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ABSTRACT

Neural Processes (NPs) have recently emerged as a powerful meta-learning frame-
work capable of making predictions based on an arbitrary number of context points.
However, the learning of NPs and their variants is hindered by the need for explicit
reliance on the log-likelihood of predictive distributions, which complicates the
training process. To tackle this problem, we introduce Score-based Neural Process
(SNP) models, drawing inspiration from recently developed score-based generative
models that restore data from noise by reversing a perturbation process. With de-
noising score matching techniques, the SNPs bypass the intractable log-likelihood
calculations, learning parameterized score functions instead. We also demonstrate
that score functions possess excellent attributes that enable us to naturally represent
a wide family of conditional distributions. Moreover, as data points are inherently
unordered, it is crucial to incorporate appropriate inductive biases into SNPs. To
this end, we propose building blocks for parameterizing permutation equivariant
score functions, which induce the SNPs with the desired properties. Through exten-
sive experimentation on both synthetic and real-world datasets, our SNPs exhibit
remarkable performance and outperform existing state-of-the-art NP approaches.

1 INTRODUCTION

Meta-learning (Vanschoren, 2018; Thrun & Pratt, 2012) is a promising paradigm that enables
networks to acquire suitable priors, thereby improving generalization capability on novel tasks.
Neural Processes (NPs) and their variants (Garnelo et al., 2018a;b; Kim et al., 2019) are a set of
meta-learning methods that combine the strengths of Gaussian processes (Quinonero-Candela &
Rasmussen, 2005) and neural networks to directly model the distribution of functions. As NPs
can make predictions based on a limited number of context points while also capturing predictive
uncertainty, this allows them to adapt rapidly to novel tasks during testing. As a result, NPs have
become a popular choice for a wide range of applications (Kossen et al., 2021; Vaughan et al., 2021;
Lin et al., 2021; Garcia-Ortegon et al., 2022; Ada & Ugur, 2023).

Current NP models rely on explicitly maximizing the log-likelihood of target conditional distributions,
which requires them to have an analytic form, such as Gaussian densities with a diagonal covariance
matrix. However, these approaches do not account for statistical dependencies between the data
points, posing challenges in adapting to complex situations and may lead to discontinuous predictions
(Dubois et al., 2020; Markou et al., 2022). To address this issue, several NP variants introduce a
latent variable into the definition of the predictive distribution, enhancing the model’s adaptability to
non-Gaussian predictions to some extent (Garnelo et al., 2018b; Kim et al., 2019; Foong et al., 2020).
Nevertheless, these variants, similar to other latent variable approaches (Kingma et al., 2019), face
the problem of intractable likelihoods with respect to the predictions. In practice, these likelihoods
are usually approximated by optimizing a surrogate objective, i.e., evidence lower bound (ELBO)
(Kingma et al., 2019). Despite its practical usefulness, it has been observed that optimizing the ELBO
of the log-likelihood does not always result in a good latent representation, usually requiring additional
modifications to alleviate such problems and improve the quality of latent variables (Alemi et al.,
2018; Chen et al., 2016; Wang et al., 2022). Some recent works have introduced an autoregressive
structure to deal with hard-to-compute likelihoods (Bruinsma et al., 2023; Nguyen & Grover, 2022)
while enhancing the ability to fit the distribution, these models sacrifice the permutation equivariance
property of the NP model for target points.

In this paper, we introduce a novel class of neural processes called Score-based Neural Processes
(SNPs). Instead of attempting to address the intractable likelihoods with respect to target outputs given
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Figure 1: Illustration of score networks for SNPs. At each step, we sample ŷC(t) and then use the
score network for inference to generate context score and target score. These scores are applied to
estimate ∇yT (t) log pt (yT (t) | xT , C) by Eq. (7), and the SDE solver is called to predict the target
output at the next time step.

context sets, SNPs model score functions (Liu et al., 2016), defined as gradients of log-probability
density functions. This allows for more efficient training by score match techniques (Hyvärinen &
Dayan, 2005) without relying on the explicit computation of log-likelihoods. Once the score function
has been estimated accurately, we can use it to forecast target outputs by solving a reverse-time
stochastic differential equation (SDE) (Anderson, 1982). However, learning the score function in a
naive manner can be cumbersome since the number of samples in the context set or the target set
is variable-sized. This requires the model to include a wide family of conditional distributions. For
this purpose, we theoretically show that modeling the score function for the joint distributions of
both context and target outputs can effectively be utilized to handle this problem. Additionally, as
data points are by nature unordered, it can be crucial to incorporate appropriate inductive biases
into the SNPs. We also demonstrate that score functions which are permutation equivariant for data
pairs can induce the distribution maintaining these desirable properties, and further offer the practical
parameterization to define a score network imposing such constraints.

We conduct extensive experiments on multiple synthetic and real datasets, including meta-regression
on synthetic data, multivariate time-series regression on electroencephalogram (EEG) data, and
missing data completion on varying domains, such as images on grids, fluid fields on irregular
meshes and climate data on manifolds. Our numerical results show that SNPs consistently outperform
existing state-of-the-art NP approaches, particularly in more challenging situations, by a large margin.
These results demonstrate the ability of SNPs to capture the high-level statistics of related tasks and
simulate a wide range of conditional distributions.

2 BACKGROUND

2.1 PROBLEM SETUP

The meta-learning literature for predictive uncertainty estimation typically involves a meta-dataset
{Dk}Ntask

k=1 consisting of a series of related tasks. For any task D sampled from {Dk}Ntask

k=1 , the dataset
is divided into a context set C := {xC ,yC} = {(xc

i , y
c
i )}Ci=1 and a target set T := {xT ,yT } =

{(xt
i, y

t
i)}Ti=1. Here, xc

i ∈ Rdx , xt
i ∈ Rdx , yci ∈ Rdy , yti ∈ Rdy , C and T are the number of samples

for set C and T respectively. Our objective is to pursue the conditional distributions p (yT | xT , C),
i.e., learning a model which can make reasonable predictions for given target inputs xT based on the
observed context data C. It’s important to note that the number of data points in the context and target
sets can vary, necessitating the modeling of a wide family of conditional distributions (Garnelo et al.,
2018a).
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2.2 NEURAL PROCESSES

Neural processes (NPs) (Garnelo et al., 2018b;a; Kim et al., 2019; Vaughan et al., 2021) are meta-
learning models, providing an ideal approach for acquiring the above condition distributions. These
models are trained by the maximum likelihood procedure that enables fast adaptation to the new
task at the testing phase. In general, the recent progress of NPs is mainly driven by two directions:
conditional neural processes (CNPs) and latent neural processes (LNPs) (Dubois et al., 2020).

