sim(-, -), which is a normalized version of the dot product that ranges
from -1 to 1. In the inference phase, labels can also be ranked according to the cosine similarity
computed by sim(Sz ® pT, cp) for each label p. Moreover, Ganesan et al.| (2021) introduced a novel
vector projection method to reduce the effect of the variance of the similarity computation:

m(x) = F ! <|§82|> (5)

e . d .
Here, each HRR vector x is initialized with x = 7 (/\/ (0,14 - d_l)), which ensures each element of
the vector in the frequency domain is unitary; i.e., the complex magnitude is one.

3 MULTI-LABEL REPRESENTATIONS WITH CIRCULAR VECTORS

In this section, we show through experiments that random real-
valued vectors actually do not have sufficient ability for repre-
senting data instances that belong to many classes. The reason
is mainly due to the projection operation in Equation[5] As de-
scribed in § 2] the projection operation was proposed as a way
to reduce the effect of the variance of the similarity computa-
tion, but each element of the superposition between two nor- ¢ 1=
malized vectors via the projection is no longer unitary. Thus, -1 Re
the effect of the projection decreases when a label vector en-
codes more class labels. To alleviate the issue, we developed a
simple alternative that forces all vector elements to be unitary
in the complex domain even after the superposition operation. -1
We describe the details in the following subsection.

Im 1 .
cos ¢, sin @)

Figure 1: The unit circle in the
complex plane with coordinates.

3.1 HRR WITH CIRCULAR VECTOR
The angle ¢ represents an element

Our idea is to use circular vectors instead of real-valued vec- ©f the circular vector ¢.

tors. Circular vectors have a complex amplitude (see Figure|I)),

which can be represented by a real value ¢ ranging from —m to . However, to force all vector el-
ements to be unitary after any operations, we require a special HRR system for circular vectors. In
this paper, we borrow the concept of a circular HRR (CHRR) system from (Plate, [2003)).

Table[T|compares the HRR operations of the standard and circular systems. For circular vectors, each
element must be sampled from a uniform distribution &(—, 7) over (—m, 7]. The binding ® and
inversion { of CHRR are implemented with the standard vector arithmetic operations like addition
and subtraction. The similarity of two circular vectors can be simply determined from the sum of
the cosines of the differences between angles. On the other hand, superposition is somewhat tricky
because in general the sum of unitary complex values does not lie on the unit circle. For each pair
of elements ¢; and 6; of two circular vectors ¢ and 6, the result of superposition is Z(e*%7 + %% ).
Here, /(v) extracts an angle of a complex value v and discards the magnitude of v. Since all of these

"We can encode information on negative labels into a label vector as well as positive ones, but as shown in
(Ganesan et al.||[2021)), the negative label information does not contribute to improving XMC task performance.
Thus, in this paper, we will omit discussion on negative labels for notational brevity.
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Table 1: Comparison of HRR operations on real-valued and circular vectors

Operation Real-valued (Ganesan et al., 2021)  Circular

vector x = [zo,...,Td-1] o= [do,-..,dd-1]

random vector x = 7 (N(0,I;-d71)) b; gﬁL{(—ﬂ', )

binding x®y=F Y Fx) o F(y)) d®0 = [(¢o + 6p) mod 27, ...,
o (de_—l “:ed—l) mod 271'}

unbinding x®yT:x®}"*1(ﬁ) P60 =—0xq¢

similarity sim(x,y) = x'y sim(¢,0) = % > jcos(gj —0;)

superposition X@Qy=xX-+Yy GDO=[L(eP +etlo), ...,

Z(etPa-1 4 gtfa-1)]

1.0 1.0

# of dimensions (d)
Accuracies

# of dimensions (d)
Accuracies

0.0 0.0
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(a) HRR(w/Proj) (b) CHRR

Figure 2: Retrieval accuracies of HRR(w/Proj) and CHRR. The number of dimensions d was
1,...,1024 and the number of positive classes k was 1, . .., 50.

operations do not affect the unitary property of circular vectors, we no longer need the projection
normalization process. Our framework also has an advantage in computational cost; we can avoid
the FFT and inverse FFT operations, which take O(d log d) computation time.

