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ABSTRACT

The analysis of multivariate time series (MTS) presents a complex yet crucial task
with substantial applications in areas such as weather forecasting, policy formu-
lation, and stock market prediction. It is important to highlight three key charac-
teristics of MTS that contribute to the challenging and multifaceted nature of their
analysis: (i) their interrelationships are represented through causal relationships
rather than mere similarities; (ii) they convey information across multiple inde-
pendent factors; and (iii) their dynamics often arise from inherent temporal depen-
dencies. While conventional time series analysis frameworks often fail to capture
one or more of these aspects, resulting in incomplete or even misleading conclu-
sions, we propose an end-to-end trainable Series Prediction model Augmented by
Causality Estimation (SPACE) to address these limitations. This model effectively
incorporates temporal dependencies and causal relationships, featuring a tempo-
ral embedding and a transfer entropy-based Cross-TE module designed to enhance
predictions through causality-augmented mechanisms. Experiments demonstrate
that SPACE achieves state-of-the-art results on challenging real-world time series
prediction tasks, showing its effectiveness and versatility. Code is available at
https://anonymous.4open.science/r/SPACE-D448/.

1 INTRODUCTION

Time series forecasting (TSF) is an inherently difficult problem. A large part of this is due to the
overall structural complexity of time series information. This is especially true for time series that
reflect real-world data, for example those that record usage statistics of the electrical grid, local
temperature variations over a specific time window, or market values of stocks. On the one hand,
it is understood that the diverse length scales and temporal dynamics underlying each of these sys-
tems is the main reason for their richness and insight; conversely, they are also the reason for the
intractability of many real-world time series. In the examples listed above, the frequency and dis-
tribution of electrical grid value fluctuations are greatly influenced by temporal and seasonal trends,
sudden changes in demand (e.g., during a popular sporting event, when a large number of users tune
in to the sports broadcast; or during an unexpected heat wave or cold snap), and the spatial location
and role of possible malfunctioning grid nodes, which affect supply to a subset of users. Similarly,
the changes in stock values also governed by a multitude of factors, both overt and latent, and these
often interact in a variable and nonlinear manner. The analysis of these examples is most naturally
expressed in the language of causality.

In contrast, most current TSF frameworks Liu et al. (2023); Wu et al. (2021); Oreshkin et al. (2020)
approach the problem of forecasting from the perspective of similarity and multivariate dependen-
cies; in other words, at the base level, these approaches are mainly focused on learning the correlative
weights between time series. This is especially the case for SOTA attention-based models Liu et al.
(2023); Chen et al. (2024); Wang et al. (2024b), as these models focus specifically on learning at-
tention weights between different preprocessed time series. All these different approaches excel at
capturing different facets of complex time series, but they are all predicated upon the same idea of
correlation and similarities. This presents a singularly one-dimensional view of conventional time
series analysis and hence hampers comprehensive and in-depth understanding of this information.
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(a) Mere Similarity (e.g. attention) (b) Causalityt t

Figure 1: (a) Models that make use of correlative weights only focus more on points that are similar
to the target, tending to ignore different pattern. (b) Causality is capable of capturing dissimilar
information that is favourable to prediction tasks in addition to similar one.

As mentioned previously, this unsatisfactory situation with regards with current SOTA TSF models
can traced to a key omission: the neglect of causal relationships. They play an essential role in
understanding the causes and effects influencing temporal behavior. They have been shown Moraf-
fah et al. (2021); Runge et al. (2023) to provide essential perspectives into the temporal dimension
and, therefore, should contain invaluable insights for a comprehensive understanding of time series.
In fact, the idea of precedence in a time series and causality are inextricably linked together and it
is misleading to analyze temporal information without considering causal relations Wikipedia con-
tributors (2024). Although there is a significant body of work on TSF models that do Kong et al.
(2024); Nichani et al. (2024); Börjesson & Singull (2020); Nauta et al. (2019); Cheng et al. (2024);
Löwe et al. (2022); Chikahara & Fujino (2018); Dhaou et al. (2021) take causal information into
account, their focus is usually misplaced, in that their contributions tend to either focus exclusively
on temporal causal relationships, or treat causality as another aspect of time series to be studied.
The first type of models Börjesson & Singull (2020); Nauta et al. (2019); Cheng et al. (2024) mainly
emphasizes analysis of time series from the sole perspective of causality, while discarding other,
equally important, features. The other type of approach Kong et al. (2024) looks at causality as
merely one facet of time series data, and hence is susceptible to de-emphasizing its importance.

We take an integrative approach which promotes the causal aspect to a level which places it on
the same footing as other time series features; in other words, we propose an integrative approach
that takes both temporal dependencies and causal information into account. We believe that the in-
tractability of naturally-occurring time series can be understood within the all-encompassing context
of causality. By starting from an intuitive understanding of causality as the study of cause and ef-
fect relationships, we further leverage causality as the guiding principle according to which we can
comprehend the above-mentioned complexities of real-world time series. In our framework, we ex-
tract temporal causal information in the form of embedding vectors, which we integrate via a spatial
causal module to facilitate downstream forecasting tasks. For this purpose, we propose SPACE, a
model which is able to comprehensively take both these aspects of time series into account. SPACE
is inspired by the modular design of the original transformer and graph neural networks, augmented
by several main elements:

• A Sequence Enhancer, whose role is to compute correlational coefficients between the
patched and projected raw data from the embedding step, using an attention mechanism;

• A Cross TE module which gets causality information by computing transfer entropy (TE)
self-causal relationships between time series using fast-pTE algorithm promoted by us;

• A Causal Graph Neural Network (CGNN) which integrates information by taking causal-
ity matrix from cross-TE modules as its adjacency matrix, in order to present a causally-
consolidated embedding vector for the final downstream tasks;

We integrate the above-mentioned modules in a conventional attention framework, which enables
our workflow to function as a drop-in replacement for attention modules. In short, our contribution
in this work are as follows:
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• We show that for a large class of time series data, correlative information is insufficient
for a comprehensive understanding; instead, a causative view is much more informative in
comparison;

• Based on the observations regarding correlative vs causative observations, we design
two novel modules which are formulated to take these additional insights into account:
the Cross TE layers, and Causality-based Graph Network;

• In order to reduce time and space complexity which is relatively high for deep learning
tasks in original pseudo transfer entropy calculation, we propose a faster algorithm, Fast-
pTE. It not only reduces the complexity quadratically, from O(d2T ) to O(dT ), where d is
the hidden size of input data, and T is the number of time states, but also promotes higher
performance compared to the original one.