CNPs usually assume that the modeled distribution is factorized conditioned on the context set and
can be written by,

log p (yT | xT , C) =
T∑

i=1

log p
(
yti | xt

i, C
)

(1)

A typical choice is to set each p (yti | xt
i, C) as a Gaussian density. CNPs train with ease, however,

due to factorization assumption, the major restriction of CNPs is that the model may not be able to
produce correlated predictions, resulting in samples that are discontinuous.

LNPs address this problem by introducing a global latent variable. At this point, the likelihood of
target prediction is not tractable and LNPs approximately maximize the likelihood by optimizing an
evidence lower bound (ELBO):

log p (yT | xT , C) ≥ Eq(z|D)

[
T∑

i=1

log p
(
yti | xt

i, z
)]

−KL(q(z | D)∥p(z | C)) (2)

where z is a latent variable incorporated to represent uncertainty. p(z | C) is the prior distribution of
the latent variable, and q(z | D) is the variational posterior distribution based on target sets. Since
both the prior and the posterior are unknown, in practice, LNPs usually share the encoder for learning
prior and posterior. Yet, this approximation can lead to inference suboptimality (Wang et al., 2022),
thereby impairing the performance of models.

2.3 SCORE-BASED GENERATIVE MODELS

The recently introduced score-based generative models (SGMs) (Song & Ermon, 2019; 2020; Ho
et al., 2020; Song et al., 2020b) offer a flexible sampling approach from high-dimensional, compli-
cated distributions. SGMs first define a diffusion process to perturb data into noise progressively.
Considering having a dataset whose samples come from the distribution p(x), SGMs employ the
following linear stochastic differential equation (SDE) to perturb samples,

dx(t) = µ(t)x(t)dt+ σ(t)dwt, t ∈ [0, 1], (3)

where µ(·) : [0, 1] → R, σ(·) : [0, 1] → R, {x(t) ∈ Rn}t∈[0,1] denotes the trajectory of the sample
being perturbed among the stochastic process, wt is a standard Wiener process. Let pt(x(t)) be
marginal probability distribution as time t, we apparently have p0(x(0)) ≡ p(x). In particular, for
some carefully selected µ(t) and σ(t), we can convert an arbitrary initial distribution p0(x(0)) to
a specific noise distribution p1(x(1)), and the transition kernel p0t(x(t) | x(0)) ≡ p0t(x(t) | x) at
any time during the perturbation process can be obtained in closed-forms. In this paper, we consider
the Variance Preserving (VP) SDE proposed in Song et al. (2020b) as the perturbation process, and
p0t(x(t) | x) = N (x(t);αtx, β

2
t I).

SGMs can recover samples x ∼ p(x) from noises by reversing the above perturbation process. A
crucial result from Song et al. (2020b) shows that the reverse of a diffusion stochastic process is an
SDE that runs backward in time,

dx(t) =
[
µ(t)x(t)− σ(t)2∇x(t) log pt (x(t))

]
dt+ σ(t)dŵt, t ∈ [0, 1], (4)

where dt is the infinitesimal negative timesteps, and ŵt is the standard Wiener processes in the
reverse-time direction from 1 to 0. The stochastic process in Eq. (4) involves the score function of
the marginal distribution, ∇x(t) log pt (x(t)). The score function is typically parameterized as a deep
network with the same dimensions of input and output, and can be effectively learned by many score
matching techniques (Song et al., 2020a; Vincent, 2011; Pang et al., 2020). Once the score function
for all t is given , we can derive the reverse SDE in Eq. (4) and solve it to sample from p(x).
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3 SCORE-BASED NEURAL PROCESSES

3.1 LEARNING SCORE FUNCTIONS FOR NPS

We propose to indirectly achieve meta-learning with neural processes by modeling the score functions
instead of the conditional probability densities for target outputs yT . For a specific task D = C ∪ T ,
where C := {xC ,yC} represents the context set and T := {xT ,yT } represents the target set, we
define a perturbation process {yT (t)}t∈[0,1] for the target outputs like in Eq. (3).

dyT (t) = µ(t)yT (t)dt+ σ(t)dwt, t ∈ [0, 1], (5)

As time progresses, the target outputs yT = yT (0) will gradually diffuse and finally converge into a
simple noise distribution p1(yT (1)). Here, we use the VP SDE as the perturbation process, which
results in a standard Gaussian distribution yT (1) ∼ N (0, I).

Like the stochastic processes described in Eq. (4), we will need to solve the appropriate reverse-time
SDE to generate data from the conditional distribution p (yT | xT , C),

dyT (t) =
[
µ(t)yT (t)− σ(t)2∇yT (t) log pt (yT (t) | xT , C)

]
dt+ σ(t)dŵt, t ∈ [0, 1], (6)

The above equation involves the conditional score function ∇yT (t) log pt (yT (t) | xT , C), which is a
crucial component but not straightforward to obtain. While one possible approach to model a wide
family of conditional distributions is to learn the conditional score function separately for context sets
containing various numbers of samples, this can be cumbersome when the range of sample quantity
changes is vast. To this end, we propose an alternative way to obtain the score function. We consider
the joint distribution with respect to both yT (t) and yC(t), thereby circumventing the need to handle
numerous conditional distributions involved by different partitioning of D. This approach offers a
more natural and streamlined way to access such conditional score functions. We now state our key
theorem.
Theorem 1. Let D be a task sampled from meta-dataset {Dk}Ntask

k=1 , which is partitioned into a
context set C := {xC ,yC} and target set T := {xT ,yT }. Define the perturbation stochastic
processes {yC(t)}t∈[0,1] and {yT (t)}t∈[0,1] as in Eq. (5). Assume ŷC(t) ∼ p0t(yC(t) | yC). Then,
we have the following approximate expression,

∇yT (t) log pt (yT (t) | xT , C) ≃∇yT (t) log pt (ŷC(t),yT (t) | xC ,xT )

+∇yT (t) log q(yC | ŷC(t),yT (t),xC ,xT ) (7)

The above conclusion is based on Bayes’ theorem and approximating expectations by Monte Carlo
estimate. We defer the proof in Appendix A. The first term on the right-hand side in Eq. (7) is
∇yT (t) log pt (ŷC(t),yT (t) | xC ,xT ), which we refer to as the target score. Regarding the second
term, which necessitates estimating the distribution for yT , we define it as a Gaussian density,

q(yC | ŷC(t),yT (t),xC ,xT ) = N (yC ;yC , r
2I) (8)

where r is the coefficient controlling for variance, and the mean yC is the expectation estimated by
the result of Tweedie’s formula (Robbins, 1992; Chung et al., 2022):

yC = E [yC | ŷC(t),yT (t),xC ,xT ]