3.2 RETRIEVAL ACCURACY EXPERIMENT

We experimentally demonstrated CHRR’s capacity by comparing its retrieval accuracy with that of
HRR. The experiment attempted to verify how accurately the positive class vector can be retrieved
from a memory vector. For a data instance x, let ¢, be a vector for a positive class p to which
belongs, and let p be a vector for the positive class concept label. The binding and superposition
operations allow us to represent all positive classes for x as R:

R=P@pec,) (©6)

PEVz

In the experiment, we generated a database consisting of N = 1, 000 random d-dimensional vectors
(c; € R4 forall j € [1,...,N]). Then, to create R, we randomly selected k vectors from the
database to be ¢, and one vector to be p. As shown in Equation |§|, the %k associations can be
superposed to represent R. To retrieve c,, from R, we used the unbinding operation to decode a
noisy version of the vector ¢, from R, as ¢, = R® pf. Foreach j € [1,..., N], we computed
the similarity s; = sim(¢,, c;) between the decoded vector ¢, and the individual vector c;. After
that, we compiled the top-k label list according to the similarity scores s;. To evaluate the retrieval
accuracy, we measured the percentage of class labels in the list, whose vectors were encoded into the
memory R. By varying the number of dimensions d = 1, ..., 1024 and the number of binding pairs
k =1,...,50, we plotted the accuracies as a heat-map (Figure 2] where warmer colors indicate
higher accuracy)ﬂ The results clearly show that CHRR has better retrieval accuracies than those

ZSchlegel et al.| (2021) also demonstrated that CHRR has a higher retrieval capacity compared with HRR.
Yet, they used all distinct vectors: R = (a®b) @ (c®d), anddidnotuse afixedp: R = (p®a) ® (p®b).
Therefore, we changed their experimental settings to fit the XMC learning with HRR.
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Figure 3: Variance and mean of the similarities of HRR, HRR(w/Proj), and CHRR. We fixed the
number of dimensions d to 400 and varied the number of positive classes & to from 1 to 50.

of HRR. Moreover, the larger the number of superposed vectors (k) is, the bigger the performance
difference between CHRR and HRR becomes. Hence, this tendency indicates that CHRR is more
suitable than HRR for encoding many labels.

3.3 VARIANCE COMPARISON EXPERIMENT

In §[3.2] we confirmed that CHRR exhibits superior retrieval ability to HRR. There is a possibility
that the CHRR’s similarity operation reduces the variance more than the projection does. The ex-
periment reported below was conducted to check the numerical stability of the CHRR’s similarity
operation. To create R as Equation @, we generated k random vectors ¢, and p. We extracted a
noisy version of ¢, fromR as ¢, = R® pf. For each j € [1,...,k], we measure the similarity
between &p and c; as s; = sim(Ep, c;). We plotted the variances and means of the similarities
in Figure [3| (a) and (b), respectively. We fixed the number of dimensions d to 400 and varied the
number of binding pairs £ = 1,...,50. Our experiments compared three methods, CHRR, HRR
proposed in (Platel |{1995), and HRR with the projection of (Ganesan et al.,2021) (HRR(w/Proj)).

Figure[3|(a) shows that as k increases, the variances of all methods tend to converge. However, while
the variance converges, the mean also decreases near zero, as shown in Figure E] (b). Therefore, as
the number of superposed vectors k increases, the impact of variance becomes relatively larger.
Regarding the variance, we can see the need for the projection, since the HRR(w/Proj) is more
suppressed than the original HRR. Yet, we found that CHRR is most suppressed; that is, CHRR
is more numerically stable than HRR(w/Proj). As for the mean, the three methods had roughly
comparable performances. Although the mean approached zero as k increased, this is not a problem
in using similarity for compiling a ranking list of labels.

4 NEURAL NETWORK ARCHITECTURE

One of the challenges in adapting CHRR to XMC tasks is how to adapt the output layer of DNN
models to a circular vector because it has a cyclic feature; i.e., 6 = 27n x 6, where n € Z. To
meet it, we developed a neural network for predicting angles that considers the cyclic feature during
the training. The key idea was to represent the output in Cartesian coordinates, which can uniquely
represent a point on a unit circle. Then, we converted the output into polar coordinates to obtain
angles.