• We show, via numerical experimentation on several datasets, that by explicitly tak-
ing causative information into account, our model is able to outperform several SOTA
attention-based time series forecasting models.

2 RELATED WORK

2.1 TRANSFORMER-BASED TIME SERIES ANALYSIS

Time series analysis techniques are very well-developed. State-of-the-art time series analysis mod-
els incorporate the most recent advances in sequential data analysis, including various modifications
to the basic transformer architecture Vaswani et al. (2017). Liu et al. (2023) inverts the traditional
time series embedding for attention models, such that they now emphasize the attentive correlation
between variates, taking into account the full set of timepoints for each variate into account. Zhang &
Yan (2023) utilizes cross-dimensional dependencies between related variates to enhance time-series
prediction accuracy. Nie et al. (2023) further emphasizes the importance and advantages of patch-
ing for time series forecasting, and interprets each patch as semantic, making it to provide a new
perspective on its function. Wu et al. (2021) is an approach which actively decomposes the time se-
ries into logically coherent substructures (long-term trends, intermediate scale fluctuations, etc) and
uses these simpler substructures to enhance predictive power of the model. Lin et al. (2023) includes
learnable placeholders in the input embedding to the transformer encoder, thus achieving increased
accuracy and reduced model complexity. Zhang et al. (2024) takes multiscale data into account by
extending patch-based TS transformers with attention mechanisms that learn multiresolution repre-
sentations; Finally, Wang et al. (2024b) incorporates exogenous variables into the learning process,
hence taking into account the effect of such variables on the dynamics of the time series process.
unlike most attention-based models described here, Wang et al. (2024b) is able to explicitly reason
about dynamics of a specific time series contingent on possible influencing factors.

2.2 GRANGER CAUSALITY VIA TRANSFER ENTROPY

In recent years, causality has become a well-studied and essential component of time-series analysis.
The original proposal, by Granger Granger (1969), was actually meant to analyze “precedence“, in
the sense that, for two series X and Y , Y is said to be forecast by X , if there exists a Granger-
causal relationship between them. In most applications involving causal relationships, Granger-
causality is inferred from the transfer entropy Schreiber (2000), which is a non-parameteric statistic
originating from the physics literature. It is an information theoretic measure that quantifies the
amount of information transfer between two random processes Hlaváčková-Schindler et al. (2007).
It has been shown Barnett et al. (2009) that Granger causality and transfer entropy are the same for
a stream of normal-distributed random variables. Although conditioning on the distribution restricts
the applicability of transfer entropy as a causality surrogate, it has been widely utilized in this context
because of its ease of computation.

2.3 FINANCIAL TIME SERIES PREDICTION

There is a substantial amount of works related to the prediction or forecasting of financial time
series; in this section we consider, in particular, those applying deep learning methods. Conventional
deep approaches include long short-term memory Hochreiter & Schmidhuber (1997), convolutional
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Figure 2: Overall structure of SPACE. (a) Raw variables are patchified into 2D series, and are
subsequently projected as embedded tokens. (b) A Sequence Enhancer module is used to preprocess
data. (c) Embedded variables are segmented into heads, followed by the application of pseudo
transfer entropy (pTE) to compute the causal relationships between segmented sequences. (d) A
causality-based graph neural network is applied to capture dependencies among variables, in which
there is a 2dMixer to mix information within and across patches before aggregating from without.

neural networks Bai et al. (2018), or hybrid approaches combining several deep modules. More
recent approaches have included transformer-based approaches. Several models mentioned in the
section on transformer-based approaches have also been successfully applied to financial time-series
forecasting. Among these, Oreshkin et al. (2020) have been shown to give accurate predictions on
the stock S&P index; this model consists of a setup where a both forecast and backcast expansion
coefficients are learned using FC layers, and these learned values are used to construct a predictor for
both the backcast and forecast values. Ding et al. (2021) is a recent attention-based model which aims
to take the essential characteristics of stock series into account: information on multiple temporal
scales, as well as hierarchical dependencies between series. They achieve this via a multiscale
Gaussian prior, and orthogonally regularized attention heads.

3 METHODOLOGY

In time series forecasting, it is common to encounter with occasion when multivariate data is used for
prediction. Given historical observation with N dimension X = {x1,x2, ...,xL} ∈ RN×L where
L is the look back window length, we predict future T time steps Y = {xL+1,xL+2, ...,xL+T } ∈
RN×T . It is worth noting that there may be a causal relationship between time series of different
dimensions in the same set of data, that is, if the time series y is caused by x, then introducing x
when predicting y will definitely help improve the accuracy of the model results.

3.1 STRUCTURE OVERVIEW

Our proposed model SPACE is illustrated in Figure 2, consisting of modules: Preprocessor which
contains Embedding and Sequence Enhancer, Cross TE, Causal Graph Neural Network, and Pro-
jector.

3.1.1 PREPROCESSOR

Before we start our discussion about embedding, we would like to review the two methods previ-
ously used by mainstream multivariate time series prediction models, and contrast these with our
own approach towards time series embedding. The method is cross-sectional, i.e., all the data points
occurring at the same time are turned into a column vector Wu et al. (2021); Zhou et al. (2021) for
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embedding. The limitation of this method is obvious, as it only focuses on obtaining the depen-
dencies in the time dimension, and the dependencies across the sequences are learnt only through
embedding and subsequent linear projection, which limits the ability to help predict between dif-
ferent sequences while adding a lot of noise to the prediction of a single time series. The second
method is cross-temporal, i.e., each individual time series is seen as a vector. The whole time series
is either treated as a token for embedding Liu et al. (2023) or patchified Nie et al. (2023); Zhang &
Yan (2023).