= [ŷC(t)− β2
t∇yC(t) log pt (ŷC(t) | yT (t),xC ,xT )]/αt

= [ŷC(t)− β2
t∇yC(t) log pt (ŷC(t),yT (t) | xC ,xT )]/αt (9)

Note that the above equation involves the term ∇yC(t) log pt (ŷC(t),yT (t) | xC ,xT ), which we refer
to as the context score. Considering the two terms in Theorem 1 together, our focus is on learning
the score function for both yC(t) and yT (t), i.e, ∇[yC(t),yT (t)] log pt (yC(t),yT (t) | xC ,xT ). To
achieve this, we use the denoising score matching (DSM) (Vincent, 2011) objective as our learning
criterion,

min
θ

Et,D,yC(t),yT (t)[∥Sθ(yC(t),yT (t),xC ,xT , t)−∇[yC(t),yT (t)] log p0t (yC(t),yT (t) | D) ∥22]
(10)
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where Sθ is the score network parameterized by θ. The theory of DSM ensures that the optimal
solution in Eq. (10) satisfies,

Sθ∗(yC(t),yT (t),xC ,xT , t) = ∇[yC(t),yT (t)] log pt (yC(t),yT (t) | xC ,xT ) (11)

When using the result of Theorem 1, a potential concern is the high variance in estimation, which
stems from using single-sample Monte Carlo estimate with ŷC(t) ∼ p0t(yC(t) | yC). Remarkably,
this variance is intricately linked to the time progression of the perturbation process within the VP
SDE (Song et al., 2020b). The sampling variance reaches its maximum when t is nearly equal to
1 and diminishes as t approaches 0. Previous study (Song & Ermon, 2020; Xu et al., 2022) has
affirmed that the generative quality of SGMs primarily hinges on the stage close to t = 0, in which
the sampling variance is reduced. This characteristic suggests that our approximation in Eq. (7) is
reasonable.

In the inference phase, we utilize the trained score network to estimate ∇yT (t) log pt (yT (t) | xT , C)
by plugging it into Eq. (7) and Eq. (9). These estimated values are then provided to an SDE solver,
such as the Euler-Maruyama method (Platen & Bruti-Liberati, 2010), to solve Eq. (6) and generate
the target outputs.

3.2 PERMUTATION INVARIANCE/EQUIVARIANCE

Permutation invariance and equivariance are desirable properties of NP models since the data points
in a set are inherently unordered. Integrating these inductive biases into the model parameterization
has been verified to be effective for training NP models and is critical for their generalization capacity
(Kim et al., 2019). In what follows, we provide the formal definition of these properties.
Definition 1. Context permutation invariance. Let ΠC be the set of all permutations of indices
{1, . . . , C}. If the probability density function of a model satisfy p (yT | xT , π(xC), π(yC)) =
p (yT | xT ,xC ,yC) for any permutation operator π ∈ ΠC , then the model is permutation invariance
for context sets.
Definition 2. Target permutation equivariance. Let ΠT be the set of all permutations of indices
{1, . . . , T}. If the probability density function of a model satisfy p (π(yT ) | π(xT ),xC ,yC) =
p (yT | xT ,xC ,yC) for any permutation operator π ∈ ΠT , then the model is permutation equivari-
ance for target sets.

Definition 1 of context permutation invariance requires that the model’s predictions for the target
points remain unchanged even when the order of the context points is permuted. Similarly, Definition
2 of target permutation equivariance requires that the predictions yT change in accordance with
the permutation of the target inputs xT . In the following, we show that a score network that is
permutation equivariant for data pairs can induce the conditional distribution with the aforementioned
properties, and this insight will be applied to guide the structural design of our parameterized score
networks.
Theorem 2. Assume that ΠD is the set of all permutations of indices {1, . . . , C + T}. If
the score network Sθ is a permutation equivariant function for data pairs, i.e., satisfies
Sθ(π(yC(t),yT (t)), π(xC ,xT ), t) = π(Sθ(yC(t),yT (t),xC ,xT , t)), for any choice of π ∈ ΠD,
then the distribution pt (yT (t) | xT , C) obtained by solving reverse-time SDE in Eq. (6) satisfies the
context permutation invariance and target permutation equivariance.

3.3 ARCHITECTURES OF SCORE NETWORKS

We aim to design score networks that exhibit permutation equivariance for data pairs. The multihead
attention mechanism (Vaswani et al., 2017) is a well-known module that maintains this property
while enabling full interaction of information between data points within a set. However, one
potential problem is the quadratic time complexity of standard multihead attention, which can
become a bottleneck when dealing with a large number of data points. Inspired by sparse Gaussian
processes (Snelson & Ghahramani, 2005), we introduce the induced set attention blocks (ISABs)
(Lee et al., 2019) as the key components in our score networks. Specifically, given the set of data
point {yC(t),yT (t),xC ,xT } at specific time t, we first concatenate the corresponding inputs and
perturbed outputs together and project them to hidden space Z ∈ R(C+T )×dh . ISABs use m trainable
inducing points I ∈ Rm×dh (where m ≪ C + T ) as the query matrices to extract meaningful
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low-dimensional feature H ∈ Rm×dh from the input array Z by multihead attention. The output is
then generated by reconstructing back to the original space based on H . The full process of ISABs
can be defined as follows:

ISAB(Z) = Z + FFN(MultiHead(Z,H,H)) ∈ R(C+T )×dh

where H = I + FFN(MultiHead(I, Z, Z)) + Embed(t) ∈ Rm×dh (12)

where MultiHead(·, ·, ·) is a multihead attention module whose inputs are, in order, query-key-value
matrices, FFN(·) is the feed-forward network for mixing on channel dimension, Embed(·) is the
layer embedding the time of SDEs. As the number of inducing points m is far less than C + T , this
reduces the computational complexity from O((C + T )2) to O(m(C + T )), allowing our model
to easily process thousands of data points. More importantly, ISABs still maintain the equivariant
property for score networks in Theorem 2. We stack multiple ISABs and add a fully-connected output
layer at the tail to construct the score networks Sθ. The overall architecture and the workflow of score
calculation are illustrated in Figure 1.

4 EXPERIMENTAL RESULTS

We conduct a comprehensive evaluation of Score-based Neural Processes (SNPs) across several tasks,
including meta-regression on synthetic data, multivariate time-series regression on electroencephalo-
gram (EEG) data, and missing data completion in various domains, such as images on grids, fluid
fields on irregular meshes and climate data on manifolds. We compare SNPs with other NP models,
including Neural Processes (NPs) (Garnelo et al., 2018b), Attentive Neural Processes (ANPs) (Kim
et al., 2019), and Convolutional Neural Processes (ConvNPs) (Foong et al., 2020), while keeping
the number of parameters approximately the same for each model to ensure a fair comparison. We
provide implementation details in Appendix C for reference.