4.1 ARCHITECTURE FOR CIRCULAR VECTOR

We used fully connected (FC) networks in all of the experiments. They were each composed of a
F-dimensional input layer, two h-dimensional hidden layers with ReL.U activation (Agarap} 2018),
and a d’-dimensional output layer. That is, they had the same architecture except for the output layer.

We selected two baselines from |Ganesan et al.| (2021)) by using the FC networks. The first baseline
had L output nodes and each node is used to binary classification (we refer to it below as FC). The
second baseline was the method using HRR as described in § [2.2] It had d output nodes (we refer to
it below as HRR).
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Our network for CHRR represented a pair of the outputs as a point on a unit circle on Cartesian coor-
dinates; i.e., (cos ¢, sin ¢), as shown in Figure Then we converted the point into polar coordinates
(1, ), and used ¢ as an element of the predicted label vector. Let § € R? be the raw output vector,
and S € C4 be the converted circular vector. We represented d pairs from s in Cartesian coordinates
as a; = (z;,y;). Then, we normalized them to satisfy ||a;|| = 1. Although there was a similar work
for an angle prediction using a neural network (Heffernan et al.,|2015)), they used arctan % for the
conversion whose range was limited to [%’T, g] Instead, we used the atan2 function (Organick,
1966)), which can convert a (x,y) point to a corresponding angle (—, 7). Finally, we adapted the
atan2 to a; to obtain S’l We named this method as CHRR.

4.2 IMPACT OF MODEL ARCHITECTURE

Because the number of the output nodes of CHRR (2d) is Hlidden Cl)utpm P}idden ?utput
twice as that of HRR (d), the total model size of CHRR e e e iy
also increases. Therefore, we conducted two different ex-
periments using the same model size as HRR (see §
for the results). The first experiment changed the network
architecture of CHRR. Figure ] compares the architec-
tures of CHRR and the changed model (CHRR-Half). We
made CHRR-Half by splitting the second hidden layer’s
nodes and output nodes of CHRR in half. This resulted
in two sets of % hidden nodes and d output nodes. Then
we connected one set of hidden nodes to one set of output
nodes, and the other set of hidden nodes to the other set
of output nodes. As aresult, 2 x (2 x d) = h x d param-
eters were obtained, which equals the number of parame-
ters between the second hidden lgyer apd the output layer (a) CHRR (b) CHRR-Half
in HRR. The results of the experiment in §[5.4]showed no

significant difference in performance between CHRR and ~Figure 4: Comparison of (a) CHRR and
this model. Therefore, the increase in the model size of (b) CHRR-Half architectures

CHRR is not a big issue.

In the second experiment, to demonstrate the advantage of the proposed architecture against naive
implementation, we used the same network architecture as HRR, and mapped the real-valued outputs
to angles with activation functions. We tried two activation functions, sin and tanh to map the
outputs to [—1, 1]; then the output was multiplied by 7 to obtain (—, 7] outputs. We named these
models as CHRR-sin and CHRR-tanh. Both showed more modest levels of performance compared
with CHRR.

5 EXPERIMENT ON XMC DATASETS

To examine the advantages of circular vectors, we conducted experiments on several XMC datasets.
Note that achieving the state-of-the-art performance on XMC datasets was not the goal of this study,
which focuses on the efficiency of the learning method with circular vectors. Therefore, we com-
pared our method with FC networks and HRR, but it is also a fact that FC model is a simple but
strong baseline for the XMC task (see (Ganesan et al., 2021)).

5.1 DATASETS

We evaluated our method on the four datasets for text XMC tasks from |Bhatia et al.|(2016)). Table
shows the details of the datasets. The features for each sample is a bag-of-words of F' words. These
datasets have a large number of labels (L), up to 205,443. In addition, the maximum of the average

number of labels per samples (L) is 75.74 of Delicious-200K.

5.2 EVALUATION METRICS

We evaluated each method by using precision at & (P@Fk) and the propensity score at k (PSP@FE),
which are commonly used metrics in the XMC task. P@F is the proportion of true labels in the
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Table 2: Details of the datasets from Bhatia et al.|(2016). Here, Ny,qiy is the number of training
samples, N4, is the number of test samples, F' is the number of the dimensions of bag-of-words
features, L is the number of labels, L is the average number of samples per label, and L is the
average number of labels per sample.