While the former approach absorbs the idea that linear projection is capable of learning cross-time
dependencies alone without any help from other structure including attention mechanism Zeng et al.
(2022); Li et al. (2023), in our point of view, the latter approach considers the properties of time
series from the perspective of the time period, rather than being restricted to individual points in
time, which can be utilized to lower the high uncertainty in single time point, improving overall per-
formance of modules such as our Cross-TE. To illustrate, given raw data ∀xi ∈X , we first patchify
them into a 2D tensor hi ∈ RPN×PL , where PN is the number of patches and PL refers to patch
length. The patchified data will then be mapped to latent space of dimension d via trainable linear
projection. After embedding, series are inputted into our Sequence Enhancer module, which serve
as the method to share information and patterns from other patches, through which we believe can
enhance a sequence for latter process since it can better utilize the characteristic of auto-regressivity
in time series. In this module, we adopt merely a multi-head attention block, with input-token linear
mapping with Wi, bi ∈ Rd×d and {Q,K,V } = H ·Wi + bi, i ∈ {q, k, v}. Then through output
linear mapping, subsequently followed by LayerNorm and residual connection, we get H as the
output that should be forwarded to encoder layers. It is worth noting that with attention and residual
connection, we not only enhance the series but also preserve its time steps information, which is of
great importance for the computation of transfer entropy.

3.1.2 CROSS-TE

As stated in the introduction, compared to causative analysis, correlation is not the optimal way to
extract information from time series data. In order to realize the computation of causal weights,
we employ transfer entropy (TE) methods, which we detail in this section. As alluded to in the
introduction, the TE is a measure of the directional information flow from one time series to another,
quantifying the influence of one process on the future state of another. It can be defined as

TX→Y =
∑

P (in+1, i
(k)
n , j(l)n ) log

P (in+1 | i(k)n , j
(l)
n )

P (in+1 | i(k)n )
(1)

where P (·, ·, ·) and P (· | ·) represent joint probability and conditional probability respectively, in+1

is the state of process X at time step n+ 1, i(k)n and j
(l)
n are shorthand notations that represents the

states of X and Y the previous k and l time steps. The advantage of TE lies in its ability to model
causal dependencies that are not limited to linear, making it suitable for our task. However, tradi-
tional computation method of TE can cause performance bottleneck since it is relatively expensive
to compute. Therefore, an alternative, the pseudo transfer entropy (pTE) Silini & Masoller (2021b),
which is cheaper in terms of computational overhead is applied instead. The pTE assumes that all
the time series follow the normal distribution, which is an acceptable assumption for real-world time
series.

To be specific, pTE from time series y to x can be given by the formula:

pTEx→y =
1

2
log

(
|Σ(It ⊕ Jt)| · |Σ(i⊕ It)|
|Σ(i⊕ It ⊕ Jt)| · |Σ(It)|

)
(2)

where It and Jt represent past observations of y and x respectively, i is the future value of y,
Σ(A⊕B) is the covariance of matrix A concatenated with B. Furthermore, the original algorithm
for high dimensional pTE still retains its quadratic complexity in the hidden dimension. Hence, we
introduce the fast-pTE algorithm, which flattens the series in the last two dimension before applying
conventional pTE, which not only reduces the complexity quadratically, but also lowers loss in many
datasets. Full details can be found in the Appendix.

While TE serves as an effective method for identifying causal relationships between time series, its
application to individual series often limits the analysis to the causality present within the current
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look-back window, thus failing to capture broader, global patterns. Pre-computing TE values offers
a potential solution Duan et al. (2022), yet it overlooks the dynamic nature of causal relationships,
which can fluctuate due to factors such as periodic behaviors or abrupt changes in the data. To
address these limitations, we introduce the Cross-TE block, designed to dynamically learn and adapt
to evolving causal dependencies while preserving memory of past relationships.

For the single head version of Cross-TE, suppose we have embedded time series H ∈ RN×PN×d

where N denotes number of variables or dimensions of data, PN denotes number of patches in a
single series, and d is the hidden size of each patch. After projection: we get queries Q and keys
K, both of which have the same shape as H . Then we can directly apply the fast-pTE formula to
Q and K to get transfer entropy matrix T ∈ RNq×Nk :

T = SoftMax(pTEK→Q) (3)

However, causality between time series can have various origins since there may be multiple factors
at play in a real-world time series. For such a situation, a multi-headed attention is needed. In this
situation, we divide Q and K in the last dimension, into Qi and Ki ∈ RN×PN× d

h (i = 1, 2, ..., h)
where h is the number of heads. Then T is simply a concatenation of Ti:

Ti = SoftMax(pTEKi→Qi
)

T = Concat(T1,T2, ...,Th)
(4)

3.1.3 CAUSAL GRAPH NEURAL NETWORK

Information between series and dependencies across time plays a vital role in time series forecasting
tasks. The question of how to perfectly aggregate this information, as well as how to take advantage
of the temporal property, is of great importance. Therefore, we propose the Causal Graph Neural
Network (CGNN) in order to take full account in both in cross-temporal and cross-dimensional
situations.

Our transfer entropy matrix as computed in the Cross-TE module is a powerful tool for tackling
problems in terms of aggregating information from others beyond a series itself, since causality re-
veal their essential relation. However, causality is a highly abstract concept, and a simple summation
of values following linear mapping in transformer encoders will give misleading results. In addition,
information among patches in each series needs to be shared for the same reason, for which a single
linear mapping along hidden dimension is insufficient. These limitations underscores the need to
apply graph neural networks to more accurately capture the intricate relationships among series.

Previous works that use transfer entropy in graph neural network simply adopt primitive graph neural
networks, such as GCN and GIN, propagating information layer by layer through the graph structure
embedded in the adjacency matrix to gradually integrate more global information Duan et al. (2022).
They tend to calculate transfer entropy matrices before training models, which are then converted to
sparse adjacency matrices by max (thresh, T0) where thresh is the minimum causality the model
tend to consider, and T0 is the entropy score. This method offers the advantage of simplifying
calculations by uniformly and equivalently treating strongly causal sequences, but nevertheless falls
short in distinguishing differences among them. So an all-pair message passing graph network with
weights is called for. To simplify our description, we will only discuss the process in a single
head. The transfer entropy score T0 ∈ RN×N calculated by Cross-TE module will be normalized
by SoftMax to T , and forwarded to CGNN. A function f , which is flexible to choose, will act on
input data H0 ∈ RN×t×d from Sequence Enhancer, where t and d represent number of time state
and hidden dimension respectively, then left-multiplied by T . These can be described by formulas
below:

H(k) = T · f(Hk−1) (5)
where k denotes the k-th layer in our GNN. Performance can vary if different fs are chosen, while
we simply adopt a 2DMixer, consisting of Patch and Time mixers. The former is a linear map that
act within patch dimension, and the latter a non-linear function like MLP.