4.1 SYNTHETIC EXPERIMENTS

For each experiment, we conduct the meta-regression tasks by collecting functions from Gaus-
sian processes (GPs) and sub-sampling these functions into context {(xc

i , y
c
i )}Ci=1 and target sets

{(xt
i, y

t
i)}Ti=1, on which we train the NP models. Specifically, we apply the NP models to synthetic

datasets generated from GPs with three following settings. 1) GPs with the single kernel: we generate
functions from GPs with RBF, Periodic and Matern kernels, respectively, to build three meta-datasets.
2) GPs with varying kernels: we generate functions from GPs with three different kernels and
combine them into one meta-dataset. 3) GPs with varying kernel hyperparameters: we generate
functions from GPs with Matern kernels, with a length scale of l ∼ U [0.01, 0.3).

Table 1: Predictive NLL (↓) on synthetic data (5 runs).

Method
Single kernel

Varying kernels Varying h.p.
RBF Periodic Matérn

NP 1.13 ± 0.02 0.66 ± 0.01 1.26 ± 0.01 1.61 ± 0.01 1.66 ± 0.02
ANP 0.01 ± 0.02 0.64 ± 0.01 0.53 ± 0.03 0.52 ± 0.01 0.96 ± 0.01
ConvNP −0.85 ± 0.01 −1.88 ± 0.01 0.32 ± 0.03 0.39 ± 0.00 0.95 ± 0.01
SNP −3.64 ± 0.00 −4.14 ± 0.02 −0.98 ± 0.00 −2.43 ± 0.01 0.45 ± 0.00

We test the trained models respectively on unseen functions that are drawn from the above three
settings and calculate the negative log-likelihood (NLL) of the target sets. The summarized results
are shown in Table 1. We can see that SNPs consistently outperform the other methods in all settings.
Particularly in the case of mixing from different kernels, the SNP also has obviously lower NLL,
indicating its ability to identify and quickly adapt to the task from different kernels. We refer the
readers to Appendix E for more qualitative results.

4.2 EEG REGRESSION

Next, we train various NPs on real series data consisting of EEG measurements (Zhang et al., 1995),
following the methodology described in Bruinsma et al. (2023). Each time series contains 256
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Figure 2: Qualitative evaluation of Forecasting on EEG. The blue lines and the shaded blue area
denote the predictive mean and standard deviation.

regularly spaced measurements across 7 channels (i.e., FZ, F1, F2, F3, F4, F5, F6 electrodes), and
exhibits correlations across channels, making it an ideal multivariate regression task for meta-learning
models. The regression’s inputs are the time and channel index xe := (it, ic) ∈ R2 and the output
is the corresponding voltage ye. We maintain 4 channels as the context set and conducted three
experiments on other channels, which are Interpolation, Reconstruction and Forecasting.

Table 2: Predictive NLL (↓) and MSE (↓) on EEG (5 runs).

Method
Inter. Recon. Forec.

NLL MSE(×10−2) NLL MSE(×10−2) NLL MSE(×10−2)

NP 1.24 ± 0.00 0.35 ± 0.01 1.24 ± 0.00 0.32 ± 0.00 1.24 ± 0.00 0.30 ± 0.04
ANP 0.36 ± 0.02 0.16 ± 0.01 0.49 ± 0.00 0.34 ± 0.02 0.70 ± 0.00 0.43 ± 0.05
ConvNP 0.31 ± 0.02 0.29 ± 0.01 −1.79 ± 0.01 0.30 ± 0.00 −1.78 ± 0.00 0.41 ± 0.03
SNP −2.37 ± 0.00 0.11 ± 0.01 −2.40 ± 0.01 0.12 ± 0.01 −2.35 ± 0.00 0.22 ± 0.00

After training, we evaluate the models by calculating the NLL and MSE of the target sets. As
shown in Table 2, the SNP outperforms the other methods on all tasks by a large margin, especially
in more difficult Forecasting tasks. Figure 2 shows some qualitative results of forecasting on the
F2 channel. We observe that the trained SNP, which had temporal and cross-channel correlations
captured, produces both regression uncertainty and plausible function samples given context channels.

4.3 IMAGES ON GRIDS

NP ConvNPSNPgt ANPcontext NP ConvNPSNPgt ANPcontext

Figure 3: Qualitative evaluation on CelebA32 (left) and MNIST (right).

Image data can be interpreted as being generated from a stochastic process, where each image can
be regarded as a unique function. Predicting the pixel values can be cast as a 2D regression task
mapping a 2D pixel location xi ∈ R2 to its pixel intensity yi ∈ Rc, where c is the number of channels
of images. We used two benchmark datasets for this experiment: MNIST (LeCun et al., 1998) and
CelebA (Liu et al., 2015). As in Lee et al. (2020), we downsample the CelebA images to 32× 32.
The coordinates and pixel intensities are both rescaled to the range [−1, 1]. We use the standard
train/test split for two image datasets.

During the test phase, we evaluate each model based on the log-likelihood of the target points on the
test data. Our results are similar to our previous findings, as shown in Table 3, which demonstrates
that SNPs outperform the baselines and achieve a nearly three-fold likelihood improvement. The
qualitative results are shown in Figure 3, where we find that SNPs produce noticeably better-completed
images than the best baseline model for different context sampling. Even in more challenging tasks,
such as contexts containing only half of the image, which require the NP models to simulate
dependencies between distant pixels, our model produces more reliable predictions than the baseline,
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Table 3: Predictive NLL (↓) on MNIST and CelebA32 (5 runs).

Method
MNIST CelabA32

Half Random Half Random

NP −3.63 ± 0.00 −3.54 ± 0.01 −0.84 ± 0.00 −1.07 ± 0.00
ANP −3.91 ± 0.00 −3.96 ± 0.01 −1.39 ± 0.00 −1.43 ± 0.01
ConvNP −2.57 ± 0.84 −2.96 ± 0.01 0.11 ± 0.28 −1.67 ± 0.01
SNP −9.12 ± 0.08 −8.87 ± 0.01 −4.76 ± 0.10 −4.77 ± 0.10

which generates predictions inconsistent with the context. This discrepancy explains why the
likelihoods of the baseline models were much lower than those of SNPs.

NP

𝟐% of sensors

ConvNP SNP

gt

ANP

Figure 4: Qualitative evaluation under 2% of sensors on CYLINDERFLOW. The color map shows
the x-component of the velocity field.