Dataset Nirain Niest F L L L
Delicious 12,920 3,185 500 983 311.61 19.03
EURLex-4K 15,539 3,809 5,000 3,993 25.73 5.31
Wikil0-31K 14,146 6,616 30,938 101,938 8.52 18.64

Delicious-200K 196,606 100,095 782,585 205,443 229 75.74

top-k predictions (Equation[7). PSP@F is a variation of precision that takes into account the relative
frequency of each label (Equation [g).

_ 1 1 yi
P@k =, > RL (7) PSP@k = - > - (8)
l€ranky, (¥) l€ranky, (¥)

where ranky,(y) is the ranking of all labels in the predicted y and p; is the relative frequency of the
l-th label. We used k£ = 1,5, 10,20 for P@k, and & = 1,5, 10, 20 for PSP@F in the experiments
described below.

5.3 EXPERIMENTAL SETTINGS

We evaluated three models (FC, HRR, CHRR) on the four datasets. For the implementation of FC
and HRR, we used the scripts provided by |Ganesan et al.|(2021) available at the GitHub URLE] We
implemented CHRR by using PyTorch (Paszke et al., 2019). The training methods and the model
architectures basically followed the scripts provided by |Ganesan et al.|(2021). In CHRR, we varied
the dimension of the symbol vectors (d) {100, 400,800, 1000}. To investigate the possibility that
a larger hidden layer size h improves the learning effect in FCs with large output dimensionality,
we conducted experiments with three settings of hidden layer size (h) {768, 1024, 2048}. For main
results, we chose d = 800 and h = 768 for CHRR and i = 2048 for FC. All experiments are
conducted with two hidden layers. In Appendix [A] we also report the performance impact of the
number of hidden layers. Because the performance of neural networks depends on the initial state,
we took the average scores of five trials as the evaluation result except for Delicious-ZOOKﬂ

5.4 RESULTS AND DISCUSSION

Table 3] lists P@1, P@5, P@10, PSP@1, PSP@5, and PSP@ 10 of FC and CHRR on each dataset.
CHRR achieves up to 99% output dimensional compression while providing performance compa-
rable to FC. In particular, the performance difference between CHRR and FC is seen in Delicious-
200K. This means that CHRR is effective for such datasets with a large number of labels per sample.
Figure [5| shows the impact of the dimensionality size d of the HRR and CHRR on performance, in
addition to the FC results for the three settings of 4. On certain datasets, CHRR outperformed FC
even when it had vectors with lower dimensions. These results suggest that CHRR has a higher
capacity for learning on datasets with a large number of labels than FC does.

We also compared CHRR with HRR. As shown in Figure[5] CHRR was better than HRR in many
cases. In particular, the results for P@20 and PSP@20, where the value of the evaluation index k is
large, we confirmed that the difference in performance is significant. As our theoretical experiment
in § 3.2 showed, CHRR could represent many labels with high accuracy even for low-dimensional

31’1ttps ://github.com/NeuromorphicComputationResearchProgram/
Learning-with-Holographic—-Reduced-Representations

*For the Delicious-200K, we used the average scores of three trials and h = {768, 2048} because training
on the dataset requires a large computational time.


https://github.com/NeuromorphicComputationResearchProgram/Learning-with-Holographic-Reduced-Representations
https://github.com/NeuromorphicComputationResearchProgram/Learning-with-Holographic-Reduced-Representations
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Table 3: Accuracy of our CHRR model and (FC) networks, and the left number in bold represents

the compression ratio (1 — (Fx(}gcxzi;iz};cx),j;?f(iidj Ld)XL)) of the CHRR’s model size for FC’s

model size. CHRR is set with d = 800 and hc = 768. And the right number in bold represents the
compression ratio (1 — %) of the CHRR’s output dimensions for FC’s output dimensions. For FC, d
is set at the number of labels in each dataset (L) and A is set at 2048.