Htmp = Patch-Mixer(Hk−1)

Htmp = Htmp · Permute(0, 2, 1)
Hk = Time-Mixer(Htmp · Permute(0, 2, 1))

(6)
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This approach takes hidden dimension and time states of a series as different aspects, reducing
computation cost while holding the same performance.

After the aforementioned processes, the outputs from the different heads of the 2DMixer are con-
catenated and undergo a linear projection across the heads. Subsequently, they are added to H0 via
a residual connection to preserve temporal information and enhance the efficiency of back propaga-
tion.

4 EXPERIMENTS

We conduct our experiment on 9 real-world datasets, including (1) ETT Zhou et al. (2021) contains
4 datasets with 7 sub-series of electricity data from July 2016 to July 2018 in it. ETTh1 and ETTh2
are two of the datasets recorded every hour, while ETTm1 and ETTm2 are two recorded every 15
minutes. (2) Weather Wu et al. (2021) contains 21 indicators of weather condition, such as air tem-
perature and humidity, which are recorded every 10 minutes in 2020 from the Weather Station of the
Max Planck Biogeochemistry Institute. (3) Exchange-rate Wu et al. (2021) is a dataset collecting
daily exchange rates from 8 countries from 1990 to 2016. (4) We also provide the experiments on
three financial index data. Detailed information on all datasets in use is available in the Appendix.

4.1 BASELINES AND SETUP

We compare our model by carefully choosing 8 well-acknowledged state-of-the-art models as
our benchmark, including 3 linear-based methods: DLinear Zeng et al. (2022), TiDE Das et al.
(2023), RLinear Li et al. (2023); 4 Transformer-based methods: iTransformer Liu et al. (2023),
PatchTST Nie et al. (2023), Crossformer Zhang & Yan (2023), Stationary Liu et al. (2022); 1
TCN-based method: TimesNet Wu et al. (2023a). All of our experiments are conducted using Py-
Torch and executed on an NVIDIA RTX 4090 GPU. To ensure fair comparison, all model follow
the same input length (H = 96) and prediction length (F ∈ {96, 192, 336, 720}). Parameters of
competitive models follows the setting of Wu et al. (2023b) and Wang et al. (2024a) to eliminate
influence caused by wrong parameter settings.

4.2 MAIN RESULTS AND DISCUSSION

The comprehensive forecasting results are listed in Table 1 with the best in red and second best in
blue and underlined. SPACE shows the best performance in comparison with the baseline mod-
els across many real-world datasets and prediction length settings. Specifically, there are 69 first
place and 10 second place rankings out of 90 comparison points. Hence we can conclude that the
integration of causal information is essential to improving forecasting performance. On the pub-
lic dataset, SPACE’s performance exceeds those of the attention-based baselines by a considerable
margin. The improvements in MSE and MAE for different prediction lengths S are not linearly
correlated with the baselines’ performances, indicating a more fundamental departure in the design
of SPACE, compared to the baselines’ architectures, than a simple difference in depth or width of
network architecture, which are all changes in degree rather than a change in form. This difference
implies that the improvements we see in our results cannot be reproduced simply by modifying the
degree complexity of the models. This departure is entirely due to the tight integration of causal
modules with the conventional attention-based logic for time series forecasting.

In addition to the differences in computed metrics (MSE and MAE), results obtained on the real-
world datasets show that causality enhances interpretability of time series forecasting as well. We
illustrate this point via Fig. 3, which is a visualization of the attention key-queries adjacency matrix,
as evaluated on the Weather dataset. This particular dataset contains numerous weather-related time
series, including precipitation, rainfall duration, specific humidity, relative humidity, temperature,
and others. It is clear that all of these variables are not linearly related, neither do they shift in the
same direction, even if they are strongly correlated. For example, we consider the 15th column,
which encodes an increase in the precipitation amount. According to the adjacency matrix, this
feature will possibly lead to future decreases in the all day solar radiation, temperature, while causing
future increases in specific and relative humidities, etc. From a purely climate-scientific point-of-
view, all these points could be accurately verified. On the other hand, the learned adjacency matrix
for attention tends to ignore the information brought by precipitation, leading to a loss of accuracy.
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Table 1: Multivariate time series forecasting results with prediction length S ∈ {48, 96, 192, 336}
for three indices and S ∈ {96, 192, 336, 720} for others. The look back window length is fixed to
T = 96. The best result are highlighted in red and the second best are in blue and underlined

Models SPACE iTransformer RLinear PatchTST Crossformer TiDE TimesNet Dlinear Stationary
(Ours) 2024 2023 2023 2023 2023 2023 2023 2022b

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.317 0.352 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.386 0.398
192 0.364 0.376 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.459 0.444
336 0.395 0.397 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.495 0.464
720 0.455 0.433 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.585 0.516

Avg 0.382 0.390 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.481 0.456

E
T

T
m

2

96 0.170 0.251 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.192 0.274
192 0.236 0.295 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.280 0.339
336 0.300 0.335 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.334 0.361
720 0.402 0.395 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.417 0.413

Avg 0.277 0.319 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.306 0.347

E
T

T
h1

96 0.377 0.389 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.513 0.491
192 0.426 0.418 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.534 0.504
336 0.467 0.441 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.588 0.535
720 0.464 0.462 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.643 0.616

Avg 0.433 0.427 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.570 0.537

E
T

T
h2

96 0.281 0.330 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.476 0.458
192 0.371 0.388 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.512 0.493
336 0.410 0.426 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 0.552 0.551
720 0.417 0.442 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 0.562 0.560

Avg 0.370 0.396 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.526 0.516

E
xc

ha
ng

e 96 0.084 0.204 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.111 0.237
192 0.176 0.299 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.219 0.335
336 0.324 0.413 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 0.421 0.476
720 0.804 0.678 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.092 0.769