4.4 FLOW FIELDS ON MESHES

Like other NP models, SNPs are not limited to grid data and can theoretically access function
values at arbitrary coordinate points. In this subsection, we collect flow field data lying on varying
irregular meshes to verify the model’s ability to recover the complete system from very sparse
observations. This approach can be used to address the variational data assimilation problem (Frerix
et al., 2021) in numerical systems that are affected by non-invertible relations between physical states
and their corresponding observations. Here, we adopt the CYLINDERFLOW (Pfaff et al., 2020), a
fluid simulation dataset consisting of 600 temporal observations per trajectory, with 1735 to 2036
evaluation nodes. Our target is to learn the data distribution of the velocity fields yi := (vxi , v

y
i ) ∈ R2

for each node, given its position, time (The meaning of time here is different from that in Eq. (6))
and node type, i.e., xi := (pxi , p

y
i , si, ni) ∈ R4. Due to the delicate design of the 2D grid version of

ConvNPs Gordon et al. (2019), we have to interpolate the irregular meshes to a 32 × 32 grid and
discard the time information to fit it. For fairness, we only evaluate all NP methods on completing
the missing nodes spatially with 2% of sensors.

The results of the mean squared error (MSE) for the target point are summarized in Table 4. Our
SNP consistently outperforms the baseline, with an accuracy one order of magnitude higher than the
second-best method (i.e., NP). In Figure 4, we compare the completion results of varying NP models.
The SNP yields a result that is closer to the ground truth than other models.

Table 4: Test MSEs (↓) on CYLINDERFLOW (5 runs).

NP ANP ConvNP SNP

MSE(×10−2) 1.08± 0.03 1.57± 0.00 3.41± 0.01 0.11± 0.01

4.5 CLIMATE DATA ON MANIFOLDS

Data in earth and climate science often exists on a manifold rather than in Euclidean space,
bringing a great modeling challenge. The proposed SNP can be naturally scaled to this data
without modifications as in De Bortoli et al. (2022). To verify this, we adopt temperature mea-
surements over the last 40 years from the ERA5 dataset (Hersbach et al., 2019). For NP, ANP

8



Under review as a conference paper at ICLR 2024

and SNP, we consider learning to predict the temperature value yθ,ϕ given spherical coordinates
xθ,ϕ := (cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)) ∈ R3, which can ensure that the data lie on manifolds
(Dupont et al., 2021). Since the ConvNPs are not directly applicable to this case, we feed the input in
the form of a latitude/longitude grid (similar to image data) into it for training. We conduct two kinds
of experiments, including recovery from Large-region missing and random missing.

Table 5: Predictive NLL (↓) and MSEs (↓) on ERA5 (5 runs).

Method
Large-region missing Random missing

NLL MSE(×10−2) NLL MSE(×10−2)

NP −3.35 ± 0.01 0.14 ± 0.05 −3.36 ± 0.00 0.16 ± 0.00
ANP −4.58 ± 0.09 0.16 ± 0.01 −3.85 ± 0.02 0.08 ± 0.00
ConvNP 4.89 ± 2.22 10.94 ± 0.53 0.50 ± 0.61 0.92 ± 0.11
Ours −5.05 ± 0.13 0.05 ± 0.01 −5.03 ± 0.00 0.06 ± 0.00

In Table 5, we observe that the SNP outperforms other competing methods in terms of NLL and
MSE for both random missing cases and large-region missing cases. The performance of ConvNP
is significantly lower than that of the other models, and we speculate that this may be due to the
use of latitude and longitude to represent the location, ignoring the fact that the data comes from
manifolds. Moreover, the visualizations in Figure 5 demonstrate the ability of the SNP to extrapolate
non-stationary, complex patterns, especially in regions with rapid and discontinuous temperature
changes. In comparison, the baseline NP models produce either blurry or unreliable predictions.
These results suggest that the SNP can provide more accurate and reliable predictions for applications
of earth and climate science. For further details and qualitative results, please refer to Appendix E.

NP
Large-scale 

measurement missing
ConvNPSNPgt ANP

Figure 5: Qualitative evaluation under large-scale measurements missing on ERA5.

4.6 ABLATION STUDY

Assessing the efficacy of ISAB: To validate the effectiveness of the proposed ISAB, we conducted a
comprehensive comparative analysis with vanilla attention (Vaswani et al., 2017), as elaborated in
the Appendix D.1. To quantify the computational demands of models, we employed the Multiply
ACcumulate operations (MACs) as a metric. Our findings demonstrate that the ISAB block strikes
a commendable balance between computational efficiency and precision. In most instances, it
outperforms the standard attention mechanism while demanding fewer computational resources,
particularly when handling extensive datasets such as ERA5.

Runtime tradeoff: The SNP model necessitates additional computational resources due to the
inclusion of the SDE solver, setting it apart from other NP models. In the Appendix D.2, we delve
into the impact of varying the number of function estimations (NFE), on both runtime and model
performance on EEG for SNP. Our findings illustrate a robust improvement in SNP’s performance as
NFE increases. Impressively, even with a relatively low NFE (e.g., NFE = 50), SNP exhibits a slight
advantage over the baseline. The exploration of employing more advanced solvers to enhance SNP’s
performance while reducing the demand for NFEs presents a promising avenue for future research.

5 CONCLUSION

In this paper, we propose SNPs as novel members of the NP family for meta-learning. SNPs model
score functions and learn them by using score matching techniques, thereby avoiding dealing with
intractable likelihood functions. We demonstrate that SNPs can represent wide, complex conditional
distributions. Moving forward, we plan to extend the application of SNPs to higher dimensional meta-
learning scenarios. We are also interested in exploring the connections between NPs and in-context
learning paradigms (Liu et al., 2021; Brown et al., 2020), and incorporating recent advances in these
areas to enhance the performance of SNPs.
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A PROOFS

In this section, we provide proof for the conclusions in the main text.