Delicious (59%, 19%) EURLex-4K (61%, 80%)

FC CHRR FC CHRR
(d, h) (983, 2048) (800, 768) (3993, 2048) (800, 768)
P@1 70.8(£0.2 69.8(£0.4 77.4(£0.6) 75.2(£0.4
P@5 59.2(40.0 59.0(£0.3 47.9(40.2 47.8(+0.1
P@10 49.7(+0.2 49.1(+0.2 33.2(£0.2 29.8(£0.0

PSP@5 36.0(£0.1 35.6(£0.3 37.3(£0.2 34.9(£0.1

) ) )
(£0.0) (+0.3) (£0.2) (£0.1)
(£0.2) (+0.2) (£0.2) (+0.0)
PSP@1 34.1(£0.2)  33.3(x0.3)  33.6(£0.5)  28.7(+0.2)
PSP@10 36.1Ei0.23 35.65i0.3§ 51.2&0.43 42.3Ei0.1§

Wikil0-31K (61%, 99%) Delicious-200K (62%, 99%)

FC CHRR FC CHRR
(d, h) (101938,2048)  (800,768)  (205443,2048) (800, 768)
rel 80.5(£3.0)  82.2(x0.5)  35.1(£0.6)  43.2(%0.1)
P@5 46.3(+£2.2)  58.8(+0.3)  32.1(+0.4)  37.1(+0.1)
P@10 36.8(£5.8)  42.0(x0.1)  29.5(+0.3)  33.1(+0.3)
PSP@1 10.5(+1.5)  10.2(£0.0)  5.3(%0.1) 6.6(£0.1)
PSP@5 8.9(+0.5)  10.9(+0.1)  7.4(+0.1) 8.5(£0.0)
PSP@10  10.4(+3.0)  11.2(+0.1)  8.8(+0.1) 9.9(£0.1)

vectors. The results of the theoretical experiments in § [3.2]and the experiment on real datasets in § 5]
suggest that the CHRR is able to represent a larger number of correct labels. Moreover, the results
of additional experiments reported in Appendix [B|show that CHRR also outperformed HRR on the
datasets that we created with a large number of labels per sample.

5.5 IMPACT OF MODEL ARCHITECTURE

This section describes the results of the experiments on the impact of the model architectures in §[4.2]
Figure E] compares the performances of the CHRR variants (CHRR, CHRR-Half, CHRR-sin, and
CHRR-tanh) on the Wikil0-31K dataset. As mentioned in § [4.2] there was no significant difference
in performance between CHRR and this model. CHRR-sin and CHRR-tanh both obtained similar
results that were inferior to those of CHRR and CHRR-Half. While the sin function in CHRR-
sin seems to consider the cyclic feature, the results show that it is imperfect at predicting the of the
circular-label vector. In short, our developed network architecture is important for the XMC learning
with circular vectors, while the increase in the model size is not a big issue.

6 CONCLUSION

The XMC task still faces challenge of dealing with a large number of output labels. In this paper,
we attempted to address this issue by using a low dimensional circular vector to output directly. In
theoretical experiments in § [3.2]and § [3.3] we showed that many labels can be accurately encoded
by using circular vectors (CHRR) rather than normal real-valued vectors (HRR). Moreover, using
actual XMC datasets, we compared the accuracy with CHRR, HRR, and FC in §E} CHRR reduced
the output layer size by up to 99% compared to FC, while it outperformed FC in most results. Com-
paring HRR and CHRR, CHRR outperformed on most results. In addition, the larger the number
of labels per sample in the data set, the larger the performance difference between CHRR and HRR
became. As described above, our proposed circular vectors system contributed to a significant im-
provement in the XMC task. In the future, we will study the impact of the hidden layer size h on
accuracy. A further step is to incorporate circular vector systems into other DNN models such as
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LSTM (Hochreiter & Schmidhuber, [1997), Transformer [2017), as well as Associa-
tive LSTM (Danihelka et al., 2016) and Hrrformer (Alam et al.| [2023)) for read-valued vector.
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A APPENDIX: EXPERIMENT TO INVESTIGATE THE EFFECT OF THE NUMBER
OF HIDDEN LAYERS

Additional experiments were conducted to verify the behavior of FC and CHRR when the number
of hidden layers was increased to three. In FC, the number of hidden layers was considered in both
2-layer and 3-layer cases, and the dimensionality of the hidden layer h was set to {768, 1024, 2048}.
In the CHRR experiment, the number of hidden layers was set to three and h was set to 2048. Table[d]
shows that the performance of FC improves with increasing h, but the number of hidden layers itself
does not contribute significantly to performance. On the other hand, the CHRR was confirmed to
be lower than the P@10 of 42.0 for the case set with two 768-dimensional hidden layers in Table 3]
even when the number of hidden layers was increased and h was increased.