Avg 0.347 0.398 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.461 0.454

W
ea

th
er

96 0.165 0.205 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.173 0.338
192 0.218 0.252 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.245 0.340
336 0.272 0.291 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.321 0.328
720 0.347 0.340 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.414 0.355

Avg 0.251 0.272 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.288 0.340

In
de

x-
1

96 0.196 0.266 0.205 0.259 0.237 0.300 0.180 0.244 0.436 0.419 0.261 0.310 0.249 0.300 0.232 0.304 0.254 0.249
192 0.235 0.286 0.260 0.301 0.311 0.362 0.277 0.303 0.627 0.503 0.287 0.333 0.279 0.339 0.293 0.363 0.321 0.312
336 0.300 0.347 0.367 0.378 0.541 0.532 0.310 0.356 0.644 0.553 0.323 0.368 0.354 0.407 0.512 0.525 0.527 0.422
720 0.372 0.411 0.416 0.434 0.855 0.706 0.358 0.413 0.650 0.599 0.396 0.443 0.447 0.485 0.751 0.662 0.570 0.442

Avg 0.276 0.327 0.312 0.343 0.486 0.475 0.281 0.329 0.589 0.518 0.316 0.364 0.332 0.383 0.447 0.463 0.418 0.381

In
de

x-
2

96 0.262 0.308 0.265 0.290 0.273 0.313 0.255 0.292 0.315 0.412 0.314 0.340 0.285 0.315 0.384 0.397 0.309 0.307
192 0.313 0.354 0.290 0.324 0.333 0.368 0.294 0.325 0.355 0.423 0.351 0.375 0.315 0.372 0.461 0.452 0.410 0.357
336 0.346 0.394 0.371 0.394 0.513 0.514 0.358 0.396 0.455 0.408 0.403 0.429 0.399 0.419 0.703 0.588 0.622 0.489
720 0.453 0.474 0.513 0.479 0.655 0.586 0.466 0.476 0.602 0.484 0.483 0.491 0.502 0.503 0.960 0.718 0.822 0.531

Avg 0.343 0.382 0.360 0.372 0.444 0.445 0.343 0.372 0.432 0.432 0.388 0.409 0.375 0.402 0.627 0.539 0.541 0.421

In
de

x-
3

96 0.364 0.376 0.424 0.377 0.367 0.380 0.490 0.385 0.976 0.720 0.420 0.407 0.456 0.414 0.380 0.394 0.463 0.402
192 0.448 0.426 0.487 0.419 0.489 0.469 0.496 0.409 1.309 0.885 0.483 0.447 0.555 0.474 0.455 0.447 0.778 0.502
336 0.637 0.539 0.558 0.481 0.711 0.583 0.742 0.520 1.500 0.938 0.639 0.541 0.616 0.535 0.697 0.584 1.091 0.521
720 0.752 0.631 0.759 0.619 0.978 0.713 0.762 0.629 1.660 0.987 0.844 0.690 1.136 0.771 1.020 0.739 1.107 0.589

Avg 0.550 0.493 0.557 0.474 0.636 0.536 0.623 0.486 1.361 0.883 0.597 0.521 0.691 0.548 0.638 0.541 0.860 0.504

1stCount 35 34 2 4 0 1 5 5 2 0 0 0 0 0 1 0 0 1

Table 2: Ablation of different components in our model
Dataset ETT Weather

Prediction Length 96 192 336 720 96 192 336 720

SPACE MSE 0.286 0.349 0.393 0.434 0.165 0.218 0.272 0.347
MAE 0.330 0.369 0.400 0.433 0.205 0.252 0.291 0.340

Attn Instead of TE MSE 0.298 0.359 0.402 0.440 0.173 0.221 0.276 0.353
MAE 0.341 0.378 0.408 0.439 0.212 0.256 0.296 0.348

W/O-Seq-Enhancer MSE 0.292 0.353 0.397 0.438 0.179 0.217 0.273 0.351
MAE 0.336 0.373 0.405 0.435 0.210 0.245 0.288 0.340

W/O-Encoder MSE 0.309 0.370 0.414 0.456 0.198 0.244 0.298 0.373
MAE 0.351 0.389 0.418 0.451 0.233 0.273 0.312 0.362

In fact, the attention adjacency matrix is clearly unable to definitively learn features that should
contribute to variances in weather patterns. In contrast, the proposed model using TE to model
cross-series dependencies can better cope with this situation.
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Figure 3: Left: Learned adjacency matrix by Cross TE. Right: Learned matrix by conventional
attention mechanism.

4.3 ABLATION STUDY

4.3.1 STUDY ON DESIGNED COMPONENTS

We conduct ablation study on datasets includes 4 ETT datasets and Weather dataset, for which our
model performs relatively well even after removal of corresponding modules. We perform three sets
of ablation experiments: Attn Instead of TE, where transfer entropy we used to calculate cross
series dependencies is replaced by attention mechanism, W/O-Seq-Enhancer where the module
used to enhance sequence data before calculating TE is removed, and W/O-Encoder which was
done mainly to find out the degree to which performance is impacted by the removal of the TE
module. From the results in Table 2, we observe:

• The sequence enhancer is relatively less important, although it can still cause some fluctu-
ations in the model performance if we do not use it;

• Our causal module, containing Cross-TE and CGN, contributes greatly to the performance
or SPACE, as expected. By exchanging the TE module with a conventional attention mod-
ule, we see large increase in MSE across the two datasets. We argue that this is a clear sign
of the importance of causality in improving forecasting performance of SPACE compared
to baseline models.

4.3.2 HYPERPARAMETER SENSITIVITY

We evaluate the hyperparameter sensitivity of SPACE with respect to the following factors: the
learning rate, hidden dimension of each feed forward network, and number of the encoder blocks
on six well received baseline datasets. The results shown in Fig. 4 demonstrates that our model
is able to maintain a stable performance when parameters are varied, or in other words, the SOTA
performance of SPACE is robust against variances in model hyperparameters.