A.1 PROOF OF THEOREM 1

pt (yT (t) | xT , C) =
∫

pt (yC(t),yT (t) | xT , C) dyC(t)

=

∫
pt (yT (t) | yC(t),xT , C) p0t (yC(t) | yC) dyC(t) (13)

=Ep0t(yC(t)|yC) [pt (yT (t) | yC(t),xT , C)]
≃pt (yT (t) | ŷC(t),xT , C) where ŷC(t) ∼ p0t (yC(t) | yC)

Then,

∇yT (t) log pt (yT (t) | xT , C) ≃∇yT (t) log pt (yT (t) | ŷC(t),xT , C)
=∇yT (t)[log pt (ŷC(t),yT (t) | xT , C)− log pt (ŷC(t) | xT , C)]
=∇yT (t) log pt (ŷC(t),yT (t) | xT , C)
=∇yT (t) log pt (ŷC(t),yT (t) | xC ,xT ,yC) (14)

( By Bayes’ theorem)

=∇yT (t)[log pt (ŷC(t),yT (t) | xC ,xT )

+∇yT (t) log q(yC | ŷC(t),yT (t),xC ,xT )]

A.2 PROOF OF THEOREM 2

As the initial noise distribution at time 1 is standard normal distribution, p1 (yT (1) | xT ,yC ,xC , ) =
N (0, I), we have,

p1 (yT (1) | xT , π(xC), π(yC)) = p1 (yT (1) | xT ,xC ,yC) (15)
p1 (π(yT (1)) | π(xT ),xC ,yC) = p1 (yT (1) | xT ,xC ,yC) (16)

We can see that the distribution p1 satisfies the properties in Definition 1 and Definition 2 of the main
text.

Let Sc and St denote context score and target score of Sθ(yC(t),yT (t),xC ,xT , t). From
the descirption in the Section 3.1 of the the main text, the conditional score function
∇yT (t) log pt (yT (t) | xT , C) we are interested in is estimated by

∇yT (t) log pt (yT (t) | xT , C) = St −
1

2r2
∇yT (t)∥yC − (ŷC(t)− β2

t Sc)/αt∥22 (17)

Since Sθ satisfies permutation equivariant function for data pairs, the two term on the right hand
in above equation will remain unchanged for the permutation of context data pairs, and change in
accordance with the permutation of target pairs. The reverse-time SDE is,

dyT (t) =
[
µ(t)yT (t)− σ(t)2∇yT (t) log pt (yT (t) | xT , C)

]︸ ︷︷ ︸
:=f

dt+ σ(t)dŵt, t ∈ [0, 1], (18)

Apparently, the value of f also follows these properties for permutation of context pairs and target
pairs. For simplicity, we use pt to denote pt (yT (t) | xT , C). Now the probability density pt evolves
can be written as following by the famous Fokker-Planck equation (Risken & Risken, 1996),

∂pt
∂t

= −
T∑

i=1

∂fipt
∂yi(t)

+
σ(t)

2

T∑
i=1

∂2pt

∂yi(t)
2 (19)
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Since the p1 satisfies the properties in Definition 1 and Definition 2, the permutation in either the
context set or the target set order does not affect the value of the right-hand side of Eq. (19) at time 1.
Therefore, we have,

∂p1 (yT (1) | xT , π(xC), π(yC))

∂t
=

∂p1 (yT (1) | xT ,xC ,yC)

∂t
(20)

∂p1 (π(yT (1)) | π(xT ),xC ,yC)

∂t
=

∂p1 (yT (1) | xT ,xC ,yC)

∂t
(21)

Then at sufficiently small time changes t′ = 1−∆t,
pt′ (yT (t

′) | xT , π(xC), π(yC)) (22)

= p1 (yT (1) | xT , π(xC), π(yC))−
∂p1 (yT (1) | xT , π(xC), π(yC))

∂t
∆t

= p1 (yT (1) | xT ,xC ,yC)−
∂p1 (yT (1) | xT ,xC ,yC)

∂t
∆t

= pt′ (yT (t
′) | xT ,xC ,yC) (23)

We can see that the pt′ also satisfies the properties in Definition 1 and Definition 2. By mathematical
induction, the following equation holds for any t ∈ [0, 1],

pt (yT (t) | xT , π(xC), π(yC)) = pt (yT (t) | xT ,xC ,yC) (24)
By the same token, we can prove,

pt (π(yT (t)) | π(xT ),xC ,yC) = pt (yT (t) | xT ,xC ,yC) (25)

B RELATED WORKS

Neural Processes. The CNP (Garnelo et al., 2018a) is a groundbreaking approach that combined
neural networks with stochastic processes, enabling learning of a suitable prior from multiple related
tasks. However, it has been found that CNPs often produce irrelevant predictions and are underfit to
the data distribution. The NP (Garnelo et al., 2018b) overcomes this issue by introducing a global
latent variable and using variational inference. The ANP (Kim et al., 2019) further uses attention
mechanics to improve model expressiveness. Recent works (Vaughan et al., 2021; Foong et al., 2020;
Bruinsma et al., 2021; Markou et al., 2022) have also introduced the inductive bias of translation
equivariance to NP models by defining convolution operations on sets. These approaches allow for
better extrapolation performance in scenarios with stationary processes. Additionally, Nguyen &
Grover (2022) and Bruinsma et al. (2023) have employed autoregressive constructions to improve
the model’s ability to handle complex distributions. In recent studies, Rastogi et al. (2022) and Feng
et al. (2022) have introduced induced point-based approaches to NPs, with the goal of achieving
computationally efficient inference. In contrast, our contribution lies in the integration of trainable
induced points into the score network. This innovation not only reduces the inference workload but
also enables the training of score matching without explicit partitioning of the context and target sets.
Additionally, the Neural Diffusion Process (NDP) introduced by (Dutordoir et al., 2023) is relevant to
our research, given its emphasis on sampling from the function’s distribution. However, our primary
innovation centers around the development of an efficient method for estimating conditional scores
for target sets, circumventing the complexity associated with likelihood calculations. This represents
a significant advancement in our work.

Score-based generative models. Score matching (Song et al., 2020a; Pang et al., 2020; Vincent,
2011) is a method that was originally used to train energy-based models (LeCun et al., 2007; Song
& Kingma, 2021), which allowed to avoid intractable partition functions. Song & Ermon (2019)
introduced a new type of generative model called the score-based generative model (SGM) that
uses a neural network to parametrize the score function of a perturbed sample in order to model the
distribution. Subsequent work (Song & Ermon, 2020; Song et al., 2020b; Ho et al., 2020) further
developed the theory of SGMs and they have proven to be highly successful for generating data in a
variety of domains (Song et al., 2021; Vahdat et al., 2021; Saharia et al., 2022). One of the advantages
of SGMs is that they do not rely on adversarial training (Goodfellow et al., 2020) or strict constraints
on model architectures (Kingma & Dhariwal, 2018), making the training and sampling process more
stable and flexible compared to other generative models. Additionally, Pavasovic et al. (2022) utilized
score matching techniques for learning prior for function space Bayesian neural networks to achieve
meta-learning.
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C EXPERIMENTAL AND IMPLEMENTATION DETAILS

In the following we list the data set and implementation details of the experiment. All experiments
are implemented by python and PyTorch 1.10.0, running on a single RTX 3090 GPU.