Table 4: Comparison of accuracy with changes in hidden layers. A is the number of hidden layer
dimensions and d is the number of output dimensions. The dataset used was Wikil0-31K.

Net. Layers h d P@10
2 768 30,938 27.8(+1.0)
2 1,024 30,938 29.8(+3.0)

FC 2 2,048 30,938 36.8(%5.8)
3 768 30,938 30.8(£1.7)
3 1,024 30,938 31.4(+4.2)
3 2,048 30,938 34.9(40.5)
3 2,048 800  38.9(+0.2)

CHRR 3 2,048 1,000 39.6(40.2)
3 2,048 1,500  40.5(+0.4)
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B APPENDIX: EXPERIMENTS ON DATASETS WITH A LARGE NUMBER OF
LABELS PER SAMPLE

In § 5] we discussed the potential of the CHRR for representing a larger number of correct labels.
This appendix provides additional experimental details examining the capacity of CHRR, especially
on datasets we created that have a large number of labels per sample. The experiments used the
remaining training data remained and the testing set to include only the top 10% of data samples
with more labels. We named these datasets Delicious top10, Wikil0-31K top10, and Delicious-
200K top10. This alteration allowed us to place a particular focus on how the CHRR metric behaves
when subjected to data samples teeming with labels.

B.1 TEST DATA SELECTION

We evaluated our method on the three datasets with only the number of top 10% labels as test data.
Table [5] shows the details of the datasets. These datasets have the maximum of the average number

of labels per samples (ﬁmax) is 20,471 of Delicious-200K.

Table 5: Detailed datasets we created statistics from (Bhatia et al.l 2016). Here, L is the number
of labels, L is the average number of labels per sample, Ly, is the minimum number of labels per
sample, and L.« is the maximum number of labels per sample.

Dataset L L Luin Limax
Delicious top10 983  24.39 24 25
Wikil0-31K top10 101,938  28.19 28 30

Delicious-200K topl0 205,443 406.15 181 20,471

B.2 RESULT AND DISCUSSION

Figure[7|shows that CHRR is also more effective than HRR for the datasets with a large numbers of
labels per sample. This tendency is almost the same as that of the results shown in Figure 3]

C APPENDIX: EXPERIMENTS

We conducted additional experiments by using input features generated by XLNet [Chang et. al.
2020] instead of BoW features to investigate the potential of transformer-based models. The results
were comparable with recent models such as LSTM. ]

SLSTM results were taken from (Ganesan et al.}[2021).
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Figure 7: Impact of the number of dimensions (d) on P@1, P@5, and PSP@5 for Delicious Top10,
Wikil0-31K Top10, and Delicious-200K Top10 datasets.

Table 6: Comparison of performance of FC, CHRR, FC-XLNet, CHRR-XLNet and LSTM, and the

left number in bold represents the compression ratio (1 — (FX(}}CXZ};if;(’;):F(;féidj g)XL)) of the
CHRR'’s model size for FC’s model size. And the right number in bold represents the compression
ratio (1 — %) of the CHRR’s output dimensions for FC’s output dimensions. The dataset used was

Wikil0-31K. *This LSTM score is reported by |Ganesan et al.| (2021})).

FC CHRR(61%, 99%) FC-XLNet(22%, 0%)
(dh) (101938,2048) (800,768) (101938,2048)
P@1 80.5 82.2 84.0
P@5 46.3 58.8 58.9
P@10 36.8 42.0 43.6
PSP@1 10.5 10.2 10.7
PSP@5 8.9 10.9 11.0
PSP@10 10.4 11.2 11.9
FC-XLNet(—58%,0%) CHRR-XLNet(48%,99%) LSTM*
(101938,4096) (1500,768) -
P@1 85.1 86.1 83.5
P@5 61.7 62.7 -
P@10 46.1 45.8 -
PSP@1 11.4 11.0 -
PSP@5 12.2 12.0 -
PSP@10 13.5 12.5 -
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