5 CONCLUSION

Conventional time-series forecasting models, such as the recent ones based on the attention mech-
anism, predominantly learn correlative information between time series data. On the other hand, it
has been shown in previous work that the analysis of time series based on the learning of causative
factors yields better results than models based on correlative ones. Drawing on this fact, we design
and implement SPACE, a time-series analysis model which learns causative information and uses
this for downstream forecasting tasks. We introduce several novel modules which significantly sim-
plify the computation, as well as organizes and aggregates this information. We perform extensive
experiments which validates our approach. Our experimentations show that:

• SPACE is able to outperform a number of SOTA baseline models in for both the MSE and
MAE metrics, and hence is shown to be superior for general forecasting tasks;

9
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Figure 4: Hyperparameter sensitivity with respect to the learning rate, hidden dimension of each
feed forward network, and number of the encoder blocks. All the results are computed with the look
back window length set to S = 96, and predict window length P = 96

• The computed adjacency matrices show that learned features for the Weather dataset show
good correspondence with known cause-and-effects from climate modelling and forecast-
ing;

• Ablation studies clearly show the importance of the Cross-TE and CGNN modules in help-
ing our framework achieve SOTA performance in multivariate time-series forecasting.

In short, we believe that SPACE paves the way for the design of more robust and consistent fore-
casting models based on causative information.
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A IMPLEMENTATION DETAILS

Our experiments on all conducted on a single NVIDIA RTX 4090 24GB GPU, and code is imple-
mented in PyTorch which can be found in https://anonymous.4open.science/r/EntroNet-4B05.

A.1 DATASET DESCRIPTION

We conduct our experiment on 9 real-world datasets, including (1) ETT Zhou et al. (2021) contains
4 datasets with 7 sub-series of electricity data from July 2016 to July 2018 in it. ETTh1 and ETTh2
are two of the datasets recorded every hour, while ETTm1 and ETTm2 are two recorded every
15 minutes. (2)Weather Wu et al. (2021) contains 21 indicators of weather condition, such as air
temperature and humidity, which are recorded every 10 minutes in 2020 from the Weather Station of
the Max Planck Biogeochemistry Institute. (3)Exchange-rate Wu et al. (2021) is a dataset collecting
daily exchange rates from 8 countries from 1990 to 2016.

In addition to the commonly used public datasets that serve as benchmarks for time series pre-
diction methodologies, we have also curated three proprietary financial indices datasets to further
supplement our evaluation. The Financial Indices dataset comprises three distinct financial indices
sourced from SSEC, SZI, and CSI500, providing additional depth and relevance to our analysis.

As for the forecasting settings, we fix the look-back window length to 96 across all datasets. The
prediction lengths are set at 48, 96, 192, 336 for the three Financial Indices, and 96, 192, 336, 720 for
the remaining datasets. Consistent with prior methodologies such as iTransformer Liu et al. (2023),
we adhere to the same data processing procedures and maintain the same train-validation-test split
order. In terms of data leakage issue, we have rigorously maintained the chronological order of the
training, validation, and test datasets, ensuring that no future information will be leaked to training
process.

A.2 IMPLEMENTATION DETAILS

Algorithm 1 EntroNet-Overall Architecture
Require: Input series X ∈ RS×N ; Input series length S; Number of variates N; Prediction length L;

Patch number or time states number T; Patch length PL; Number of encoder layers EL; Number
of graph layers GL.

1: Initialize the variables
2: X = X⊤ {X ∈ RN×S}
3: ▷ Unfold the series in the last dimension in order to generate patches.
4: X = UnFold(X) {X ∈ RN×T×PL}
5: ▷ Project X into embedding H0 on the last dimension.
6: H0 = X ·W + b {H0 ∈ RN×T×d}
7: ▷ Sequence Enhancer using mere multihead attention to enhance series.
8: H = H0 + Multihead-Attention(H0) {H ∈ RN×T×d}
9: for i in {1, 2, ..., EL} do

10: ▷ Cross TE module calculating pseudo transfer entropy matrix among series. Output T can
be denoted as {tij}N×N where tij denotes causality from series j to i.

11: T = Fast-pTE(H) {T ∈ RN×N}
12: ▷ Causality-based Graph Network CGN which aggregates information.
13: for l in {1, 2, ..., GN} do
14: H(l) = 2dMixer(H(l−1))
15: end for
16: H = H+T ·H(GN) {H ∈ RN×T×d}
17: end for
18: ▷ Projector
19: O = Flatten(H) ·W + b {O ∈ RN×L}
20: If no errors return =0

13
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B FAST PTE

B.1 ALGORITHM

Pseudo transfer entropy (pTE) is a rigorous algorithm that requires precise alignment of each
observation in the two sequences according to their temporal order, i.e., given two time series
x = {x1, x2, ..., xT } and y = {y1, y2, ..., yT }, each xi and yi should occur at the same time point,
while real-world data cannot be so precise.

Moreover, pTE can sometimes make mistakes due to the complex dynamic property of time se-
ries, which can be limited by the sampling of series data, and fails to capture information flows on
multiple time scales.

Therefore, we choose to calculate TE on time steps, i.e., on the patches instead of the initial time
points. This method have two advantages: (1) It enables the model to learn causality in a hidden
state with higher dimension, allowing its flexibility and stronger capability. (2) It is more robust and
less easy to be influenced by the precision of measurement than pure TE computation method. (3)
With linear projection on each patch in previous steps, it can make use of the multi-scale dynamics
of time series. We shall prove the third one in next section.

Finally, although pTE has fairly reduce the computational cost of original TE, it can still be a bot-
tleneck for our training process. To state it more clearly, we consider the random process X follows
the normal distribution. Therefore, the entropy of a p-variate normal variable, e.g. x ∼ N (x|µ,Σ),
is given by:

Hd(x) = −
∫
Rp

N (x|µ,Σ) logN (x|µ,Σ) dx

=
1

2
[p+ p log 2π + log(|Σ|)]

(7)

And pTE can be re-written as:

H(i(k)n , j(l)n )−H(in+1, i
(k)
n , j(l)n ) +H(in+1, i

(k)
n )−H(i(k)n ) (8)

With the two equations provided, it is natural to derive the formula for pTE stated before. Full detail
can be found in Silini & Masoller (2021a).