C.1 SYNTHETIC EXPERIMENTS

Datasets. We build the meta-datasets for regression from the following three settings:

1) GPs with a single kernel. we generate functions from GPs with RBF, Periodic and Matern kernels,
respectively, to build three meta-datasets. The length scale of RBF kernels is set to 0.2. The length
scale and periodicity of Periodic kernels are set to 1 and 0.5. The length scale and smoothness
parameter of Matern kernels are set to 0.2 and 1.5. These datasets are used to verify the model’s
ability to fit a ground truth GP.

2) GPs with varying kernels. we generate functions from GPs with three above kernels (i.e., RBF,
Periodic, and Matern kernels) and combine them into one meta-dataset. This experiment requires the
model to learn to distinguish samples from different kernels.

3) GPs with varying kernel hyperparameters. we generate functions from GPs with Matern kernels,
with a length scale of l ∼ U [0.01, 0.3). This experiment evaluates whether the model could represent
a group of GPs with varying kernel hyperparameters.

In each experiment setting, we first draw different functions from the Gaussian Process prior with
specific kernels, then choose 128 random locations to evaluate, and sample 10% evaluation as context
sets. The remainder is the target points for regression. The testing sets contain 10k functions for each
kernel.

Hyperparameters.

Number of training epochs: 1000

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 16

Hidden dimension: 64

Number of attention head: 2

Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 1

C.2 EEG REGRESSION

Datasets. We utilize the publicly accessible EEG dataset from the UCI Datasets website for the
experiments. The 121 subjects in the filtered dataset each have multiple trial results. We set aside
20 subjects as the testing set and the remaining subjects’ data for training. Each time series consists
of 256 measurements evenly spread over 64 EEG channels, of which we retain the seven channels
containing the electrodes FZ, F1, F2, F3, F4, F5 and F6, following Markou et al. (2022).

In order to verify whether the model can capture the correlation between channels and recover the
missing voltage data, we consider it as a two-dimensional regression problem, whose input is the
corresponding time and channel index and output is the corresponding voltage value, we set four of
the channels (F3, F4, F5 and F6) as observable context points, for the other three channels we comply
with the three experimental settings in the main text, divide some points to merge with the above four
channels as the final context set, and the remaining points in these three channels as the target set.

1) Interpolation: we randomly select a number of the 256 points uniformly to be target points and
use the remaining points as context points.

2) Reconstruction: we chose a window of a specific size in the time range and use the points outside
the window as context to regress the points inside the window.

16



Under review as a conference paper at ICLR 2024

3) Forecasting: we randomly select a time point within the time range, with the one before this point
as the context point, and the one after it as the forecasting target.

For Reconstruction and Forecasting, we keep 50% of the measurements on these three channels as
context, while for the Interpolation experiments we keep only 10%, We also performed standardized
preprocessing on the data.

Hyperparameters.

Number of training epochs: 500

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 64

Hidden dimension: 256

Number of attention head: 4

Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 0.1

C.3 IMAGES ON GRIDS

Datasets. Image data can be interpreted as being generated from a stochastic process, where each
image can be thought of as a unique function, and predicting the pixel values can be cast as a 2D
regression task mapping a 2D pixel location to its pixel intensity. Specifically, we adopt MNIST and
CelebA with 32× 32 size the follow the standard train/test split. The coordinates and pixel intensities
were both rescaled to the range [−1, 1].

In the testing phase, we tried two meta-regression settings. One is to randomly select 10% of the
pixels as the background for recovering the remaining target pixels, and the other is to mask half of
the image and use the NP model to predict the pixels in the other half of the coordinates. Obviously,
this case is more difficult to predict and the uncertainty of pixel values is higher.

Hyperparameters.

MNIST

Number of training epochs: 800

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 64

Hidden dimension: 256

Number of attention head: 4

Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 1

CelebA32

Number of training epochs: 500

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 128

Hidden dimension: 256

Number of attention head: 4
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Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 1

C.4 FLOW FIELDS ON MESHES

Datasets. The CYLINDERFLOW dataset simulates the flow of water around a cylinder on a fixed
2D Eulerian mesh and contains 1200 flow field simulation trajectories, each of which consists of 600
continuous time observations with a total number of evaluation nodes between 1735 and 2036 with a
mean of approximately 1888. Following the original partition, we use 1000 trajectories for training
and the remaining for testing.

Our target is to learn the data distribution of the velocity fields of every node given its position,
time and node type. To introduce time information, we encode it as 600 time-steps between -1 and
1 uniformly. Then, the time encoding and static node type information (such as fluid nodes, wall
nodes and inflow/outflow boundary nodes) are both concatenating to the coordinates of every point,
resulting in 4 channels input. In addition, to match our inferring strategy, we put every adjacent 6
time-steps together for all evaluation nodes to train SNPs. We evaluate these models on completing
the missing nodes spatially with a 98% mask rate. We also demonstrate that our SNPs can also work
well with additional masks temporally, which can be used to solve PDEs.

Hyperparameters.

Number of training epochs: 20

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 64

Hidden dimension: 256

Number of attention head: 4

Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 1

C.5 CLIMATE DATA ON MANIFOLDS

Datasets. We adopt temperature measurements from the ERA5 dataset over the last 40 years. We
follow Dupont et al. (2021) preprocess the data. The dataset under consideration pertains to monthly
averaged surface temperature measurements obtained from hourly reanalysis records, obtained via
a grid of 721 latitudes and 1440 longitudes spanning the globe. Each temperature measurement is
recorded at a height of 2 meters above the surface of the Earth, resulting in a data point that contains
a temperature reading at each of the 721 x 1440 grid points. To reduce the dataset’s size, we employ
a subsampling strategy that reduces the grid by a factor of 16, resulting in a smaller grid of size 46 x
90. We extract 24 grids from this reduced grid for each hour of the day, resulting in a total of 12096
datapoints for the entire period of January 1979 to December 2020.

Handling missing climate data is a critical step in ensuring the accuracy of weather forecasts and
climate projections. Thereby we conducte two experiments to evaluate the effectiveness of different
NP models: The first involves randomly selecting a small number of temperature measurements as
context, which are then used to predict most of the temperature values at the remaining positions. Since
the distribution of weather stations may be uneven in many regions, with some areas having a dense
network of stations while others have very few or none at all. The second setting involves regressing
a large region of missing temperature measurements, requiring the model to make predictions from
more distant contextual points. This scenario is relevant to situations where entire regions may be
missing data due to technical limitations or natural phenomena. We divide this dataset and build a
train set with 8510 measurements and a test set with 2420 measurements. We also normalize the data
to lie in [0, 1].

Hyperparameters.
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Number of training epochs: 300

Batch size: 128

Learning rate: 2e-4

Number of inducing points: 64

Hidden dimension: 256

Number of attention head: 4

Number of ISAB block: 6

Value of r for q(yC | ŷC(t),yT (t),xC ,xT ): 1

C.6 BASELINE SETTINGS

To implement NPs, ANPs, and ConvNPs and reproduce the results, we employ the Neural Process
Family repository (Dubois et al., 2020), and set the hyperparameters to the recommended default val-
ues. We have retrained the model on all experimental datasets for metric calculation and visualization.
For NPs and ANPs, we use ELBO as the objective function for training. We find that ELBO does
not work well for ConvNPs, so we follow Foong et al. (2020) to use Monte-Carlo approximation to
approximate the likelihood of computing the objective as the training criterion.

C.7 METRIC CALCULATING

We employ two main metrics to evaluate the performance of our models: mean squared error (MSE)
and negative log-likelihood (NLL). The MSE is calculated by computing the squared difference
between the predicted and true values at each target point and taking the average over all points. This
metric provides a measure of the average discrepancy between the predicted and true values. For NPs
and ANPs, we follow Foong et al. (2020) and use importance weighting to estimate their NLL. For
ConvNPs that are not trained with ELBO, the importance weights may be ill-suited, thereby we use
the Monte Carlo approximation to estimate their NLL. Similar to the score-based generative model,
SNPs can compute the exact likelihood by constructing an equation for the instantaneous change
of variables and solving an ordinary differential equation (ODE). Specifically, for the following
reverse-time SDE,

dyT (t) =
[
µ(t)yT (t)− σ(t)2∇yT (t) log pt (yT (t) | xT , C)

]
dt+ σ(t)dŵt, t ∈ [0, 1], (26)

there exists an ODE with same marginal probability densities {pt (yT (t) | xT , C)}t∈[0,1] correspond-
ing to it,

dyT (t) =

[
µ(t)yT (t)−

1

2
σ(t)2∇yT (t) log pt (yT (t) | xT , C)

]
︸ ︷︷ ︸

:=G

dt, t ∈ [0, 1], (27)

The theory in the neural ODE Chen et al. (2018) derive another ODE describing the change in log
probability. It can be written as follows,

∂ log pt (yT (t) | xT , C)
∂t

= − tr

(
dG

dyT (t)

)
(28)

Since Eq. (27) establishes a one-to-one correspondence between yT and yT (1) ∼ N (0, I), and
the likelihood of yT (1) is easy to obtain, we can calculate the likelihood of target outputs by
solving Eq. (28). In order to reduce the computational consumption of the traces, we further adopt
Hutchinson’s trace estimator (Grathwohl et al., 2018). This technique involves projecting the matrix
onto a random vector, significantly reducing computation using automatic differentiation libraries.
While this method provides an unbiased estimate of the trace, there exists some inaccuracies in
the likelihood computation. We mitigate this by performing multiple runs to approximate the true
likelihood accurately. Specifically, we conduct five averages to present results in the main text. For
more details of the algorithm, please refer to Song et al. (2020b); Grathwohl et al. (2018).
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C.8 INDUCED SET ATTENTION BLOCKS
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Figure 6: Diagram of ISAB architecture. MA is the multihead attention layer and FFN is the forward-
feed network. Embed is the embedding layer for time information. I is the trainable induced points

D RESULTS OF ABLATION EXPERIMENTS

D.1 ABLATION FOR ISAB

Table 6: Comparison of ISAB and Vanilla Attention on EEG

Interpolate Reconstruction Forecasting
Model MSE NLL MSE NLL MSE NLL MACs (G)

ISAB 0.12 -2.37 0.11 -2.39 0.22 -2.35 0.58
Vanilla Attention 0.13 -2.38 0.15 -2.41 0.24 -2.38 0.58

Table 7: Comparison of ISAB and Vanilla Attention on ERA5

Large-region missing Random missing
Model MSE(10−2) NLL MSE(10−2) NLL MACs (G)

ISAB 0.05 -5.19 0.06 -5.02 7.77
Vanilla Attention 0.10 -4.49 0.09 -4.83 60.30

D.2 ABLATION FOR RUNTIME TRADEOFF

Table 8: Runtime/performance under varying NFE on EEG

Method SNP(NFE=1000) SNP(NFE=500) SNP(NFE=100) SNP(NFE=50) NP ANP ConvNP

Interpolate (MSE) 0.119 0.139 0.161 0.185 0.351 0.206 0.295
Reconstruction (MSE) 0.115 0.140 0.169 0.207 0.320 0.350 0.297
Forecast (MSE) 0.224 0.261 0.335 0.364 0.417 0.474 0.419
Time (s/sample) 0.451 0.225 0.045 0.023 0.001 0.006 0.009
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E ADDITIONAL QUALITATIVE RESULTS

In this section, we present some additional qualitative visualization results in experiments.

Figure 7: Qualitative evaluation on functions from GPs with RBF kernels. The blue lines and the
shaded blue area denote the predictive µ± 2σ. The red lines is the function sample. Purple dash–dot
lines are the ground-truth GP mean and µ± 2σ.
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Figure 8: Qualitative evaluation on functions from GPs with Periodic kernels. The blue lines and the
shaded blue area denote the predictive µ± 2σ. The red lines is the function sample. Purple dash–dot
lines are the ground-truth GP mean and µ± 2σ.

Figure 9: Qualitative evaluation on functions from GPs with Matern kernels. The blue lines and the
shaded blue area denote the predictive µ± 2σ. The red lines is the function sample. Purple dash–dot
lines are the ground-truth GP mean and µ± 2σ.
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Figure 10: Qualitative evaluation of Forecasting on EEG. The blue lines and the shaded blue area
denote the predictive mean and standard deviation.

Figure 11: Qualitative evaluation of Interpolation on EEG. The blue lines and the shaded blue area
denote the predictive mean and standard deviation.
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Figure 12: Qualitative evaluation of Reconstruction on EEG. The blue lines and the shaded blue area
denote the predictive mean and standard deviation.
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NP ConvNPSNPgt ANPcontextNP ConvNPSNPgt ANPcontext

Figure 13: Qualitative evaluation of MNIST.

NP ConvNPSNPgt ANPcontext NP ConvNPSNPgt ANPcontext

Figure 14: Qualitative evaluation of CelebA32.

Figure 15: Qualitative evaluation of under 2% of sensors on CYLINDERFLOW. The color map
shows the x-component of the velocity field.

25



Under review as a conference paper at ICLR 2024

Figure 16: Qualitative evaluation of ERA5 under varying types of measurement missing and varying
perspectives.
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