We can conclude from the above equations that the vital part in calculating traditional pTE is to get
the covariance of It⊕Jt, i⊕It, i⊕It⊕Jt and It as stated in Preliminaries of Methodology. Original
algorithm for pTE are provided as the following Algorithm 2.

Embed function are shown as below:

Algorithm 3 Embed Function
0: (ch,N)← shape(x)
0: hidx← arange(0, nt× lag, step = lag)
0: Nv ← N − (nt− 1)× lag
0: u← zeros(nt× ch,Nv)
0: for i = 0 to nt− 1 do
0: u[i× ch : (i+ 1)× ch]← x[:, hidx[i] : hidx[i] +Nv]
0: end for
0: If no errors return =0

Full detail can be found in our code. In the algorithm, the time complexity to compute Σ over two
series is O(d2T ), with the multiplication of two matrices of shape [3d × (T − nt · lag)]. It will be
really time consuming if we set the d relatively large and can be easily out of memory. Therefore,
we propose our Fast-pTE algorithm in order to lower its cost. The general process of computation
is almost the same with original pTE, however, with one flatten step before calculating Σ. The input
series will be first flatten to a 2d matrix, and then forward to the following steps. The complexity
will be reduced to O(dT ), with matrix multiplication of shape [3× Td].

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2 pTE
Require: Input enhanced series Q and K ∈ RN×d×T ; Input variate number N; Input hidden di-

mension d; Number of time states T; Number of It nt; Time delay lag.
1: Initialize the variables
2: Remove-trend(H) {H ∈ RN×d×T }
3: ▷ Generate i, It,Jt with function Embed
4: Qembed = Embed(Q) {Qembed ∈ RN×(d×(1+nt))×(T−nt·lag)}
5: Kembed = Embed(K)[:, :, : −1] {Kembed ∈ RN×(d·nt)×(T−nt·lag)}
6: ▷ Concatenate along dimension one and compute covariance for all series as a whole.
7: H = Concat([Q,K])
8: avg = Mean(H, dim=1)
9: Σ = (H ·H.permute(0, 2, 1))/avg

10: ▷ Select Σ(It ⊕ Jt), Σ(i⊕ It), Σ(i⊕ It ⊕ Jt) and Σ(It) from Σ, with shape [N ×N × 2nt×
2nt], [N × (1 + nt)× 1 + nt], [N ×N × (2nt+ 1)× (2nt+ 1)], [N × 1] subsequently.

11: ▷ Hi(i = 1, 2, 3, 4) are determinant of the above four covariance matrix.
12: for i,Σ

′
in enumerate({Σ(It ⊕ Jt), Σ(i⊕ It), Σ(i⊕ It ⊕ Jt) and Σ(It)}) do

13: Σ
′
= Select-from(Σ)

14: Hi = det(Σ
′
)

15: ▷ Hi ∈ RN×N ifi = 1, 3
16: ▷ Hi ∈ RN×1ifi = 2, 4
17: end for
18: Calculate pTE {pTE ∈ RN×N}
19: If no erros return =0

Algorithm 4 Fast-pTE
Require: Input series Q and K ∈ RN×d×T

1: Q = Flatten(Q.permute(0, 2, 1)) {Q ∈ RN×T ·d}
2: K = Flatten(K.permute(0, 2, 1)) {K ∈ RN×T ·d}
3: fast-pTE = pTE(Q,K) {fast-pTE ∈ RN×N}
4: If no errors return =0

Next, we would like to prove that the Fast-pTE is the same as pTE.

B.2 MULTI-SCALE NATURE OF CROSS TE METHOD

Previous works correspond to multi-scale transfer entropy mainly use moving average as their way
to take more data points, i.e., different scales, into account. However, this approach has limited the
capability of detecting multi-scale dynamics since if we view it from the perspective of interpolation,
it merely considers the middle point of a range of time points. It can be inferred that a linear
mapping is a stronger way to capture the multi-scale dynamics, as we extrapolate the average to
linear interpolation.

Consider linear map W = [w1, w2, wd]⊤, and the patches before embedding is P = [p1, p2, ..., pT ],
where wi ∈ R1×n and pj ∈ Rn×1, which will then be embedded as p̃ij = wi · pj . Hence if we
normalise the wi to w̃i =

wi

|wi| , we can re-write embedding function p̃ij = |wi|w̃i · pj , where w̃i · pj
is a linear interpolation. In addition, ∀i, j ∈ {1, 2, ..., T}, pki and pkj are mapped with the same
wj , preserving the time order for p̃ki and ˜pkj . Therefore, with the linear interpolation that enlarge
the horizons depends on different value of wi while perpetuate the temporal order, this method can
theoretically acceptable in calculating multi-scale transfer entropy.

Back to our model, except for embedding, there are several other steps that have been implemented,
which could potentially undermine the aforementioned advantages. However, by retaining the resid-
ual connections, we ensure that the original information is preserved throughout the calculations,
thereby mitigating this issue. To be more specific, there are two non-linear mapping in the steps that
might be happen earlier than a Cross TE module, such as Feed-Forward layer and 2dMixer. Admit-
tedly, it will break the linear interpolation which we discussed above, but in each step we use the

15
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non-linear function, we apply residual connection H̃ = H + non-linear(H). Hence it is observed
that the time information within and across patches can all be remembered by the model, which
indicates the practicality of the method.

B.3 FAST-PTE OUTPERFORMS ORIGINAL PTE

Though Fast-pTE can reduce the computation cost by a large amount, we will show that they have
done the same task in the context of our discussion though our fast one saves computational cost by
a large amount. For simplicity, we ignore the bias part in the discussion.

First, based on the discussion of section Multi-scale Nature of Cross TE Method, we know that
each point in the inputted data is a interpolation of original one. Hence if we flatten the 2d series,
all data point can be seen as a value of a new time point, and each variables are interpolated in the
same way. Therefore, the flattened series is an expansion of the original one. With no information
exchange between future values and past values, calculating TE on this series is an appropriate
approach.

Next, we want to show the resemblance between them using matrix operations. Consider two time
series q and k ∈ Rd×T , where d is the dimension of series and T is the number of time steps, which
are linear projections of y and x ∈ Rd×T with linear map Wq and Wk ∈ Rd×d.

Rigorously, to calculate pTE, we need to find past value of q named qt, past value of k named kt,
and future value of q, denoted as qf . According to our description in Algorithm part, we know that
the above three matrices is a kind of embedding that simply changes the position of elements in its
original one. Hence, we observe that

qt = Wq · y[:, : −1] = Wq · yt

kt = Wk · x[:, : −1] = Wk · xt

qf = Wq · y[:, 1 :] = Wq · yf

(9)

Based on the equations above, we can derive the formula for It ⊕ Jt, i⊕ It, i⊕ It ⊕ Jt and It.

It ⊕ Jt =

[
Wq 0
0 Wk

]
·
[
yt

xt

]
= W1 ·

[
yt

xt

] (10)

Similarly, the remaining matrices can also be re-written as

i⊕ It = W2 ·
[
yf

yt

]
i⊕ It ⊕ Jt = W3 ·

[
yf

yt

xt

]
It = W4 · yt

(11)

where W1,W2,W3,W4 are all square matrices.

To calculate pTE, we only need to know the covariance of It ⊕ Jt, i⊕ It, i⊕ It ⊕ Jt and It. Note
that they are all the linear map of a matrix, hence we can calculate their covariance based on Lemma
1.

B.3.1 LEMMA 1.

∀W ∈ Rd×d and X ∈ Rd×T , each row of X represents a different variable, with each column
corresponding to an observation of these variables. We find V ar(WX) = W · V ar(X) ·W⊤ and
|V ar(WX)| = |V ar(X)| · |V ar(W)|.
However, in the Fast-pTE algorithm, the input matrices are first flattened in the way stated in Algo-
rithm 4. It is easy that in this situation
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B.3.2 LEMMA 2.

∀W ∈ Rd×d and ∀X ∈ Rd×T , if we flatten WX to a 1d vector y, then V ar(y) = tr(XX⊤ ·
WW⊤)

With Lemma 1 and Lemma 2 (proof will be given in the next section), we compute the determinant
of covariance of four matrices It ⊕ Jt, i⊕ It, i⊕ It ⊕ Jt and It.

(1) The simplest condition: It.

It can be directly derived from the two lemmas that in the origin pTE

|Σ(It)| = |V ar(X)V ar(W4)| (12)

While in Fast-pTE

|Σ(It)| = tr(XX⊤W4W
⊤
4 ) = tr(Σ(It)) (13)

(2) Complex situations: It ⊕ Jt, i⊕ It, i⊕ It ⊕ Jt

In these situation, covariance of them are correspond with two or more different series, the analyzing
processes are the same, so we may wish to simply discuss the It ⊕ Jt.

First, denote
[
Wq

Wk

]
=



w1

w2

...
wd

wd+1

...
w2d


where wi ∈ R1×d. Hence It ⊕ Jt =



w1yt
w2yt

...
wdyt

wd+1xt

...
w2dxt


. Therefore,

Σ(It ⊕ Jt) =


w1yy

⊤w1 w1yy
⊤w⊤

2 ... w1yx
⊤w⊤

2d
...

...
...

wd+1xy
⊤w⊤

1 wd+1xy
⊤w⊤

2 ... wd+1xx
⊤w⊤

2d
...

...
...

w2dxy
⊤w⊤

2 w2dxy
⊤w⊤

2 ... w2dxx
⊤w⊤

2d


=

[
Wqyy

⊤W⊤
q Wqyx

⊤W⊤
k

Wkxy
⊤W⊤

q Wkxx
⊤W⊤

k

]
(14)

For Fast-pTE, Σ(It ⊕ Jt) are flattened before calculating covariance, which equals to[
w1yt w2yt . . . wdyt

wd+1xt wd+2xt . . . w2dxt

]
So

Σ
′
(It ⊕ Jt) =

[
Σd

i=1wiyy
⊤w⊤

i Σd
i=1wiyx

⊤w⊤
d+i

Σd
i=1wd+ixy

⊤w⊤
d Σd

i=1wd+ixx
⊤w⊤

d+i

]
=

[
tr(Wqyy

⊤W⊤
q ) tr(Wqyx

⊤W⊤
k )

tr(Wkxy
⊤W⊤

q ) tr(Wkxx
⊤W⊤

k )

] (15)

From the discussion, it is observed that the difference between original pTE and our Fast-pTE is
almost the same with the difference between determinant and trace of the covariance matrix. The
determinant is able to consider all the information in the covariance matrix, including variance of a
single variate and covariance between variates, while trace pays attention to only the variance of a
single series. Back to our time-series forecasting problems, the initial series inputted into the model
are 1d vectors, which are patchfied and embedded to Rd×T . From the perspective of original Fast-
pTE algorithm, though it fails to treat different dimension of a series as different variates and find
relation among them, it takes them as a single one, only concentrating on relation between two time
series outside hidden dimension. In this case, we think Fast-pTE has already complete the main task
to model the causality among series, apart from hugely reduce the computational cost.
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B.4 PROOF OF LEMMA

B.4.1 PROOF OF LEMMA 1

Proof. With the property of covariance of a matrix, it is easy that

V ar(WX) = WX · (WX)
⊤
= WV ar(X)W⊤ (16)

Since W ∈ Rd× d is a square matrix, using the property of determinant of it

|V ar(WX)| = |V ar(X)| · |WW⊤| (17)

B.4.2 PROOF OF LEMMA 2

Proof. Let us consider W and X in a more detailed way.

We denote W as [w⊤
1 ,w

⊤
2 , ...,w

⊤
d ]

⊤ and X as [x1,x2, ...,xT], hence covariance Σ of WX is given

by


w1V ar(X)w⊤

1 w1V ar(X)w⊤
2 ... w1V ar(X)w⊤

d

w2V ar(X)w⊤
1 w2V ar(X)w⊤

2 ... w2V ar(X)w⊤
d

...
...

...
wdV ar(X)w⊤

1 wdV ar(X)w⊤
2 ... wdV ar(X)w

⊤
d


After flatten step, the matrix WX become

y = [w1X w2X ... wdX] (18)

Hence, the covariance of y is given by

V ar(y) = Σd
i=1wiV ar(X)w⊤

i

= tr(WXX⊤W⊤) = tr(Σ)

= tr(XX⊤ ·WW⊤)

(19)
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